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Abstract. In order to assess the level of power reserves during down-regulation, the available power of a
wind turbine needs to be estimated. The current practice in available power estimation is heavily dependent
on the pre-defined performance parameters of the turbine and the curtailment strategy followed. This paper
proposes a single-input model-free approach dynamic estimation of the available power using recurrent neural
networks. Accordingly, it combines wind turbine control considerations and modern forecasting methodologies
for a model-free, single-input estimation of available power. It enables a robust real-time implementation of
dynamic delta control, as well as higher-accuracy provision of the reserves to the system operators.

The model-free approach requires only 1 Hz wind speed measurements as input and estimates 1 Hz available
power as output. The neural network is trained, tested and validated using the DTU 10 MW reference wind
turbine HAWC2 model under realistic atmospheric conditions. The unsteady patterns in the turbulent flow are
represented via long short-term memory (LSTM) neurons which are trained during a period of normal operation.
The adaptability of the network to changing inflow conditions is ensured via transfer learning, where the last
LSTM layer is updated using new measurements. It is seen that the sensitivity of the networks to changing
wind speed is much higher than that of turbulence, and the updates are to be implemented solely based on the
altering inflow velocity. The validation of the trained LSTM networks on time series with 7, 9 and 11 m s−1

mean wind speeds demonstrates high accuracy (less than 1 % bias) and capability of transfer-learning online.
Including highly turbulent inflow cases, the networks have shown to comply with the most recent grid codes,
which require the quality of the available power estimations to be evaluated with high accuracy (less than 3.3 %
standard deviation of the error around zero bias) at 1 min intervals.

1 Introduction

As the share of wind energy increases in power systems
around the world, new challenges regarding the control and
operations of wind power plants are encountered. In order to
maintain power system stability, transmission system opera-
tors (TSOs) are developing new grid codes requiring contri-
butions not only from conventional generators, but also from
wind power plants, globally. In this context, here we focus
on the active power contribution of wind turbines to provide
frequency support and power reserves via down-regulation
(also referred to as curtailment, de-rating or de-loading).

The curtailment of wind turbines can be implemented both
as balance control, where the turbine power output is reduced
to a constant value, and as delta control, where the output is
reduced by a certain percentage of the available power (Attya
et al., 2018; Fleming et al., 2016; Hansen et al., 2006). Ad-
ditionally, the active power reduction for both strategies can
be achieved by adjusting the rotor blade pitch angles and/or
operating at a sub-optimal rotor speed compared to the maxi-
mum energy capture value (Wilches-Bernal et al., 2016). Al-
though modern turbines are capable of implementing both
balance and delta control, due to the uncertainties in the esti-
mated available power (Göçmen et al., 2016; Göçmen and
Giebel, 2018; Göçmen et al., 2019; Pinson, 2006; Pinson
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et al., 2007), balance control is the preferred industrial appli-
cation as its set point is independent of the available power
(Kristoffersen, 2005). The amount of power reserves how-
ever, which is defined as the difference between the available
and the produced power under curtailed operation, does de-
pend on the available power in the wind for both delta and
balance control. This is particularly critical for compensa-
tion schemes under mandatory down-regulation, as well as
(existing and expected) flexible balancing market structures,
where the reserve power is traded at different timescales de-
pending on the regional balancing market schemes (Chinmoy
et al., 2019).

Generally, trading in the electricity markets is performed
in advance with a given forecast horizon. Depending on the
bidding structure, the available power production of an as-
set is to be predicted sometimes as shortly as 5 min ahead
(e.g. Rana and Koprinska, 2016). The forecasting tools can
be based on physical or statistical modelling, as well as
the combination of both. Many perform post-processing via
model output statistics to reduce the remaining error. Some
approaches focus on the best possible estimate of the local
wind speed while some directly extract the wind power gen-
eration potential. Statistical models use explanatory variables
and historical/online information (measurements, log-data,
etc.), generally implementing recursive techniques, such as
recursive least-squares or artificial neural networks (or deep
learning) (Wang et al., 2016). In fact, forecasting is the field
with the most deep-learning (and broadly artificial intelli-
gence) applications in wind energy, e.g. Ghaderi et al. (2017),
Chen et al. (2018) and Mujeeb et al. (2019). For a recent re-
view on deep-learning-based wind speed forecasting for sev-
eral forecast horizons, see Bali et al. (2019). However, while
forecasting the available power, the operational status and
potential effects of control scenarios are often overlooked,
especially for higher (than e.g. 5 min) frequencies at a single
turbine level.

For the operational considerations and higher-frequency
system stability issues, the timescales considered in the
market-based forecasting are already long-term ahead. In or-
der for the balancing responsible parties to be compensated
for during mandatory down-regulation by the TSOs, wind
power plants are expected to provide information regarding
their power production on much shorter timescales. As stated
in the recent grid requirements in Germany (50Hertz, Am-
prion, Tennet, TransnetBW, 2016), the available power is
to be calculated for 60 s intervals for down-regulated wind
farms. Additionally, the 1 min standard deviation of the per-
centage error of the available power is required to be less than
±3.3 % (after the pilot phase). The enforced regulations are
difficult to comply with and are subject to penalty if not met.

The current practice in available power estimation is to as-
sess the incoming wind speed to derive the possible power
output of the turbine via optimum performance curve. One
of the most common approaches to approximate the (effec-
tive) wind speed is by solving the static wind power equa-

tion, which is widely adopted in the wind turbine industry as
well as the wind research community (e.g. van der Hooft and
van Engelen, 2004; Göçmen et al., 2014). More details on the
approach are provided in Sect. 2. Ma et al. (1995) demon-
strate that directly mapping the static relation does not give
satisfactory performance and concludes that the inclusion of
dynamic models can significantly improve the wind speed
estimate. Thus, an increasing number of studies (e.g. Øster-
gaard et al., 2007; Meng et al., 2016) began to utilize ob-
server theory, in particular, Kalman filtering. For example,
in Østergaard et al. (2007), the aerodynamic torque is con-
sidered a system disturbance state, and it is estimated by the
use of an observer-based system on a simple drivetrain model
with pre-defined dynamics for the aerodynamic torque. Sub-
sequently, the calculation of the wind speed is done by inver-
sion of the static mapping between the aerodynamic torque
and wind speed. One of the drawbacks of searching through
the static relation, to find the wind speed estimate, is its com-
putational cost, where a Newton–Raphson method is often
employed to find the corresponding wind speed given the
turbine measurement on a discrete power coefficient CP of
surface. On the other hand, some methods do not require the
use of iterative gradient methods, for example, by consid-
ering the wind speed directly as a state to the system, and
such a wind state can be estimated via an observer Kalman
filter. In Selvam (2007), the wind dynamics are modelled as
a random walk and augmented with a linear turbine model
including a simple drivetrain and tower dynamic model. A
linear Kalman filter is then employed to estimate the wind
speed for feed-forward control purpose. Similar techniques
have also been utilized in Stol and Balas (2003) and Simley
and Pao (2016). A study by Knudsen et al. (2011) employed
a non-linear turbine model including simple drivetrain, tower
and wind speed dynamics where the effective wind speed is
estimated by an extended Kalman filter. Similar methods are
also reported in Henriksen et al. (2012), where the dynamic
inflow model is included. Besides the Kalman-filter-based
approaches, some studies (Ortega et al., 2011, 2013) used a
more advanced state estimation technique of immersion and
invariance to construct a wind speed estimation with proof
of global convergence under certain assumptions. For more
details and further information on wind speed estimation, see
Soltani et al. (2013) and references therein.

