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Abstract. This paper describes a method for reducing the uncertainty associated with utilizing fully numerical
models for wind resource assessment in the early stages of project development. The presented method is based
on a combination of numerical weather predictions (NWPs) and microscale downscaling using computational
fluid dynamics (CFD) to predict the local wind resource. Numerical modelling is (at least) 2 orders of magnitude
less expensive and time consuming compared to conventional measurements. As a consequence, using numerical
methods could enable a wind project developer to evaluate a larger number of potential sites before making an
investment. This would likely increase the chances of finding the best available projects.

A technique is described, multiple transfer location analysis (MTLA), where several different locations for
performing the data transfer between the NWP and the CFD model are evaluated. Independent CFD analyses
are conducted for each evaluated data transfer location. As a result, MTLA will generate multiple independent
observations of the data transfer between the NWP and the CFD model. This results in a reduced uncertainty
in the data transfer, but more importantly MTLA will identify locations where the result of the data transfer
deviates from the neighbouring locations. This will enable further investigation of the outliers and give the analyst
a possibility to correct erroneous predictions. The second part is found to reduce the number and magnitude of
large deviations in the numerical predictions relative to the reference measurements.

The Modern Energy Wind Assessment Model (ME-WAM) with and without MTLA is validated against field
measurements. The validation sample for ME-WAM without MTLA consists of 35 observations and gives a mean
bias of−0.10 ms−1 and a SD of 0.44 ms−1. ME-WAM with MTLA is validated against a sample of 45 observa-
tions, and the mean bias is found to be+0.05 ms−1 with a SD of 0.26 ms−1. After adjusting for the composition
of the two samples with regards to the number of sites in complex terrain, the reduction in variability achieved
by MTLA is quantified to 11 % of the SD for non-complex sites and 35 % for complex sites.

1 Introduction

In the early stages of wind project development, it is common
to consider a large number of potential sites. The majority of
these potential sites typically do not contain an on-site mea-
surement of climatic conditions. As on-site measurements
are both expensive and time consuming, there is a practical
limit to the number of sites that a developer can investigate
using conventional methods. As a consequence, the number
of potential sites considered is reduced at an early stage. This

step may reduce the number of sites considered by an order
of magnitude (e.g. from approximately 100 down to 10) to
achieve a manageable portfolio for further analysis. As these
decisions are often taken with limited data available, there is
the risk of discarding some of the best projects in the process.

A remedy to mitigate the risk of advancing an subopti-
mal subset of sites for further analysis is to use high-quality
numerical methods. As numerical methods are (at least) 2 or-
ders of magnitude less time consuming and expensive com-
pared to conventional on-site measurements used for early
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project selection, such as sodar or lidar measurements, it al-
lows developers to evaluate a much larger set of projects. As
an example, the numerical method presented in this work can
be used to investigate on the order of 100 projects spread out
over an area the size of Sweden in a time frame of 10 weeks
for the cost of a single measurement campaign. However, on
crucial aspect for the feasibility of such methods is the result-
ing uncertainty in the wind resource estimate. If the uncer-
tainty is too high, compared to the real difference in wind re-
source between the investigated projects, the developer may
reach the wrong conclusions.

As a result of this large potential, the field of numeri-
cal wind resource assessment is a mature research topic and
there are a multitude of different approaches investigated.
The most relevant work in relation to this paper are the meth-
ods based on numerical weather prediction (NWP) using
the Wind Research and Forecast (WRF) model (Skamarock
et al. 2008). WRF can be used to produce sufficiently ac-
curate local wind speed estimates for early-stage wind re-
source assessments in flat terrain and for offshore applica-
tions (Draxl et al., 2015; Hahmann et al., 2015; Mylonas-
Dirdiris et al., 2016; Ohsawa et al., 2016; Standen et al.,
2017). However, it has also been observed that the predic-
tion error and uncertainty in local wind speed estimates us-
ing WRF are correlated with increasing terrain complex-
ity (Flores-Maradiaga et al., 2019; Giannaros et al., 2017;
Prósper et al., 2019). To increase the accuracy in moderate
and complex terrain, higher-resolution models are desirable
to resolve the microscale effects. With respect to conduct-
ing wind energy assessments in the early stage of project de-
velopment, the increased resolution also improves the abil-
ity to quantify the spatial extent of the areas with favourable
wind conditions, i.e. the size of the potential wind farm, as
well as allows the developer to better identify suitable terrain
formations and other areas with relatively small character-
istic length scales. Mortensen et al. (2017) discuss a com-
bination of WRF and WAsP (WAsP, 1987) to include the
effect of microscale terrain. Standen et al. (2017) describe
a linearized microscale correction in their virtual met-mast
approach. The microscale effects have also been modelled
by coupling WRF with a large variety of non-linear compu-
tational fluid dynamics (CFD) models (e.g. Gopalan et al.,
2014; Haupt et al., 2019; Quon et al., 2019).

