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Abstract. Light detection and ranging (lidar) systems have gained a great importance in today’s wake character-
istic measurements. The aim of this measurement campaign is to track the wake meandering and in a further step
to validate the wind speed deficit in the meandering frame of reference (MFR) and in the fixed frame of reference
using nacelle-mounted lidar measurements. Additionally, a comparison of the measured and the modeled wake
degradation in the MFR was conducted. The simulations were done with two different versions of the dynamic
wake meandering (DWM) model. These versions differ only in the description of the quasi-steady wake deficit.
Based on the findings from the lidar measurements, the impact of the ambient turbulence intensity on the eddy
viscosity definition in the quasi-steady deficit has been investigated and, subsequently, an improved correlation
function has been determined, resulting in very good conformity between the new model and the measurements.

1 Introduction

Wake calculation of neighboring wind turbines is a key as-
pect of every wind farm development. The aim is to estimate
both energy yield of the whole wind farm and loads on single
turbines as accurately as possible. One of the main models
for calculating the wake-induced turbulence in a wind farm
is the so-called Frandsen model (see, for example, Frand-
sen, 2007). Previous measurement campaigns have shown
that this model delivers conservative results for small turbine
distances (Reinwardt et al., 2018; Gerke et al., 2018). This
is particularly important for onshore wind farms in densely
populated areas, where a high energy output per utilized area
is crucial. In such cases, the usage of a more accurate de-
scription of the physical behavior of the wake, as defined in
the dynamic wake meandering (DWM) model, seems appro-
priate. The DWM model is based on the assumption that the
wake behaves as a passive tracer, which means the wake itself
is deflected in the vertical and horizontal directions (Larsen
et al., 2008b). The combination of this deflection and the

shape of the wind speed deficit leads to an increased turbu-
lence at a fixed position downstream. This plays an eminent
role in the loads of a turbine located downstream of another
turbine (Larsen et al., 2013). Therefore, a precise description
of the meandering itself and the wind speed deficit in the
meandering frame of reference (MFR) as well as a detailed
validation of the wind speed deficit definition are fundamen-
tal.

Lidar systems are highly suitable for wake validation pur-
poses. In particular, the so-called scanning lidar systems offer
great potential for detailed wake analysis. These lidars are
capable of scanning a three-dimensional wind field, so that
the line-of-sight (LOS) wind speed can be measured subse-
quently at different positions in the wake, thus enabling the
detection of the wake meandering as well as the shape of the
wind speed deficit in the MFR. That is the reason why such
a device is used in the measurement campaign outlined here.
Several different measurement campaigns with ground-based
and nacelle-mounted lidar systems have already been carried
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out in the last years, some of them even with the purpose of
tracking wake meandering and validation of wake models.

In Bingöl et al. (2010) the horizontal meandering has been
examined with a nacelle-installed continuous-wave (CW) li-
dar. The campaign confirms the passive tracer assumption,
which is essential for the definition of the meandering in
the DWM model. Furthermore, the wind speed deficit in the
MFR has been investigated for some distances. Due to the
fact that the CW lidar can not measure simultaneously in dif-
ferent downstream distances, the beam has been focused suc-
cessively to different downstream distances. In Trujillo et al.
(2011) the analysis has been extended to a two-dimensional
scan. The measured wind speed deficit in the MFR has been
compared to the Ainslie wake model (Ainslie, 1988), which
constitutes the basis of the deficit’s definition in the DWM
model.

Additionally, in Machefaux et al. (2013) a comparison of
measured lateral wake meandering based on pulsed scanning
lidar measurements has been presented. Special attention is
paid to the advection velocity of the wake, which is estimated
with measured and low-pass-filtered wind directions at the
met mast (based on the assumptions of the DWM model)
and the wake displacement at certain downstream distances.
The analysis shows that the advection velocity calculated by
the Jensen model is in relatively good agreement. Finally,
the study compares the measured expansion of the wake in
the fixed frame of reference (FFR) to computational fluid dy-
namics (CFD) simulations and simple analytical engineering
models. The wake expansion calculated by simple analyti-
cal engineering models is well in line with lidar measure-
ments and CFD simulations, but it also depicts potential for
further improvements, which is why a new empirical model
for single-wake expansion is proposed in Machefaux et al.
(2015). In Machefaux et al. (2016) a measurement campaign
is presented that involves three nacelle-mounted CW scan-
ning lidar devices. The investigation includes a spectral anal-
ysis of the wake meandering, a comparison of the measure-
ments to the assumptions in the DWM model, and a com-
parison of the wind speed deficit profile in a merged wake
situation to CFD simulations.

It should be noted that the references listed here are only
the most essential, on which the present measurement cam-
paign builds. Several campaigns including either lidar sys-
tems or meandering observations as well as wake model val-
idations have been conducted in the past. The outlined anal-
ysis transfers some of the procedures of tracking the wake
meandering to measurement results from an onshore wind
farm with small turbine distances. Particular focus is put on
the investigation of the wind speed deficit’s shape in the
MFR and the degradation of the wind speed deficit in the
downstream direction. The latter can be captured very well
with the used nacelle-mounted pulsed scanning lidar sys-
tems due to the fact that it measures simultaneously in dif-
ferent downstream distances. Thus, a detailed comparison of
the predicted degradation of the wind speed deficit between

the DWM model and the measurement results is possible.
Furthermore, the collected lidar measurements are used to
recalibrate the DWM model, which enables a more precise
modeling of the wake degradation. As a consequence, the
calculation of loads and energy yield of the wind farm can be
improved.

The remaining document is arranged as follows: in Sect. 2,
the investigated wind farm and the installed measurement
equipment are described in detail. Afterwards, in Sect. 3, an
explanation of the data processing and filtering of the mea-
surement results is given. Sections 4, 5, and 6 focus on the
description of the theoretical background, and a hands-on im-
plementation of the DWM model is introduced. Based on the
outlined measurement results, a recalibration of the defined
degradation of the wind speed deficit in the DWM model is
proposed in Sect. 6. A summary of the measurement results
can be found in Sect. 7, and a comparison to the original
DWM model as well as the recalibrated version is presented
in Sect. 8. Finally, all findings are concluded in Sect. 9.