The state-of-the-art available power estimation is highly
dependent on the considered turbine models, as well as the
operation strategy for curtailment. More specifically, the ma-
jority of the methods rely on the pre-calculated power co-
efficient, CP, or the certified nominal power curve to con-
vert (rotor-effective) wind speed to (available) power. How-
ever, the varying wind speed and turbulence levels activate
different dynamics within the turbine structure and cause
different control responses (Murcia et al., 2018). In addi-
tion, temporally and spatially local characteristics of the flow
(e.g. humidity, temperature) and the condition of the turbine
(e.g. blade erosion, dust, component wear or failure) highly
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Figure 1. Flow diagram of the model-free approach to estimating
available power.

affect theCP and the power curve behaviour. Therefore, these
generally deterministic approaches fail to represent the de-
tailed dynamics required to produce high-frequency available
power signal accurately (Jin and Tian, 2010), and they are an
important source of uncertainty (Lange, 2005). In order to
tackle the inadequacy of the turbine models to fully repre-
sent the dynamic power output of a turbine under turbulent
inflow, a model-free approach to transfer the wind speed to
power is a strong alternative.

Therefore in this study, the aim is to consider the wind
turbine generator (WTG) control and modern forecasting
methodologies for a model-free, single-input estimation of
available power. It enables a robust real-time implementa-
tion of dynamic delta control, as well as the provision of the
reserves to the system level within the frame of (strictest)
European grid regulations. In the model-free estimation of
available power, the unsteady patterns in the turbulent flow
are represented via long short-term memory (LSTM) neu-
rons (Hochreiter and Schmidhuber, 1997), which is a special
building unit for recurrent neural networks (RNNs). The pro-
posed method for integrating an LSTM network in a curtail-
ment strategy is outlined in Fig. 1. During a period of nor-
mal operation of a WTG, wind speed and power output time
series data are collected for at least an hour to establish a
training dataset. Next, the network is trained on the collected
data which, depending on the available processing power, can
be performed within seconds. Accordingly, the wind turbine
operator can announce its participation in the reserve market
online or ahead of time with the intention of performing delta
or balance control for curtailment. Down-regulation is then
performed using the LSTM predictor which provides the set
point based on the available power. The model-free estima-
tion approach can be rapidly retrained with newly collected
data using transfer learning, where the last LSTM layer of
the network is updated using the new information.

The synthetic time series used in this study is generated
using the DTU 10 MW reference wind turbine (Bak et al.,
2013) with the aeroelastic code HAWC2 (Bak et al., 2012)
under realistic atmospheric conditions, and the simulation re-

sults are publicly available1. First, the sensitivity of the state-
of-the-art available power predictions to the curtailment op-
eration strategy is briefly discussed and quantified in Sect. 2.
To address the issue, a detailed analysis of LSTM neural net-
works and the potential of transfer learning to adapt to chang-
ing inflow conditions is presented throughout Sect. 3. This
research focus is highly important for the individual turbine
control and its role in the power system stability, as well as
the business case of wind energy in the existing and upcom-
ing market scenarios.

2 Wind speed to power via turbine model

As stated earlier, current methods for estimating available
power typically make use of pre-defined power curves or
power coefficient calculations. Here in this section, we dis-
cuss the assessment of wind speed and the sensitivity of the
model-dependent approaches to the implemented curtailment
strategy.

Point measurements of the wind speed using, for example,
cup or sonic anemometers, are often unreliable at estimating
the potential power production of a wind turbine as the spa-
tial variations in the wind field are not captured. For example,
a naive approach at estimating available power is

Pavail(U )=
1
2
ρπR2CPU

3, (1)

where the air density, ρ; rotor radius, R; and power coef-
ficient, CP, are assumed to be constant with variable (effec-
tive) wind speed,U . Equation (1) presents a number of weak-
nesses, namely the inability to capture the dynamic response
of the wind turbine to changing wind speeds, or the spatial
variations in the wind field. For this reason, the rotor effec-
tive wind speed, which is defined as the spatial average wind
speed over the rotor plane, is preferred in terms of power
estimation. Although there are numerous methods for esti-
mating rotor effective wind speed, the majority of methods
use operating data of the wind turbine to create the estimate
(Jena and Rajendran, 2015). A simple strategy is to estimate
the wind speed for a given power output using a polynomial
fit (Thiringer and Petersson, 2005). This method can be ex-
tended by including the rotor speed and blade pitch angle in
conjunction with a CP look-up table to infer the wind speed
as shown in Bhowmik et al. (1998). For derated operation,
these methods are problematic as the dependency between
the wind speed and a turbine’s operating points varies based
on the desired level of down-regulation. The use of a prede-
finedCP curve to estimate available power therefore becomes
unreliable. However, state space approaches where the con-
vergence of the wind estimation error is analysed systemati-
cally can potentially respond to that problem.

1The generated time series can be ac-
cessed here: https://gitlab.windenergy.dtu.dk/tuhf/
deep-learning-for-available-power-estimation/tree/master/data
(last access: 29 July 2020).
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There are several benefits of formulating a wind speed es-
timation as a system state estimation problem compared to
methods that use static relation mapping the power or aero-
dynamic torque to wind speed. For example, a substantial
body of mature and sophisticated state estimation theory can
immediately be brought to bear upon the design of the wind
estimator. Moreover, in an observer design where the wind
speed is considered a system state, the use of slow gradi-
ent methods for solving the static relations can be avoided,
resulting in better computational speed and a smooth wind
speed estimate.

