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Abstract. Model uncertainty is a significant challenge in the wind energy industry and can lead to mischaracter-
ization of millions of dollars’ worth of wind resources. Machine learning methods, notably deep artificial neural
networks (ANNs), are capable of modeling turbulent and chaotic systems and offer a promising tool to produce
high-accuracy wind speed forecasts and extrapolations. This paper uses data collected by profiling Doppler lidars
over three field campaigns to investigate the efficacy of using ANNs for wind speed vertical extrapolation in a
variety of terrains, and it quantifies the role of domain knowledge in ANN extrapolation accuracy. A series of
11 meteorological parameters (features) are used as ANN inputs, and the resulting output accuracy is compared
with that of both standard log-law and power-law extrapolations. It is found that extracted nondimensional inputs,
namely turbulence intensity, current wind speed, and previous wind speed, are the features that most reliably im-
prove the ANN’s accuracy, providing up to a 65 % and 52 % increase in extrapolation accuracy over log-law and
power-law predictions, respectively. The volume of input data is also deemed important for achieving robust re-
sults. One test case is analyzed in depth using dimensional and nondimensional features, showing that the feature
nondimensionalization drastically improves network accuracy and robustness for sparsely sampled atmospheric
cases.

1 Introduction

Challenges to the prediction of microscale atmospheric flows
are well-documented, especially for complex terrain and
forested regions (Baklanov et al., 2011; Krishnamurthy et al.,
2013; Fernando et al., 2015, 2019; Sfyri et al., 2018; Yang
et al., 2017; Berg et al., 2019; Wilczak et al., 2019; Pichug-
ina et al., 2019). Poor or unfit parameterizations can lead
to inaccurate flow prediction and extrapolation, producing
large modeling uncertainties. Every location has unique flow
features with variability that warrants a dedicated field cam-
paign to develop and validate parameterization schemes be-
fitting local forecasting. This process can still result in poor
spatial representation of the site due to limitations in mea-
surement technology, area covered by the field campaign,
and site complexity.

Large extrapolation errors are particularly detrimental for
wind farms, which rely on accurate wind speed extrapola-
tion to estimate available wind resource and forecast output
power. With the industry currently bracing for turbines up to
260 m tall, vertical extrapolation accuracy has become par-
ticularly important for the next generation of wind farms.
The current industry standard of 1 % uncertainty per 10 m
vertical extrapolation (Langreder and Jogararu, 2017) must
be improved in order to increase the viability of such large-
scale, powerful turbines. This would likely be particularly
difficult to accomplish by using numerical models. In com-
plex terrain, these models’ parameterization schemes must be
tuned for each individual region in order to obtain optimal re-
sults (Stiperski et al., 2019; Bianco et al., 2019; Olson et al.,
2019; Akish et al., 2019), reducing the plug-and-play effec-
tiveness of numerical modeling. Model results must also be
scaled down to the desired finer resolutions, which can result
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in representativity error (Dupré et al., 2020). Machine learn-
ing models may ease such concerns as they can be rapidly,
economically, and automatically parameterized; require no
downscaling; and consistently improve with time and data
availability. When properly applied, these machine learning
techniques can likely aid in effectively calculating the rotor
equivalent wind speeds for power curve measurements based
on IEC 61400-12-1:2017 from either a met mast lower than
hub height or a wind profiler with low data availability at
higher heights (Türkan et al., 2016; Islam et al., 2017; Mo-
handes and Rehman, 2018). Additional applications in wind
energy for such a technique range from feed-forward con-
trol of wind turbines or wind farms (Schlipf et al., 2013; Kr-
ishnamurthy, 2013; Kumar et al., 2015), prediction of yaw
misalignment (Fleming et al., 2014), and optimizing wake-
steering approaches (Fleming et al., 2019).

Neural networks have recently come into vogue due to the
rapid increase in computational power alongside a plethora
of available data. They are particularly skilled at pattern
recognition and bias correction, having been used for various
meteorological applications (McGovern et al., 2019; Hsieh
and Tang, 1998). Multiple studies have shown that neural
networks perform well when tasked with wind speed fore-
casting on a variety of timescales (Bilgili et al., 2007; More
and Deo, 2003; Chen et al., 2019). However, wind speed
measurements from meteorological towers or remote sensors
must often be extrapolated in space as well as time to reach
the location of interest (e.g., turbine hub height), adding an-
other layer of forecasting complexity.

In a recent study, Mohandes and Rehman (2018) found
that neural networks in conjunction with lidar data can accu-
rately extrapolate wind speeds over flat terrain using wind
speeds measured below the targeted height (extrapolation
height). However, it is unclear whether this finding holds for
more complex terrain. Knowledge of meteorological condi-
tions and site characteristics could be essential for optimal
extrapolation accuracy. In the same vein, Li et al. (2019)
found that adding turbulence intensity as an input greatly im-
proves wind speed forecasting accuracy, suggesting that the
input feature set may be highly influential for machine learn-
ing tools applied to meteorological problems. Following such
developments, the present study focuses on proper extraction
and selection of meteorological features across multiple sites
for a neural network designed for vertical extrapolation of
wind speed. The novelty of this study is in addressing the fol-
lowing questions: first, is it possible to improve wind speed
extrapolation accuracy under various terrain conditions using
neural networks by invoking physics-based input features?
Second, which atmospheric features should be selected to op-
timize the model’s prediction capabilities?