The work presented here is based on the Modern Energy
Wind Assessment Model (ME-WAM), which is a combina-
tion of WRF and a non-linear CFD model. The coupling
to WRF is achieved through a virtual met mast, in which
roughness- and terrain-corrected long-term-normalized time
series from WRF is imported. The ME-WAM model was
originally presented at the Wind Europe conference (Keck
et al., 2019). In this paper we describe a method for re-
ducing the uncertainty associated with utilizing NWP–CFD
coupled via an internal forcing point for wind resource as-
sessments. We have developed a technique, multiple trans-
fer location analysis (MTLA), where several different loca-

tions for performing the data transfer between the NWP and
the CFD model are evaluated. Independent CFD analyses are
conducted for each evaluated data transfer location. As a re-
sult, MTLA will generate multiple independent observations
of the data transfer between the NWP and the CFD model.
This yields a reduced overall uncertainty, as well as a reduc-
tion in the number of large outliers in the distribution.

2 Description of the ME-WAM model

The Modern Energy Wind Assessment Model (ME-WAM)
is a numerical model for assessing the feasibility of early-
stage wind projects in absence of on-site wind measure-
ments. The method is based on a combination of NWP in
WRF and a steady-state non-linear CFD simulation to cap-
ture the microscale terrain. This allows for a fast and compu-
tationally effective method which retains the ability to cap-
ture mesoscale effects from WRF, as well as the capability
to model local terrain, roughness, and forest effects at high
resolution; see Fig. 1.

The coupling between WRF and the CFD solver is
achieved through a virtual met-mast approach. The WRF
data are corrected based on regional roughness and terrain,
as well as long-term normalized against the ERA5 reanaly-
sis dataset (Copernicus Climate Change Service, 2017). The
corrected time series is inserted into the CFD domain. This
has the benefit of delivering a stable and straightforward cou-
pling between the models. In the CFD model this is the same
process as using a measured time series. A drawback, how-
ever, is that the virtual met-mast approach is sensitive to the
location of the data transfer. It is crucial to find an appropri-
ate location where the wind regime is sufficiently similar in
the WRF and the CFD simulation to achieve good results.

Figure 2 displays an overview of the ME-WAM modelling
process. The method only requires project coordinates as in-
put and utilizes open data sources from WRF and other avail-
able GIS data to simulate the mesoscale wind regime. Mod-
ern Energy has developed a technique to optimize the data
transfer location based on surrounding terrain, slopes, rough-
ness, and expected mesoscale effects. We also apply a long-
term normalization of the extracted WRF data. These steps
occur in the “ME-WAM CORE” step. In the last step of the
process, the information from the virtual met mast is applied
in a CFD simulation to generate wind resource files, as well
as turbulence and wind shear maps.

In the following sections the WRF and CFD model con-
figurations used in our validation are briefly described. The
algorithms for optimizing the data transfer location, as well
as the corrections applied, and long-term normalization will
not be described in further detail as they are proprietary in-
formation.
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Figure 1. Illustration of the ME-WAM method. The background contour is extracted mean wind speed from the WRF model. The black
dashed box indicates the location where a microscale CFD analysis is conducted to add resolution in the results. By comparing the two
velocity fields, which have the same colour setting, it is clear that the microscale effects are important to assess the local wind speed and to
be able to design a wind farm in the investigated area.

Figure 2. Schematic description of the ME-WAM model process.