Typically, to formulate a state estimation problem, a sim-
plified model of the non-linear dynamics is required that
needs to capture the key dynamics of the turbine. For brevity,
a widely used non-linear turbine system model is employed,
including the dynamics of rotor drivetrain, tower and wind
speed (see Knudsen et al., 2011; Lio et al., 2019):

xk+1 = f (xk,uk)+wn,k, (2a)
yk = h (xk,uk)+ vn,k, (2b)

where xk = [ωk , ẋfa,k , xfa,k , vk]T ∈ Rnx is the system state
vector at the sample time k ∈ Z containing the rotor speed,
fore-aft velocity and displacement of the tower-top and
ambient wind speed, whilst the system input uk = [τg,k ,
θk]

T
∈ Rnu contains the generator torque and pitch angle,

and yk = [ωk , ẋfa,k , xfa,k]
T
∈ Rny denotes the system out-

put. The state transition and output functions are denoted
as f : Rnx ×Rnu→ Rnx , h : Rnx ×Rnu→ Rny . The Gaus-
sian process noisewn,k ∈ Rnx represents the modelling errors
whilst the Gaussian measurement noise vn,k ∈ Rny represents
the sensor noise and modelling error of the sensor dynamics.

Since the turbine model is a nonlinear model (Eq. 2a),
an extended Kalman filter (EKF) is employed to compute
estimates of the wind turbine state. A Kalman filter is a
computationally efficient and recursive algorithm that pro-
vides the optimal state estimates x̂k ∈ Rnx by minimizing the
mean square state error or the state error covariance matrix
Pk := E[(xk − x̂k)(xk − x̂k)T ]. Kalman filtering approaches
have been effectively employed in many examples of wind
energy (e.g. Ritter et al., 2018; Lio, 2018; Annoni et al.,
2018). Typically, in EKF, the estimate of the state x̂k is com-
puted in two-step processes: prediction and measurement up-
date. The superscripts x+k and x−k are denoted as the vari-
able x at sample time k after the measurement update and
before the measurement update, respectively. The hat nota-
tion x̂ denotes the estimate of x.

Prediction :

x̂−k = f
(
x̂+k−1,uk

)
, P−k = FkP

+

k−1F
T
k +Qk

Fk :=
∂f

(
x̂+k−1

)
∂x

(3a)

Measurement update :
ŷ = h

(
x̂−k ,uk

)
, x̂+k = x̂

−

k +Lk
(
yk − ŷk

)

P+k = (I −LkHk)P−k , Hk :=
∂h

(
x−k

)
∂x

(3b)

Here Lk ∈ Rnx×ny is the filter gain and it is computed as fol-
lows:

Lk = P
−

k H
T
k (HkP−k H

T
k +Rk)

−1, (3c)

whereQk ∈ Rnx×nx and Rk ∈ Rnu×nu denote the co-variance
matrices of the process and measurement noises, respec-
tively, that can be computed as Qk = E[wn,kw

T
n,k], Rk =

E[vn,kv
T
n,k]

T . The process co-variance Qk is chosen by ap-
proximating the variance of the modelling error and the typi-
cal wind speed. In this work, there is no measurement noise;
thus, the measurement co-variance Rk is chosen as a small
value.

One of the weaknesses of the EKF filtering approach is
being a model-based method that requires a relatively accu-
rate model of the turbine. Besides, the choice of the model,
operating conditions and sensor locations also strongly af-
fects the EKF-based estimator performance (Lio et al., 2019).
Some studies (e.g. Lio et al., 2018) showed that down-
regulation can be achieved by either modifying the gener-
ator torque solely or the combinations of rotor speed and
torque. The constant and maximum rotation (Const-� and
Max-�) strategies perform down-regulation by setting the
rotor speed to a pre-determined or maximum value whilst the
Min-Ct methods operate the turbine at a minimum thrust co-
efficient in down-regulation. The performances of the EKF
based upon these operations are shown in Fig. 2. The sim-
ulations are based on the DTU 10 MW reference wind tur-
bine HAWC2 model (Bak et al., 2012) under 9 m s−1 mean
wind speed and 10 % mean turbulence intensity over 700 s.
The turbines are commanded to operate at 40 % and 80 % of
the rated power. One clear message from Fig. 2 is that the
performance of the EKF-based wind estimator is highly sub-
jected to the turbine operating conditions; for example, the
performances were similar for strategies operating at 80 %
but the Max-� performed the worst at 40 % down-regulation.
Similarly, Min-Ct shows the best agreement with the avail-
able power for 40 % down-regulation whereas it performs
the worst for 80 % curtailment. Therefore, Fig. 2 indicates
no clear trend and high sensitivity of model-based methods
to the control scenario.

It should be noted that the sensitivity observed in the syn-
thetic time series in Fig. 2 is expected to grow under the
field conditions. This is due to the fact that the manufacturer-
calibrated power coefficients cannot account for variability
influenced by local conditions (Bandi and Apt, 2016). Ad-
ditionally, the resulting uncertainty of the CP-dependent ap-
proaches is likely to also be amplified due to the lack of de-
tailed information regarding the pre-defined CP and imple-
mented operation strategy for curtailment caused by the lim-
ited access to the controller in practice. To avoid the depen-
dency on operating point estimations of available power, the
use of wind speed measurements is revisited with the state-
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Figure 2. Time series of normal power Pn and available power estimation P̂ based upon various down-regulation strategies. (a) and (b) in-
dicate the estimation based on measurements of turbines operating at 40 % and 80 % of the rated power, respectively.

of-the-art deep-learning architecture in the next section. The
performance of this model-free approach is then compared
with the presented wind speed observer, also for the scenario
with limited CP information during down-regulation.

3 Neural networks for available power set point

For a more robust operation and delta control, the bias and
the uncertainties, which partly originate from the natural
variability of the flow and turbulence and partly due to the un-
certainty associated with the turbine models, i.e. CP surfaces,
should be reduced. The former is investigated through a state-
space update via Kalman filters in Sect. 2. Here, we imple-
ment a fully data-driven approach, which is purely based on
the atmospheric inputs to eliminate the dependency of the es-
timated available power production to the CP surfaces and/or
the control strategy.

Although the deep-learning techniques have been applied
to numerous engineering fields, their application in wind
farm flow modelling has been rather limited. For the tur-
bine level power estimation, recently neural networks have
been implemented to approximate the power curve mainly
based on field data (for a detailed review, see e.g. Lydia
et al., 2014). Pelletier et al. (2016) applied feed-forward neu-
ral networks (FFNNs) in a steady-state manner with six at-
mospheric inputs including shear and yaw error of the inves-
tigated turbine. Ouyang et al. (2017) approached the prob-
lem by sectioning the regions of the power curve and devel-
oped a support vector machine algorithm for each partition,
capable of capturing the dynamic response of the turbine.
Manobel et al. (2018) on the other hand underline the im-
portance of data filtering and normal behaviour recognition
for such problems and also indicate that the architecture of
the neural network needs to be re-optimized for each turbine
within a wind farm, to increase accuracy.