Section 2 provides an introduction to neural networks and
the list of input features utilized. Section 3 briefly describes
the campaign sites and instrumentation utilized as well as
measurement uncertainty. Section 4 presents findings of the

Figure 1. Artificial neural network diagram. Input nodes are in red,
hidden nodes in orange, and the output node in yellow. Black lines
represent weighted connections between layers.

investigation, and Sect. 5 provides analysis and discussion.
Concluding remarks are given in Sect. 6.

2 Model overview

2.1 Neural network architecture

Artificial neural networks (ANNs) are a machine learning
framework wherein a multilayered network of nodes at-
tempts to compute an output from a given set of inputs while
exploiting (often hidden) patterns underlying a given data
structure. A classic feed-forward ANN layout is given in
Fig. 1. These networks mimic the inner workings of the hu-
man brain and consist of four main elements: a layer of user-
defined inputs, one or more hidden layers, an output layer,
and the weighted connections that adjoin any hidden layer to
that before and after itself. Each layer is made up of nodes,
which gather information from the previous layer, perform
an activation function, and send the altered information to
the next layer. ANNs with multiple hidden layers (deep neu-
ral networks) are often much better at unearthing patterns in
complex, nonlinear systems. These networks learn best when
supplied with large datasets and a well-selected feature set.
Poor feature extraction or selection can lead the network to
find a pattern that is either misleading or potentially incor-
rect. In other words, garbage in, garbage out.

ANNs first go through a training phase where they learn
the structure of a system. Batches of training data are fed into
the network, which produces an output. This output is then
compared to the actual output, which is known a priori. The
network then back-propagates the error through the system
via stochastic gradient descent (SGD), starting from the last
layer and ending at the first. During this process, the weights
between layers are altered to produce a robust network phys-
iology. This process is repeated for as many iterations as is
desired, with the network seeing all training data in each it-
eration.
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At the end of each iteration, a set of validation data is given
to the network to ensure that the network is not over-fitting
the training data. At the end of training, the network is given
a third set of data, known as testing data, that has been un-
seen by the ANN theretofore. The network’s performance is
characterized by its prediction accuracy on the testing data,
defined by a certain error or loss metric C. This study uses
the mean absolute percentage error (MAPE, Eq. 1) as the loss
metric due to ease of comparison with industry metrics and
its insensitivity to nondimensionalization (Appendix A).

C =MAPE=
1
N

N∑
i=1

100×
∣∣∣∣yi − ŷiyi

∣∣∣∣ , (1)

where N is the number of observations, yi the observed out-
put, and ŷi the network output. The ANN used here has a
similar framework as Mohandes and Rehman (2018), con-
taining four hidden layers with 30, 15, 10, and 5 nodes, de-
scending until the final output layer that has a single node.
Research on the effect of increasing the number of hidden
layers shows that deeper networks are better able to approxi-
mate highly complex systems (Aggarwal, 2018). The number
of hidden layers generally is a function of the number of in-
put and output arguments used in the ANN as well as the per-
ceived nonlinearity in the system. The true depth of an ANN
is generally concluded based on several trial-and-error runs.
Increasing the number of hidden layers in our case, however,
did not yield higher extrapolation accuracy. The ANN uti-
lized is intentionally simplistic. Potentially useful techniques
such as batch normalization, recurrence, etc., are removed to
further highlight the feature engineering aspect of the study.
However, such additional techniques could potentially im-
prove (or at least alter) the network’s prediction accuracy and
should be investigated in future studies.

There were two dropout layers, located after the first and
second hidden layers, that protect against over-fitting. The
activation function in each hidden layer was the hyperbolic
tangent, while the output layer had a linear activation func-
tion. The MAPE cost function was utilized as the cost func-
tion C. The Adam optimization algorithm (Kingma and Ba,
2014) was implemented to enhance SGD, and all trials were
discontinued after no more than 1000 iterations through the
entire training dataset. All datasets were split into three dis-
tinct pieces: training data (50 %), validation data (25 %), and
testing data (25 %). In order to minimize bias, all data were
randomly split before each of the 10 runs for every test case.
From these 10 runs, the best, average, and standard devi-
ation of the testing data MAPE were recorded. Tests were
performed with different input features and different heights
at various site locations to confirm that bias from a given
site and/or measurement height was removed. The Keras li-
brary, built on TensorFlow, was utilized to construct the ANN
model (Abadi et al., 2016; Chollet et al., 2015).