2 Wind farm

The investigated onshore wind farm (Fig. 1) located in the
southeast of Hamburg (Germany) consists of five closely
spaced Nordex turbines (one N117 3 MW turbine and four
N117 2.4 MW turbines) and an IEC-compliant 120 m met
mast, which is situated two rotor diameters (D = 117 m)
ahead of the wind farm in the main wind direction (west-
southwest). It is equipped with 11 anemometers, two of
which are ultrasonic devices; three wind vanes; two temper-
ature sensors; two thermohygrometers; and two barometers.
The sensors are distributed along the whole met mast, but at
least one of each is mounted in the upper 8 m (see Fig. 2). The
thrust as well as the power coefficient curves for both wind
turbines are illustrated in Fig. 3. There are no other turbines
in the immediate vicinity and the terrain is mostly flat. Only
at further distances (more than 1 km) is the terrain slightly
hilly (approx. 40 m). Two turbine nacelles are equipped with
a pulsed scanning lidar system (Galion G4000). The wind
farm layout with all installed measurement devices is shown
in Fig. 1 (the displayed load measurements are not in the
scope of this paper, but will be introduced in future publi-
cations). One lidar system is installed on top of the nacelle
of WTG 2 (N117 2.4 MW), facing backwards. The second
lidar system is installed inside the nacelle of WTG 1 (N117
3 MW) and measures through a hole in the rear wall. In this
case, mounting the device on top of the nacelle is not possi-
ble, as the area is occupied by a recuperator. The positions of
both devices are displayed in Fig. 2. Even though the setup
reduces the field of vision, the measurement campaign de-
scribed in this paper is not influenced by this restriction. On
the plus side, the lidar system is not exposed to weather. Fi-
nally, nacelle-mounted differential GPS systems help track
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the nacelle’s precise position as well as yaw movements with
a centimeter range accuracy.

3 Data filtering and processing

The lidar data are filtered in accordance with the wind di-
rection, so that lidar data without free inflow of the wake-
generating turbine as well as lidar measurements in the in-
duction zone of another turbine are rejected. This leads to
the remaining wind direction sectors listed in Table 1. The re-
maining sectors are relatively small, especially for the lidar
on WTG 2, which reduces the amount of usable measure-
ment data drastically. Additionally, the measured lidar data
are sorted into turbulence intensity bins for the further valida-
tion and recalibration of the DWM model. The ambient con-
ditions are determined by 10 min time series statistics from
the met mast; hence only measurement results with free in-
flow at the met mast are useable. Only situations with normal
power production of the wake-generating turbine are consid-
ered. The turbine operation mode is identified through the
turbine’s supervisory control and data acquisition (SCADA)
system. The statistics of the 10 min time series are applied
to identify the operational mode. Furthermore, the data have
been analyzed according to yaw misalignments, so that no
data with turbine misalignments greater than 6◦ are consid-
ered in the analysis. The misalignment is determined by the
GPS systems and the met mast wind direction. Moreover, the
lidar data are filtered by the power intensity of the measure-
ment results, which is closely related to the signal-to-noise
ratio (SNR) of the measurements. Results with an intensity
lower than 1.01 have been discarded. The pulse repetition
rate of the lidar system is 15 kHz. The ray update rate is
about 1 Hz (depending on the atmospheric conditions), so it
averages over approximately 15 000 pulses. The sample fre-
quency is 100 MHz. Considering the speed of light, this de-
livers a point length of 1.5 m. The range gate length is 30 m;
hence 20 points are used per range gate. The measurement
time increases with the number of range gates, because the
internal data processing time increases. Thus, to decrease
the measurement time, the number of range gates has been
limited, so that the farthest scan point is 750 m downstream.
Additionally, the scanning time of each complete horizontal
line scan is verified by the timestamp of each scan to ensure
that the meandering can really be captured. In summary, this
leads to the following filtering procedure for the measured
lidar data.

1. Filter according to the wind direction determined by the
met mast (free inflow at met mast and wind turbine and
no induction zone from other turbines).

2. Filter according to the normal power production deter-
mined by the turbine’s SCADA system.

3. Filter according to yaw misalignment.

Table 1. Considered wind direction sectors per wake-generating
turbine in the measurement campaign. Wind direction sectors with-
out free inflow of the met mast and the turbine as well as measure-
ments in the induction zone of another turbine are omitted.

Lower limit Upper limit
(◦) (◦)

WTG 1 160 190
320 350

WTG 2 150 160
240 250

4. Filter according to the SNR of the lidar measurements.

5. Filter according to scan time.

6. Group all data sets in turbulence intensity bins with a
bin width of 2 %.

Lidar systems measure the line-of-sight velocity. The wind
speed in the downstream direction is then calculated from the
lidar’s LOS velocity and the geometric dependency of the
position of the laser beam relative to the main flow direction
as outlined in Machefaux et al. (2012). Thus, the horizontal
wind speed is defined as

U (t)= ULOS ·
1

cos(θ ) · cos(φ)
, (1)

where θ is the azimuth angle and φ the elevation angle of
the lidar scan head. This seems to be a suitable approach for
small scan opening angles like in the measurement campaign
presented here. The biggest opening angle in the scan pattern
is 20◦. Nevertheless, if there is yaw misalignment, this could
have an impact on the overall results. To decrease the uncer-
tainties based on yaw misalignments, the measurement data
have accordingly been filtered. The yaw misalignment has
the biggest impact at the largest scan opening angle; i.e., a
misalignment of 6◦ at an opening angle of 20◦ leads to an
overestimation of the wind speed of less than 5 %.

4 Wind speed deficit in HMFR calculation

The meandering time series and the wake’s horizontal dis-
placement are determined with the help of a Gaussian fit.
Trujillo et al. (2011) assume that the probability of the wake
position in the vertical and horizontal directions is com-
pletely uncorrelated, so that the two-dimensional fitting func-
tion can be expressed as follows:

f2D =
A2D

2πσyσz
exp

[
−

1
2

(
(yi −µy)2

σ 2
y

+
(zi −µz)2

σ 2
z

)]
, (2)

where σy and σz are the standard deviations of the hori-
zontal and vertical displacements µy and µz, respectively.
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Figure 1. Wind farm layout with measurement equipment.