Here in this study, we use the open-source machine learn-
ing repository, TensorFlow (Abadi et al., 2016) to implement

the LSTM algorithm. LSTM architecture is a special type of
RNN, which is shown to perform faster and better for highly
fluctuating time series than many other RNN architectures.
An LSTM neuron is illustrated in Fig. 3, where there is no di-
rect connection between the input it and the output ot gates.
All the information flows through the cell state ct , which is
the actual memory of the LSTM neuron, and it is regulated by
the forget gate ft to avoid indefinite growth and eventual net-
work break down (Gers et al., 2000). Through the calibrated
weights, ft decides how much of the previous cell state(s) is
preserved, following Eq. (4).

ft = σ
(
Wfix

′
t +Wfoht1+ bf

)
, (4)

where σ represents the sigmoid gate, xt is the input tensor of
the current state and ht−1 is the output tensor of the previous
state of the cell. Wfi and Wfo are the weights applied to input
and output tensors of the forget gate, and bf is the bias vector.
Information is then transferred to the input gate it which is
then forwarded to the cell state, ct , where it is selectively
saved in the long-term memory. The mathematical procedure
can be written as Eqs. (5) and (6).

it = σ
(
Wiix

′
t +Wioht−1+ bi

)
, (5)

with Wii and Wio as the weights applied to input and output
tensors of the input gate respectively and bi as the bias vector.
The previous cell state, ct−1, is then updated via

ct = σ (ftct−1+ it ) . (6)

The updated cell state ct then feeds regulated information to
the output gate and finally the actual output of the neuron via
Eqs. (7) and (8).

ot = σ
(
Woix

′
t +Wooht−1+ bo

)
(7)

Similarly Woi and Woo are the weights applied to input and
output tensors of the output gate respectively, and bo is the
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Figure 3. LSTM neuron with cell state ct , as well as input it , out-
put ot and forget ft gates. x′t and ht indicate the inputs and outputs
of the neuron, respectively. The curves represent sigmoid gates, σ .

corresponding bias vector. The final output of the cell is then
defined using ot and ct via the tanh function by

ht = ot tanh(ct ) . (8)

LSTM algorithms are heavily used in a variety of sequen-
tial and temporal predictive modelling, from language pro-
cessing (e.g. Gers and Schmidhuber, 2001) to short-term
forecasting (e.g. Zhang et al., 2019). However, they require
large amounts of data and computational resources to reach
their full potential and achieve a generic solution without
over-fitting. Therefore, although RNNs (and LSTMs in par-
ticular) have additional capabilities of modelling longer-term
temporal properties, they remain highly challenging to train,
especially with limited training data. In recent years, the
transfer learning (or knowledge transfer) approach that ad-
dresses such problems (Pan and Yang, 2010) has been in-
creasingly popular. The basic idea of the transfer learning is
that a well-trained model and its hyper-parameters that in-
volve rich knowledge of the target task can be used to guide
the training of other models.

Throughout the rest of this section, we will firstly present
the details of the architecture and the hyper-parameter tuning
of an LSTM model fully trained on 3 h of HAWC2 simula-
tions and compare the initial performance of LSTM neurons
with simpler perceptrons in FFNN. We will then challenge
our LSTM network to perform on another case with a dif-
ferent inflow condition than the original training domain. In
pursuit of better performance on a different flow case, we will
present the results from blind training as well as the transfer
learning. We will then discuss their behaviour in terms of
both the resulting error distributions and fitted parameters in
between the layers. Finally, we will extend the application of
the transfer learning to other flow cases, to demonstrate the
flexibility and automation of the approach.

3.1 Data pre-processing and training strategy

The investigated case studies for available power estima-
tion are generated and implemented using HAWC2 simula-
tions with the DTU 10 MW reference wind turbine. For the
training of the LSTM models, the high-frequency (100 Hz)
wind speed signals from HAWC2 are down-sampled to 1 Hz,
which is equivalent to the supervisory control and data ac-
quisition (SCADA) system of a wind turbine (Göçmen and
Giebel, 2018). The second input to the model is a moving
(or rolling) standard deviation of the 1 Hz wind speed, with a
10 min rolling window as an indication of inflow turbulence
intensity (TI). In contrast to the regular definition, this ap-
proximation of TI assures the same number of samples for
both of the inputs.

The two inputs of wind speed and its moving standard de-
viation are first normalized between (0, 1) and then fed to the
LSTM network to predict the power output during normal
operation. As an LSTM neuron expects a three-dimensional
input shape on the order of samples, lag and features, the in-
put data are shaped accordingly. For the defined architecture
with two input features listed above, the hindsight horizon to
base the real-time estimations on is another hyper-parameter
to be tuned. The hindsight horizon, or lag, is the number
of previous time steps that have been taken into account to
predict the power output in the current time step. Note that
longer lag would increase the initialization period for the
curtailment implementation and could be a limiting factor
if the architecture is to be further adapted for online learn-
ing/training. Accordingly, for the LSTM networks the lags
of 4, 9, 29, 59 and 89 s are investigated. Note that since the
model is trained to map the atmospheric inputs to the actual
production data under normal operation, the power predic-
tions are ensured to follow the normal operation trend that is
required for the available power estimation and not affected
by the curtailment strategy.

For the preliminary evaluation of the training and hyper-
parameter tuning of the model, a split validation dataset is
generated. The final test of the model is based on an indepen-
dent time series with a similar mean wind speed and turbu-
lence intensity but covers a shorter time period. Since the tar-
get application of the model is to estimate real-time available
power for more certain delta control (or reserve provision),
the main criteria of evaluation is the 1 Hz error distribution
for shorter test cases (10 min), where grid code compliance is
tested for longer available periods (1 h) based on 1 min error
distributions.

3.1.1 Training of the first LSTM model: low wind speed,
high turbulence intensity

The case study to train the first LSTM model consists of a
3 h period, where hub-height wind speed and corresponding
moving TI are used to estimate the power output of DTU
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Figure 4. First LSTM model training input time series generated
by HAWC2, down-sampled to 1 Hz. Mean wind speed= 7 m s−1;
mean TI= 10 %.

Figure 5. Training history of the first LSTM network with mean
wind speed= 7 m s−1, mean TI= 10 % and time lag= 29 s. The
network architecture is presented in Table 2, where batch size= 60
with Adam optimization algorithm and mean absolute error (MAE)
loss function implemented. The training is stopped at epoch= 100,
after which the network training starts to show symptoms of overfit.

10 MW turbine under nominal operation. The input time se-
ries are presented in Fig. 4.

In order to have an adequate quantity of training sam-
ples while assuring a representative test dataset for hyper-
parameter tuning, the 3 h period of training and validation
signals is split as 80 % and 20 %, respectively. Since the tar-
get available power output is 1 Hz, the final model needs to
be able to handle high-frequency dynamics in the inflow and
successfully map it to the produced power in normal opera-
tion, by taking the inertia into account. Given the complex-
ity the model is required to manage, the minimum number
of neurons per layer is kept at 50 where two to three hid-
den layers are evaluated as candidate architectures. Table 1
compares the performance of different network configura-
tions on validation data, for both more traditional FFNN per-

Table 1. Representative grid search for best architecture of the first
network using feed-forward neural networks (FFNNs) and LSTM
with lag= 29 s and tanh activation function in between the hidden
layers. Both FFNN and LSTM trained using the Adam optimization
algorithm and mean absolute error loss function. The listed percent-
age error estimation with mean µerr and standard deviation σerr is
based on the validation dataset where

yprediction−yobservation
yobservation

× 100.

