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Abstract. We study the calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and
high-temporal-resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Tech-
nology (SWiFT) facility located in Lubbock, Texas, USA. We derive two-dimensional wake flow characteristics
including wake deficit, wake turbulence, and wake meandering from the lidar observations under different at-
mospheric stability conditions, inflow wind speeds, and downstream distances up to five rotor diameters. We
then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint
distribution of parameters allows for both model implementation and uncertainty assessment. We validate the re-
sulting fully resolved wake field predictions against the lidar measurements and discuss the most critical sources
of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and
turbulence fields in the far-wake region beyond four rotor diameters as long as properly calibrated parameters
are used, and wake meandering time series are accurately replicated. We show that the current DWM model
parameters in the IEC standard lead to conservative wake deficit predictions for ambient turbulence intensities
above 12 % at the SWiFT site. Finally, we provide practical recommendations for reliable calibration procedures.

1 Introduction

Wake effects are perceived as one of the largest sources of
uncertainty in energy production and load estimates of on-
shore and offshore wind farms (Walker et al., 2016). Within
an iterative design process and/or optimization study, wake
effects on aeroelastic turbine responses are predicted using
engineering wake models, e.g. the Dynamic Wake Meander-
ing (DWM) (Madsen et al., 2010) and Frandsen (Frandsen,
2007) models, which can be used within simple and fast de-
sign tools (Braunbehrens and Segalini, 2019). Their main
limitation is their reduced ability to fully resolve the turbu-
lence structures of the wake field, which often leads to an
inaccurate representation of the flow field and biased power
and load predictions (Reinwardt et al., 2018). To minimize
the modelling uncertainty, it is a common practice to cal-

ibrate engineering wake models using field measurements
when available or using higher-fidelity simulations like com-
putational fluid dynamics (CFD).

Wind lidars have become popular for studying wind tur-
bine wakes due to their higher spatial resolution and ease
of installation compared to traditional anemometers mounted
on meteorological masts (Machefaux et al., 2016). The use of
lidar measurements to calibrate low-order wake models has
already been successfully adopted (Trabucchi et al., 2017;
Reinwardt et al., 2020; Zhan et al., 2020a). Although high-
quality lidar observations of the wake field are available
(Käsler et al., 2010; Iungo et al., 2013; Aitken et al., 2014),
the spatial and temporal resolution required to characterize
wake deficit, wake turbulence, and meandering characteris-
tics is rarely achieved. Such resolution is a key characteristic
for the development and evaluation of dynamic wake models.
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The Scaled Wind Farm Technology (SWiFT) experiment,
conducted at Sandia National Laboratories between 2016
and 2017 (Herges et al., 2017, 2018; Herges and Keyantuo,
2019), provides a fairly complete and suitable dataset for the
calibration and evaluation of wake models (Doubrawa et al.,
2019, 2020; Conti et al., 2020a). The SWiFT dataset con-
sists of concurrent measurements of inflow conditions from
a heavily instrumented meteorological mast, high-spatial-
and high-temporal-resolution measurements of a single wake
flow field behind a turbine from a nacelle-mounted Spinner-
Lidar, and power and load measurements from a second tur-
bine operating in the waked field. The detailed instrumen-
tation of the site allows the investigation of the wake field
variability under different atmospheric-stability conditions
as well as the analysis of the wake-induced effects on the
waked-turbine operation (i.e. power and load predictions).

Here, we analyse the SWiFT dataset aiming at calibrat-
ing and evaluating the DWM model. This model is recom-
mended in the IEC 61400-1 standard (IEC, 2019) for the
purpose of wind turbine and wind farm design certification,
and it is widely used in load assessments under wake con-
ditions (Larsen et al., 2013; Galinos et al., 2016; Reinwardt
et al., 2018, 2020; Dimitrov, 2019). The DWM model simu-
lates wind field time series and is divided into three parts: a
wake deficit component, which simulates the velocity deficit;
a wake-added turbulence component; and a wake meander-
ing component, which is a stochastic meandering process.
These three components are presumed to affect wind turbine
loading conditions (Keck et al., 2012; Galinos et al., 2016;
Larsen et al., 2013; Dimitrov, 2019). Although several stud-
ies have demonstrated the superior performance of the DWM
model compared to other engineering wake models that only
predict steady wake features (Thomsen et al., 2007; Larsen
et al., 2013; Reinwardt et al., 2018), the accuracy of both the
DWM-simulated wake flow fields and the resultant turbine
power and load predictions is still to be assessed.

1.1 A review of the DWM model

The underlying hypothesis of the DWM model is to consider
the wake as a passive tracer of the large incoming turbulence
structures. The so-called split-in-scales assumption (Larsen
et al., 2008) states that the large-scale turbulent eddies con-
tained in the atmospheric boundary layer are the main drivers
of the wake meandering, whereas the smaller turbulent ed-
dies govern the wake deficit evolution downstream of the ro-
tor. Further, wake deficits from upstream turbines are trans-
ported in the streamwise direction, assuming Taylor’s hy-
pothesis of frozen turbulence (Larsen et al., 2015). This set
of assumptions allows for the decoupling of the wake deficit
and wake-added turbulence formulations from the wake me-
andering process (Larsen et al., 2007). Therefore, the three
components of the DWM model can be computed separately
and successively superimposed on turbulence fields to gen-

erate wake time series, which can be used as inputs to aeroe-
lastic simulations (Larsen et al., 2013; Keck et al., 2014a).

The wake deficit formulation of the DWM model is mainly
based on the work of Ainslie (1987) and solves the ax-
isymmetric Navier–Stokes (N–S) equations with an eddy
viscosity term and a set of calibration parameters. Initially,
the DWM model was calibrated with CFD simulations per-
formed by Madsen et al. (2010). Keck et al. (2012) derived
a two-dimensional model of the eddy viscosity term and up-
dated the calibration parameters based on CFD simulations.
Larsen et al. (2013) found that the calibration parameters of
the former two studies were not suitable for predicting power
and loads at the Egmond aan Zee offshore wind farm. To
match the measured power, they introduced an artificial fil-
tering function in the eddy viscosity term and re-calibrated
the deficit model; however, this calibration was not based on
the spatial description of the wake flow field but on power
production data. The eddy viscosity model to predict veloc-
ity deficits in the current IEC standard (IEC, 2019) is inspired
by the work of Larsen et al. (2013).

Keck et al. (2014a, 2015) proposed a correction factor to
the eddy viscosity term, which includes the effects of atmo-
spheric stability and shear on the turbulence mixing occur-
ring in the wake, and re-calibrated the model parameters. Al-
though these improvements were verified against large-eddy
simulations (LESs), the influence of atmospheric stability on
the wake deficit evolution was hardly observed during a li-
dar campaign (Machefaux et al., 2016; Larsen et al., 2015),
in which it was argued that atmospheric stability affects to a
large extent the meandering process. A load validation study
using the DWM model with calibrated parameters from both
Madsen et al. (2010) and Keck et al. (2012) as well as the
IEC standard (IEC, 2019) was conducted by Reinwardt et al.
(2018), who collected load measurements at the ECN wind
turbine test site in Germany and at the Technical University
of Denmark (DTU) test site in Høvsøre in Denmark. They
found fatigue load biases within the range of 11 %–15 % for
the tower bottom and 8 %–21 % for the blade-root flapwise
bending moments. Reinwardt et al. (2020) derived a new set
of calibration parameters based on full-field lidar observa-
tions of the wake field from a wind farm in the south-east of
Hamburg, Germany. They demonstrated that improved wake
deficit predictions can be obtained by calibrating the DWM
model with nacelle-mounted lidars.

The fidelity of the simulated wake meandering dynam-
ics also affects the accuracy of load predictions (Larsen
et al., 2013; Conti et al., 2021). Modelling of the meander-
ing process relies on a suitable stochastic turbulence field
and definition of the large-scale turbulence structures. Larsen
et al. (2008) and Trujillo et al. (2011) demonstrated that the
large-scale eddies can be extracted from the incoming atmo-
spheric turbulence field from local mast measurements. Al-
ternatively, the wake meandering process can be simulated
through synthetic wind fields generated using stochastic tur-
bulence models (i.e. the turbulence model by Mann, 1994)
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and a definition of the large-scale eddies or by means of
LESs. Machefaux et al. (2015) showed that inconsistencies
between a Mann-based and LES-based meandering process
can arise due to differences in the input turbulence fields.
Larsen et al. (2008) and Trujillo et al. (2011) defined the
large-scale eddies on the order of two rotor diameters (D)
or larger as responsible for wake meandering, whereas other
studies defined scales larger than 3–4D as dominant (Es-
pana et al., 2011; Muller et al., 2015; Yang and Sotiropoulos,
2019). Despite the severe impact of the wake meandering dy-
namics on load predictions, its uncertainty has not been as-
sessed in load validation studies due to lack of data (Larsen
et al., 2013; Churchfield et al., 2015; Reinwardt et al., 2018).
However, aeroelastic simulations with constrained wake me-
andering dynamics can potentially decrease the uncertainty
in load predictions under wake conditions (Conti et al.,
2021).

Further, the added turbulence formulation in the DWM
model accounts for additional mechanically generated turbu-
lence caused by the wake shear and the breakdown of tip and
root vortices. These contributions are modelled by a semi-
empirical formulation that uses parameters, which were cal-
ibrated against CFD simulations (Madsen et al., 2010). To
our knowledge, no further development has been made on
this subject.

1.2 Problem statement

As described above, there is no consensus for the values of
the DWM model parameters when studying load predictions
at any given site. Also, and perhaps most importantly, we
do not know the sources of uncertainty observed in previ-
ous studies that used the model (Larsen et al., 2013; Church-
field et al., 2015; Reinwardt et al., 2018), which need to be
addressed to provide reliable load predictions. The common
practice has been to derive optimized sets of model param-
eters based on limited synthetic or experimental data. This
has led to an unknown confidence in the overall model pre-
diction ability; incorrect calibration of the model parameters
may impact significantly the model performance and lead to
suboptimal wind turbine designs.

To address this issue, we estimate uncertainties in the cali-
bration parameters of the DWM model by applying Bayesian
inference (Box and Tiao, 1973), which consists of updating
any related prior information on model parameters by in-
corporating new knowledge obtained from wake flow char-
acteristics derived through lidar measurements. Further, the
Bayesian calibration provides a systematic approach to in-
clude various types of uncertainty such as physical variabil-
ity as well as measurement and modelling errors. This paper
focuses on improving and validating the calibration of DWM
model parameters using lidar-derived wake features and has
a fourfold primary purpose:

1. Derive wake flow features such as the two-dimensional
velocity deficit and wake-added turbulence profiles as
well as time series of the wake meandering in both
lateral and vertical directions from the SpinnerLidar
measurements under different inflow wind speeds and
atmospheric-stability conditions.

2. Calibrate the DWM-model-based wake deficit
and wake-added turbulence predictions using the
SpinnerLidar-derived wake flow features and the
Bayesian inference framework.