Figure 2. Met mast measurement equipment and lidar positions.

In the analysis presented here, only results from a horizon-
tal line scan are analyzed, so that no vertical meandering
is eliminated from the wind speed deficit, and the deficit’s
depth is less pronounced in comparison to the real MFR. To
clarify that the vertical meandering is not eliminated in the
present investigation, but included in the wind speed deficit,
the abbreviation HMFR (horizontal meandering frame of ref-
erence) is introduced and henceforth used instead of MFR.
A comparison of the wind speed deficit simulated with the

DWM model in the complete MFR and the HMFR is illus-
trated in Fig. 4. The simulations were carried out for a small
downstream distance of 2.5D and a high turbulence inten-
sity of 16 %. There are only small discrepancies around the
center of the wake, which validates the present assumption.

Since the vertical meandering is neglected, the measure-
ment results are fitted to a one-dimensional Gaussian curve
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Figure 3. Power and thrust coefficients over wind speed for the
N117 3 MW and the N117 2.4 MW turbines.

Figure 4. Wind speed deficit at a downstream distance of 2.5D and
an ambient turbulence intensity of 16 %.

defined as follows:

f1D =
A1D
√

2πσy
exp

(
−

1
2

(yi −µy)2

σ 2
y

)
, (3)

where A1D represents a scaling parameter. The measured
wind speeds are fitted to the Gauss shape via a least-squares
method. Thereby, only fitted horizontal displacements µy
that are between −200 and 200 m are used for further val-
idations of the mean wind speed in the HMFR. A horizontal
displacement of more than 200 m cannot be represented by
the Gauss fit due to a lack of measurement points. However,
such an event is highly improbable (e.g., the DWM model
predicts the wind speed deficit’s probability at the horizontal
position of 200 m to be 2×10−22 for an ambient wind speed
of 6.5 m s−1 and an ambient turbulence intensity of 8 %).

The entire method of calculating the wind speed deficit in
the HMFR is illustrated in Fig. 5 and can be described as fol-
lows. The lidar system takes measurements from the nacelle
of the turbine in the downstream direction, which deliver the
wind speed deficit in the nacelle frame of reference or even
in the FFR (see left side of Fig. 5) if the turbine is not moving
(this is ensured by the GPS systems). A Gauss curve is then
fitted into the scanned points as explained previously. It pro-
vides the horizontal displacement of the wake, so that each
scan point can be transferred into the HMFR with the calcu-

lated displacement (see middle diagrams in Fig. 5). The last
step illustrated in the diagrams is the interpolation to a reg-
ular grid. These three steps are repeated for a certain num-
ber of scans N (e.g., approx. 37 for a 10 min time series).
Finally, the mean value of all single measurement results in
the HMFR is calculated. It should be noted that it is manda-
tory to interpolate to a regular grid. Otherwise it would not be
possible to take the mean of all scans since the horizontal dis-
placement differs at each instant of time, and, therefore, the
measurement points are transmitted to a different location in
the HMFR. After averaging, the plausibility of the results is
inspected. If the calculated minimum mean wind speed in the
HMFR is higher than the minimum mean wind speed in the
FFR, it is assumed that the Gauss fit failed and the results are
no longer considered. In theory, the wind speed deficit in the
HMFR should be more pronounced than the measured one
in the FFR, wherefore this fundamental plausibility check is
added.

5 Lidar simulation

One of the most challenging parts of this specific measure-
ment campaign is the low ray update rate of the lidar system,
which is considerably smaller than in the previously intro-
duced measurement campaigns (Bingöl et al., 2010; Trujillo
et al., 2011). To ensure that the meandering as well as the
wind speed deficit in the HMFR can be captured with the de-
vices used, lidar and wind field simulations have been con-
ducted in advance. The simulations incorporate lidar specifi-
cations (e.g., beam update rate and scan head angular veloc-
ity) and wind farm site conditions (ambient turbulence inten-
sity and wind shear). The simulations assume perfect lidar
measurements, where no probe volume averaging is consid-
ered and the lidar measures the horizontal wind speed di-
rectly. The wind field is simulated at halfway of the range
gate. The simulated lidar “takes measurements” in a simu-
lated wind field that is generated by the DWM model and
includes wake effects as well as ambient turbulence. A de-
tailed description of the model is given in Sect. 6. The in-
house code is written in Python. From these “measured”
wind speeds the meandering is determined via Gaussian fits
as previously explained and implemented in the real mea-
surement campaign. Simulations are performed for different
scan patterns, ambient conditions, and downstream distances
to test the scan pattern, which for this one-dimensional scan
consists of only 11 scan points scanned in a horizontal line
from −20 to 20◦ in 4◦ steps. The “measurement” results of
the simulated meandering time series are shown in Fig. 6a,
whereas the corresponding wind speed deficit in the HMFR
is presented in Fig. 6b. The results are compared to the orig-
inal meandering time series and the simulated wind speed
deficit. The measured wind speed deficit in the simulated en-
vironment reproduces the simulated wind speed and its un-
derlying meandering time series very well (the coefficient of
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Figure 5. Method for the determination of the mean wind speed deficit in the HMFR.

determination R2 is approximately 0.93). Although only 11
scan points are used for these plots, the curve of the wind
speed deficit is very smooth. The reason for this behavior is
the previously mentioned interpolation process. The distri-
bution generated by the meandering process provides many
scan points around the center of the wind speed deficit and
only a few at the tails. Therefore, the influence of turbulence
at the tails is much higher, leading to a somewhat coarse dis-
tribution at the boundaries of the deficit. It should also be
noted that since this is a one-dimensional scan, the simulated
lidar measures the wind speed deficit only horizontally, ne-
glecting the wake’s less dominant vertical movement. When-
ever the wind speed deficit in the HMFR is mentioned in sub-
sequent validations, it implies the neglect of eliminating the
vertical meandering from the wind speed deficit, which has
only a marginal impact on the shape of the wind speed deficit
in the real MFR (see Fig. 4).

The lidar simulations indicate that the Gauss fit works
more reliably under optimal operating conditions, i.e., at op-
timal tip speed ratio, when the wind speed deficit is most pro-
nounced and the power coefficient Cp has its maximum (see
Fig. 3). For the turbines examined, this applies to a range of 5
up to 8 m s−1, so that only measurement results with ambient
wind speeds in this interval are analyzed.