2.2 Input features

Our main hypothesis is that more informed meteorological
inputs lead to lower model extrapolation error and possibly
lower error than can be achieved by existing models, espe-
cially in complex terrain. All meteorological inputs utilized
in this study are listed alongside their respective definitions in
Appendix B. To ensure that the model performs better than
that achieved via simple analysis or with unadulterated in-
puts, we consider four base cases. The first is a power-law ex-
trapolation, a simple algorithmic representation of how wind
speed varies with height,

Uα = Ur
(
z/zr

)α
, (2)

where Uα is the streamwise wind speed at the height of inter-
est, Ur the streamwise wind speed at a reference height, z the
height of interest, zr the reference height, and α a power-law
coefficient that characterizes the shear between z and zr. The
α value was derived dynamically for each individual period
(Shu et al., 2016). The second base case is the log-law ex-
trapolation under neutral conditions. The formulation of the
log law when the wind speed is known at a reference height
can be given as

UL = Ur

ln
(

(z−d)
z0

)
ln
(

(zr−d)
z0

) , (3)

where UL is the wind speed at extrapolation height, d the
zero-plane displacement, and z0 the roughness length. Both
d and z0 are determined based on optimal testing results and
local topographic information (Holmes, 2018). d and z0 are
found to be 6 and 0.1 m, respectively, for the Perdigão cam-
paign; 0 and 0.001 m, respectively, for the CASPER cam-
paign; and 0 and 0.01 m, respectively, for the WFIP2 cam-
paign (which are the campaigns analyzed in this study, to be
discussed in Sect. 3). The log-law extrapolation (and more
generally Monin–Obukhov similarity theory) is expected to
perform poorly for the complex-terrain sites due to the lack
of stationarity and horizontal homogeneity (Fernando et al.,
2015).

The other two base cases involve using nearly raw mete-
orological data as input features. The third base case uses
only the streamwise wind speeds (U ) below the height of
interest as inputs, while the fourth base case uses U , wind di-
rection (Dir), and hour (Hr) as inputs. The hour is formatted
as a cosine curve to ensure continuity between days, while
the direction is formatted from −1→ 1 to alleviate scaling
issues.

Neural network inputs are taken at 20 m intervals to a max-
imum of 80 m below the height of interest (e.g., for an out-
put at 120 m, data from 100, 80, 60, and 40 m are used).
The lowest measurement height available was 40 m. Because
sites (Sect. 3) had different instrumentation, the only fea-
tures used are those obtained by a single profiling lidar. All

https://doi.org/10.5194/wes-5-959-2020 Wind Energ. Sci., 5, 959–975, 2020



962 D. Vassallo et al.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection

lidar data are 10 min averaged. Three nondimensional fea-
tures are extracted from the lidar data, namely turbulence in-
tensity (TI=σU /U ; σU is the standard deviation of the wind
speed), nondimensional streamwise wind speeds (Un; nondi-
mensionalized by U 20 m below the height of interest), and
nondimensional streamwise wind speed from the previous
time period (Up). Up is the only input feature utilized that
extended up to the height of interest (i.e., we assume that the
previous period’s wind speed at the extrapolation height is
known), and bold lettering on these three features indicates
that they are nondimensional quantities. Three additional fea-
tures are also extracted: vertical wind shear (dudz=∂U/∂z),
local terrain slope in the direction of incoming flow (φ), and
vertical wind speed (W ). The nondimensional input features
were selected considering their robustness in inputting more
accurate features (e.g., possible compensation of measure-
ment errors in formulating nondimensional variables) and
ability of nondimensional variables to better represent flow
structures (Barenblatt and Isaakovich, 1996). Features are
used in various combinations in order to determine which
provide useful information to the network and which provide
unnecessary or redundant information that leads to confu-
sion. All input features, many of which are highly correlated,
are included in a final test to show that simply throwing mul-
titudes of data at the network yields poor results. Including
more inputs, many of which contain the same information, is
not expected to improve ANN prediction accuracy because
much of the additional information is redundant. Instead, the
additional redundant or noisy inputs may decrease prediction
accuracy because they reduce the ANN’s ability to discern
meaningful patterns contained in the preexisting input fea-
tures.

It is typical industry practice to normalize (i.e., standard-
ize) input variables, wherein an input variable x is scaled to x̂
via

x̂ =
x−µ

σ
, (4)

where µ is the variable’s mean and σ is the variable’s stan-
dard deviation (Aggarwal, 2018). This technique is particu-
larly useful when input variables have Gaussian distributions
and cover multiple scales. However, many of the input fea-
tures already have similar scaling and none of the variables
in our study have a Gaussian distribution, thereby drastically
reducing the efficacy of standardization. Testing showed that
standardization has a potentially deleterious impact on net-
work performance (Appendix C), and therefore the input fea-
tures were kept in their unaltered state. The nondimensional-
ization performed followed typical fluid dynamical practices
(Barenblatt and Isaakovich, 1996).