3. Propagate modelling uncertainties in fully resolved
wake flow fields for robust predictions that take into ac-
count the calibrated uncertainties.

4. Conduct a sensitivity analysis to determine the most sig-
nificant sources of uncertainty in simulated wake fields
that are typically inputs to aeroelastic simulations.

This study contributes to the ongoing discussion regarding
the accuracy of power and load predictions of wind turbines
operating under wake situations (Conti et al., 2020b, 2021)
by quantifying uncertainties in wake simulations performed
with the DWM model under a variety of inflow wind condi-
tions. The outcomes of this study are useful for improving
currently adopted wake simulation procedures for load anal-
ysis in the IEC standards as well as to provide practical rec-
ommendations for wake model calibration studies based on
measurements from nacelle-mounted lidars.

The work is organized as follows. Section 2 describes the
DWM model. The SWiFT layout and relative wind site con-
ditions are described in Sect. 3. In Sect. 4, we present the
wind field retrieval assumptions used to derive wake features
from SpinnerLidar measurements. The Bayesian calibration
of the DWM model is performed in Sect. 5. We carry out
the validation of the wind turbine wake simulations and con-
duct a sensitivity analysis to investigate the most influential
parameters in Sect. 6. Finally, the last two sections are dedi-
cated to the discussions and conclusions.

2 Dynamic Wake Meandering model

The DWM model resolves three main wake features: the
quasi-steady velocity deficit, the wake-added turbulence, and
the wake meandering. Each model component is described
separately in the following subsections.

2.1 Quasi-steady velocity deficit

The quasi-steady velocity deficit component describes the
wake expansion and recovery caused partly by the recovery
of the rotor pressure field and partly by turbulence diffusion
moving farther downstream of the rotor (Larsen et al., 2013).
The wake deficit is formulated in the meandering frame of
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reference (MFoR), which is a coordinate system with origin
in the centre of symmetry of the deficit.

In the far-wake region, i.e. distances larger than two rotor
diameters (Sanderse, 2015), the deficit evolution is assumed
to be governed by turbulent mixing and is described by the
thin shear layer approximation of the rotational symmetric
N–S equations with the pressure term disregarded (Madsen
et al., 2010). To account for the neglected pressure gradi-
ent effects, an initial wake deficit is analytically formulated
based on the turbine’s axial induction derived from blade el-
ement momentum (BEM) theory (Madsen et al., 2010). The
turbulence closure of the N–S equations is obtained by means
of an eddy viscosity term, and the momentum equation is
solved numerically using a finite difference scheme with the
artificial initial deficit as a boundary condition (Madsen et al.,
2010). Here, we use the numerical scheme of the stand-alone
DWM model (Liew et al., 2020; Larsen et al., 2020). We re-
fer to the generalized definition of the non-dimensional eddy
viscosity term by Keck et al. (2012), who considered two ma-
jor drivers to the turbulence mixing: the ambient turbulence
(TIamb) and turbulence induced by the wake shear layer:

νT

UambR
(r, x̃)= F1(x̃)k1TIamb+F2(x̃)k2max(

Rw(x̃)2

UambR

∣∣∣∣∂U (x̃, r)
∂r

∣∣∣∣ ; Rw(x̃)
R

(
1−

Umin

Uamb

))
, (1)

where νT is the eddy viscosity, Uamb is the ambient wind
speed at hub height, and R is the rotor radius. The first term
on the right-hand side of Eq. (1) describes the contribution
of the ambient turbulence and the second the self-generated
turbulence by the wake shear layer. Madsen et al. (2010) pro-
posed the wake radiusRw(x̃), where x̃ is the downstream dis-
tance normalized byR, and the maximum velocity difference
(Uamb−Umin), where Umin is the minimum wind speed in
the wake, as the turbulent length and velocity scales, respec-
tively, that govern turbulent mixing due to the wake shear
layer.

Based on classical mixing length theory, Keck et al. (2012)
defined the turbulence stresses to be proportional to the lo-
cal velocity gradient ∂U (x̃, r)/∂r , which provides a two-
dimensional eddy viscosity formulation that is a function of
the axial and radial coordinates, x̃ and r , respectively. The
max operator is included to avoid underestimating the turbu-
lent stresses at locations where the velocity gradient of the
deficit approaches zero. Both terms in Eq. (1) include a fil-
ter function (F1(x̃) and F2(x̃)) and a model constant (k1 and
k2). The filter functions are required to model the turbulence
development behind the rotor and have values in the range of
0–1, depending on the downstream distance only (Keck et al.,
2012). F1 accounts for the delay of the ambient turbulence
entrainment into the wake and is assumed to “activate” am-
bient turbulence effects at downstream distances where the
pressure has recovered (i.e. 2D downstream, where the far
wake begins; Sanderse, 2015).

F2 compensates for the initial non-equilibrium between
the mean velocity field and the turbulent energy content cre-
ated due to the rapid change in mean flow gradients close to
the rotor. We refer to Eqs. (17) and (18) in Keck et al. (2015)
for the mathematical formulation of F1 and F2; k1 and k2
are calibration parameters that govern the turbulence mixing
and presumably do not change with wind turbine design and
ambient conditions (Keck et al., 2012).

2.2 Wake turbulence

The wake turbulence is composed of three turbulence sources
and can be defined as follows (Vermeer et al., 2003):

TIwake =

√
TI2

amb+TI2
m+TI2

add, (2)

where TIm denotes the turbulence induced by the meander-
ing of the wake deficit, and TIadd is the wake-added tur-
bulence. TIm is commonly denoted as the apparent turbu-
lence (Madsen et al., 2005) as the stochastic meandering of
the wake deficit induces additional velocity fluctuations into
time series taken at fixed locations in the wake. This term
is considered the main source of added turbulence in the far
wake (Madsen et al., 2010), while its spatial distribution can
be computed by the convolution of the wake deficit in the
MFoR and the probability distribution function (PDF) of the
wake meandering in the lateral and vertical directions (Keck
et al., 2014a). TIadd accounts for the shear- and mechanically
generated turbulence due to blade tip and root trailing vor-
tices. The inhomogeneity of the wake-added turbulence is
modelled by scaling the local turbulence using the factor kmt
(Madsen et al., 2010) as

kmt(r)=| 1−Udef,MFoR(r) | km1+

∣∣∣∣∂Udef,MFoR(r)
∂r

∣∣∣∣km2, (3)

where Udef,MFoR is the velocity deficit in the MFoR, and
km1 and km2 are constants calibrated based on CFD results
(Madsen et al., 2010). The wake-added turbulence derived
from Eq. (3) is presumed to meander together with the wake
deficit, thus being displaced by the large-scale eddies in the
atmosphere.

2.3 Meandering model

Here, the meandering model is confined to a single wake
scenario, whereas multiple wake dynamics are described in
Machefaux (2015). The wake field is modelled by consid-
ering a cascade of consecutive wake deficits that are dis-
placed by the large-scale lateral- and vertical-velocity fluc-
tuations, i.e. the wake transport velocities (vc and wc), cor-
responding to the lateral (y) and the vertical axis (z), respec-
tively. Adopting Taylor’s hypothesis, the downstream advec-
tion of these deficits is assumed to be controlled by the mean
wind speed of the ambient wind field. Larsen et al. (2008)
estimated vc and wc by low-pass filtering of atmospheric
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turbulence fluctuations. They defined a filtering cut-off fre-
quency fcut,off = Uamb/(2D), thus excluding contributions
from smaller eddies to the meandering dynamics. This as-
sumption was verified using full-scale lidar-based measure-
ments collected behind an operating turbine (Bingöl et al.,
2010). The wake displacements are computed as

y(x, t)= vc(t)t(x)+hyaw(x, t)

z(x, t)= wc(t)t(x)+htilt(x, t), (4)

where t = x/Uamb defines the time for an air particle to move
from the rotor to the downstream distance in the wake region.
An appropriate choice of the transport velocity of the wake
advection lies between the ambient wind speed and the centre
velocity of the wake deficit (Keck et al., 2014b; Machefaux
et al., 2015). The contribution from the yaw misalignment,
which can redirect wakes in the lateral direction, is accounted
for by hyaw(x, t)= x tan(θ (t)), where θ (t) is the yaw offset at
the specific time (Machefaux, 2015; Vollmer et al., 2016).
The contribution of the rotor tilt is considered by htilt(x, t)
(Machefaux, 2015).

3 The SWiFT facility

The SWiFT facility is a research site located in Lubbock,
Texas, operated by Sandia National Laboratories (Herges
et al., 2017). The site includes three Vestas V27 wind tur-
bines, two meteorological towers, and a SpinnerLidar (Peña
et al., 2018) mounted on the nacelle of one of the turbines and
looking backwards. The entire site is on a fibre optic data ac-
quisition and control network that synchronizes recordings
from masts, turbines, and the SpinnerLidar (Herges et al.,
2017, 2018). The measurement campaign took place between
2016 and 2017 with the main objective of characterizing
wake fields and investigating wake steering control strategies
(Herges et al., 2017).

Figure 1 provides an overview of the test layout together
with the notation used throughout the paper. In this study, we
analyse data collected at the meteorological mast (METa1),
the turbine (WTGa1), and the SpinnerLidar mounted on the
nacelle of the WTGa1. The METa1 (hereafter referred to as
the mast) is 60 m tall and instrumented with sonic anemome-
ters at 10, 18, 32, 45, and 58 m, sampling at 100 Hz. Other in-
struments installed on the mast are reported in Herges et al.
(2017). The mast is placed 2.5D south of WTGa1 in com-
pliance with the IEC standard guidelines (IEC, 2015, 2017).
As southerly winds are prevalent at the site (see Fig. 1,
right), this layout allows the retrieval of concurrent incom-
ing wind conditions from METa1, wake measurements be-
hind the WTGa1 performed by the SpinnerLidar, and power
and load measurements on the waked WTGa2 installed 5D
downstream. The WTGa1 and WTGa2 are variable-speed
and pitch-regulated turbines with a hub height of 32.1 m,
D = 27 m, a cut-in wind speed of 3 m/s, and a maximum
power output of 192 kW reached at the rated wind speed

of 12 m/s (Berg et al., 2014). The supervisory control and
data acquisition (SCADA) is available for both turbines, pro-
viding records of the rotor speed, pitch and yaw angles, and
power production, among other information, at 50 Hz.

3.1 SpinnerLidar

The SpinnerLidar is a research Doppler wind lidar devel-
oped at DTU based on a continuous-wave (CW) laser system
(Peña et al., 2018). Hereafter, SpinnerLidar and lidar denote
the same system. The SpinnerLidar has been mounted either
in the spinner or on top of the nacelle of a wind turbine (An-
gelou and Sjöholm, 2015; Peña et al., 2018). In this study,
the SpinnerLidar was installed on the nacelle of the WTGa1
and scanned the rotor wake at a high temporal and spatial
resolution so that wake features could be derived. For the
SWiFT campaign, the SpinnerLidar scanned continuously in
a rose-pattern every 2 s (see Fig. 2), and the system inter-
nally subdivided the rose into 984 sections. The accumu-
lated Doppler-shifted spectra at each of the sections was also
recorded (Herges et al., 2017).