6 Dynamic wake meandering model

The measured wind speed deficit in the HMFR is consecu-
tively compared to the DWM model, which is based on the
assumption that the wake behaves as a passive tracer in the

turbulent wind field. Consequently, the movement of the pas-
sive structure, i.e., the wake deficit, is driven by large turbu-
lence scales (Larsen et al., 2007, 2008b). The main compo-
nents of the model are summarized in Fig. 7a. The model was
built in house and independently of any commercial software
in Python.

6.1 Quasi-steady wake deficit

One key point of the model is the quasi-steady wake deficit
or rather the wind speed deficit in the MFR. In this study,
two calculation methods for the quasi-steady wake deficit
are compared with the lidar measurement results. A simi-
lar comparison of these models to met mast measurements
in the FFR was published in Reinwardt et al. (2018). The
quasi-steady wake deficit is defined in the MFR and consists
of a formulation of the initial deficit emitted by the wake-
generating turbine and the expansion of the deficit down-
stream (Larsen et al., 2008a). The latter is calculated with the
thin shear layer approximation of the Navier–Stokes equa-
tions in their axisymmetric form. This method is strongly re-
lated to the work of Ainslie (1988) and outlined in Larsen
et al. (2007). The thin shear layer equations expressed by the
wind speed in the axial and radial directions U and Vr, re-
spectively, are defined by

U
∂U

∂x
+Vr

∂U

∂r
=

1
r

∂

∂r

(
νT r

∂U

∂r

)
(4)

and
1
r

∂

∂r
(rVr)+

∂U

∂x
= 0. (5)
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Figure 6. Simulated and simulated “measured” meandering time series (a) and wind speed deficit in the HMFR (b) at an ambient wind speed
of 6.5 m s−1.

Figure 7. Components of the DWM model (a) (Reinwardt et al., 2018) and schematic illustration of the wake expansion in the DWM
model (b) according to Madsen et al. (2010).

The first part of the quasi-steady wake deficit, the initial
deficit, serves as a boundary condition when solving the
equations. In both methods used to determine the quasi-
steady wake deficit, the initial deficit is based on the axial
induction factor derived from the blade element momentum
(BEM) theory. Pressure terms in the thin shear layer equa-
tions are neglected. The error that inherently comes with
this assumption is accommodated by using the wind speed
deficit two rotor diameters downstream (beginning of the
far-wake area) as a boundary condition for the solution of
the thin shear layer equations. The equations are solved di-
rectly from the rotor plane by a finite-difference method with
a discretization in the axial and radial directions of 0.2D and
0.0125D combined with an eddy viscosity (νT ) closure ap-
proach. The two methods that are compared with the lidar
measurements only differ in the definition of the initial deficit
and the eddy viscosity formulation.

6.1.1 DWM-Egmond

For the first method the following formulae are given to cal-
culate the initial deficit. Hence, the boundary conditions for

solving the thin shear layer equations are (Madsen et al.,
2010)

Uw

(
rw,i+1+ rw,i

2

)
= U0(1− 2ai) (6)

and

rw,i+1 =

√
1− ai

1− 2ai

(
r2
i+1− r

2
i

)
+ r2

w,i fw (7)

with

fw = 1− 0.45a2, (8)

where a represents the mean induction factor along all ra-
dial positions i, ri the rotor radius, and rw,i the wake radius.
The boundary condition of the radial velocity component is
Vr = 0. The initial wake expansion and the corresponding ra-
dial positions as well as the pressure recovery in the down-
stream direction are illustrated in Fig. 7b. The eddy viscosity
νT used in Eq. (4) is calculated in this first approach as fol-
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lows (Larsen et al., 2013):

νT

U0R
= k1F1(x̃)Famb(x̃)I0

+ k2F2(x̃)
Rw(x̃)
R

(
1−

Umin(x̃)
U0

)
, (9)

with k1 = 0.1 and k2 = 0.008. The eddy viscosity is normal-
ized by the ambient wind speed U0 and the rotor radius R.
The outlined definition consists of two terms. The first is
related to the ambient turbulence intensity I0, whereas the
second depends on the shape of the wind speed deficit itself.
The single terms are weighted with the factors k1 and k2. The
filter functions F1 and F2 in Eq. (9) depending on x̃ (down-
stream distance normalized by the rotor radius) are defined
by IEC 61400-1 (2019) as follows:

F1(x̃)=


(
x̃
8

)3/2
−

sin
(

2πx̃3/2

83/2

)
2π for 0≤ x̃ < 8

1 for x̃ ≥ 8
(10)

and

F2(x̃)=


0.0625 for 0≤ x̃ < 4
0.025x̃− 0.0375 for 4≤ x̃ < 12
0.00105(x̃− 12)3

+0.025x̃− 0.0375 for 12≤ x̃ < 20
1 for x̃ ≥ 20.

(11)

The filter function F2 covers the lack of equilibrium between
the velocity field and the rising turbulence in the beginning of
the wake. F1 is introduced to include the fact that the depth of
the wind speed deficit increases in the near-wake area up to
(2. . .3)D downstream of the turbine until it attenuates again
in the downstream direction (Madsen et al., 2010). The filter
function as well as Eq. (8) are calibrated against actuator disc
simulations at a downstream distance of 2D, the beginning of
the far-wake area, where the wake is fully expanded (Madsen
et al., 2010). A more detailed explanation of the nonlinear
coupling function Famb is given in Sect. 6.3. This calcula-
tion method (Eqs. 6 to 11) is subsequently named “DWM-
Egmond” after the site, which is used for the calibration of
the eddy viscosity in Larsen et al. (2013).