The subscript 1 (e.g., Up,1) denotes that the input value
was only taken at the height of interest, subscript 2 (e.g.,
W2) denotes that the input value was taken at 20 m below the
height of interest, and subscript 3 (e.g., Up,3) denotes that
the input value was taken at the height of interest and 40 m

below. Input variables without a subscript 1, 2, or 3 were
taken from all four heights below the extrapolation height.
Additionally, because a vast majority of industrial wind tur-
bines do not produce power at exceedingly low wind speeds,
all cases with streamwise velocity 20 m below the extrapo-
lation height (U1) < 3 m s−1 were removed before testing.
The highest wind speed value recorded at any site was less
than 23 m s−1, below the standard cutoff limit of 25 m s−1

(Markou and Larsen, 2009).

3 Site description and instrumentation

Data from three international field campaigns, whose loca-
tions can be seen in Fig. 2a, were used in this study. The
authors participated in each of these campaigns by deploy-
ment of instruments and data analysis. The Wind Forecast-
ing Improvement Project 2 (WFIP2) was a multiyear field
campaign focused on improving the predictability of hub-
height winds for wind energy applications in complex ter-
rain (Wilczak et al., 2019). An 18-month field campaign took
place in the US Pacific Northwest from October 2015 to
March 2017. Several remote sensing and in situ sensors were
located in a region with distributed commercial wind farms
along the Columbia River basin. This study focuses on us-
ing vertical profiling lidar (Leosphere’s Windcube V1) data
collected by the University of Colorado at Boulder from the
so-called Wasco site for a period of 15 months (Bodini et al.,
2019; Lundquist, 2017). The lidar’s location can be seen as
the orange marker in Fig. 2b. The surrounding terrain is com-
plex (although nominally less so than that at Perdigão to be
described below), with neighboring wind farms to the east of
the lidar. Any periods with missing data at multiple heights
were ignored in the analysis.

The Coupled Air–Sea Processes for Electromagnetic
Ducting Research (CASPER) field campaign was focused
on measurement and modeling of the marine atmospheric
coastal boundary layer (MACBL) to better predict the in-
teraction of electromagnetic (EM) propagation and atmo-
spheric turbulence (Wang et al., 2018). Two field campaigns
were conducted during CASPER, one near the coast of
Duck, North Carolina (CASPER-East), in 2015 and another
near the coast of Point Mugu, California (CASPER-West),
in 2017. This study uses data from the CASPER-West ex-
periment. Vertical profiler data (Windcube V1) from the
FLoating Instrument Platform (FLIP), collected over approx-
imately a month, were used for this study. The profiler’s lo-
cation can be seen as the blue marker in Fig. 2c. Datasets
available at all heights were selected for this study.

The final study is the Perdigão campaign, a multinational
project that took place in the spring and summer of 2017
aimed at improving microscale modeling for wind energy ap-
plications (Fernando et al., 2019). Conducted in the Castelo
Branco region of Portugal, the campaign deployed an ar-
ray of state-of-the-art sensors to measure wind flow fea-
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Figure 2. Panel (a) depicts all site locations. The remaining three panels depict topography at (b) WFIP2, (c) CASPER, and (d) Perdigão.
Map data © 2019 Google, INEGI and Inst. Geogr. Nacional.

tures within and around a complex double-ridge topogra-
phy. The ridges are spaced approximately 1.4 km apart with
a valley in between. Both ridges rise approximately 250 m
above the surrounding topography, which mainly consists
of rolling hills and farmland. Over 4 months of data were
taken from a Leosphere profiling lidar, denoted by the black
marker in Fig. 2d, which was located on top of the north-
ern ridge of the Perdigão double ridge. This particular loca-
tion was selected due to the multitude of complex flow pat-
terns seen at this location during the campaign. A meteoro-
logical tower was located adjacent to the lidar, but it only
rose to 100 m above ground level, below all extrapolation
heights. Profiler data available at all heights were used for
this study. A manufacturer-recommended signal-to-noise ra-
tio (SNR) threshold (−23 dB for both CASPER and Perdigão
and −22 dB for WFIP2) and availability threshold (30 %)
were used to remove any potentially bad data at all sites.

The uncertainty of the wind Doppler lidar measurements
is expected to be within 2 % (Lundquist et al., 2015, 2017;
Giyanani et al., 2015; Kim et al., 2016; Newsom et al., 2017;
Newman and Clifton, 2017). Owing to a lack of secondary
measurements at the locations and heights of interest, all lidar
measurements are treated as true.

4 Results

Table 1 shows for each case the best testing extrapolation ac-
curacy at all sites. The total number of (randomly split) val-
idation and testing samples for each case is also shown for
reference. The table is color coded, with the best accuracy
in yellow and the worst in red. At first glance it is obvious
that the network’s accuracy is highly dependent not only on
the inputs used, but also on the site location and data avail-
ability. The site with the highest extrapolation accuracy is
the nominally mildly complex WFIP2 site, which also has
the most robust dataset. The highly complex Perdigão site
has the worst extrapolation accuracy, with the accuracy of
the offshore CASPER site between the two. The best MAPE
achieved for all heights (underlined), with each site below
2 %, meets and often exceeds industry standards (Langreder
and Jogararu, 2017).