Once a scan was completed, the SpinnerLidar refocused
at a different range, and this process took about 2 s (Herges
et al., 2018). For the SWiFT campaign, several scanning
strategies were adopted as described below.

– Strategy I. The SpinnerLidar scanned seven downstream
distances: 1, 1.5, 2, 2.5, 3, 4, and 5D. A full cycle (i.e.
from 1 to 5D) took 30–42 s. This dataset is suitable
for investigating the wake deficit evolution and recov-
ery behind the rotor; however, the frequency is too low
to properly derive turbulence estimates or meandering
dynamics.

– Strategy II. The SpinnerLidar scanned at the fixed dis-
tance of 2.5D, ensuring both high spatial and temporal
resolution; ≈ 298 rosette scans were generated within a
10 min period. This dataset is suited for turbulence and
meandering investigations.

– Strategy III. The SpinnerLidar scanned at the fixed dis-
tance of 5D behind the rotor, generating about 298
scans each 10 min. During this period, power and load
measurements were recorded on WTGa2. This dataset
is suitable for load validation analysis. Since it provides
a description of the wake flow field, including velocity
deficits, turbulence, and meandering at a distance that
corresponds to typical spacings in wind farms, it is a
valuable dataset for validating fully resolved wake flow
predictions as long as induction effects are accounted
for.

3.2 Site conditions

For extended periods of the campaign, WTGa1 operated un-
der large yaw misalignment as wake steering strategies were
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Figure 1. (a) A sketch of the SWiFT layout that includes locations of the main devices (i.e. wind turbines, masts, and the SpinnerLidar). The
shaded red area indicates that the SpinnerLidar scans in the wake of WTGa1 assuming winds from the south. The distances are normalized
with the rotor diameter D. (b) The wind rose at the site derived from the 32 m sonic observations collected on METa1 during the campaign.

Figure 2. A schematic view of the SpinnerLidar’s scanning pattern:
(a) a front view at 2.5D in the wake; (b) a top view including all
scanned distances behind the WTGa1, which is depicted by solid
blue lines. The WTGa2 is also shown.

being investigated (Herges et al., 2017). To consider periods
where WTGa1 is nearly aligned with the mean inflow, we
filtered out 10 min periods characterized by an average yaw
offset larger than±10◦ compared to the free-stream wind di-
rection (Conti et al., 2020a). The yaw offset is here defined as
the difference between the nacelle orientation and the wind
direction measured at the mast. Further, we focus the anal-
ysis on periods for which the free-stream wind direction is
within 90–270◦ (thus southern winds; see Fig. 1, right). This
leads to about 850 available 10 min periods.

Figure 3 shows 10 min statistics of the hub-height turbu-
lence intensity (TIamb), the power-law shear exponent (α),
and the power production of WTGa1 as a function of the
hub-height mean wind speed (Uamb) based on the mast in-
flow measurements; α is computed from the sonic measure-
ments at 18 and 45 m. As shown, the site is characterized by
a wide range of turbulence and shear conditions, which are a
consequence of the varying atmospheric stability (Doubrawa

et al., 2019; Conti et al., 2020a). Further, relatively low wind
speeds are recorded (3–10 m/s); thus WTGa1 operates below
rated power, as seen in Fig. 3c. Because of this range of op-
erating conditions, high rotor thrust coefficients that induce
strong wake deficits characterize this dataset.

3.2.1 Atmospheric stability

Here, we investigate the variability in the wake flow charac-
teristics under varying stability and inflow wind speed condi-
tions. We classify each 10 min sonically derived statistic into
atmospheric-stability classes defined by ranges of the dimen-
sionless stability parameter (z/L), where L is the Obukhov
length (Monin and Obukhov, 1954) computed from the sonic
measurements as

L=−
u3
∗T

kgw′2v′
, (5)

where u∗ =
√
−u′w′ is the friction velocity, u′w′ is the lo-

cal kinematic momentum flux, k = 0.4 is the von Kármán
constant, g is the acceleration due to gravity, T is the mean
surface-layer temperature, the vertical velocity component
is denoted by w, and 2v is the virtual potential tempera-
ture (which we approximate by the sonic temperature). The
prime denotes fluctuations around the mean value, and the
overbar is a time average. We define three main atmospheric-
stability classes based on z/L ranges by Peña (2019): unsta-
ble (−2< z/L <−0.2), near-neutral (−0.2< z/L < 0.2),
and stable (0.2< z/L < 2) atmospheric conditions. We use
the measurements at the 18 m sonic anemometer to derive
the stability within each 10 min period. As shown in Conti
et al. (2020a), the sonic measurements at 18 m provide the
best fit to the polynomial form of Högström (1988), which
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Figure 3. Inflow wind and operational conditions at the SWiFT site. (a) Hub-height turbulence intensity as a function of the hub-height
mean wind speed based on the mast inflow measurements, (b) power-law shear exponent derived using observations from the 18 and 45 m
sonic measurements, and (c) power productions of WTGa1 recorded from SCADA. Each marker represents a 10 min period.

describes the relation between the dimensionless wind shear
φm and the dimensionless stability parameter z/L in the sur-
face layer (see middle panel of Fig. 3 in Conti et al., 2020a).

3.3 Data statistics

The statistics of the inflow wind parameters are presented
separately in Tables 1, 2, and 3 according to the relative Spin-
nerLidar scanning strategy. Table 1 presents data collected
during Strategy I. There is a fair number of 10 min periods
to characterize the variability in the wake deficit with respect
to atmospheric stability, inflow wind speeds, and downstream
distances. The table shows increasing turbulence levels under
unstable compared to stable cases, whereas relatively high
vertical wind shears are found under stable conditions, as ex-
pected. The dataset is thus suitable for analysing the effects
of atmospheric stability on the wake recovery. The dataset
collected during Strategy II is reported in Table 2 and is used
to characterize wake turbulence and meandering under dif-
ferent stability conditions. For Strategy III, represented in Ta-
ble 3, the dataset is characterized by stable conditions mainly
as the records correspond to night hours within three consec-
utive nights in July 2017.

4 Lidar measurement processing

As lidars only measure the line-of-sight (LOS) velocity
(vlos), assumptions are needed to reconstruct the three-
dimensional wind field u= (u,v,w), where u is the lon-
gitudinal, v the lateral, and w the vertical velocity com-
ponent. If we neglect any probe volume averaging along
the beam, vlos depends on the unit directional vector n=

(cosφ cosθ,cosφ sinθ,sinφ), which describes the scanning
geometry through the elevation (φ) and azimuth (θ ) angles
and the wind field u,

vlos(φ,θ )= ucos(φ)cos(θ )+ v cos(φ) sin(θ )+w sin(φ). (6)

Considering the small elevation angles and the typical low
values ofw, we assumew = 0 (Doubrawa et al., 2019, 2020).

Table 1. Dataset from Strategy I. The data are classified according
to wind speed bins of 1 m/s and three atmospheric-stability classes:
stable (s), near-neutral (nn), and unstable (u). The number of 10 min
samples is also indicated; α is the power-law shear exponent; TIamb
is the turbulence intensity defined as the standard deviation of hori-
zontal wind speed divided by the mean wind speed. The wind speed
and turbulence parameters are obtained from sonic observations at
32 m height.

U Samples α TIamb
[m/s] [–] [–] [%]

s nn u s nn u s nn u

3± 0.5 5 3 6 0.39 0.36 0.08 7 10 18
4± 0.5 19 4 11 0.30 0.10 0.01 8 19 22
5± 0.5 25 5 13 0.27 0.13 0.01 7 11 22
6± 0.5 30 8 23 0.28 0.15 0.04 7 11 16
7± 0.5 13 12 16 0.23 0.12 0.02 7 12 13
8± 0.5 6 9 4 0.27 0.10 0.04 7 12 10
9± 0.5 5 12 3 0.30 0.17 0.02 7 11 9

Table 2. Similar to Table 1 but for Strategy II.

U Samples α TIamb
[m/s] [–] [–] [%]

s nn u s nn u s nn u

5± 0.5 2 4 12 0.16 0.07 0.01 7 14 12
6± 0.5 – 1 8 – 0.04 0.01 – 13 12
7± 0.5 9 – 8 0.22 – 0.10 10 – 14
8± 0.5 3 5 1 0.18 0.12 0.05 10 12 14

This assumption may introduce an error of up to 3 % in
the reconstructed horizontal wind speed at short distances
(1–2D) (Debnath et al., 2019). Following the approach of
Doubrawa et al. (2020), we can combine the u and v veloc-
ity components into a total horizontal wind vector, U , and
Eq. (6) becomes

vlos(φ,θ,θ0)= U cos(φ)cos(θ − θ0), (7)
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Table 3. Similar to Table 1 but for Strategy III.

U Samples α TIamb
[m/s] [–] [–] [%]

s nn u s nn u s nn u

4± 0.5 1 – – 0.38 – – 7 – –
5± 0.5 2 – – 0.32 – – 7 – –
6± 0.5 18 – – 0.30 – – 6 – –
7± 0.5 50 – – 0.25 – – 8 – –
8± 0.5 24 2 – 0.21 0.04 – 8 14 –
9± 0.5 2 2 – 0.18 0.02 – 10 12 –

where θ0 is the yaw offset, and the overbar indicates a
smoothed signal as we apply a moving average operator
with a 15 s window to the yaw misalignment to account
for any temporal delay from the spatial distances among
the mast, turbine’s nacelle, and SpinnerLidar measurements
(Conti et al., 2020a). With Eq. (7), we can reconstruct hor-
izontal wind velocity measures at each individual scanned
point within the rosette pattern. Further, we linearly interpo-
late the reconstructed wind speeds across the rosette pattern
into a two-dimensional regular grid with a 2 m resolution,
which is sufficient to characterize the spatial characteristics
of the wind field in wakes (Fuertes et al., 2018; Conti et al.,
2020a).