Architecture
No. of neurons

µerr [%] σerr [%]
Layer 1 Layer 2 Layer 3

FFNN
50 50 –

3.1 13.4
LSTM 0.8 10.1

FFNN
100 100 –

1.1 13.3
LSTM 0.7 10.1

FFNN
50 50 50

3.0 13.6
LSTM 0.5 10.0

FFNN
50 100 50

2.0 13.5
LSTM 0.3 10.1

FFNN
100 100 50

1.8 13.7
LSTM 0.3 9.9

ceptrons and LSTM neurons with lag= 29 s. It shows over-
all higher performance for LSTM configurations, indicating
added value of using neurons with memory capabilities. In
fact, LSTM is shown to also outperform more modern ar-
chitectures such as extreme learning machine (ELM) (Saini
et al., 2020) and Gaussian mixture models (GMMs) (Zhang
et al., 2019) for short-term forecasting. Given the best over-
all performance, the final network has three hidden layers
with 100, 100 and 50 LSTM neurons, as detailed in Table 2.
The hyperbolic tangent function, tanh, is used as the acti-
vation function in between the layers. With the listed input
structure, the final architecture corresponds to approximately
7 times more data than the trainable parameters, slightly less
than the general rule of thumb to avoid overfitting; hence
even higher numbers of neurons are avoided. Nevertheless,
the training history in Fig. 5 and the model performance on
the validation dataset do not indicate a clear overfit, increas-
ing confidence in the training. For the mean absolute error as
the loss function, the training history on the very first epoch
for validation data shows “too good” performance of the ini-
tial fit. However, since it clearly does not indicate an overall
higher accuracy, the network is trained further to its fuller
potential, where the validation loss is expectedly lower and
convergence is achieved around 100 epochs.

The first LSTM network is tested on a separate 10 min
dataset and compared with the true available power (actual
production of the DTU 10 MW turbine under normal op-
eration) as well as the predecessor method of pre-defined
CP look-up tables of the same turbine. The 1 Hz time series
and the corresponding 1 s percentage error distribution of the
direct CP look-up table approach and the LSTM model re-
sults with lag= 29 s are presented in Fig. 6. The sensitivity of
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Figure 6. (a) The 1 Hz time series of available power and wind speed for the first test case: second-wise comparison of the available power
of the 10 MW turbine for mean wind speed= 7 m s−1 and mean TI= 10 % flow case represented in Fig. 4. (b) Available power estimation
error via direct CP curve interpolation of wind speed; (c) error distribution of the first LSTM model with lag= 29 s. µ and σ are the mean
and the standard deviation of the 1 Hz percentage error distributions.

Table 2. Architecture of the first LSTM network with lag= 29 s.
Hidden layers: lstm_1, lstm_2, lstm_3. Output layer:
Dense_1. tanh is used as the activation function in between the
hidden layers.

Layer No. of neurons No. of parameters

lstm_1 100 41 200
lstm_2 100 80 400
lstm_3 50 30 200
Dense_1 1 51

Total parameters: 151 851
Trainable parameters: 151 851
Non-trainable parameters: 0

Table 3. Sensitivity of the first LSTM model to the hindsight hori-
zon, evaluated based on test dataset.

Lag µLSTM [%] σLSTM [%]

4 s 2.52 14.10
9 s 1.87 14.67
29 s 0.98 8.53
59 s −1.56 12.02
89 s 0.48 13.21

the mean, µLSTM, and the standard deviation, σLSTM, to the
hindsight horizon up to 89 s is listed in Table 3. Due to high-
est overall performance, the results from the LSTM model
with lag= 29 s will be discussed from now on.

Figure 6 shows that the LSTM model significantly im-
proves the agreement between the actual and the predicted
available power production compared to the direct CP curve
interpolation. Since both the trained LSTM model and the
CP curve interpolation approach use the same input (hub-
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height wind speed), it can be said that the described deep-
learning architecture is much more capable of reproducing
the dynamic power curve of the turbine than the steady-state
CP surface, even with limited information. For the investi-
gated 10 min period, the bias in the second-wise LSTM avail-
able power predictions is less than 1 %, as opposed to nearly
7 % observed with the direct CP interpolation approach,
where the percentage error is defined as ŷ(ti )−y(ti )

y(ti )
×100 with

y(ti) being the power produced by DTU 10 MW under nor-
mal operation, i.e. available power, and ŷ(ti) is the LSTM
model prediction at every time step ti . The standard devia-
tion of the second-wise error distribution, which is regarded
as an indication of uncertainty in the model results for this
study, is also reduced significantly to 8.5 %. Note that it is
expected to further decrease when the available power pre-
diction is to be delivered at larger timescales (e.g. highest
frequency being the 1 min scale as requested by the German
TSOs; 50Hertz, Amprion, Tennet, TransnetBW, 2016). This
will be discussed further for larger evaluation periods later in
the study.

3.1.2 Training of the second LSTM model: high wind
speed, high turbulence intensity

One of the most crucial challenges of purely data-driven
models is the fact that they are not valid for the input vari-
ables outside the training domain, also referred to as the gen-
eralization problem. As seen in Fig. 4 the first LSTM model
is trained for a mean wind speed of 7 m s−1, where the turbu-
lent fluctuations occasionally reach above 8 m s−1. However,
for higher wind speeds, e.g. around 9 m s−1, the first LSTM
model is expected to perform poorly as it has not been taught
to map the relationship between wind speed, TI and power
for that inflow.

In order to reduce the effort in hyper-parameter tuning and
test the universality of the network architecture for a sim-
ilar problem, the same configuration as in Table 2 is imple-
mented with the inflow time series presented in Fig. 7. The fi-
nal model is referred to as the second LSTM model through-
out this study.

The performance of the second model is evaluated based
on an independent 10 min series with similar mean wind
speed and TI and compared with the direct CP interpolation
approach. Similar to the first LSTM model, the test results
are presented for lag= 29 s in Fig. 8.

Despite the significant performance improvement
achieved for the 7 m s−1 case with the first LSTM observed
in Fig. 6, the second LSTM network developed using the
same procedure for 9 m s−1 inflow has a considerable bias
of more than 3 % as seen in the 1 Hz percentage error
distribution in Fig. 8. The mean of the test error seems
to be hardly affected by the changing hindsight horizon
listed in Table 4, where the standard deviation is the least at
lag= 29 s. This clearly implies that the architecture and the
hyper-parameters optimized for the lower wind speed are not

Figure 7. Second LSTM model training input time series generated
by HAWC2, down-sampled to 1 Hz. Mean wind speed= 9 m s−1;
mean TI= 10 %.