The power law performed better than the log law and was
therefore used as a baseline for comparison in Table 2. As
this table shows, the two ANN baseline cases (one utiliz-
ing U , Dir, and Hr, as well one only utilizing U ; first two
rows of Tables 1 and 2) performed almost equally well and
showed a slight improvement over the power-law extrapola-
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Table 1. Best MAPE per test case. For each height at every site, the case with the best result is underlined. Yellow is the highest accuracy,
and red is the lowest. The total number of validation and testing samples is shown for reference.

tion. However, there is no clear distinction between the re-
sults of the two cases, and therefore Dir and Hr can be pre-
sumed to have no effect on prediction accuracy. When U is
replaced by Un, the network accuracy again improves, pro-
viding a result 10 %–33 % more accurate than the power-law
extrapolation. TI and Up,1 are the most beneficial secondary
input features when used alongside Un. While TI improves
network accuracy at all except the CASPER site, Up,1 is more
impactful, improving accuracy up to 52% over the power-law
extrapolation. TI was chosen as the second input for cases
with three input features because it is the most beneficial
feature that includes information about the flow’s turbulence
levels and to some extent the atmospheric stability (Whar-
ton and Lundquist, 2012), information that is expected to be
highly influential in determining the flow, particularly at the
complex-terrain sites.

A majority of the third input features, specifically Uα ,
dudz, φ, φ2, andW , have negligible or negative effects on ex-
trapolation accuracy. There are exceptions to this rule, never-
theless, as Uα considerably improves accuracy for CASPER
and φ2 improves accuracy at 160 m height for Perdigão. With
a single exception, the best extrapolation accuracy is ob-
tained when Un, TI, and either Up,1 or Up,3 are used as in-
puts. Adding extra input features beyond this point has, at
best, negligible impact on network extrapolation accuracy.
This is best described by the final test case where all avail-
able features are forced into the network. With all inputs, the
best extrapolation accuracy is up to 67 % worse compared to
the input case that obtains the best result (100 m CASPER,
Table 1).

5 Discussion

A brief analysis shows that extracted nondimensional meteo-
rological input features (Un, TI, and Up) drastically improve
the network’s extrapolation accuracy, allowing it to perform
much better than conventional log-law and power-law extrap-
olations. However, this uptick in accuracy does not continue
as more features are added. As can be seen in Fig. 3, using
more than three input features for Perdigão actually reduced
network accuracy. This is most obvious when all possible
features are thrown into the network. The input noise and
redundancy reduces the network’s ability to find usable pat-
terns. Excess information, much of it redundant, confuses the
network.

Two tests were performed to determine whether this
improvement in accuracy is derived from feature nondi-
mensionalization. Because the network performed best at
Perdigão with input features of Un, TI, and Up,3, the same in-
puts were then given to the network, but in dimensional form
(i.e., U , σU , and Up,3). The dark blue bar in Fig. 3 shows
that the network performed significantly worse when given
dimensional features. In fact, the network performs just as
poorly with dimensional features as it does when given all the
input features indiscriminately, showing that nondimension-
alization has a significant impact on network performance.

Next, the 160 m Perdigão extrapolation with input fea-
tures Un, Up,3, and TI was analyzed in depth. In order to
determine the exact effects of nondimensionalization, the
same inputs were then given to the network in dimensional
form. The results are given in Fig. 4. The left column shows
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Table 2. ANN percent improvement over power-law extrapolation. Gold denotes the most improvement, while blue denotes less improvement
or a decline in accuracy.

Figure 3. MAPE at Perdigão averaged over all heights. Color coding describes the number of input features used for the ANN. The dark
blue bar indicates an additional test for comparison. Log-law extrapolation (4.3 % average MAPE) excluded for clarity.

network outputs when given dimensional features, whereas
the right column shows the results obtained using nondi-
mensional features (herein referred to as the dimensional
and nondimensional networks, respectively). Figure 4a and b
show a comparison of true wind speed and that predicted by
the network. It is immediately obvious that, upon approach-
ing sparsely sampled regions, the dimensional network be-
gins to fail, clearly underpredicting high wind speeds. The
nondimensional network, however, does not have this prob-
lem and accurately extrapolates these higher wind speeds.

An elementary indicator of the network’s predictive power
is the coefficient of determination R2, given by

R2
= 1−

∑(
yi − ŷi

)2∑(
yi − yi

)2 , (5)

where yi and ŷi have the same meanings as in Eq. (1) and
y is the mean observed output. Nondimensionalization im-
proves R2 from 99.3 % to 99.6 %. While this is a clear im-
provement, it does not tell the whole story. Nondimensional-
ization minimizes the network’s dependence on wind speed,
possibly by forcing it to calculate the amount of shear be-

https://doi.org/10.5194/wes-5-959-2020 Wind Energ. Sci., 5, 959–975, 2020



966 D. Vassallo et al.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection

Figure 4. Comparison of network performance with dimensional (a, c, e) and nondimensional (b, d, f) input features for the 160 m extrap-
olation at Perdigão. The top row shows a comparison of true and extrapolated wind speed (at extrapolation height) with the best-fit line, the
middle row the change in uncertainty with wind speed, and the bottom row the change in extrapolation error with wind speed. The black
lines indicate a spline interpolation of the data. Colors indicate the percent of data at each binned wind speed for the testing dataset.
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tween reference and extrapolation heights, which is more
easily determined with the assistance of TI. Therefore, it may
be expected that nondimensionalization reduces error at high
wind speeds where there is a deficiency of samples.