4.1 Lidar-estimated wake deficit

To perform comparisons with predicted velocity deficits from
the DWM model, we aim at isolating the contribution of the
wake deficit from that of the vertical wind shear in lidar mea-
surements. As defined in Trujillo et al. (2011), the quasi-
instantaneous wake deficit profile can be obtained by sub-
tracting the mean vertical shear profile (Uamb(z)) from the
quasi-instantaneous wake recording as

Udef(x,y,z)=
Uamb(z)−U (x,y,z)

Uamb(z)
, (8)

where U (x,y,z) is estimated from lidar measurements us-
ing Eq. (7), and Uamb(z) is the relative 10 min average in-
flow vertical wind speed profile measured at the mast. The
deficit is then normalized with respect to the ambient wind
speed profile. The vlos measurements and also the recon-
structedU wind velocities are defined on a coordinate system
that is attached either to the nacelle (nacelle frame of refer-
ence, NFoR), which rotates with the yawing of the turbine,
or to the ground (fixed frame of reference, FFoR). To per-
form direct comparisons with the DWM model predictions,
the lidar-estimated deficits obtained from Eq. (8) need to be
computed in the MFoR. Here, this is performed by tracking
the wake centre position through the method of Trujillo et al.
(2011), where a bivariate Gaussian shape is fitted to the ve-
locity deficit flow field, and the wake centre is the geometric

centroid of the Gaussian function:

fdef =
A

2πσwyσwz
exp

[
−

1
2

(
(yi −µy)2

σ 2
wy

+
(zi −µz)2

σ 2
wz

)]
, (9)

where µy and µz define the wake centre location; σwy and
σwz are width parameters of the wake profile in the y and
z directions, respectively; yi and zi denote the spatial loca-
tions of the lidar measurements; andA is a scaling parameter.
Each scanned point of the quasi-instantaneous wake record-
ing can be translated into the MFoR using the estimated µy
and µz from Eq. (9) (Reinwardt et al., 2020). Therefore, we
can compute the multiple wake recordings within a 10 min
period in the MFoR and subsequently compute flow statis-
tics such as the ensemble-average deficit profile as well as the
spatial distribution of the wake turbulence in the MFoR. To
ensure a high-quality fit, we reject scans where the estimated
wake centre location is within ≈ 10% of the lateral bounds
of the scanning area and at more than 0.75D from the hub
height in the vertical direction (Doubrawa et al., 2020; Conti
et al., 2020a).

Figure 4 illustrates ensemble-average measured deficit
profiles in the MFoR at 2, 3, 4, and 5D behind the rotor
obtained from all 10 min periods characterized by an incom-
ing wind speed of 7 m/s and under varying stability regimes
during Strategy I (see Table 1 for reference). We can clearly
observe the impact of the atmospheric stability and in partic-
ular of the associated turbulence levels on the wake recov-
ery behind the rotor. A strong and well-defined symmetric
wake deficit shape is seen under stable conditions (top row),
whereas the deficits recover faster moving downstream as the
atmosphere becomes more unstable (bottom row).

4.2 Lidar-estimated wake turbulence

Turbulence measures derived from lidar radial velocity mea-
surements are “filtered” because of their relatively large
probe volume (Peña et al., 2017), and so they are generally
lower than those obtained from sonic observations. Never-
theless, if the Doppler spectrum of the vlos is available, we
can potentially circumvent the averaging effects and estimate
the unfiltered variance of vlos (Peña et al., 2017; Mann et al.,
2010). Mann et al. (2010) assume that the ensemble-averaged
Doppler spectrum over a time period 〈S(vlos)〉 is related to the
probability distribution of the vlos at the focus distance and
can be computed as

〈S(vlos)〉 =

∞∫
−∞

ϕ(s)p(vlos|s)ds, (10)

where ϕ(s) is the spatial averaging function of the lidar that
depends on the position along the beam s, and p(vlos|s) de-
notes the PDF of vlos at the location s. If we assume that
the PDF of vlos is independent of s, (i.e. there is no ve-
locity gradient along the beam), then Eq. (10) reduces to
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Figure 4. Ensemble-average velocity deficit profiles in the MFoR measured at 2, 3, 4, and 5D behind the rotor for an inflow wind speed
of 7 m/s under stable (upper row), near-neutral (middle-row), and unstable (lower row) conditions. The number of scans used to derive the
ensemble statistics ranges between 312 and 636, depending on data availability. The SpinnerLidar scanning pattern is shown by red dots,
whereas the turbine rotor area is illustrated by solid blue lines. The vertical and lateral coordinates are normalized by the rotor radius and
centred at hub height.

〈S(vlos)〉 = p(vlos). As a result, the vlos statistics (i.e. mean
and variance) can be computed from the first and second cen-
tral moments of p(vlos) as

µvlos =

+∞∫
−∞

vlosp(vlos)dvlos,

σ 2
vlos
=

+∞∫
−∞

(vlos−µvlos )
2p(vlos)dvlos, (11)

where µvlos and σ 2
vlos

denote the mean and unfiltered vari-
ance of vlos, respectively. Nevertheless, velocity gradients
along the lidar beam may appear when measuring at the wake
edges, which can introduce errors in the estimated turbulence
(Meyer Forsting et al., 2017). Following the procedure of
Peña et al. (2019), we compute the ensemble-averaged nor-
malized Doppler spectrum within 10 min periods by thresh-
olding the noise-flattened spectra with a value of 1.2 and cor-
recting them by subtracting the background spectrum. We
accumulate the LOS Doppler spectra onto the regular grid of
the scanned area and estimate µvlos and σ 2

vlos
for each grid

cell using Eq. (11). As discussed in Herges and Keyantuo
(2019), invalid measurements occur due to the boresight and
ground return as well as the return from the rotating rotor of
WTGa2, if in operation. These invalid observations appear as

a very high return signal in the Doppler spectrum in proxim-
ity to low wind speeds (i.e. at approximately 1 m/s) and are
removed. The filtering effects due to the probe volume can be
quantified by computing the ratio between filtered and unfil-
tered LOS variances across the rosette pattern; we find ratios
in the range 0.8–0.9 at 2.5D, which vary according to stabil-
ity conditions (not shown).

Examples of 10 min ensemble-averaged Doppler spectra
obtained at three fixed locations across the scanned area –
a wake centre, a wake edge, and a wake-free position – are
shown in Fig. 5 for an incoming wind speed of 7 m/s and
ambient turbulence of 6 %. A narrow spectrum with a single-
peak distribution centred at about 7 m/s for the wake-free
location (green) is seen, whereas spectrum-broadening ef-
fects induced by small-scale generated turbulence are notice-
able for the positions within the wake. The wake centre (red)
shows a wider spectrum with a peak at a significantly lower
wind speed than the incoming flow, whereas the wake edge
(cyan) shows a double-peak distribution that may be partially
due to the inhomogeneity of the wind field along the beam
(Herges and Keyantuo, 2019) and also due to the meander-
ing occurring within the analysed 10 min period.

To characterize the spatial distribution of the wake turbu-
lence within the scanned area, we derive σ 2

U estimates di-
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Figure 5. Examples of normalized Doppler LOS velocity spectra measured over a 10 min period at 2.5D in the wake at three different
locations – wake centre (red), wake edge (cyan), and wake-free (green) – for an incoming wind speed of 7 m/s and ambient turbulence of
6 %.

rectly by applying the variance operator to Eq. (7):

σ 2
vlos
= σ 2

U cos(φ)2 cos(θ − θ0)2, (12)

where σ 2
U is the variance of the horizontal wind speed, and

as shown, covariance terms are neglected. As the LOS is
almost never aligned with the u velocity component across
the rosette, except at the centre of the pattern, σ 2

vlos
can be

“contaminated” by the variances and covariances of the other
velocity components (Peña et al., 2017). Therefore, the re-
lation in Eq. (12) can lead to inaccurate estimations of the
longitudinal-velocity variances. Peña et al. (2019) estimated
the contamination of different components on the LOS vari-
ances for the SpinnerLidar and showed that the ratio of the
unfiltered LOS velocity variance to the variance of the longi-
tudinal velocity component is generally lower than 1 across
the scanned area, except at the centre, where the ratio is
1, and within an area above the centre, where it can be
higher than unity. Although the adopted retrieval assumption
in Eq. (12) introduces uncertainties in the turbulence mea-
sures, we can account for the expected errors in the Bayesian
inference framework.

Figure 6 illustrates the spatial distribution of the unfiltered
σ 2

U computed in the MFoR, normalized with the u-velocity
variance of the ambient wind field measured at the 32 m
sonic anemometer (σ 2

u, amb). Under stable conditions and for
a downstream distance of 2.5D, we can observe an enhance-
ment in turbulence levels in proximity to the rotor tips, es-
pecially in the upper part of the rotor (see Fig. 6a). The ob-
served added turbulence is caused by the breakdown of the
rotor tip vortices. These features are no longer noticed as the
atmosphere becomes more unstable where a more uniform
and less prominent distribution of the turbulence is found
(see Fig. 6b and c).

5 Calibration of the DWM model in the MFoR

The calibration of the wake deficit and wake-added tur-
bulence components are conducted in the MFoR using a

Bayesian inference framework. We describe the Bayesian
model in Sect. 5.1 and provide calibration results for the
wake deficit in Sect. 5.2 and for the wake-added turbulence
in Sect. 5.3. We investigate wake meandering dynamics sep-
arately in Sect. 5.4.

5.1 Bayesian inference formulation

The basis of the Bayesian inference is to estimate the prob-
ability distribution of the model parameters based on avail-
able observations. Let θm = {k1,k2, . . . ,km1,km2} be a set of
model parameters to be estimated using lidar-derived wake
features (i.e. wake deficit and wake-added turbulence profiles
in the MFoR) denoted by yd = {yd1,yd2, . . . ,ydn}, where n
is the number of available observations. We consider that the
experimental data and the model predictions satisfy the pre-
diction error equation:

yd = ĝ(θm,Xm)+ ε, (13)

where ĝ(θm,Xm) denotes the DWM model predictions ob-
tained from a particular set of model parameters (θm)
and a set of observable variables (Xm). Here Xm =

{TIamb,Uamb,α,CT,x,y,z} includes the inflow wind condi-
tions measured at the mast (TIamb,Uamb,α); the rotor thrust
coefficient of the turbine (CT), which is derived from the
BEM model (Madsen et al., 2010); and the spatial locations
of the scanning pattern (x,y,z). ε = εy + εm denotes a ran-
dom prediction error composed of two terms: the measure-
ment error εy and the model prediction error εm. The former
is described by a zero mean normal distribution with standard
deviation σεy , which is determined from field observations.
The latter is assumed to have zero mean, which implies un-
biased model predictions, and a standard deviation σεm to be
determined by the Bayesian estimation along with the model
parameters. To facilitate statistical inference, we assume Xm
as deterministic inputs (i.e. free of uncertainty) and that the
model error εm is independent of the set of input variables
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Figure 6. Two-dimensional spatial distribution of the horizontal wind velocity variance (σ 2
U) derived in the MFoR at 2.5D in the wake,

normalized with the u-velocity variance of the ambient wind field (σ 2
u, amb) for three 10 min periods characterized by (a) stable, (b) near-

neutral, and (c) unstable conditions. Approximately 298 scans of the wake are processed for each 10 min period. The relative ambient wind
speed ranges between 6.5 and 8.5 m/s.