6.1.2 DWM-Keck

The second investigated method defines the initial deficit by
the following equations (Keck, 2013):

Uw(rw,i)= U0 (1− (1+ fu)ai) (12)

and

rw,i = ri

√
1− a

1− (1+ fR)a
, (13)

with fu = 1.1 and fR = 0.98. The boundary condition of the
radial velocity component is again Vr = 0. In Keck (2013)

the final and recommended version of the model developed
for the eddy viscosity is defined as follows:

νT = k1F1(x̃)u∗ABL;λ<2Dl
∗

ABL;λ<2D

+ k2F2(x̃)max
(
l∗2
∣∣∣∣∂U (x̃)
∂r

∣∣∣∣ , l∗ (1−Umin(x̃))
)
, (14)

with k1 = 0.578 and k2 = 0.0178 and the filter functions

F1 =

{
x̃
4 for x̃ < 4
1 for x̃ ≥ 4

(15)

and

F2 =

{
0.035 for x̃ < 4
1− 0.965e−0.35(x̃/2−2) for x̃ ≥ 4.

(16)

In contrast to the previously mentioned model (DWM-
Egmond), atmospheric stability is considered in this fi-
nal model description. Equation (14) involves the velocity
u∗ABL;λ<2D and length scale l∗ABL;λ<2D fractions of the ambi-
ent turbulence, which is related to the wake deficit evolution
(eddies smaller than 2D). The velocity scale u∗ABL;λ<2D is
in addition to the ambient turbulence intensity I0 related to
the ratio of the Reynolds stresses (normal stress in the flow
direction and the shear stress), which in turn are functions of
the atmospheric stability. A detailed description of a method
to introduce atmospheric stability in the DWM model can
be found in Keck et al. (2014) and Keck (2013). In con-
trast to the final and recommended model in Keck (2013),
atmospheric stability is not considered in this study, so that a
previous model in Keck (2013) without consideration of at-
mospheric stability is used, and the numerical constants k1
and k2 in Eq. (17) are changed with respect to the first least-
squares recalibration in Keck (2013). Furthermore, according
to Keck (2013) it can be assumed that the mixing length l∗ is
equal to half of the wake width. This results in the following
formulation of the eddy viscosity:

νT

U0R
=k1F1(x̃)I0+ k2F2(x̃)max

(
Rw(x̃)2

RU0

∣∣∣∣∂U (x̃)
∂r

∣∣∣∣ ,
Rw(x̃)
R

(
1−

Umin(x̃)
U0

))
(17)

with k1 = 0.0914 and k2 = 0.0216.

6.2 Meandering of the wake

The meandering of the wind speed deficit is calculated from
the large turbulence scales of the ambient turbulent wind
field. Thus, the vertical and horizontal movements are cal-
culated from an ideal low-pass-filtered ambient wind field.
The cutoff frequency of the low-pass filter is specified by the
ambient wind speed and the rotor radius as (Larsen et al.,
2013)

fc =
U0

4R
. (18)
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The horizontal y(t) and vertical z(t) positions of the wind
speed deficit are calculated based on the low-pass-filtered ve-
locities in the horizontal and vertical directions according to
the relations (Larsen et al., 2007)

dy(t)
dt
= v(t) (19)

and

dz(t)
dt
= w(t), (20)

where v(t) and w(t) are the fluctuating wind speeds at hub
height. The ambient wind field, which is later on low-pass
filtered, is generated in this work by a Kaimal spectrum and
a coherence function (e.g., Veers, 1988). The temporal reso-
lution of the generated wind field is 0.07 s.

6.3 Recalibration of the DWM model

The wind speed deficit measured by the lidar systems is
used to recalibrate the wake degradation downstream or to
be more precise the eddy viscosity description. In Larsen
et al. (2013) a recalibration was already achieved by intro-
ducing a nonlinear coupling function Famb into the ambient
turbulence intensity term of the eddy viscosity definition (see
Eq. 9). Furthermore, a comparison between the measured and
simulated power based on the DWM model was carried out.
It shows that the wind speed deficit degradation is too low
for lower turbulence intensities and moderate to high turbine
distances in the model version from Madsen et al. (2010).
For this reason, the downstream-distance-dependent function
Famb was introduced into the eddy viscosity description in
Larsen et al. (2013).

A similar behavior but even more pronounced can be seen
in the results in Sect. 7. Following the approach of Larsen
et al. (2013), a function based on a least-squares calibra-
tion with the acquired lidar measurements is developed. This
function is incorporated into the normalized eddy viscosity
description in Eq. (17), whereby it changes to

νT

U0R
= k1Famb(x̃)F1(x̃)I0

+ k2F2(x̃)max
(
Rw(x̃)2

RU0

∣∣∣∣∂U (x̃)
∂r

∣∣∣∣ ,
Rw(x̃)
R

(
1−

Umin(x̃)
U0

))
(21)

with the constants k1 = 0.0924 and k2 = 0.0216 and the cou-
pling function

Famb(x̃)= ax̃−b (22)

with a = 0.285 and b = 0.742. The parameters a and b are
the results of the least-squares calibration. It should be noted
that the constant k1 was also slightly adjusted by the recal-
ibration, in which the normalized eddy viscosity definition

of Keck (2013) has been used. This derives from the fact
that this model is already in good agreement with the mea-
surement results in most turbulence intensity bins as demon-
strated in Sect. 8 and also in Reinwardt et al. (2018).

7 Measurement results

The measurement campaign lasted from January to July
2019. Both lidar systems, introduced in Sect. 2, were used to
collect the data. Results of the meandering time series over
10 min are exemplarily shown in Fig. 8a. The maximum dis-
placement of the wake is about 0.5D, which is equivalent to
58.5 m. The results are derived from a 10 min time series with
an ambient wind speed of 6.44 m s−1 and an ambient tur-
bulence intensity of 11.7 %. Some of the met-mast-detected
ambient conditions (wind speed U0, turbulence intensity I0,
wind shear α, and wind direction θ ) are given in the title of
the figure. The corresponding mean wind speed deficit is il-
lustrated in Fig. 8b. The wind speed decreases to less than
3 m s−1 in full-wake situations. As explained in Sect. 5, the
tails of the curve are relatively coarse since fewer scan points
were gathered. It can also be seen that the ambient wind
speed is not even reached at the edges of the curve. The open-
ing angle of the scan appears too small to capture the whole
wake at this distance. Towards the left part of the wind speed
deficit (at negative y distances) a bigger part of the wake is
captured. This arises from the fact that the horizontal dis-
placement is more often positive than negative, and, there-
fore, more measurement results are collected towards the left
part of the wind speed deficit curve.