The decrease in error variance is seen in Fig. 4c and d,
which show the change in uncertainty η with height. For a
Gaussian variable, η can be defined as

η = 100×
σε

U
, (6)

where σε is the standard deviation of the error (for individual
predictions in the testing set) and U the mean wind speed.
For nondimensional testing, predicted wind speeds are first
transformed back into the dimensional space (i.e., Un→ U )
prior to error calculation in order to find true wind speed
extrapolation uncertainty. The total uncertainty, a measure
of error variability, is reported in the top row of Fig. 4, but
the change in η with height can be seen in the figure’s mid-
dle row. At low wind speeds (< 4 m s−1) with a large sam-
ple size the dimensional network actually outperforms the
nondimensional network. As wind speeds increase, both the
dimensional and nondimensional networks’ uncertainties de-
crease at a similar rate until the sample size begins to de-
crease at roughly 10 m s−1. At high wind speeds, the dimen-
sional network’s uncertainty begins to increase, eventually
rising to almost 2 % at extrapolated wind speeds> 15 m s−1.
The nondimensional network’s uncertainty, meanwhile, con-
tinues to decrease as wind speed increases, eventually reach-
ing values as low as 0.5 %. This is once again due to the fact
that the nondimensional network is better accounting for the
wind shear that is crucial for extrapolation. High wind speeds
no longer appear to the network as outliers, allowing the net-
work to better extrapolate much higher wind speeds than oth-
erwise possible. Nondimensionalization therefore decreases
output variability in sparse dimensional space, producing less
volatile outputs and a more robust network.

Lastly, the change in MAPE with wind speed can be seen
in Fig. 4e and f. As with uncertainty, the dimensional net-
work’s MAPE increases dramatically with wind speed due
to sample sparsity. Nondimensionalization once again nearly
eliminates this effect, as the MAPE consistently decreases
for extrapolated wind speeds< 16 m s−1. Whereas the uncer-
tainty denotes error variability, MAPE denotes overall pre-
diction error. As is clear in Fig. 4a, the dimensional network
has an obvious bias at high wind speeds, systematically un-
derpredicting extrapolation wind speed. This is apparent in
Fig. 4e, as MAPE increases to more than 10 % at higher
wind speeds. The nondimensional network does not have this
problem, again due to the fact that the network is oblivious to
the dimensional wind speed, minimizing the prediction’s de-
pendence upon total wind speed. We therefore conclude that
nondimensionalization decreases both total error and error
variability in regions with a sparsity of samples by eliminat-
ing the dependence on wind speed.

CASPER is most sensitive to the choice of input features.
This may be due to two factors. First, the site may have flow
dynamics for which our current list of inputs cannot account
(such as the Catalina eddy near the Californian Bight (Parish
et al., 2013) and marine offshore internal boundary layers
(Garratt, 1990) observed near that site). Additionally, it is
likely that the amount of CASPER data available is not ade-
quate for the network to accurately parse more complex hid-
den patterns. Fewer data could lead the network to overem-
phasize noisy perturbations as opposed to larger meteorolog-
ical trends. It is telling that even with the small amount of
data available the ANN is sometimes more than 50 % more
accurate than the power-law extrapolation technique.

Although the best extrapolation accuracy occurs at
WFIP2, the largest improvement over the power law is at
CASPER and Perdigão. This may be due to the fact that the
power-law extrapolation performed well at WFIP2 to begin
with, suggesting that WFIP2 may have the simplest flow pat-
tern of the three sites. The amount of data available did not
seem to improve network performance but likely stabilized
the network against noise.

We determine that of the features analyzed the nondimen-
sional input features, Un, Up, and TI, most reliably help the
efficacy of the ANN. Extracting the nondimensional wind
speed gives the network a better idea of the general trend it
needs to spot and adds more uniformity to the input samples.
TI specifies the amount of turbulence and hence momentum
diffusive capacity within the system (i.e., velocity gradients),
a property that none of the other input features are able to
directly convey. Lastly, providing the ANN with the previ-
ous period’s wind speed drastically improves accuracy. This
is the only feature that contains information about the flow’s
history. All three of these features are important because they
give the network new insightful information about evolving
aspects (dynamics) of the flow.