Xm and described by a normal distribution. This implies that
the model predictions are normally distributed for a given
Xm, which is a reasonable choice for wake deficit profiles.
The Bayesian approach for model calibration deals with up-
dating the combined parameter set (θm,σεm ), given a set of
observations (yd,Xm) by applying the Bayes theorem:

f (θm,σεm |yd)=
f (yd|θm,σεm )f (θm,σεm )

f (yd)
, (14)

where f (θm,σεm |yd) is the updated posterior distribution
of the model parameters, f (θm,σεm ) is the prior dis-
tribution that is typically assigned based on subjective
or previous information, f (yd|θm,σεm ) denotes the likeli-
hood of observing the data yd from a model with cor-
responding θm parameters, and f (yd) is the prior pre-
dictive distribution that is defined as the marginal distri-
bution f (yd)=

∫
f (yd|θm,εm)f (θm,σεm )dθmdεm. By using

the prediction error in Eq. (13) and assuming that the er-
ror terms are jointly normal with a zero mean vector and
covariance matrix

∑εyd = diag(σ 2
εyd

) and
∑εm = diag(σ 2

εm
),

the measured quantities follow the normal distribution yd ∼

N
(
ĝ(θm,Xm|yd),

∑
ε

)
, where the covariance matrix takes

the form
∑
ε =

∑εyd+
∑εm . As a result, the likelihood func-

tion of observing the data follows the multi-variable normal
distribution defined as

f (yd|θm,εm)=

∣∣∑
ε

∣∣−1/2

(2π )n/2
exp

[
−

1
2

[
yd− ĝ(θm,Xm|yd)

]T
−1∑
ε

[
yd− ĝ(θm,Xm|yd)

]]
, (15)

where the |.| denotes the determinant. The analytical and dif-
ferentiable solution of the posterior distribution of the pa-
rameters in the N–S equations with the eddy viscosity term
of Eq. (1) is not readily available. Therefore, we employ a
numerical sampling method to approximately evaluate the
posterior distribution and its first and second moments. Here,
the adaptive no-U-turn Markov chain Monte Carlo (MCMC)

sampler is employed to generate samples from the poste-
rior distribution (Hoffman and Gelman, 2014; Salvatier et al.,
2016).

The outcome of the calibration is a joint probability dis-
tribution of the inferred model parameters. From this joint
PDF, we can estimate the posterior PDF of any wake fea-
ture simulated by the DWM model, i.e. the wake deficit and
wake-added turbulence profiles in the MFoR or the fully re-
solved wakes in the FFoR, among others, which we denote
by q:

f (q|yd)=
∫
2

f (q|θm)f (θm|yd)dθm. (16)

The posterior distribution of the wake feature q in Eq. (16)
can be solved numerically using sampling methods (e.g.
Monte Carlo simulations), so its first and second moment can
be estimated.

5.2 Wake deficit parameter estimation

We use lidar-derived wake deficit profiles in the MFoR col-
lected during Strategy I and Strategy II and employ the
Bayesian model to infer uncertainty in the k1 and k2 pa-
rameters of the eddy viscosity term in Eq. (1). These pa-
rameters were found to be the most sensitive to the resulting
wake deficit predictions (Keck et al., 2012). The prediction
model of Eq. (13) is constructed as follows. The experimental
data (yd) comprise two-dimensional ensemble-average lidar-
estimated deficit profiles binned according to downstream
distances (3, 4, and 5D), atmospheric stability (i.e. stable,
near-neutral, and unstable), and wind speed bins of 1 m/s in
the range of 3–9 m/s. Note that we discard measurements in
the near wake (at 2D) for improving the quality of the fitting
in the far-wake region (see Fig. 8).

The set of observable variables comprises Xm =

{TIamb,Uamb,α,CT,x,y,z}, where the inflow parameters
(TIamb,Uamb,α) are provided in Tables 1 and 2; the rotor
thrust coefficient CT is derived from the BEM model imple-
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mented in the aeroelastic code HAWC2 (Larsen and Hansen,
2007) and based on the aerodynamics and airfoil inputs of
the SWiFT turbine (Doubrawa et al., 2020) (CT = 0.84, that
is nearly constant for wind speeds below 9 m/s); and x,y,
and z refer to the spatial coordinates of the deficits resolved
in the MFoR. The uncertainties in measured deficit profiles
are computed as εyd (r)= σ (r)/

√
n, where σ (r) is the stan-

dard deviation of all 10 min deficits within the analysed case
at the radial position r , and n is the number of 10 min periods
(also referred to as samples in Table 1).

We select uniform prior distributions on model parame-
ters k1, prior ∼ U(0.001,0.2) and k2, prior ∼ U(0.001,0.2) on
intervals that consider physical constraints, ensuring conver-
gence of results and covering previous calibrations reported
in the literature. Thus, we employ an MCMC algorithm to
sample from the posterior PDFs of the calibration parame-
ters using the Bayesian framework. The inferred joint and
marginal posterior distributions of the model parameters (k1
and k2) are shown in Fig. 7, together with point values from
earlier studies (Madsen et al., 2010; Keck et al., 2012; Larsen
et al., 2013; IEC, 2019; Reinwardt et al., 2020). As shown,
the lidar-based wake deficits are informative, and we obtain
well-defined posteriors that follow a normal distribution with
k1 ∼N (0.081,0.017) and k2 ∼N (0.015,0.003). The nega-
tive correlation between k1 and k2 seen in Fig. 7 indicates
the interdependence of the physically induced effects as both
parameters contribute to turbulence diffusion. It is found that
the posterior means of the informed parameters k1 and k2
differ from those recommended in the IEC standard (IEC,
2019). Generally, low k1 and k2 values attenuate the degree
of turbulence mixing in the wake, which lead to strong ve-
locity deficits persisting at distances farther downstream. We
provide the statistical properties (mean, variance, and coeffi-
cient of variation) of the inferred parameters in Table 4 and
correlation measures in Table 5.

5.2.1 Wake deficit predictions

We propagate the uncertainties in k1 and k2 to predict wake
deficits in the MFoR and compare them with the ensemble-
average lidar-derived profiles in Fig. 8. First, we observe that
the lidar-estimated deficits exhibit a faster wake recovery as
the atmosphere becomes more unstable compared to stable
regimes. This effect is mainly caused by the enhanced tur-
bulence mixing occurring under unstable conditions as they
are characterized by ambient turbulence levels 2–3 times
higher than those of the stable cases (see Table 1). The lidar-
observed maximum deficit varies between 30 % and 60 %
within the first five rotor diameters, depending on the inflow
turbulence conditions. Similar behaviours were reported in
recent lidar measurement campaigns (Iungo and Porté-Agel,
2014; Machefaux et al., 2016; Fuertes et al., 2018; Zhan
et al., 2020b).

The lidar-estimated deficits are approximately Gaussian
under stable to near-neutral conditions, whereas the Gaussian

shape is lost under more unstable conditions. This may result
from errors in the wake tracking procedure due to the larger
meandering amplitudes and also due to the presence of large-
scale turbulence structures in the inflow (Conti et al., 2020a).
The rotor thrust is another factor governing the variability in
the wake recovery (Zhan et al., 2020b); however, its influ-
ence is secondary for the dataset analysed here due to the
relatively low incoming wind speeds and relatively constant
thrust coefficients (Conti et al., 2020a).

The DWM-model-predicted deficit profiles with param-
eters specified by their posterior distributions are in good
agreement with the lidar observations for distances beyond
4D (see Fig. 8). For these distances, the turbulence mix-
ing effects dictated by the ambient and self-generated wake
turbulence on the deficit recovery are fairly well captured
by the inferred parameters. The nominal model predictions
generally fit the observations, whereas an overlap between
the measurements and the region of modelling uncertainty
is found. The largest deviations between predicted and mea-
sured deficits are found at shorter distances (2–3D) and are
mainly due to the model inadequacy to simultaneously fit all
the experimental measurements and experimental uncertain-
ties. The assumptions adopted to describe the near-wake re-
gion also introduce uncertainty in the deficit predictions at
short distances (Keck et al., 2015; Machefaux et al., 2016).

It can be observed that the uncertainties in k1 and k2 pa-
rameters primarily influence the depth of the wake (i.e. the
maximum deficit), while the sensitivity to these parameters
decreases significantly with the outer radial distance. It is
also noticed that the uncertainty in the deficit predictions in-
creases for high ambient turbulence and far downstream dis-
tances. This is because k1 is proportional to TIamb in Eq. (1),
and the sensitivity of the model parameters increases as the
wake recovers. To provide a measure of the uncertainty in
wake deficit predictions, we compute the coefficient of vari-
ation COV = σ/µ, where σ is the standard deviation, and
µ is the mean value of the maximum deficit, obtained by
propagating the PDFs of k1 and k2, as in Eq. (16). We find
COV= 3 % under stable conditions (Tamb = 0.07), which
increases to 6 % under unstable conditions (Tamb = 0.14),
for an incoming wind speed of 7 m/s. This result confirms
that the uncertainty in wake deficit predictions increases for
higher turbulence, but it also shows that uncertainties in k1
and k2 parameters do not lead to uncertainty of the same
magnitude in deficit predictions resolved in the MFoR (for
reference, COVk1 = 21 % and COVk2 = 19 %, as reported in
Table 4).

We provide comparisons between measured and predicted
wake deficit profiles using the calibration from this work as
well as those reported in early studies in Fig. 9. For this par-
ticular analysis, we analyse predictions at 5D behind the
rotor for an inflow wind speed of 7 m/s under stable, near-
neutral, and unstable regimes. The main discrepancy among
the models is the relative sensitivity of the wake recovery
to the ambient turbulence. This is primarily governed by k1;
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Figure 7. Joint and marginal posterior PDFs of k1 and k2 parameters. The uncertainty regions representing the 10 %, 30 %, 66 %, and
95 % confidence intervals are shown. The histograms obtained from 40 000 MCMC samples and the corresponding empirical PDFs are also
included. The calibration parameters from early studies are shown with red markers and discussed in the text.

however, in the eddy viscosity model of Larsen et al. (2013),
IEC (2019), and Reinwardt et al. (2020), it also depends on a
nonlinear coupling function Famb(TIamb) that attenuates the
wake recovery for turbulence above ≈ 12% (see Fig. 6 in
Larsen et al., 2013). This function was introduced to fit the
power productions at the Egmond aan Zee offshore wind
farm, and it is not based on observations of the wake field
(Larsen et al., 2013). The wake recovery predicted with the
models of Larsen et al. (2013) and IEC (2019) is practically
insensitive to ambient turbulence rising from 7 % to 16 % at
downstream distances up to 5D. Similar outcomes are re-
ported in Fig. 13 in Reinwardt et al. (2020), who showed
that the model of Larsen et al. (2013) provided conservative
deficits for ambient turbulence up to 16 %.

By considering k1 and k2 as universal constants (Keck
et al., 2012), the quality of the dataset utilized for the model
calibration is essential to ensure reliable parameter estima-
tion. As previous calibrations were carried out on larger ro-
tors than those of the SWiFT turbines and utilized either
power production data (Larsen et al., 2013; IEC, 2019) or
limited CFD simulations (Madsen et al., 2010; Keck et al.,
2015) and one-dimensional scans of the wake by a nacelle
lidar (Reinwardt et al., 2020), these aspects may explain the
observed deviations in Fig. 9.