Table 4. Sensitivity of the second LSTM model to the hindsight
horizon.

Lag µLSTM [%] σLSTM [%]

4 s 3.76 13.45
9 s 3.85 12.83
29 s 3.83 8.3
59 s 3.15 11.09
89 s 3.51 12.14

necessarily the best configuration for slightly higher wind
speed cases. That trend makes it challenging to develop a
generic network architecture that would successfully repro-
duce the high-frequency available power for all the possible
input realizations. It indicates the need to specifically tune
the hyper-parameters for each separate flow case. It is a
cumbersome process with high computational cost. Here in
this study, the focus is to make the best out of the available
dataset, as indicated earlier, as the generation (or collection)
of a comprehensive database is a very demanding task
for high-frequency problems. Additionally, the observed
reduction in performance of the same hyper-parameter space
for a different flow case indicates the risk of the approach
where a singular “generic” model is fit to estimate the
high-frequency available power for a variety of inflow cases.
In other words, a single model to cover the entire domain
might introduce compromises in the model performance at
certain inflow cases, where the dynamic accuracy is of the
utmost importance, as framed by the grid codes.

3.1.3 Transfer learning from the first model: high wind
speed, high turbulence intensity

Having trained a well-performing model for the first inflow
case with 7 m s−1 mean wind speed and 10 % mean TI, the
following question arises: can some of the characteristics of
the first model be conveyed to a different flow case to achieve
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Figure 8. (a) The 1 Hz time series of available power and wind speed for the second test case: second-wise comparison of the available power
of the 10 MW turbine for mean wind speed= 9 m s−1 and mean TI= 10 % flow case represented in Fig. 7. (b) Available power estimation
error via direct CP curve interpolation of wind speed; (c) error distribution of the second LSTM model with lag= 29 s. µ and σ are the mean
and the standard deviation of the 1 Hz percentage error distributions.

similarly good results? Transfer learning can provide a valu-
able platform for such model extensions, as it is used to im-
prove a learner from one domain by transferring information
from a related domain (Weiss et al., 2016). This enables a
systematic model update when new data are available from
outside the training domain. Accordingly, part of the first
model with 7 m s−1 mean wind speed would be transferred
to update some of the parameters for higher wind speed. The
procedure could be repeated for all the changing wind speed
and TI cases, in both HAWC2 platform and field applica-
tions.

To assess the transferability of the parameters, the trends
of the weights trained for the first (Network_1) and the Sec-
ond (Network_2) LSTM networks are compared in Fig. 9.
The actual probability seen in the most recent histograms (the
lightest shade in the series of distributions) are different for
all three LSTM layers, with larger tails on Network_1 distri-
butions. However, the range of values for the output weights
of the first layer lstm_1 and the second layer lstm_2 are
very similar, with an interquartile range of −0.05< IQR<

0.05 for both. On the other hand, the third and shallower
layer lstm_3 seems to optimize for significantly different
weights for different inflow velocities. Therefore, it is con-
cluded that the first two LSTM layers are transferable from
the first LSTM network, where the last LSTM layer as well
as the output layer need to be re-tuned for changing inflow
case(s). The resulting architecture is presented in Table 5
where the number of trainable parameters is significantly re-
duced. Accordingly, the transferred architecture is a much
lighter network that ensures fast training, while enclosing a
profound amount of information from previous learning(s).
Fewer parameters also enables a robust training with shorter
time series. Hence, for the training of the transfer learning
LSTM architecture, 60 % of the dataset (second inflow case,
presented in Fig. 7) is fed to the network, where 40 % is left
for validation to ensure a more definitive assessment of the
training.

Apart from an update of the weights in the last LSTM and
the output layers (lstm_4 and Dense_2 in Table 5, respec-
tively), none of the other hyper-parameters were changed in
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Figure 9. Distribution of the output tensors of each hidden LSTM layer for the first Network_1 and the second Network_2 LSTM networks,
visualized via TensorBoard. Each slice displays a single histogram updated at each iteration. The “oldest” iterations are further back and
darker, while the “newer” ones are lighter and closer to the front. The y axis indicates the relative time of each update.

Table 5. Architecture of the transferred LSTM network for
lag= 29 s. Hidden layers: LSTM_1, LSTM_2, LSTM_4. Output
layer: Dense_2. Frozen layers: LSTM_1, LSTM_2 (same layers
as in the first LSTM model in Table 2). Trainable layers: LSTM_4,
Dense_2. tanh is used as the activation function in both of the acti-
vation layers. Training is performed with batch size= 60, the Adam
optimization algorithm and a mean absolute error loss function over
epoch= 70.

Layer No. of neurons No. of parameters

lstm_1 100 41 200
lstm_2 100 80 400
lstm_4 50 30 200
Dense_2 1 51

Total parameters: 151 851
Trainable parameters: 30 251
Non-trainable parameters: 121 600

the training process of the transferred LSTM network. This
provides a certain repeatability to the training process, where
the last two layers can be updated when a new flow case is
encountered by the turbine. It is particularly an important fea-
ture for the control implementation as it enables fast online
learning and continuous improvement of the model.

To put the performance of the transferred LSTM model to
the test, the same test case as in the second LSTM model
in Fig. 8 is considered. This time, the estimations from the
operation-dependent wind speed observer (WSO) approach
(described in Sect. 2) are also compared with the transferred
LSTM model. The time series in Fig. 10a illustrates the sensi-
tivity of the WSO estimations to the operation strategy under
40 % down-regulation with constant rotational speed, Const-
�, and maximum rotational speed, Max-�, and following
the minimum thrust coefficient, Min-Ct. In Fig. 11a–c, the
error distributions of the WSO estimations under those three
operational strategies are presented. While the overall perfor-
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mance of all WSO estimations is highly compelling, the re-
sults also indicate up to 4 % variation in the mean bias of the
WSO model. With the minimum mean error of 0.26 %, WSO
estimations with maximum rotational speed, Max-�, are also
compared with the transferred LSTM model in Fig. 10c. For
the investigated setup with the DTU 10 MW reference tur-
bine model fully recognized, the WSO results generally sug-
gest a better agreement with the true available power, quan-
tified in Fig. 11d. However, Figs. 10c and 12 point out that
for a potential mismatch of 5 % in the pre-defined and op-
erational CP surfaces due to several uncertainties listed ear-
lier, model-based WSO results show bias of up to more than
6 % where the model-free LSTM performance remains un-
affected. Note that in these WSO runs, we assume “perfect
knowledge” for normal operation, i.e. for maximum CP, and
5 % uncertainty for the rest of the CP domain. This simu-
lates the field operation where the nominal power curve is
corrected for the site conditions (hence perfect knowledge)
but the information of the rest of the operational CP remains
limited.