The used lidar system is capable of measuring several
range gates simultaneously in 30 m intervals. The results of
all detected range gates for the data set presented in Fig. 8
are shown in Fig. 9a. The closest distance is 1.92D down-
stream and the farthest is 6.28D. The degradation of the wind
speed deficit in the downstream direction is clearly identifi-
able. As for the single distance case (Fig. 8), for most range
gates a bigger database is captured at the left part of the
wind speed deficit, resulting in smoother curves. The pre-
sumption of a too small opening angle of the scan, as stated
before, proves true. With increasing downstream distances
the captured wind speed deficits get closer to integrity. A
broader scan angle would result in more detailed wind speed
deficits for close downstream distances at the expense of far
distances, where the scan points might not capture enough
points inside the deficit and thereby prevent a successful
Gaussian fit. Furthermore, additional scan points at the edges
can lead to a better representation of the deficit but would
also increase the scan time. According to Eq. (18), the mean-
dering is correlated to frequencies lower than approximately
0.028 Hz considering a wind speed of 6.5 m s−1 and a rotor
diameter of 117 m. This means that, considering the Nyquist–
Shannon sampling theorem, the scan time must be longer
than half of the reciprocal of 0.028 Hz, which results in a
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Figure 8. Meandering time series (a) and wind speed deficit in the HMFR (b) at 2.69D downstream of the turbine.

Figure 9. Wind speed deficit in the HMFR for an ambient turbulence intensity of 11.7 % (a) and a turbulence intensity of 2.4 % (b).

necessary scan time of less than 18 s. The scan time for the
current usage of 11 scan points is already at about 16 s (de-
pending on the visibility conditions), which is close to the
limit of 18 s. Thus with an increased number of scan points
it is no longer ensured that the meandering can be captured.

Figure 9b illustrates the wind speed deficit in the HMFR
measured under different ambient conditions. The corre-
sponding meandering time series and wind speed deficit for
this measured time series at 2.69D downstream are given in
Fig. A1 in the Appendix. The wind shear is fairly high (α =
0.7) and the turbulence intensity is very low (I0 = 2.4 %).
Due to the low turbulence intensity it is still possible to see
the “W” shape of the wind speed deficit at closer distances.
The typical “W” shape is caused by the low axial induction
in the area of the nacelle. Further downstream, the wake be-
comes more Gaussian shaped. At a horizontal distance of
about 1.5D from the wake center, the wind speed decreases.
The reason is the wakes of other turbines in the wind farm.

The mean wind direction in this time series is 183◦ and the
measurements are taken from WTG 1, so it could be the in-
fluence of the wake of either WTG 2 or WTG 4. The asso-
ciated results of the mean wind speed deficit in the FFR are
illustrated in Fig. 10. The curves in the FFR are less smooth
than the wind speed deficit in the HMFR, simply because
only 11 points are scanned and no interpolation is necessary
when calculating the mean wind speed over the whole time
series. Comparing Figs. 9 and 10, it becomes apparent that
the wind speed deficit in the FFR is less pronounced. Fur-
thermore, for the lower turbulence intensity the “W” shape
of the wind speed is not visible, since it vanished due to the
meandering.

Similar results as exemplarily shown in Figs. 9 and 10 have
been collected for a multitude of different ambient condi-
tions. The number of measured time series per turbulence
intensity and wake-generating turbine, on which the lidar
system is installed, is listed in Table 2. The turbulence in-
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Figure 10. Wind speed deficit in the FFR for a turbulence intensity of 11.7 % (a) and a turbulence intensity of 2.4 % (b).

tensity is binned in 2◦ steps. Column 1 of Table 2 specifies
the mean values for each bin. Most of the measurement re-
sults are collected at low to moderate turbulence intensities
(I0 = 4 %–10 %). Only a few results could be extracted at
higher turbulence intensities. The results include time series
with an ambient wind speed of 5 to 8 m s−1. In this range,
both turbines operate under optimal and most efficient con-
ditions, resulting in maximum energy output from the wind.
The thrust coefficient is constant in this region (see Fig. 3).
Therefore, the axial induction and the wind speed deficit nor-
malized by the turbine’s inflow wind speed are also expected
to be constant for similar ambient conditions over this wind
speed range. For the single turbulence intensity bins and both
turbine types, simulations with different DWM models are
carried out applying the same axial induction over the whole
wind speed range. A scatterplot of the shear exponent and
the ambient turbulence intensity determined by the met mast
is given in Fig. 11. It includes all used data sets. At lower
turbulence intensities, the shear spreads quite a lot, whereas
towards higher turbulence intensities the shear decreases as
expected.

Figure 12 summarizes all measured wind speed deficits in
the HMFR. It demonstrates the mean value and the standard
deviation of the mean for all captured turbulence bins plotted
against the downstream distance. Each value is related to the
minimum value of the wind speed deficit, which itself is nor-
malized by the inflow wind speed. It should be noted that in
some distances only one value satisfies the filtering and plau-
sibility checks, whereby the error bar is omitted. Addition-
ally, it is pointed out that the plotted values always refer to the
minimum value of a wind speed curve and not necessarily to
the velocity in the wake center. Therefore, no increase in the
wind speed at low downstream distances on account of the
“W” shape is visible. The wind speed deficit at the wake cen-
ter plotted against the downstream distance is depicted in the

Table 2. Number of measured and considered data sets per turbu-
lence intensity for the lidar systems on WTG 1 and WTG 2.