3 The WRF model

The large-scale wind regime at the simulated sites is pre-
dicted using numerical weather simulations conducted in the
advanced research version of the Weather Research and Fore-
casting model (WRF-ARW) (Skamarock et al., 2008). The
WRF model is an open-source state-of-the-art weather model
which is widely used in both industry and the research envi-
ronment. It is a comprehensive model which includes all rel-
evant processes of heat, mass, and momentum transfer and
thereby has the fidelity to be used for simulating a wide range

of weather phenomena from large synoptic scales down to
the meso- and even microscale.

The WRF-ARW model is based on the compressible
nonhydrostatic Euler equations formulated using a terrain-
following pressure level as the vertical coordinate. The model
contains a large number of methods for parameterizations
to handle land-surface properties, surface layer that governs
near-surface turbulence fluxes, vertical transfer in the plan-
etary boundary layer (PBL), short- and long-wave radiation
budget, microphysics, and cumulus formation, for example.
The appropriate selection of these schemes is dependent on
both the numerical setup of the model (most noticeably the
spatial resolution of the computational grid) and the most im-
portant physics for the investigated sites. Care must be taken
when selecting the combinations of parameterizations as they
interact with each other.

In this work the WRF configuration has been customized
to the various sites based on internal best practice for the dif-
ferent locations and topographies investigated. The details of
each case are not considered to be relevant for the research
described here. There are some common configurations for
all cases. The WRF simulations are conducted with the two-
way nesting approach on three domains. The horizontal res-
olution of these domains was 13.5, 4.5, and 1.5 km. The ver-
tical mesh contains 42 vertical levels, with fine meshing near
the surface and vertical stretching in higher levels. In Eu-
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rope the GMTED dataset with 500 m resolution was used as
terrain representation and CORINE with 100 m spatial res-
olution was used as the input roughness. The ERA5 reanal-
ysis dataset (Copernicus Climate Change Service, 2017) is
used as initial and boundary conditions. The parameteriza-
tions vary based on regional verifications, but in general the
more advanced options for the surface layer, PBL, and micro-
physics are applied.

4 CFD downscaling with WindSim

The microscale effects are incorporated by performing CFD
downscaling of the mesoscale wind regime using the com-
mercial CFD software package WindSim (from Vector AS);
see Fig. 1. WindSim is based on the Phoenics solver (Phoen-
ics flow solver, 2020) and solves the three-dimensional
incompressible RANS (Reynolds-averaged Navier–Stokes)
equations. The equations are solved on a Cartesian grid, and
multiple grid refinement regions and grid stretching can be
applied. The convective terms are discretized using the hy-
brid differencing scheme (i.e. a combination of the first-order
upwind scheme and the second-order central differencing
scheme), and the diffusion terms are discretized by the cen-
tral differencing scheme. The pressure–velocity coupling is
achieved using the SIMPLEST algorithm. There are multi-
ple turbulence closures available in the solver. In this work
the standard k− ε model (Launder and Sharma, 1974) has
been used. WindSim has functionality to model the effect of
atmospheric stability by including buoyancy effects using the
Boussinesq approximation and by modifying the inlet bound-
ary conditions and boundary layer height. WindSim also has
functionality for modelling forest effects as distributed vol-
ume forces in the CFD domain.

For this application, where WindSim is used to down-
scale WRF data imposed as a virtual met mast, one must
consider a balance between high representation of details in
the flow field and small-scale phenomena (such as terrain-
induced flow separation in the context) with the requirement
for a smooth and predictable flow field which can be coupled
to the large-scale dynamics represented by the WRF simu-
lation. The imposed WRF time series will be scaled based
on difference in flow conditions between any location in the
CFD domain and that at the mast location to produce a wind
resource map over the area. As a consequence, the transfer
location between WRF and WindSim is important to achieve
a stable and robust output for the ME-WAM modelling chain
as any errors at the transfer location are propagated out to
the whole wind resource map. In this work all WindSim sim-
ulations have been conducted using a central refinement re-
gion of equidistant Cartesian mesh with a horizontal reso-
lution of 100 m in a 25 km by 25 km region. The mesh is
stretched outwards from the equidistant region in the outer
domain. The size and height of the outer domain vary based
on local topography. The vertical mesh consists of 40 ver-

tical cells. There are 10 cells within the first 80 m to resolve
the boundary layer. The y+ value for the near-wall modelling
is maintained at a value on the order of 50 (the wall model
applied is valid in the range between 30 and 130 according
to the Phoenics documentation). The vertical cell sizes then
increase with height from the ground.