5.3 Improved wake-added turbulence formulation

The wake-added turbulence model (Eq. 3) assumes that tur-
bulent structures (i.e. tip and root vortices) are unaffected
by atmospheric turbulence. The rotor-induced vortices are

rapidly disrupted under high-turbulence conditions, causing
the breakdown within the first 2D (Madsen et al., 2005).
However, vortices can persist and extend at farther distances
under low to moderate turbulence combined with stable strat-
ification conditions (Ivanell et al., 2009; Subramanian et al.,
2018; Conti et al., 2020a). Thus, the wake-added turbulence
profiles can exhibit a more pronounced double-peak feature
in the proximity of the rotor tips or a more uniform distri-
bution depending on the atmospheric turbulence conditions
(this effect is also seen in Fig. 6). Equation (3) also assumes
radially symmetric wake-added turbulence profiles. How-
ever, the inflow vertical wind shear re-distributes the wake
turbulence. Enhanced turbulence levels are actually observed
in the proximity of the upper tip of the rotor blade (Vermeer
et al., 2003; Chamorro and Porte-Agel, 2009; Conti et al.,
2020a). Figure 6a shows this effect.

Due to these two assumptions, we propose an improved
semi-empirical formulation of the wake-added turbulence
scaling factor k∗mt, which produces wake profiles in better
agreement with the lidar observations. This is achieved by
relating both the depth and the velocity gradient terms to the
ambient turbulence and by including the effect of the inflow
vertical wind shear on the vertical-velocity deficit gradient as

k∗mt(y,z)=| 1−Udef(y,z) | (k∗m1TIamb+ k
∗

q1)

+

∣∣∣∣∂U∗def(y,z)
∂y∂z

∣∣∣∣ (k∗m2TIamb+ k
∗

q2), (17)

where U∗def(y,z)= (U (z)Udef(y,z))/max (U (z)Udef(y,z)),
and k∗m1,k

∗

q1,k
∗

m2, and k∗q2 are parameters to be determined
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Figure 8. Comparison between measured and predicted ensemble-average spanwise velocity deficit profiles resolved in the MFoR at hub
height and obtained at 2, 3, 4, and 5D behind the rotor (from left to right) and for inflow wind speeds ranging from 3 to 8 m/s with a 1 m/s
bin (from top to bottom panel). The SpinnerLidar-measured (markers) and DWM-model-predicted (solid lines) deficits are shown for each
stability class (stable in blue, near-neutral in green, and unstable in red). The error bars represent the measurement uncertainty, while the
shaded areas represent the uncertainty in the model predictions; both sources of uncertainty refer to the 95 % confidence interval (see Table
1 for details on the inflow wind conditions).

using Bayesian inference. Figure 10 illustrates the two-
dimensional profiles of the depth and velocity deficit gradi-
ent terms of Eqs. (3) and (17). As illustrated, by including
the term U∗def(y,z), we obtain a turbulence field that mimics
qualitatively well the observed enhanced turbulence within
the upper wake region.

5.3.1 Estimation of wake-added turbulence parameters

The calibration parameters in Eq. (17) are inferred based
on the lidar-estimated wake-added turbulence profiles in
the MFoR collected during Strategy II. For this particular
dataset, the SpinnerLidar scans at a fixed distance of 2.5D,
ensuring about 298 scans for every 10 min period. The in-
flow characteristics are reported in Table 2. As the Doppler
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Figure 9. Ensemble-average spanwise velocity deficit profiles computed in the MFoR at hub height obtained at 5D behind the rotor for an
incoming wind speed of 7 m/s under stable (blue), near-neutral (green), and unstable (red) atmospheric conditions. The measured turbulence
intensities are 7 %, 12 %, and 16 %, respectively. The SpinnerLidar-measured profiles are shown by markers and their relative 95 % confi-
dence interval by the error bars. The DWM-model-predicted deficits are shown by solid lines; each panel refers to model predictions using
calibration parameters from a number of studies (see text for more details). The “SpinnerLidar” panel refers to the model proposed in the
current study, while the shaded areas indicate its 95 % confidence interval.

Figure 10. DWM-model-predicted flow characteristics. (a) Velocity deficit, (b) velocity deficit term with combined vertical shear profile
Udef(y,z)∗, (c) gradient of the velocity deficit, (d) gradient of the profile resulting from the combined velocity deficit and the vertical shear.
The flow characteristics are computed for Uamb = 6 m/s, TIamb = 7 %, and α = 0.25 at a downstream distance of 2.5D.

LOS velocity spectrum is available, we derive unfiltered LOS
variances as described in Sect. 4.2 and subsequently the tur-
bulence intensity as the ratio of the standard deviation to the
mean of the horizontal wind speed. From Eq. (2), we can
isolate TIadd (wake-added turbulence term) by firstly resolv-
ing the wake recordings in the MFoR, which eliminates the
contribution of TIm, and then by subtracting TIamb, which is
derived from the 32 m sonic observations in front of the rotor.

As a first step, we fit the “original” analytical formula-
tion of kmt from Eq. (3) to each individual lidar-estimated
wake-added turbulence profile to estimate the values of km1
and km2 using a simple least-squares optimization algorithm.
Figure 11a and d show the relation between the estimated
optimal parameters (in markers) and the ambient turbulence.
It is shown that km1 increases, and km2 decreases almost lin-
early for increasing turbulence intensity. This indicates the
strong effect of the deficit gradient term (proportional to km2
in Eq. 3) under low-turbulence conditions, which both am-
plifies the double-peak feature of the wake turbulence profile
at the rotor tips and mimics the wake vortices. As the ambi-
ent turbulence increases, km1 and lower km2 become larger,
which indicates a more uniform distribution of the wake tur-
bulence. These effects are observed in Fig. 11b and c (see

markers), which show the spanwise distribution of the lidar-
derived wake-added turbulence for two 10 min periods with
relatively low and high values of ambient turbulence inten-
sity, 7 % and 12 %, respectively. We also compare the mea-
sured and predicted vertical distribution of TIadd in Fig. 11e
and f, which shows that slightly improved predictions can be
obtained using Eq. (17), i.e. considering the effects of the at-
mospheric shear on wake turbulence.

To infer the posterior PDFs of k∗m1,k
∗

q1,k
∗

m2, and k∗q2,
we assign prior distributions based on the linear depen-
dencies observed in Fig.11a and d, namely km1, prior ∼

U(0,6), kq1, prior ∼ U(0,0.1), km2, prior ∼ U(−50,10), and
kq2, prior ∼ U(0,5) as well as k1 ∼N (0.081,0.017) and k2 ∼

N (0.015,0.003) previously estimated in Sect. 5.2. The un-
certainties in lidar-derived wake-added turbulence profiles
account for errors introduced by the flow modelling assump-
tions of Eq. (12), which neglects cross-contamination ef-
fects on the LOS variance. We define these errors as zero-
mean normally distributed with standard deviation σεyd

=

0.1 · Tadd(y,z), which leads to a coefficient of variation of
10 % (Peña et al., 2019).

The resulting posterior PDFs of the parameters follow a
normal distribution (not shown) with statistical properties
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tabulated in Table 4. We provide the mean values of the
inferred k∗m1,k

∗

q1,k
∗

m2, and k∗q2 values in the form of a lin-
ear regression model that relates the depth and deficit gradi-
ent terms of Eq. (17) to the ambient turbulence in Fig. 11a
and d. The shaded area represents the 95 % confidence in-
terval, which is obtained by propagating the PDFs of the
turbulence-related and wake deficit parameters. As shown,
the predictions are characterized by a relatively high degree
of uncertainty. This is because, for example, there are few
available observations to characterize turbulence; the mea-
surement uncertainties are relatively high; and the modelling
simplifications, such as the semi-empirical k∗mt, introduce fur-
ther uncertainties. We provide the correlations among all the
inferred parameters obtained from the joint PDF in Table 5.
As expected, the wake deficit parameters k1 and k2 are neg-
atively correlated to k∗m1 and k∗q1 as k∗m1 and k∗q1 are propor-
tional to the wake deficit term in Eq. (17), which is the main
driver to the intensity of the wake-added turbulence.

5.4 Wake meandering

Here, we investigate the relationship between the inflow tur-
bulence fluctuations and the lidar-tracked wake positions to
characterize the large-scale eddies responsible for the mean-
dering. The analysis is carried out by comparing the spectra
of the lidar-tracked meandering time series, which are de-
rived by means of the tracking algorithm in Eq. (9), with that
simulated from the meandering model in Eq. (4), where vc
andwc are obtained from the sonic observations at 32 m. Yaw
misalignment from SCADA is also included. We conduct the
analysis using the dataset collected at 2.5D behind the rotor
during Strategy II and classify all the available 10 min peri-
ods according to stability to derive ensemble-average spectra
from multiple observations with similar inflow conditions.
Note that the measured inflow wind speeds are below rated,
and turbulence levels from all 10 min periods within each sta-
bility class are similar to those reported in Table 2.

Results of the spectral analysis for both lateral and ver-
tical meandering are shown in Fig. 12. Here, the ensemble-
average spectra from the SpinnerLidar observations are com-
pared to those from the meandering model without low-
pass filtering the incoming turbulence fluctuations (denoted
as DWMwf). The spectra are normalized with their relative
variances and plotted as a function of the commonly used
Strouhal number St = fD/U∞, where f denotes frequency,
and U∞ is the aggregated wind speed from the ensemble-
average statistics. As shown, the slope of the lidar-based
spectra (red lines) matches that of DWMwf (blue lines) up
to St = 0.3–0.5, which corresponds to three and two rotor
diameters, respectively. For St > 0.5, the energy content of
the lidar-estimated spectra remarkably decreases compared
to that of DWMwf. These observations indicate that large-
scale turbulent structures (>2D) are dominant in the wake
meandering (Trujillo et al., 2011; Heisel et al., 2018). When
compared to the stable case, the spectra under unstable condi-

tions show a higher energy content at large turbulence scales
or equivalently low Strouhal number.

Figure 12 shows that a stochastic description of the large-
scale eddy size might be appropriate. Thus, we describe the
large-scale eddies responsible for the wake meandering by
introducing the stochastic variable Dm, which is normally
distributed with a mean equal to 2.5D (it corresponds to the
wake diameter at 5D behind the rotor) and a standard devi-
ation of 0.3D based on the observations in Fig. 12. The re-
sulting 95 % confidence intervals are shown as shaded areas
in Fig. 12. The uncertainty in Dm is found negligible when
computing wake meandering time series; this is shown in Ap-
pendix A.

6 Validation of the DWM model in the FFoR

The validation of the DWM model is performed by resolv-
ing wake fields in the FFoR; thus the simulated wakes in-
clude the combined effects of the velocity deficit, added tur-
bulence, and wake meandering dynamics in both lateral and
vertical directions. This analysis is carried out using data
from Strategy III, i.e. at a fixed distance of 5D behind the
rotor, ensuring a sufficient number of scans to derive unfil-
tered turbulence estimates as well as wake meandering time
series within a 10 min period. The analysed dataset is pri-
marily characterized by stable conditions, as seen in Table 3,
i.e. low turbulence intensities (6 %–8 %) and strong vertical
shears (α = 0.18–0.38).