It is also seen that the transferred LSTM model outper-
forms the second LSTM model where more than 3 % model
bias is eliminated compared to Fig. 8d. This improvement is
very promising for the implementation of the transfer learn-
ing for modelling high-frequency time series with LSTM net-
works. Furthermore, the results also show the potential of
such a deep-learning approach for avoiding the operational
dependencies of dynamic delta control with relatively low
uncertainties. The adaptation capabilities of transfer learning
are to be tested with additional flow cases in the next sec-
tions.

3.1.4 Further transfer learning to higher wind speed
flows

With the comparable results of the model-free transfer learn-
ing LSTM networks to the model-dependent WSO approach,
even with potentially lower uncertainties in the simulation
environment compared to the field implementation, here we
test the approach for even higher wind speed flows. The first
LSTM predictions were built and tested on 7 m s−1 mean
wind speed, where its information from the first two layers
is then transferred to estimate the available power for the
9 m s−1 mean wind speed case. Here we further update the
LSTM network to extend the training (and validity) domain
to the 11 m s−1 mean wind speed range, using the generated
time series in Fig. 13. Note that for all three steps of the learn-
ing, the mean TI remains 10 % to isolate the effect of wind
speed on the network performance.

The resulting network with further transfer learning for
11 m s−1 mean wind speed (in Fig. 14a) performs similar to
in the 9 m s−1 (in Fig. 11d) and 7 m s−1 (in Fig. 6d) mean
wind speed cases with less than 1 % second-wise percentage
error on average. Distinctly from the previous inflow cases,
the tail towards the positive percentage error is longer in the

Figure 10. The 1 Hz time series comparison of available power
of DTU 10 MW turbine, estimated by (a) the wind speed observer
for the 40 % down-regulation case under three different curtailment
strategies; see Sect. 2. (b) Second-wise wind speed time series of
the considered test case with mean wind speed= 9 m s−1 and mean
TI= 10 %. (c) The comparison of the available power estimated via
wind speed observer following the maximum rotational speed con-
trol strategy and LSTM network with transfer learning from the
lower wind speed to higher wind speed cases and direct CP ap-
proach. The shaded area corresponds to the effects of ±5 % over-
and underestimation of CP during curtailment for WSO results. The
LSTM network has no dependency on level of curtailment or esti-
mation of operational CP.
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Figure 11. The 1 Hz percentage error distribution of the available power estimation of the 10 MW turbine for mean wind speed= 9 m s−1 and
mean TI= 10 %, the flow case represented in Fig. 7. The presented performances belong to the wind speed observer approach, presented in
Sect. 2, under different operational strategies. (a) Constant rotational speed, Const.-�; (b) maximum rotational speed, Max-�; (c) minimum
thrust coefficient, Min-Ct, as 40 % curtailment strategy; (d) LSTM model with transfer learning from lower wind speed to the higher wind
speed case (no dependency on the curtailment strategy).

Figure 12. (a) Sensitivity of wind speed observer to correct assessment of CP under curtailment. The simulations assume “perfect knowl-
edge” of CP for the normal operation and 5 % uniform uncertainty for the rest of the operational range. (a) The 1 Hz percentage error of
WSO with Max-�: 5 % under-estimation of CP during curtailment. (b) The 1 Hz percentage error of WSO with Max-�: 5 % over-estimation
of CP during curtailment.

final 1 Hz error distribution in Fig. 14a. This is mainly due
to the fact that the DTU 10 MW reference turbine (with rated
wind speed 11.4 m s−1) occasionally enters the rated region
according to the turbulent fluctuations around 11 m s−1 mean
wind speed. Nevertheless, the variability of the model pre-
diction error is significantly reduced when averaged for a

1 min scale in Fig. 14b. The results show that the model-free
transfer learning approach easily complies with the strictest
TSO requirements in provision of the available power signal;
i.e. the standard deviation of the 1 min percentage error of the
available power is required to be less than ±3.3 % as stated
in 50Hertz, Amprion, Tennet, TransnetBW (2016).
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Figure 13. LSTM network training with further transfer learning
input time series generated by HAWC2, down-sampled to 1 Hz.
Mean wind speed = 11 m s−1; mean TI= 10 %.

3.1.5 Network performance on higher turbulence
intensity

As stated earlier, for all three inflow cases where the first
LSTM network is generated and extended via transfer learn-
ing, the mean turbulence intensity remained TI= 10 %. Here
in this section, the models are tested under higher turbu-
lence intensity (TI= 20 %) with the same corresponding
mean wind speed. Note that the generated network structures,
i.e. the first LSTM model (7 m s−1 mean inflow speed), trans-
fer learning LSTM model (9 m s−1 mean inflow speed) and
further transfer learning LSTM model (11 m s−1 mean inflow
speed), are not updated for higher-TI cases. In other words,
here we aim to test the capability of the trained networks un-
der higher TI with the same mean wind speed for the inflow,
without further model update.

Figures 15–17 focus on highly turbulent inflow cases
(TI= 20 %) and show the corresponding performance of the
three neural networks trained and updated for increasing
wind speeds via transfer learning. It is seen that the 1 min
average prediction errors of the models are consistently low
for highly turbulent flows as well; hence further training (or
model update) is not required. The maximum standard de-
viation of 1 min averaged percentage error is still less than
3.3 % with the largest bias of 1.3 %, which is slightly worse
than the test results in the original domain of the networks.
For the mean wind speeds of 7 and 9 m s−1, the effect of
higher turbulence levels is clearer as increasing fluctuations
in wind speed are directly correlated to higher variance in
power output. However for the 11 m s−1 case, the fluctua-
tions are partially dampened due to the turbine entering into
the rated region. Overall, it can be said that the sensitivity
of the networks to changing wind speed is much higher than
the turbulence, and the updates are to be implemented solely
based on the altering inflow velocity, which is likely to re-
flect a different operational region. The available power pre-
diction of the described LSTM architecture and the updating
scheme with 2 m s−1 wind speed increase (7–9–11 m s−1) is

shown to comply with the strictest grid code requirements
under different turbulence realizations.

4 Conclusions

The dynamic estimation of available power of a wind turbine
is essential for both power system stability and marketabil-
ity of the reserve power. The current estimations are highly
sensitive to the down-regulation strategy and prone to tur-
bine model uncertainties and inadequacies. Here we propose
a purely data-driven, model-free methodology based on long
short-term memory (LSTM) neural networks. This state-of-
the-art deep-learning architecture is implemented to map the
available power of the DTU 10MW reference turbine under
turbulent inflow generated in HAWC2. The trained networks
are adapted to the changes in incoming mean wind speed via
transfer learning, where only the parameters in the last layer
are updated when the new inflow information is available.