Steady-state simulations are conducted for 12 sectors of
30◦ each. The general collocated velocity (GCV) method was
used for solving the governing equations and the standard
k− ε model for turbulence closure. Forest is described by
18 classes based on height and tree type. The forest resistive
value varies between 0.025 and 0.2 in the various classes.

5 Description of the multiple transfer location
analysis (MTLA)

As described above, the modelling chain in ME-WAM is
based on a WRF simulation coupled to a CFD model via an
internal forcing point. Experience has shown that the data
transfer and downscaling between WRF and the CFD model
are the link with the highest uncertainty in the ME-WAM
method. The multiple transfer location analysis (MTLA)
technique is based on conducting the data transfer and
CFD downscaling through several different transfer loca-
tions, each with independent CFD simulations. As a result,
MTLA will generate multiple independent realizations of the
data transfer and the CFD downscaling. The hypothesis is
that this will result in a reduced overall uncertainty in the
modelling chain, but even more importantly it should result
in a reduction in the number of large outliers in the distribu-
tion. A reduction of large outliers will be probable as the mul-
tiple predictions of mean wind speed at a single location will
help identify results that deviate from the surrounding analy-
ses. These transfer points and CFD simulations can thereafter
be investigated further and root causes for the deviations can
be identified and corrected for.

The hypothesis above is formulated based on observations
that ME-WAM is found to give consistent result across the
extracted 25 km× 25 km result surfaces. At instances where
multiple ME-WAM analyses have been conducted to predict
the wind speed at a specific location, it has been found that
as long as the ME-WAM core (see Fig. 2) has been able to
identify a suitable location for WRF–CFD coupling, the dif-
ference in the predictions is generally small. This ability was
also verified for seven wind farms with a total sample of over
300 wind turbines by Keck et al. (2019). As an example, con-
sider the data in Fig. 3. Three different ME-WAM analyses
have been conducted to predict the mean wind speed at the
location of the grey marker. The transfer location between
WRF and the CFD model is indicated by the black markers.
The data transfer has been confirmed to occur at a suitable
location for all three analyses. Even though the data trans-
fers have occurred at distances varying from 3 to 20 km, all
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Figure 3. Illustration of the MTLA method where the wind speed at the target location (grey marker) is predicted based on three separate
ME-WAM analyses. The black markers indicate the data transfer locations. The colour scale in the background represents mean wind speed
at 100 ma.g.l., red represents high wind, and blue represents low wind in a range from 5 to 8 ms−1.

three analyses produce estimates within 1 % deviation of tar-
get mean wind speed in this case (7.06, 7.09, and 7.13 ms−1).

One aspect that is important to consider is that the two un-
derlying models have different capabilities. The WRF model
includes mesoscale effects which cannot be captured by the
CFD model. As a consequence, care must be taken to con-
sider any gradients in the velocity field caused by mesoscale
effects (as discussed by Haupt et al., 2019). When mesoscale
gradients are present in the simulated region, there should
be a difference in the predictions of two independent CFD
models. Examples of such effects to consider are land–sea in-
teractions in coastal areas, capping inversions, or mesoscale
stability effects in mountain areas.

In this work, four analyses have been made for each lo-
cation were the MTLA method is utilized. The drawback of
this approach is that the second half of the modelling chain
becomes 4 times as computationally demanding due to the
duplication of work. If a significant reduction in uncertainty
can be achieved, however, this method has the potential to in-
crease the applicability for numerical modelling for wind as-
sessments. The added computational cost with the proposed
simulation configuration is on the order of 500 CPU hours.

6 Description of validation data and method

The validation data used in the work are obtained through
collaborations with wind project developers. In total 11 de-
velopers have contributed data, and a total of 80 meteoro-
logical masts are available for the validation campaign. The
available data represent a large variation in topographical
conditions and geographical spread. The dataset is consid-
ered to cover the range of normal conditions experienced in
wind project assessment, as it includes sites with severely
complex terrain, coastal conditions, rolling hills, and varying
degrees of forest coverage; see Fig. 4.