Some of the other input features (φ, W , Dir) are less im-
pactful for extrapolation, with minor effects that are site and
height dependent. Adding irrelevant inputs increases the sys-
tem’s noise and, unless an abundance of data are available,
can cause the ANN to model coincidental or conflicting pat-
terns. Other features (dudz, U ) provide redundant informa-
tion. These features typically fail to improve network ac-
curacy, can slow the training process, and are best left out.
Lastly, Uα can act as a positive or negative influence on the
network because α is dependent on other parameters such
as Un, Up, and TI. If the power-law model is reasonably ac-
curate or has a clear repetitive bias, Uα could be a useful
input feature that provides the ANN with a dependable indi-
cation of wind shear. Otherwise, it adds misleading noise to
the input feature set by thwarting the steering that Un, Up,
and TI would provide toward an accurate extrapolation.

It is obvious that just the right amount of scaled meteoro-
logical information is necessary to achieve optimal extrapo-
lation accuracy. It is also useful to simplify the modeled sys-
tem whenever possible, provided that the simplification does
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not remove necessary information. An example is the differ-
ence in extrapolation accuracy between U and Un. Before
the nondimensionalization, the ANN has to find a baseline
wind speed and predict the vertical wind shear. With nondi-
mensionalization, the baseline wind speed is a constant, and
the network is able to exploit possible self-similarity proper-
ties of the velocity profile. Whatever information lost during
nondimensionalization is more than compensated for by the
improved model robustness and removal of some measure-
ment inaccuracies, allowing for better generalization over re-
gions in the input domain that would have a scarce amount
of data (i.e., extrapolated wind speed > 14 m s−1).

This is only a first step in investigating how mindful fea-
ture extraction and selection can improve ANN accuracy for
meteorological predictions in wind engineering. Further im-
provement may be possible through the addition of other me-
teorological elements, particularly atmospheric stability (al-
though we expect when inputs consist of different height lev-
els and with specification of turbulence level, the effects of
stratification are indirectly taken into account). The reported
list of highly beneficial atmospheric input features (Un, Up,
and TI) is likely curtailed by our utilization of a single pro-
filing lidar. This restraint leads to a list of atmospheric input
features which are somewhat correlated, thereby reducing the
predictive power of any individual meteorological input. Fur-
ther instrumentation which can better capture atmospheric
forcing at a larger spatial scale would likely lead to a broader,
less correlated list of input features and better ANN perfor-
mance. The effects of various atmospheric forcing mecha-
nisms (atmospheric stability and inertial forcing) on atmo-
spheric forecasting error were studied recently by the authors
(Vassallo et al., 2020). Recurrent neural networks should also
be utilized to test how alternative combinations of meteoro-
logical features, combined with extensive knowledge of the
system’s history, can improve wind speed forecasting.

6 Conclusions

Model uncertainty is a vexing problem in the wind energy in-
dustry that has vast economic implications. It has been shown
that standard wind energy vertical extrapolation methods are
outdated and can no longer serve their purpose of efficiently
predicting and extrapolating meteorological properties accu-
rately under various conditions (Sfyri et al., 2018; Stiperski
et al., 2019). This problem can be mitigated by employing
machine learning tools that have made great strides in the
past few decades. Newer and faster techniques seem to spring
up every few months along with a continual increase in data
processing power. ANNs have the capability to delve into
turbulent, nonlinear systems and may therefore be used as a
tool to assist models, although blindly using ANNs without
a dynamic underpinning is vacuous. Domain knowledge, es-
pecially on governing dynamical variables, can greatly assist

these systems in finding underlying trends that govern atmo-
spheric phenomena.

This study investigated the efficacy of utilizing ANNs for
vertical wind speed extrapolation over a variety of terrains
and evaluated how various meteorological input feature sets
may influence extrapolation accuracy. Various meteorologi-
cal features were combined to test their effectiveness as ANN
inputs. It was found that, on average, ANN vertical extrapo-
lation error decreases by 15 % when using Un as a singular
input feature rather that U . Two other extracted nondimen-
sional features, TI and Up, also led to increased extrapolation
accuracy. The accuracy obtained by the ANN was up to 65 %
and 53 % better than that obtained by a log-law and power-
law vertical extrapolations, respectively. Vertical extrapola-
tion error was minimized to as low as 1.06 % over 20 m, but
too many network inputs (many of which are highly corre-
lated) actually caused a reduction in network accuracy. The
160 m extrapolation at Perdigão was analyzed in depth to de-
termine the effects of feature nondimensionalization. In addi-
tion to an improved correlation with measured wind speeds,
nondimensionalization led to a decrease in both total extrap-
olation error and variability, particularly at high wind speeds.
The nondimensional input features created a robust network
that improved predictions even in rare and underrepresented
cases. This shows that with sufficient data and proper feature
extraction and selection, ANNs are able to improve upon the
current industry standard vertical extrapolation accuracy.