I0 (%) WTG 1 WTG 2

4 23 28
6 8 11
8 23 14
10 11 9
12 13 4
14 0 0
16 1 1
18 1 2
20 1 3
22 0 2

Figure 11. Shear exponent over the ambient turbulence intensity
for all considered data sets.

next section in Fig. 15b and will be discussed further at this
point. Figure 12 illustrates very well that the lowest degrada-
tion of the wind speed deficit occurs at the lowest turbulence
intensity. Up to a turbulence intensity of 10 %, the degrada-
tion of the wind speed deficit continuously rises, leading to
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Figure 12. Measured mean value (line) and standard deviation (bar)
of the mean value of the minimal wind speed in the HMFR for dif-
ferent turbulence intensity bins with a bin width of 2 %.

increasing minimum wind speeds at nearly all downstream
distances. Above 10 % turbulence intensity, the case is less
clear. Especially at larger downstream distances, the mea-
sured normalized minimum wind speed happens to fall be-
low the corresponding lower turbulence intensity bin. An ex-
planation is the reduced number of measurement results in
these bins and the higher uncertainty that comes along with
it (expressed as error bars). Furthermore, discrepancies in the
determined ambient turbulence intensity at the met mast lo-
cation and the actual turbulence intensity at the wake posi-
tion could lead to a misinterpretation of the lidar measure-
ments. The farthest distance between the met mast and the
location measured by the lidar system that occurs in the ana-
lyzed sectors is about 1200 m. With an ambient wind speed of
6.5 m s−1, this leads to a wake advection time of 185 s; thus
even at the worst conditions, the measured ambient condi-
tions at the met mast should be valid for the measured wakes
from the lidar system most of the time. Furthermore, there is
no complex terrain at the site, so it can be assumed that the
conditions do not change with the wind direction. In addi-
tion, the agreement between measurements and simulations
is already good in the higher-turbulence-intensity bins. Thus,
the recalibration affects only the lower-turbulence-intensity
bins with larger amounts of data, while the influence of the
calibration on higher turbulence intensities is negligible (see
Fig. 13). Therefore, even though there are some discrepan-
cies, the faster recovery of the wind speed deficit due to
the higher ambient turbulence intensity can be verified, and
the measurements are reliable for the outlined investigation.
Thus, it is valid to use these measurement results for compar-
isons with DWM model simulations and the recalibration of
the DWM model in the next section.

8 Comparison between measurements and DWM
model simulation

Figure 13 compares the measured normalized minimum
wind speed in the wake to DWM model simulations. Fig-
ure 13a shows results for a relatively low turbulence inten-
sity of 6 %, whereas panel (b) contains results for a higher
turbulence intensity of 16 %. Further results for the remain-
ing turbulence intensity bins are shown in Figs. B1 and B2
in the Appendix. The simulations were carried out for a spe-
cific downstream distance, which corresponds to the center
of the range gate of the lidar system. It should be noted that
the wind speeds measured by the lidar system can be inter-
preted as a mean value over the whole range gate. However,
the wind speed gradient in the axial direction is low and al-
most linear in the observed downstream distances, so even
in the DWM model, the discretization in the downstream di-
rection is 23.4 m (equivalent to 0.2D), which is on the same
order as the range gate of 30 m. Therefore, a valid compar-
ison between simulations and measurements is carried out.
The wind speed deficit simulations in the HMFR obtained
by the DWM model also include the vertical meandering
to ensure a correct comparison between measurements and
simulations. Three different simulation results with varying
definitions of the initial deficit and eddy viscosity descrip-
tion are illustrated. The method called “DWM-Egmond” is
based on the definitions of Madsen et al. (2010) and Larsen
et al. (2013) and the “DWM-Keck” method is adopted from
Keck (2013); see Sect. 6. Figure 13 shows that the DWM-
Egmond method overestimates the wind speed deficit for
all downstream distances and for both turbulence intensities.
The simulated minimum wind speed with the DWM-Keck
method are in better agreement with the measurement results.
This confirms the results in Reinwardt et al. (2018). Espe-
cially at higher turbulence intensities (Fig. 13), the results
of the DWM-Keck model agree very well with the measure-
ments. For lower turbulence intensities and higher distances
(greater than 3D), there is a relatively large discrepancy be-
tween measurements and simulations. A similar observation
was made in Larsen et al. (2013) with the model version in
Madsen et al. (2010). Aiming at the adjustment of the sim-
ulated degradation of the wind speed deficit in Larsen et al.
(2013) for cases like the one presented here, the DWM model
has been recalibrated and is henceforth called “DWM-Keck-
c” (see Fig. 13).

The recalibration of the DWM model and accordingly the
normalized eddy viscosity definition in the DWM model are
based on a least-squares fit of the minimum of the simulated
normalized wind speed to the minimum of the measured nor-
malized wind speed for several downstream distances. The
definition of the eddy viscosity along with the recalibrated
parameters are explained in detail in Sect. 6.3. For the recal-
ibration the measurement results are divided into 2 % turbu-
lence intensity bins. All measurement results from Fig. 12
containing data sets from two different turbines are used for
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Figure 13. Comparison of measurements and simulations of the minimum wind speed deficit in the HMFR for different turbulence intensi-
ties. The recalibrated model is denoted DWM-Keck-c.

the recalibration. The first turbine is an N117 turbine with
3 MW and the second one is an N117 with 2.4 MW. DWM
model simulations were carried out for both turbine types,
since the axial induction of both turbines is slightly different
under partial load conditions. To calculate a mean value of
the simulated minimum wind speed and thus allow a compar-
ison with the results in Fig. 12, simulations with both turbine
types are carried out for each turbulence intensity bin and
weighted in accordance with the number of measurement re-
sults per turbine listed in Table 2. Thus, for example at the
ambient turbulence intensity bin of 4 %, the mean value of
the simulated minimum wind speed consists of the sum of
the simulated minimum wind speeds weighted by 0.451 and
0.549, the weighting factors for WTG1 and WTG2, respec-
tively. Nonetheless, this weighting has only a marginal influ-
ence on the overall results, because the axial induction in the
considered wind speed range (5 to 8 m s−1) is very similar
for these two turbine types (see also thrust and power curves
in Fig. 3).