The first LSTM network has three hidden layers with 100,
100 and 50 neurons which is trained using 1 Hz power output
under normal operation with 7 m s−1 mean wind speed and
10 % turbulence intensity (TI). A performed test on a sep-
arate 10 min flow case with the same mean wind speed and
TI shows less than 1 % bias and less than 9 % standard devia-
tion. The same architecture is used to train the second LSTM
network with an increase in mean wind speed to 9 m s−1 and
the same TI level of 10 %. Although the width of the distribu-
tion is similar, the bias has increased to almost 4 %, indicat-
ing the need to re-tune the hyperparameters of the architec-
ture. In fact, the comparison of the fitted parameters between
the first LSTM and the second LSTM networks for each layer
shows analogous distributions of the weights. This further
motivates the transferability of the learnings of the first two
LSTM layers, where only the parameters of the last layer
need to be updated for the changing incoming mean wind
speed. With a significant reduction in the number of param-
eters to fit, the transferred LSTM network has the capability
of faster and more robust training, even with limited data.
The performance of the transferred LSTM network is also
evaluated using a separate 10 min time series with 9 m s−1

mean wind speed and 10 % TI. The results are very com-
parable with the outcome of the first LSTM model, which
demonstrates the adaptability of the network to changing in-
flow conditions with the update of the last LSTM layer. The
transferred LSTM also outperforms the second LSTM net-
work with a significant decrease in bias (around 0.5 %), elim-
inating the need to re-tune the hyperparameters or developing
a new network structure from scratch.

The transferred LSTM network is also compared with
the model- and operation-dependent wind speed ob-
server (WSO) approach. For the investigated setup where the
DTU 10 MW reference turbine model is fully transparent or
known, the WSO results generally suggest a better agreement
with narrower 1 Hz percentage error distributions. However,
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Figure 14. LSTM network prediction error for the further transfer learning flow case. Mean wind speed= 11 m s−1 and TI= 10 % over the
60 min validation case. (a) The 1 Hz prediction error; (b) the 1 min average prediction error.

Figure 15. Input time series and 1 min prediction error of the first LSTM network, higher-turbulence-intensity flow case. Mean wind
speed= 7 m s−1 and TI= 20 % over the 60 min validation case. (a) Time series of the inflow dataset for the higher-TI test of the first
LSTM network, originally trained on mean wind speed= 7 m s−1 and TI= 10 %. (b) The 1 min average percentage error of the first LSTM
network tested under higher TI.

Figure 16. Input time series and 1 min prediction error of the transfer learning LSTM network, higher-turbulence-intensity flow case. Mean
wind speed= 9 m s−1 and TI= 20 % over the 60 min test case. (a) Time series of the inflow dataset for the higher-TI test of the transfer
learning LSTM network, originally trained for mean wind speed= 9 m s−1 and TI= 10 %. (b) The 1 min average percentage error of the
transfer learning LSTM model under higher TI.

the sensitivity of the WSO approach to the curtailment strat-
egy is also clearly seen as the results indicate up to 4 % vari-
ation in the mean bias of the WSO model. The uncertainty
of the approach is expected to grow further under the field
conditions where there is a potential lack of detailed infor-

mation regarding the operation strategy and manufacturer-
calibrated power coefficients which are generally unable to
account for variability influenced by local conditions. To test
that hypothesis, 5 % uniform uncertainty is introduced to the
CP surface under curtailment for the same evaluation pe-
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Figure 17. Input time series and 1 min prediction error of the further transfer learning LSTM model, higher-turbulence-intensity flow case.
Mean wind speed= 11 m s−1 and TI= 20 % over the 60 min test case. (a) Time series of the inflow dataset for the higher-TI test of the
further transfer learning LSTM model, originally trained for mean wind speed= 11 m s−1 and TI= 10 %. (b) The 1 min average percentage
error of the further transfer learning LSTM model under higher TI.

riod. Even for the estimation based on the best-performing
model under the maximum rotational speed control strategy,
the model bias significantly increased, risking both under-
estimation (bias<−5 %) and over-estimation (bias> 6 %)
of the available power for the assigned CP uncertainty.

To ensure the applicability of the transfer learning to sev-
eral inflow cases, the approach is tested for even higher wind
speed flows. Further transferred LSTM network is trained
only to update the last LSTM layer with 11 m s−1 mean wind
speed and the 10 % TI case, where the first two layers come
from the first LSTM model with 7 m s−1 mean wind speed
validity domain for the same TI. The performance of the fur-
ther transferred network is evaluated within the framework
of strict grid requirements, where the quality of the avail-
able power signal is to be assessed at 1 min intervals with
required accuracy of less than 3.3 % standard deviation of
the error distribution. Corresponding 1 min average percent-
age error of the further transferred network indicates easy
compliance with the regulations, with both bias and stan-
dard deviation less than 1 %. Similar agreement is observed
when all the networks (i.e. first LSTM with 7 m s−1 wind
speed, transferred LSTM with 9 m s−1 wind speed and fur-
ther transferred LSTM with 11 m s−1 wind speed) are tested
under higher TI of 20 %, indicating the robustness of the de-
veloped algorithm.

Finally, it should be noted that the neural networks with
transfer learning ability used in this study can easily be
implemented in operating wind turbines in the field. The
second-wise wind speed input to the approach can be pro-
vided either from the standard nacelle anemometers or ad-
ditional sensors such as meteorological masts or remote sen-
sors (e.g. lidars, radars); however, associated input uncertain-
ties should be handled carefully. This study is conceptual ev-
idence that well-trained neural networks can be applied to
determine the set point for implementing delta control, or to
assess the level of reserves when using balance control, even

with limited information in the field conditions. The trans-
ferability of the network adds the ability for online learning
which ensures the continuous improvement of the model-free
available power estimation.

The networks developed in this study can be extended to
forecast applications, where the input that is read throughout
the hindsight horizon (e.g. 29 s for the cases presented here)
is used to predict the available power in the forecast horizon
longer than 1 s (e.g. 1 min ahead). Similarly, the approach can
be implemented for several turbines within the wind farm.
For this configuration, the wind direction should be defined
as an additional input to take the correlations of local wake
effects and power into account. Finally, the neural network
algorithm can be updated given the developments within the
deep-learning research over time. The advancements in the
sequential processing (e.g. convolutional LSTMs where the
internal matrix multiplications are exchanged with convo-
lution operations, gated recurrent units (GRUs) where the
three-gated LSTMs are “simplified” with an update and a re-
set gate) can easily be utilized when beneficial, keeping the
approach up to date.

Code and data availability. Both the data and the script to train
the networks (first LSTM and transfer learning LSTM networks)
can be accessed at https://doi.org/10.5281/zenodo.3531414 (Göç-
men et al., 2020).
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of the current methods for available power estimation at the single-
turbine level.
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