The evaluation of the ME-WAM model and the MTLA
is based on a blind test in which the ME-WAM prediction
is compared to the measured and long-term-corrected wind
speed. In this process the collaborating company provides
a project coordinate somewhere in the vicinity of the metro-
logical mast. Modern Energy subsequently conducts a ME-
WAM analysis and sends the resulting wind resource files
to the collaborating company. The collaborating company fi-
nally compares the numerical results to their measured and
long-term-corrected wind speed at the mast location.

A drawback of this validation method is that the field data
are not available to the authors for quality control. How-
ever, as the measurements are conducted and analysed to be
used for wind farm development, and are often scrutinized
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Figure 4. The variations in terrain and roughness covered in the validation dataset. Panel (a) depicts a site in complex terrain on the
Norwegian west coast and (b) a forested inland site in Sweden.

by a third party of the collaborating companies, the data are
considered to have an industry standard quality and a result-
ing uncertainty on the order of 3 % on mean wind speed at
the mast locations.

To verify the effect of the MTLA method, the validation is
conducted in three steps. First a baseline is established where
the accuracy of the ME-WAM model without MTLA is anal-
ysed against 35 meteorological masts. Secondly, the accuracy
achieved with the ME-WAM after implementing the MTLA
method is analysed by verification against the remaining 45
meteorological masts. As a final step the baseline data are
re-evaluated by applying the MTLA method to obtain a vali-
dation of ME-WAM with MTLA based on 80 data points.

7 Results

ME-WAM is validated against a sample of 35 mast measure-
ments to establish a baseline of ME-WAM performance be-
fore applying the MTLA technique; see Table 1 and Fig. 4.
The average wind speed was found to be 0.10 ms−1 lower
than the reference sources with a SD of 0.44 ms−1. If the
data are binned based on terrain class, we can also note that
the model performs considerably better in the forested and
non-complex sites (black and blue markers in Fig. 5). The
bias is −0.07 ms−1, and the SD is 0.28 ms−1 for a sample
of 15 data points. The corresponding number for the 20 data
points in complex terrain is a bias of −0.16 ms−1 and a SD
of 0.52 ms−1.

The validation of ME-WAM with the MTLA correction is
conducted against a sample of 45 meteorological masts; see
Table 2 and Fig. 5. The average wind speed was found to
be 0.05 ms−1 higher than the reference sources with a SD
of 0.26 ms−1. If the data are binned based on terrain class,

Figure 5. Comparison of simulated wind speed (y axis) and mea-
sured wind speed at the meteorological mast (x axis) for the 35 data
points where MTLA is not applied.

we find that the forested and non-complex sites (black and
blue markers in Fig. 6) have a bias of +0.07 ms−1 and a SD
of 0.25 ms−1 for a sample of 37 data points. The corre-
sponding number for complex terrain is found to be a bias
of −0.04 ms−1 and a SD of 0.34 ms−1 for a sample of
eight data points.

As a final step in the evaluation of the MTLA method, the
data from the first ME-WAM validation sample are reanal-
ysed to include MTLA. This evaluation is performed to gain
a better significance in the validation, especially for complex
terrain where the second dataset contains only eight obser-
vations, which makes the conclusions uncertain. Based on
80 data points achieved by combining the two samples, the
average wind speed in the ME-WAM analyses is found to
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Table 1. Validation statistics for the baseline assessment of ME-WAM without MTLA applied for a sample of 35 data points.

Non-complex terrain Complex terrain All data

Number of observations 15 20 35
Bias −0.07 ms−1

−0.16 ms−1
−0.10 ms−1

SD 0.28 ms−1 0.52 ms−1 0.44 ms−1

Table 2. Validation statistics for the assessment of ME-WAM with MTLA applied for a sample of 45 data points.

Non-complex terrain Complex terrain All data

Number of observations 37 8 45
Bias 0.07 ms−1

−0.04 ms−1 0.05 ms−1

SD 0.25 ms−1 0.34 ms−1 0.26 ms−1

Figure 6. Comparison of simulated wind speed (y axis) and mea-
sured wind speed at the meteorological mast (x axis) for the 45 data
points where MTLA is applied.

be 0.05 ms−1 lower than the reference sources with a SD
of 0.28 ms−1; see Table 3. Applying the same binning for
terrain class as in the previous analyses, the performance in
forested and non-complex sites (black and blue markers in
Fig. 7) has a bias of −0.02 ms−1 and a SD of 0.21 ms−1

for a sample of 52 data points. The corresponding number
for complex terrain is found to be a bias of −0.12 m s−1 and
a SD of 0.35 ms−1 for a sample of 28 data points.