6.1 Correction for rotor induction effects

The SpinnerLidar measurements collected during Strat-
egy III were taken in the induction zone of the WTGa2
(Herges et al., 2018). For induction correction, we em-
ploy the two-dimensional induction model of Troldborg and
Meyer Forsting (2017), which accounts for both longitudinal
and radial variation in the induced wind velocity:

Cind =[
1− a0

(
1−

ξx√
1+ ξ2

x

)
·

(
2

exp(+βaεa)+ exp(−βaεa)

)2
]
, (18)

where a0 is the induction factor at the rotor centre area,
a0 = 0.5(1−

√
1− γaCT); γa = 1.1, ξx = x/R is the distance

in front of the rotor normalized by the rotor radius; ρa =√
y2+ z2/R denotes the radial distance from the rotor cen-

tre axis; and εa = ρa/
√
λa(ηa + ξ2

x ), βa =
√

2, λa = 0.587,
and ηa = 1.32 (Troldborg and Meyer Forsting, 2017; Dim-
itrov, 2019). Note that only lidar measurements taken across
the rotor area of WTGa2 are corrected by the induction fac-
tor in Eq. (18). The estimated induction factors indicate that
the wind speed can be reduced at hub height by up to 12 %
upstream of the WTGa2 and below rated power (see also
Fig. 14).
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Figure 11. Wake-added turbulence predictions. Panels (a) and (d) show the relation of both km1 and km2 in Eq. (3) to the ambient turbulence.
The linear regression model that is determined using Bayesian inference is shown by solid lines, whereas the shaded areas indicate the
95 % confidence interval obtained by propagating the posterior PDFs of the parameters. The comparison between measured (markers) and
predicted (lines) lateral wake-added turbulence profiles resolved in the MFoR at hub height and obtained at 2.5D behind the rotor is shown
in (b) and (c) for TIamb = 7 % and 12 %, respectively, whereas the relative vertical profiles are shown in (e) and (f). The error bars indicate
the measurement uncertainty, whereas the shaded areas indicate that of the model predictions relative to the 95 % confidence interval. The
predictions from Eq. (3) are computed using the mean values of km1 = 0.11 and km2 = 0.54, which are obtained from all the observations in
(a) and (d).

6.2 Uncertainty propagation of simulated wake fields

We derive the two-dimensional spatial distribution of the
mean wind speed in the wake region (UFFoR) by the convolu-
tion between the wake deficit in the MFoR (Udef,MFoR) and
the PDF of the meandering path (fm) (Keck et al., 2015):

UFFoR(y,z,k1,k2,Dm,ym, ε,zm, ε)=

Uamb

(
z

zhub

)α ∫ ∫
Udef,MFoR(y− ym+ ym, ε,z− zm

+ zm, ε,k1,k2) · fm(ym,zm,Dm,ym, ε,zm, ε)dymdzm, (19)

where ym and zm denote the spatial coordinates of the wake
meandering time series, and ym, ε and zm, ε are measures of
their relative uncertainties. We introduce these errors to ac-
count for incorrect wake tracking positions that can arise due
to the adopted wake tracking algorithm; ym, ε and zm, ε are as-
sumed to be uncorrelated and to follow a normal distribution
with zero mean and standard deviation such that the 95 %
percentile corresponds to approximately 4 m, which is twice
the resolution adopted to interpolate SpinnerLidar measure-
ments onto the regular grid (see Sect. 4). Note that the at-
mospheric shear profile Uamb(z) is superposed after the wake
deficit calculation (Madsen et al., 2010). Similarly, the two-
dimensional spatial distribution of the u-velocity variance

(σ 2
uFFoR

) can be computed as

σ 2
uFFoR

(y,z,k1,k2,k
∗

m1,k
∗

q1,k
∗

m2,k
∗

q2,Dm,ym, ε,zm, ε)=

σ 2
uamb
+

∫ ∫ ((
UMFoR(y− ym+ ym, ε,z− zm+ zm, ε,k1,k2)

−UFFoR(y,z,k1,k2,Dm,ym, ε,zm, ε)
)2
+
(
k∗mt,MFoR (y

−ym+ ym, ε,z− zm+ zm, ε,k1,k2,k
∗

m1,k
∗

q1,k
∗

m2,k
∗

q2)

·UMFoR(y− ym+ ym, ε,z− zm+ zm, ε,k1,k2)
)2)

· fm(ym,zm,Dm,ym, ε,zm, ε)dymdzm, (20)

where UMFoR = Uamb(z)Udef,MFoR, UFFoR is derived from
Eq. (19), and σ 2

uamb
is the variance of the ambient u velocity

component. Alternatively, UFFoR and σ 2
uFFoR

can be equiva-
lently derived by superposing the wake deficit and the wake-
added turbulence factor k∗mt on stochastic turbulence fields
with constrained meandering path and subsequently by com-
puting the first- and second-order statistics of the synthetic
wind fields. However, the analytical forms in Eqs. (19) and
(20) can be easily used to propagate the posterior PDFs of the
calibration parameters to predict profiles of UFFoR and σuFFoR

with relative uncertainties. The inflow parameters (Uamb, α,
and σ 2

uamb
) in Eqs. (19) and (20) are required inputs for the

DWM model and are estimated from mast measurements.
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Figure 12. Normalized ensemble-average power spectral density (PSD) of the lateral and vertical wake meandering tracked by the Spinner-
Lidar (red) and that derived using the meandering model (DWMwf; shown in blue) under stable (column a), near-neutral (column b), and
unstable conditions (column c). The ensemble-average PSDs are computed for data collected at 2.5D behind the rotor and are normalized
with their relative variances. The 95 % confidence interval in the large-scale-eddy definition is shown by the grey area (see text for more
details).

Table 4. Mean (µ), standard deviation (σ ), and coefficient of variation (COV= σ/µ) estimated from the posterior PDFs of model parameters.
The values of k1, k2, σεdef , km1, kq1, km2, kq2, and σεadd are determined using Bayesian inference. Dm denotes the spatial size of the large-
scale eddies governing wake meandering dynamics, and ym, ε and zm, ε denote the wake tracking position errors expressed in metres.

Modules Wake deficit Wake-added turbulence Wake meandering

k1 k2 σεdef k∗m1 k∗
q1 k∗m2 k∗

q2 σεadd Dm ym, ε [m] zm, ε [m]

µ 0.081 0.015 0.02 1.33 −0.02 −5.61 1.09 0.03 2.5 0 0
σ 0.017 0.003 0.001 0.14 0.014 0.97 0.09 0.001 0.3 1.5 1.5
COV 21 % 19 % 5 % 10 % 59 % 28 % 10 % 3 % 12 % – –

We compute UFFoR and σuFFoR from Eqs. (19) and (20)
by constraining the meandering path (fm) using either the
lidar-tracked meandering time series, which we denote as
DWM∗, or by using the meandering model in Eq. (4) with
low-pass-filtered vc- and wc-velocity fluctuations obtained
from the 32 m sonic anemometer and the yaw misalign-
ment of WTGa1 obtained from SCADA, which we denote as
DWM∗∗. In the latter model, the low-pass-filtered frequency
is defined as a function of the stochastic variable associated
with the size of the large-scale eddies (Dm), as discussed in
Sect. 5.4. Figure 13 shows the comparison between observed
and predicted (with both DWM∗ and DWM∗∗ models) pro-
files of the mean wind speed and its standard deviation ob-
tained from two different 10 min periods.

A good agreement between measurements and predictions
is found. The vertical profile of the mean wind speed exhibits
a single-peak shape resulting from the combined effects of
the inflow vertical shear (modelled by a power law) and the
wake-induced Gaussian-like deficit shape. The wake turbu-
lence in the lateral direction exhibits a double-peak shape
with larger values near the locations associated with strong
velocity gradients that are further enhanced by the wake me-
andering. Enhanced turbulence levels in proximity of the up-
per wake region are observed from lidar measurements. The
deviations between DWM∗ and DWM∗∗ model predictions
are more pronounced for the simulated turbulence than for
the wind speed fields and are exclusively due to differences
in the meandering representations.
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Table 5. Correlation coefficients between model parameters estimated using Bayesian inference.

k1 k2 σεdef k∗m1 k∗
q1 k∗m2 k∗

q2 σεadd

k1 1 −0.73 <0.01 −0.15 −0.02 0.02 −0.06 −0.06
k2 −0.73 1 <0.01 −0.12 <0.01 <0.01 −0.01 <−0.01
σεdef <0.01 <0.01 1 <0.01 <0.01 <0.01 <0.01 <0.01
k∗m1 −0.15 −0.12 <0.01 1 −0.61 −0.21 −0.57 −0.01
k∗
q1 −0.02 <0.01 <0.01 −0.61 1 0.19 −0.26 0.06
k∗m2 0.02 <0.01 <0.01 −0.21 0.19 1 −0.47 −0.03
k∗
q2 −0.06 −0.01 <0.01 −0.57 −0.26 −0.47 1 −0.03
σεadd −0.06 <0.01 <0.01 −0.01 0.06 −0.03 −0.03 1

The wake simulation uncertainties shown in Fig. 13 are
determined by propagating uncertainties in model parame-
ters (Table 4) and by accounting for relative correlations (Ta-
ble 5) using Monte Carlo simulations. The uncertainties in
lidar-measured wind speeds account for volume averaging
effects and for errors introduced by the retrieval assumptions
(e.g. w sin(φ)= 0 m/s) (Debnath et al., 2019). The uncertain-
ties in lidar-derived turbulence (here defined as the standard
deviation of the wind speed) account for errors introduced
by neglecting cross-contamination effects in Eq. (12) (Peña
et al., 2019).

To evaluate the performance of the DWM model, we cal-
culate two flow metrics that are relevant in aeroelastic sim-
ulations and compare them to relative measured quantities:
the rotor-effective wind speed (Ueff), defined as the weighted
sum of wind speeds across the rotor area, and the effective
wake turbulence (σu, eff), which is derived as the weighted
sum of turbulence estimates across the rotor. Figure 14 shows
the one-to-one comparison between measured and DWM∗-
and DWM∗∗-model-predicted flow metrics for all 10 min pe-
riods. We find a slope that deviates < 1 % from unity, with
R2
= 0.95 for Ueff and a bias of ≈ 4 % and R2

≈ 0.93 for
σu, eff. The observed scatter is explained by the large mea-
surement uncertainties, by the uncertainties in inflow wind
parameters, and by those of the model predictions. The latter
is estimated by propagating uncertainties in model parame-
ters provided in Table 4, which result in a COV of 1 % for
Ueff, and of 3 % for σu, eff. These findings indicate that the
inferred uncertainties in model parameters do not propagate
into an error of the same magnitude on the fully resolved
wakes that are eventually input to aeroelastic simulations.