The results of the recalibrated DWM model, denoted
Keck-c in Fig. 13, coincide very well with the measurements.
In particular, the results for lower turbulence intensities could
clearly be improved. For higher turbulence intensities, the
influence of the recalibration is less significant and the al-
ready good agreement between simulation and measurement
results remains unchanged. The same applies to the results
in the Appendix in Figs. B1 and B2. Only at the lowest
downstream distances and turbulence intensities up to 12 %
does the recalibrated model deliver higher deviations than the
original model. For downstream distances larger than 3D, the
recalibrated model leads to more than 10 % lower deviations
from the measurements than the original model. For turbu-
lence intensities higher than 16 %, the deviation between the
recalibrated and original model is smaller than the uncertain-
ties in the measurements; hence no further conclusions about
improvements can be made. The uncertainties in accordance
with misalignments could be up to 5 % (see also the data fil-

tering in Sect. 3). Furthermore, the LOS accuracy of the lidar
system itself is about 1.5 % at a wind speed of 6.5 m s−1.
The root-mean-square error (RMSE) between the measured
and simulated normalized minimum wind speed is collected
for all analyzed turbulence intensity bins in Fig. 14. A clear
improvement of the results due to the recalibrated model ver-
sion up to an ambient turbulence intensity of 16 % is visible.
For higher turbulence intensity bins, the RMSEs of the recal-
ibrated and the original DWM-Keck model version are sim-
ilar. The DWM-Egmond model delivers significantly higher
RMSEs than the other model versions for all turbulence in-
tensity bins. A comparison between the simulated and mea-
sured mean wake wind speed over the rotor area has been car-
ried out as well1. The improvement of the mean wind speed
is less clear in comparison to the normalized minimum wind
speed. Yet, there is an improvement or results of equal qual-
ity are obtained in almost all turbulence intensity bins. At the
tails of the wind speed deficit, the curves are coarse, since
fewer scan points are gathered and the influence of turbu-
lence is much higher (see Fig. 9). This leads to an error in the
mean wake wind speed but not in the minimum wind speed,
which is why the illustration and recalibration of the model
are based on the minimum wake wind speed instead of the
wake mean wind speed.

Figure 15 compares the final recalibrated DWM model to
the original model definition. It shows the minimum normal-
ized wind speed (panel a) and the wind speed at the wake
center (panel b) over downstream distances from 0D to 10D
for the lower- and the higher-turbulence-intensity cases of
6 % and 16 %, respectively. Observing the wind speed at
the wake center, higher wind speeds can be seen at lower
distances, which derives from the “W” shape of the wind
speed at these downstream distances. The comparison of
the DWM-Keck model (orange curve) and the recalibrated
model DWM-Keck-c (green curve) demonstrates that the re-

1https://wes.copernicus.org/preprints/wes-2019-89/ (last
access: 17 June 2020).
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Figure 14. RMSE between the lidar-measured and the simulated normalized minimum wind speed in the wake.

Figure 15. Simulated minimal normalized wind speed in the MFR (a) and normalized wind speed at the wake center (b) over the downstream
distance for a turbulence intensity of 6 % (solid curves) and 16 % (dashed curves). The recalibrated model is denoted DWM-Keck-c.

calibration leads to a shift of the curve towards lower dis-
tances. This shift is more pronounced for the lower turbu-
lence intensity, leading to a faster degradation of the wind
speed deficit. For the higher turbulence intensity, both curves,
orange and green, are very close to each other over all dis-
tances. The faster degradation of the wind speed deficit in
the recalibrated model version is caused by introducing the
function Famb in the eddy viscosity definition in Eq. (21)
as explained in Sect. 6.3. The function increases the eddy
viscosity for lower turbulence intensities and thus increases
the wind speed deficit degradation in the downstream direc-
tion. Contemplating the curve of the minimum wind speed
in Fig. 15a, small steps are formed in the curves between
2D and 4D (depending on the used model and the turbu-
lence intensity). These steps correspond to the minimum of
the curves in Fig. 15b and are thus related to the transition
from the “W” shape of the wind speed deficit towards the
Gaussian profile and are consequently caused by the reso-
lution in the downstream direction. These steps were also
found in some measurements and could likewise be related
to the implied transition zone.

9 Conclusions

The study compares measurements of the wind speed deficit
with DWM model simulations. The measurement campaign
consists of two nacelle-mounted lidar systems in a densely
packed onshore wind farm. The lidar measurements were
prepared by lidar and wind field simulations to examine
whether the scan pattern is suitable for the outlined anal-
ysis. Several wind speed deficits that were simultaneously
measured at different downstream distances are presented
along with their associated meandering time series. The one-
dimensional scan worked reliably in the field campaign, thus
delivering lidar data for a multitude of different ambient con-
ditions. These measurements are compared to the simulated
wind speed deficit in the HMFR. The simulation result of
the DWM-Keck model is in good agreement, whereas the
DWM-Egmond model yields a too low degradation of the
wind speed deficit. Furthermore, even the DWM-Keck model
shows some discrepancies to the measurements at low turbu-
lence intensities, which is why a recalibrated DWM model
was proposed. The recalibrated model improves the corre-
lation with measurements at low turbulence intensities and
leads to an agreement at high turbulence intensities, which
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are as good as the original model, thus resulting in a very
good overall conformity with the measurements.

Future work will include the analysis of two-dimensional
scans as well as measurements with more range gates and
higher spatial resolutions. Increasing the number of range
gates and scan points will lead to longer scan times, hence
preventing further analysis of the wind speed deficit in the
MFR and the determination of the meandering time series.
Nevertheless, a validation of the wind speed deficit in the
FFR with higher resolutions and more distances seems rea-
sonable to also prove the validity of the outlined calibra-
tion for further distances. Furthermore, the analyzed models
will be assessed in load as well as power production simu-
lations and compared to the particular measurement values
from the wind farm. Simulations have shown that the recal-
ibration of the DWM-Keck model can lead to up to 13 %
lower loads in the turbulence-dependent components in cases
with small turbine distances and low turbulence intensities,
whereas for higher turbulence intensities (> 12 %) the differ-
ence between the original and the recalibrated DWM-Keck
model is less than 5 %. The overall influence of the recali-
bration on the power output is low (< 2 % for all turbulence
intensities). So far, only measured single wakes were pre-
sented. Yet, a brief analysis demonstrated that multiple wakes
can also be recorded with the described measurement setup.
A future step will therefore be an analysis of multiple-wake
situations.
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Appendix A: Measurement results

Figure A1. Meandering time series (a) and wind speed deficit in the HMFR (b) at 2.69D downstream of the turbine.
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Appendix B: Comparison of measurements and
DWM model simulation

Figure B1. Comparison of measurements and simulations of the minimum wind speed deficit in the HMFR for different turbulence intensi-
ties. The recalibrated model is denoted DWM-Keck-c.

Figure B2. Comparison of measurements and simulations of the minimum wind speed deficit in the HMFR for different turbulence intensi-
ties. The recalibrated model is denoted DWM-Keck-c.
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