An important metric when using numerical methods for
wind resource assessment is the occurrence of large predic-
tion errors. Figure 8 below depicts a box plot of the complete
sample of 80 data points using the MTLA method (left) com-
pared to the sample of 35 data points using the ME-WAM
model without MTLA (right). It can be seen that utilizing the
MTLA method reduces the difference between Q1 and Q3
from 0.53 ms−1 to 0.38 ms−1. The range between P 5 and
P 95 is reduced from 1.30 ms−1 to 0.95 ms−1. This repre-
sents a reduction of large prediction errors by 27 %.

Figure 7. Comparison of simulated wind speed (y axis) and mea-
sured wind speed at the meteorological mast (x axis) for 80 data
points after MTLA is applied to all data points (note that this in-
cludes a reanalysis of the data points in Fig. 5 to include MTLA).

8 Discussion

The SD of the prediction error for the ME-WAM model
compared to field measurements is reduced from 0.44 to
0.26 ms−1 by including the MTLA method based on the
blind testing presented above, i.e. a reduction of 40 %. How-
ever, as the composition of the validation samples differs,
where the validation of the WE-WAM model without MTLA
has a higher fraction of complex terrain sites, part of this re-
duction is likely due to the sample composition. To reduce
the effect of the sample composition, the data are binned into
classes based on high and low terrain complexity. This results
in SDs of 0.28 ms−1 for non-complex sites and 0.52 ms−1

for complex sites when applying ME-WAM without MTLA.
With MTLA the numbers are reduced to 0.25 ms−1 for non-
complex sites and 0.34 ms−1 for complex sites. The reduc-
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Table 3. Validation statistics for the assessment of ME-WAM with MTLA applied for a sample of 45 data points.

Non-complex terrain Complex terrain All data

Number of observations 52 28 80
Bias −0.02 ms−1

−0.12 ms−1
−0.05 ms−1

SD 0.21 ms−1 0.35 ms−1 0.28 ms−1

Figure 8. Box plot of the derived statistics for ME-WAM with
MTLA (left) and without MTLA (right).

tion in SD is 11 % for non-complex sites and 35 % for com-
plex sites. This difference is well aligned with expectations
as the uncertainty in the data transfer between the WRF and
the CFD model is higher in complex terrain. Including mul-
tiple transfer locations should therefore have a larger effect
in complex terrain.

A re-evaluation of the model results for the 35 data points
without MTLA was conducted to gain significance in the pre-
dictive ability of the ME-WAM model after the MTLA is
implemented. After applying the MTLA to the analyses, the
re-evaluated dataset displays similar statistics as the origi-
nal MTLA test sample with 45 data points. The difference in
SD between the two samples is 0.01 ms−1 for non-complex
sites and 0.01 ms−1 for complex sites. This adds confidence
in the representativeness of the reductions achieved with the
MTLA method in the previous test.

Combining the two samples results in a bias of
−0.05 ms−1 and SD of 0.28 ms−1 based on 80 data points.
The accuracy based on 52 non-complex sites gives a bias
of −0.02 ms−1 and a SD of 0.21 ms−1. The correspond-
ing number for complex terrain is found to be a bias of
−0.12 ms−1 and a SD of 0.35 ms−1 for a sample of 28 data
points.

The variability in the difference between the ME-WAM
predictions and the reference data must also be put in rela-
tion to the uncertainty of the field data. The uncertainty in
the measured long-term-corrected wind speed is estimated to
3 %. The mean wind speed of the sample is 7.5 ms−1, which
gives us a SD on the order of 0.23 ms−1. Assuming a Gaus-
sian distribution, this means that theoretically 68 % of the
data points should have a measurement error of± 0.23 ms−1

or less and that 90 % of the data should have a measurement
error of ± 0.39 ms−1 or less.

The corresponding numbers for the ME-WAM validation
with MTLA show that 68 % of the data points have a dif-
ference between ME-WAM prediction and measurement in
the range of −0.34 ms−1 to +0.25 ms−1 and that 90 %
are within the rage ± 0.48 ms−1. This indicates a distribu-
tion that is similar to a Gaussian distribution with a SD of
0.3 ms−1.