Further, a sensitivity analysis indicates that the variations
in Ueff and σu, eff are mostly explained by the uncertainties in
k1 and k2 and the wake tracking position ym, ε,zm, ε ; this is
shown in Appendix B. The contribution of the wake-added
turbulence from Eq. (17) to the total wake turbulence σu, eff
in the FFoR is marginal and accounts for approximately 2 %–
7 %. The turbulence induced by the meandering of the wake
deficit is thus the major source of added turbulence (Madsen
et al., 2010).

7 Discussion

The SpinnerLidar measurements show that the wake recov-
ers faster under unstable compared to stable conditions pri-
marily due to the high turbulence levels of the former (Iungo
et al., 2013; Zhan et al., 2020b). The wake recovery can be
predicted accurately by the DWM model when using appro-
priate calibration parameters. Further, accurate reproduction
of the wake meandering dynamics in both lateral and vertical
directions is key for accurate wake simulations.

Although the SWiFT campaign provides a comprehensive
dataset, including a wide range of inflow wind conditions and
detailed two-dimensional lidar measurements of the wake
field, the calibration parameters obtained from the 192 kW
turbine with 32 m diameter should be further evaluated for
multi-megawatt turbines with larger rotors. While this study
cannot explicitly demonstrate the transferability of the ob-
tained results for modern-size turbines, it highlights the need
for datasets that include observations of the wake deficit pro-
files under varying stability conditions, inflow wind speeds,
and downstream distances for the reliable and robust calibra-
tion of engineering wake models. Here, we find that the ve-
locity deficit’s recovery rate for increasing turbulence is the
main difference among calibrations reported in the literature
(see Fig. 9), which were based on either power production
data (Larsen et al., 2013; IEC, 2019) or limited CFD sim-
ulations (Madsen et al., 2010; Keck et al., 2015) and one-
dimensional observations of the wake field from a nacelle
lidar (Reinwardt et al., 2020).

We also demonstrate that uncertainties in calibration pa-
rameters (e.g. COVk1 ≈ 21 % and COVk2 ≈ 19 %) do not
lead to uncertainty of the same magnitude in the wind speed
and turbulence fields (e.g. COVUeff ≈ 1 % and COVσu, eff ≈

3 %) that are eventually used as input for the aeroelastic
simulations. Note that the uncertainty in the simulated wake
fields increases for increasing ambient turbulence due to the
proportionality of k1 to TIamb in Eq. (1). Although a different
dataset might produce other calibration parameters, it does
not necessarily imply an improved accuracy of the simulated
wake fields in the FFoR. Particularly, we expect our calibra-
tion and that of Madsen et al. (2010), Larsen et al. (2013),
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Figure 13. Comparisons between SpinnerLidar (SL)-measured and DWM-model-predicted spatial distribution of the mean and standard
deviation velocity computed in the FFoR and obtained at 5D in the wake region for two 10 min periods. The predictive DWM model that
incorporates the SpinnerLidar-tracked meandering time series is denoted by DWM∗ (red line), and that based on the meandering model
complemented by measured inflow turbulence fluctuations from the mast and yaw offsets is denoted by DWM∗∗ (blue line). The solid lines
represent the mean predictions, whereas the shaded areas indicate the 95 % confidence intervals. The uncertainties in measurements are
shown with error bars. The top view profiles are centred at hub height, whereas the side view profiles are centred along the vertical symmetry
plane of the wake.

Figure 14. Comparison of the SpinnerLidar-measured (SL) and DWM-model-predicted rotor-effective wind speeds Ueff (a) and rotor-
effective turbulence σu, eff (b). The DWM∗ predictions (red markers) are obtained by constraining the meandering on the basis of
SpinnerLidar-tracked wake displacements, while DWM∗∗ uses mast-based meandering time series (blue markers). The SpinnerLidar Ueff
statistics derived by neglecting induction effects are shown by grey markers (see Sect. 6.1 for more details).

and IEC (2019) to provide similar wake fields in the FFoR
for low ambient turbulence (i.e. ≤ 7 %), as illustrated by the
blue lines in Fig. 9.

We recommend conducting DWM model calibrations
using two-dimensional high-temporal- and high-spatial-
resolution measurements of the wake field. Such resolu-
tion can be achieved by research-based nacelle lidars today,

which allow the resolution of wake flow features including
the wake deficit and wake-added turbulence profiles in the
MFoR for model calibration. When using power production
data for such calibrations (the IEC standard values are based
on this approach), we are unable to distinguish between un-
certainties from inaccurate wake deficit predictions and those
from erroneous wake meandering representations. The latter
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play an important role in the accuracy of the fully resolved
wake fields, which are inputs to aeroelastic simulations.

As wind turbines are typically spaced 5D and beyond, it
is recommended to focus future measurement campaigns and
model validation studies on including those regions. Addi-
tional high-resolution datasets will allow a more comprehen-
sive validation analysis to verify that the model proposed in
this work is applicable for a wide range of conditions (e.g.
turbine types and site conditions). To this extent, Bayesian
inference is a valuable approach for updating the PDFs of
model parameters estimated within this work by directly in-
cluding data from future observations while retaining infor-
mation from the earlier observations. Further, power and load
validation analyses using the proposed calibration parame-
ters at multiple sites can increase the confidence in our cali-
bration methodology.

Characterizing wake turbulence using lidars is challeng-
ing due to the limited sampling frequency and probe volume
effects (Peña et al., 2017). We demonstrate the usefulness
of Doppler radial velocity spectra to compute unfiltered LOS
variances in wake conditions. In addition to the enhanced tur-
bulence intensity, the wake turbulence is characterized both
by being highly isotropic and reduced turbulence length scale
compared to the ambient turbulence (Madsen et al., 2005).
These turbulence characteristics were not investigated in this
work.

8 Conclusions

We analysed high-spatial- and high-temporal-resolution
SpinnerLidar measurements of the wake field collected at
the SWiFT facility and derived wake features such as the
wake deficit, wake-added turbulence, and wake meander-
ing under varying atmospheric-stability conditions, inflow
wind speeds, and downstream distances. The SpinnerLidar-
estimated wake characteristics computed in the MFoR were
used to determine uncertainties in the DWM model param-
eters using Bayesian inference. The uncertainties in model
parameters were propagated to predict fully resolved wake
flow fields in the FFoR. This approach allowed us to quantify
uncertainties in the DWM-model-simulated wake fields and
to investigate the sensitivity of the model parameters to flow
features that primarily affect power and load predictions.

The SpinnerLidar-derived wake deficit profiles revealed
the strong impact of atmospheric stability on wake evolu-
tion. In particular, we observed the faster recovery of the
deficit under unstable compared to stable regimes as higher
turbulence intensities characterized the former. These effects
were accurately reproduced by the eddy viscosity term of the
DWM model with the inferred parameters for distances be-
yond 4D. Our results indicate that the currently adopted pa-
rameters in the IEC standard lead to conservative velocity
deficit predictions (up to 18 % for moderate to high ambient
turbulence TIamb ≥ 12 %) at distances up to 5D behind the
rotor.

We proposed and verified an improved semi-empirical for-
mulation of the wake-added turbulence model that captured
the effects of the atmospheric shear and the ambient turbu-
lence on the spatial re-distribution of the wake turbulence
observed at 2.5D. We also demonstrated that the wake me-
andering is the major source of added turbulence in the wake
region.

The underlying hypothesis of the DWM model (i.e. wakes
are advected passively by the large eddies in the incom-
ing wind field) was verified by means of the SpinnerLidar-
tracked meandering time series. The spectral analysis indi-
cated that large eddies associated with sizes larger than 2D
are responsible for the wake meandering; however, the large-
eddy “definition” had only marginal effects on the predicted
wake fields. Accurate tracking of the wake centre position
was the most influential factor in simulating wake flow fields
accurately. We expect it to also play a central role in the ac-
curacy of power and load predictions.

In a future study, we will quantify uncertainties in power
and load predictions based on the proposed calibration at two
different sites, the SWiFT facility and the Nørrekær Enge
wind farm in Denmark (Conti et al., 2020b).
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Appendix A: Comparisons of wake meandering time
series

Figure A1 compares measured and predicted time series of
the wake meandering in the lateral direction under varying
stability conditions. The DWM model predictions are com-
puted by applying the filtering cut-off frequency with the
stochastic definition of the large-scale eddies (Dm). A rea-
sonable agreement between the two signals is found, where
the major wake displacements are captured by the meander-
ing model. Note that improved correlation can be achieved
by utilizing a reduced advection wind speed in the time-lag
parameter in Eq. (4) compared to the ambient wind velocity.
Nevertheless, the largest observed movements are induced by
the yawing of the WTGa1, which is fairly frequent within the
analysed dataset. Further, the 95 % confidence interval of the
meandering predictions obtained by propagating uncertain-
ties in the Dm definition is nearly negligible. This indicates
that uncertainties in the filtering cut-off frequency used in
the DWM model formulation have a marginal effect on the
accuracy of wake simulations.

Figure A1. Time series of the wake meandering in the lateral direction observed by the SpinnerLidar (red markers) and those derived
from the meandering model of Eq. (4) denoted as DWMfilt. (blue lines) under stable (a), near-neutral (b), and unstable conditions (c). The
predictions are obtained at 2.5D behind the rotor. The shaded blue areas indicate the 95 % confidence intervals obtained by propagating the
uncertainty in the large-scale-eddy definition

Wind Energ. Sci., 6, 1117–1142, 2021 https://doi.org/10.5194/wes-6-1117-2021
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Appendix B: Sobol sensitivity indices

Sensitivity analysis is conducted to identify the most im-
portant parameters affecting the accuracy of wake simula-
tions. Here, we only investigate the uncertainties in the model
parameters, which are listed in Table 4, and assume that
the inflow conditions are perfectly prescribed. We employ
a variance-based sensitivity method and compute total Sobol
indices (Sobol, 2001; Saltelli et al., 2010). The Sobol sensi-
tivity decomposes the variance of the response (e.g. Ueff and
σU, eff) into contributions from input parameters and associ-
ated interactions.

The Sobol indices computed from wake simulations at five
rotor diameters behind the rotor are illustrated in Fig. B1.
Note that uncertainties in wake centre locations (ym, ε and
zm, ε) have a similar influence as for the calibration parame-
ters (i.e. k1 and k2) on the predicted flow features such asUeff
and σu, eff. Overall, tracking the wake meandering in both lat-
eral and vertical directions is of primary importance in wake
field representations and therefore in power and load vali-
dations. The sensitivity of the wake-added turbulence model
parameters as well as the large-scale-eddy definition (Dm) is
marginal. It is inferred that these parameters can be consid-
ered to be deterministic without compromising the accuracy
of wake simulations.

Figure B1. Variance decomposition (Sobol indices) for the rotor-effective wind speed (a) and a measure of the rotor-effective turbulence (b).
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