Future studies are planned to investigate feature extraction
and selection for wind speed predictions over a variety of
timescales using a recurrent neural network. Identification of
robust nondimensional variables is expected to give ANNs
a better perspective of atmospheric conditions. We hope that
machine learning tools, combined with proper feature selec-
tion and extraction, will reduce atmospheric model uncer-
tainty to a fraction of what it is today.
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Appendix A: MAPE magnitude invariance

Our goal is to ensure that the loss function’s magnitude is in-
variant regardless of output scaling, allowing a fair compari-
son between dimensional and nondimensional networks. For
a simple feed-forward neural network with j output nodes,
our output error can be defined as E = 1

n
6c6j ecj , where c is

the number of samples in a batch and ecj is the error (given
by a user-defined loss function) seen by each output node for
each sample in the batch. We use the mean absolute percent-
age error loss function, meaning that we may define our error
metric as

ecj = 100

∣∣ycj − ŷcj ∣∣
ycj

, (A1)

where ycj is the true target output, ŷcj is the predicted tar-
get output, and the vertical lines denote the absolute value.
For convenience consider a single sample in a single batch
(this same analysis can be expanded to multiple samples over
multiple batches because of the linear nature of the summa-
tion). We will refer to the true and predicted values as y
and ŷ, respectively. We can now define the true and pre-
dicted (dimensional) outputs (yd and ŷd, respectively) as well
as the true and predicted nondimensional outputs (yn =

yd
a

and ŷn =
ŷd
a

, respectively, where a is a nondimensionaliza-
tion variable unique to each individual case). We can find the
dimensional error ed to be

ed = 100

∣∣yd− ŷd
∣∣

yd
. (A2)

Likewise, the nondimensional error en can be written as

en = 100

∣∣∣ yd
a
−
ŷd
a

∣∣∣
yd
a

= 100

∣∣yd− ŷd
∣∣

yd
, (A3)

proving that the error’s magnitude is invariant under nondi-
mensionalization. This is not true for loss metrics such as
mean squared error or mean absolute error, where

ed =
(
yd− ŷd

)2
, en =

(
yd− ŷd

)2
a2 (A4)

and

ed =
∣∣yd− ŷd

∣∣ , en =

∣∣yd− ŷd
∣∣

a
, (A5)

respectively. By using the MAPE loss function, we are ensur-
ing that the network learns at similar rates when using both
dimensional and nondimensional variables.
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Appendix B: Definitions of variables

Features are listed in the order that they ap-
pear in Sect. 2.2. Nondimensional features are
in bold. All input variables except Hr are taken
from four elevations below extrapolation height.

Uα Extrapolated wind speed based on Eq. (2) (m s−1)
UL Extrapolated wind speed based on Eq. (3) (m s−1)
U Streamwise wind speed (m s−1)
Dir Wind direction (−1→ 1)
Hr Hour of the day (cosine curve; −1→ 1)
TI Turbulence intensity; TI= σU

U
(σU is the standard deviation of streamwise wind speed; both σU and U

taken at a single elevation)
Un Nondimensional streamwise wind speed (U at all heights divided by U 20 m below the extrapolation height)
Up Nondimensional streamwise wind speed from the previous time period (nondimensionalized the same way as Un)
dudz Vertical wind shear (dudz=∂U/∂z; s−1)
φ Terrain elevation angle from direction of incoming wind speed (◦)
W Vertical wind speed (m s−1)
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Appendix C: Standardization

Standardization, while typically useful, does not im-
prove ANN prediction accuracy in this study. To
illustrate this point, consider the 120 m extrapola-
tion at Perdigão using four distinct sets of inputs.

Standardized Non-standardized
U Û , T̂I U , TI
Un Ûn, T̂I Ûn, TI
Input standardization is denoted by the caret above each

input feature. By analyzing these four input feature sets
we may determine network predictive performance when
utilizing both standardization and nondimensionalization.
U (O(1→ 10)) and TI(O(0.01→ 0.1)) are on different
scales, a common issue that can reduce ANN prediction ac-
curacy. Standardization typically alleviates this scaling prob-
lem by setting the mean value to 0 and the variance to 1
(Eq. 4), but because neither distribution is Gaussian (both
have large positive tails) standardization is not a viable solu-
tion to this problem. ANN prediction results for a typical run
can be seen in Fig. C1. It may be determined from these re-
sults (which are illustrative of those seen across a variety of
input feature sets) that standardization, rather than improving
ANN predictive accuracy, actually confuses the network. For
this reason standardization was excluded from the investiga-
tion.
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Figure C1. Comparison of test results using standardization and nondimensionalization (for U ) preprocessing techniques. Standardiza-
tion (a, c) can be seen to reduce prediction accuracy, whereas transformation of U to Un (U shown in a and b, Un in c and d) can be seen to
improve predictive accuracy by removing the tailing effect at high wind speeds.
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Code and data availability. Data from the Perdigão campaign
may be found at https://perdigao.fe.up.pt/ (last access: 10 Jan-
uary 2019) (UCAR/NCAR Earth Observing Laboratory, 2019)
and the WFIP2 campaign at https://a2e.energy.gov/projects/wfip2
(last access: 10 January 2019) (A2e, 2017). Data from the
CASPER campaign are being formally archived, and in the in-
terim they can be requested from Harindra J. S. Fernando at
harindra.j.fernando.10@nd.edu. Input and target variables are al-
tered for each individual test; example codes used for this
study maybe found at https://github.com/dvassall/ (last access:
16 July 2019) (Vassallo et al., 2019).
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