As the metric for ME-WAM accuracy inherently includes
the variability from the field measurements, and since it is
reasonable to assume that the variability of the ME-WAM
predictions and that of the measurement are uncorrelated, the
variability of the ME-WAM model itself can be derived. Un-
der these assumptions the SD of the ME-WAM model is on
the order of 0.2 ms−1. This is an important result as it indi-
cates that the ME-WAM model predictions have a variability
and a distribution which are similar to those of a long-term-
corrected mast measurement.

9 Conclusions

This paper describes a method for reducing the uncertainty
associated with employing a virtual met-mast approach to
couple an NWP model with a CFD model. This is done via
a technique where several different locations for performing
the data transfer between the NWP and the CFD model are
evaluated independently. This enables the analyst to identify
and correct for outliers and to obtain multiple realizations of
the data transfer step in the modelling chain. The validation
shows that this technique results in a reduced variability in
the prediction error. The reduction is quantified to 11 % of
the SD for non-complex sites and 35 % for complex sites.

The paper also describes a validation of the ME-WAM
model with the proposed multiple transfer location (MTLA)
method against measurements from 80 meteorological masts.
The results show that ME-WAM is able to predict the mean
wind speed for the investigated projects with a bias of
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less than 0.1 ms−1 and a SD of about 0.3 ms−1. The SD
is slightly lower in non-complex terrain (0.21 ms−1) and
slightly higher in complex terrain (0.35 ms−1). Consider-
ing that these numbers include the inherent uncertainty of
the reference data, which have an estimated uncertainty of
0.23 ms−1, the ME-WAM model predictions have an accu-
racy and a variability which are similar to those of a long-
term-corrected mast measurement based on this validation.

Data availability. No public data are available as the validation
data are provided anonymously by project developers.

Author contributions. Both authors have been equal parts in de-
veloping the ME-WAM methodology and conducting the numerical
calculations required for the validation campaign.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The authors would like to thank all the
wind project development companies that have contributed with
measurement data for this validation campaign: Arise, Eolus Vind,
Innogy, OX2, Rabbalshede Kraft, Statkraft, Stena Renewable, Vasa
Vind, Vattenfall, WPD Scandinavia, and Zephyr.

Review statement. This paper was edited by Christian Masson
and reviewed by Jörn Nathan and one anonymous referee.

References

Copernicus Climate Change Service (C3S): ERA5: Fifth gener-
ation of ECMWF atmospheric reanalyses of the global cli-
mate, Copernicus Climate Change Service Climate Data Store
(CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/
home (last access: 1 February 2020), 2017.

Draxl, C., Hodge, B. M., Clifton, A., and McCaa, J.: Overview
and Meteorological Validation of the Wind Integration National
Dataset toolkit, USA, https://doi.org/10.2172/1214985, 2015.

Flores-Maradiaga, A., Benoit, R., and Masson, C.: Enhanced mod-
elling of the stratified atmospheric boundary layer over steep
terrain for wind resource assessment, J. Phys. Conf. Ser., 1222,
012005, https://doi.org/10.1088/1742-6596/1222/1/012005,
2019

Giannaros, T. M., Melas, D., and Ziomas, I.: Performance evalu-
ation of the Weather Research and Forecasting (WRF) model
for assessing wind resource in Greece, Renew. Energ., 102, 190–
198, 2017

Gopalan, H., Gundling, C., Brown, K., Roget, B., Sitara-
man, J., Mirocha, J., and Miller, W.: A coupled mesoscale–
microscale framework for wind resource estimation and wind-
farm aerodynamics, J. Wind Eng. Ind. Aerod., 132, 13–26,
https://doi.org/10.1016/j.jweia.2014.06.001, 2014.

Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager,
C. B.: Wind climate estimation using WRF model output:
Method and model sensitivities over the sea, Int. J. Climatol.,
35, 3422–3439, https://doi.org/10.1002/joc.4217, 2015.

Haupt, S. E., Kosovic, B., Shaw, W., Berg, L. K., Churchfield,
M., Cline, J., Draxl, C., Ennis, B., Koo, E., Kotamarthi, R.,
Mazzaro, L., Mirocha, J., Moriarty, P., ñoz-Esparza, D. Mu,
Quon, E., Rai, R. K., Robinson, M., and Sever, G.: On Bridg-
ing A Modeling Scale Gap: Mesoscale to Microscale Coupling
for Wind Energy, B. Am. Meteorol. Soc., 100, 2533–2550,
https://doi.org/10.1175/BAMS-D-18-0033.1, 2019.

Keck, R. E., Sondell, N., and Håkansson, M.: Verification of a fully
numerical approach for early stage wind resource assessment in
absence of on-site measurements, Proceedings of Wind Europe
conference & exhibition 2–4 April 2019, Bilbao, Spain, PO162,
2019.

Launder, B. E. and Sharma, B. I.: Application of the Energy Dis-
sipation Model of Turbulence to the Calculation of Flow Near
a Spinning Disc, Lett. Heat Mass Trans., 1, 131–138, 1974

Mortensen, N. G., Davis, N., Badger, J., and Hahmann, A. N.:
Global Wind Atlas – validation and uncertainty, Sound/Visual
production (digital), WindEurope Resource Assessment Work-
shop 2017, 16 March 2017, Edinburgh, UK, 2017.

Mylonas-Dirdiris, M., Barbouchi, S., and Herrmann, H.: Mesoscale
modelling methodology based on nudging to reduce the error of
wind resource assessment, Conference: European Geo-sciences
Union General Assembly, 17–22 April 2016, Vienna, Austria,
2016.

Ohsawa, T., Kato, M., Uede, H., Shimada, S., Takeyama, Y., and
Ishihara, T.: Investigation of WRF configuration for offshore
wind resource maps in Japan, in: Proceedings of the Wind Eu-
rope Summit, Hamburg Messe, 27–29 September 2016, Ham-
burg, Germany, 26–30, 2016.

Phoenics flow solver: http://www.cham.co.uk/phoenics.php, last ac-
cess: 30 January 2020.

Prósper, M. A., Otero-Casal, C., Fernández, F. C., and Miguez-
Macho, G.: Wind power forecasting for a real onshore wind farm
on complex terrain using WRF high resolution simulations, Re-
new. Energ, 135, 674–686, 2019.

Quon E., Doubrawa P., Annoni J., Hamilton N., and Churchfield M.:
Validation of Wind Power Plant Modeling Approaches in Com-
plex Terrain, AIAA Scitech 2019 Forum, 7–11 January 2019, San
Diego, USA, https://doi.org/10.2514/6.2019-2085, 2019.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Pow-
ers, J. G.: A Description of the Advanced Research WRF
Version 3, NCAR Tech. Note NCAR/TN-475+STR, 113 pp.,
https://doi.org/10.5065/D68S4MVH, 2008.

Standen, J., Wilson, C., Vosper, S., and Clark, P.: Prediction of lo-
cal wind climatology from Met Officemodels: Virtual Met Mast
techniques, Wind Energy, 20, 411–430, 2017.

VECTOR AS Windsim: http://windsim.com/ws_docs90/
ModuleDescriptions/WindField.html, last access: 31 January
2020.

WAsP: Wind Atlas Analysis and Application Program (WAsP),
Risø National Laboratory, available at: http://www.wasp.dk/ (last
access: 11 March 2020), 1987.

https://doi.org/10.5194/wes-5-997-2020 Wind Energ. Sci., 5, 997–1005, 2020

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.2172/1214985
https://doi.org/10.1088/1742-6596/1222/1/012005
https://doi.org/10.1016/j.jweia.2014.06.001
https://doi.org/10.1002/joc.4217
https://doi.org/10.1175/BAMS-D-18-0033.1
http://www.cham.co.uk/phoenics.php
https://doi.org/10.2514/6.2019-2085
https://doi.org/10.5065/D68S4MVH
http://windsim.com/ws_docs90/ModuleDescriptions/WindField.html
http://windsim.com/ws_docs90/ModuleDescriptions/WindField.html
http://www.wasp.dk/

	Abstract
	Introduction
	Description of the ME-WAM model
	The WRF model
	CFD downscaling with WindSim
	Description of the multiple transfer location analysis (MTLA)
	Description of validation data and method
	Results
	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

