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Abstract. Optimizing turbine layout is a challenging problem that has been extensively researched in the liter-
ature. However, optimizing the number of turbines within a given boundary has not been studied as extensively
and is a difficult problem because it introduces discrete design variables and a discontinuous design space. An
essential step in performing wind power plant layout optimization is to define the objective function, or value,
that is used to express what is valuable to a wind power plant developer, such as annual energy production, cost
of energy, or profit. In this paper, we demonstrate the importance of selecting the appropriate objective func-
tion when optimizing a wind power plant in a land-constrained site. We optimized several different wind power
plants with different wind resources and boundary sizes. Results show that the optimal number of turbines varies
drastically depending on the objective function. For a simple, one-dimensional, land-based scenario, we found
that a wind power plant optimized for minimal cost of energy produced just 72 % of the profit compared to the
wind power plant optimized for maximum profit, which corresponded to a loss of about USD 2 million each
year. This paper also compares the performance of several different optimization algorithms, including a novel
repeated-sweep algorithm that we developed. We found that the performance of each algorithm depended on the
number of design variables in the problem as well as the objective function.

1 Introduction

Wind energy provides several advantages to the sustainable
energy grid of the future. Wind turbines produce minimal
carbon dioxide or other air pollution, require no external fuel
during operation, and require little water throughout their
lifetime (Meldrum et al., 2013). Additionally, wind plants
have an energy payback time of less than a year and can
produce energy in an economically efficient manner (Raz-
dan and Garrett, 2017; Vestas, 2020). In fact, wind energy
has been a central focus of research and development in past
decades such that, currently, wind is one of the cheapest
sources of energy available (Lazard, 2018). Because of its
many benefits, but in large part due to the economic drivers,
wind energy installations have grown throughout the world
as has the relative share of energy produced by wind. In
coming years, wind energy technology is projected to im-

prove, and wind energy capacity and market penetration are
to increase even further (U.S. Energy Information Adminis-
tration, 2019).

Because of economies of scale, utility-scale wind turbines
are deployed in groups. This provides reduced cabling costs,
easier construction and maintenance, and reduced land re-
quirements. However, building turbines close together also
introduces some challenges. One of these challenges is wake
interaction between turbines. A wind turbine removes ki-
netic energy from the air around it and converts this energy
to electricity, creating a wake of slow-moving and turbulent
wind behind it. When turbines are built close together, their
wakes can reduce the amount of energy available in the wind,
causing downstream turbines to produce less energy as a re-
sult. One way to reduce wake interactions between turbines
is through wind power plant layout optimization. This op-
timization process involves determining the number of tur-
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bines to build in a wind power plant and their locations in or-
der to reduce wake interactions and maximize performance.
Finding an optimal wind power plant layout is a challenging,
nonconvex problem with many interacting design variables.
It is difficult to solve this problem without mathematical opti-
mization tools because it often requires not-so-obvious trade-
offs to reach a solution.

Appropriate methods of determining turbine locations
within a wind power plant have been intensively studied, and
researchers have demonstrated several methods that can be
used to effectively optimize a wind power plant layout. The
literature demonstrates a preference for gradient-free opti-
mization methods applied to wind power plant layout opti-
mization, and different studies showed success using genetic
algorithms (Grady et al., 2005; Mittal, 2010; Abdelsalam and
El-Shorbagy, 2018), greedy algorithms (Song et al., 2015;
Chen et al., 2016), particle swarm methods (Pookpunt and
Ongsakul, 2013; Hou et al., 2015), and random search (Feng
and Shen, 2013, 2015) to determine improved wind power
plant layouts (Hou et al., 2019). A common layout optimiza-
tion method is to divide the wind power plant domain into
a grid that defines possible turbine locations (at the center
of the grid cells or at the intersections of the lines). One of
the previously mentioned optimization methods is then used
to determine at which of the predefined locations a turbine
should be placed. In more recent years, some studies also
showed success optimizing wind power plant layouts with
gradient-based methods (Thomas and Ning, 2018; Stanley
and Ning, 2019a; Baker et al., 2019). This type of optimiza-
tion requires a continuous design space and computationally
or analytically provided gradients that increase the complex-
ity of the problem formulation. However, the computational
expense required for gradient-based optimization scales fa-
vorably with increasing numbers of design variables com-
pared to gradient-free methods for which the computational
expense scales very poorly.

Layout optimization studies are almost always performed
assuming that the number of turbines in the wind power plant
is previously known. Determining the optimal number of tur-
bines in a wind power plant is a much more difficult problem
to solve because it requires the optimization of at least one
integer design variable or a discontinuous design space. Al-
though it has not been discussed in the literature as much as
layout optimization determining turbine placement, optimiz-
ing the number of turbines in a wind power plant has also
been researched in previous studies. Mosetti et al. (1994)
first addressed this issue when they divided a wind power
plant domain into 100 square cells as candidate turbine lo-
cations and then used a genetic algorithm to determine the
optimal number of turbines and at which of the potential lo-
cations they should be placed. Since this seminal paper was
published, many other researchers have proposed improve-
ments to Mosetti’s methodology and were able to find im-
proved results, mostly by using new and better optimizers
(Grady et al., 2005; Zergane et al., 2018; Ituarte-Villarreal

and Espiritu, 2011; Moorthy and Deshmukh, 2015). Addi-
tionally, some applied a similar methodology to optimiz-
ing turbine number and layout at real geographical locations
(Şişbot et al., 2010; Khanali et al., 2018). The vast majority
of these more recent studies kept the same general optimiza-
tion strategy, performed by dividing the wind power plant do-
main into a grid that defines potential turbine locations and
using some optimizer to determine the best layouts.

Selecting the appropriate optimization methodology is a
vital part of the wind power plant layout optimization process
because it determines the quality of the final solution as well
as the required computational expense. In addition to the op-
timization algorithm, a critical step is to appropriately select
the objective function. For wind power plant layout optimiza-
tion studies, objectives that are often considered are annual
energy production (AEP) or cost of energy (COE). With a
fixed number of turbines, the objective may not have much
of an effect on the final solution. However, when the number
of turbines is also being optimized, the objective function can
have a profound effect on the final optimized layout. For one
set of optimizations discussed in Sect. 6.4, the optimal num-
ber of turbines ranges from 15–54, and the annual costs range
from USD 6.75 million to USD 21.96 million, depending on
if the plant was optimized for AEP, COE, or profit.

For this paper, we studied two specific considerations in
optimizing the number of turbines and their layout in a wind
power plant. First, we determined how different objective
functions alter the optimized number of wind turbines and
their layout in a wind power plant. Li et al. (2017) began
to explore this sensitivity with multi-objective optimization
of wind farm layout and turbine number, considering AEP
and COE. As part of their paper, these authors examined how
different formulations of the COE definition affected the fi-
nal solutions. Balasubramanian et al. (2020) also mention the
importance of appropriately defining the objective for wind
farm layout optimization. For our paper, we included an em-
pirically based cost model and compared three different ob-
jectives in our single objective optimization formulation to
further understand the sensitivity of wind farm layout and
turbine number to the objective. Second, we tested using dif-
ferent problem formulations and optimization algorithms in
finding a solution. In past research on wind farm layout opti-
mization, there was a wide variety of algorithms and problem
formulations used, with little consensus on which strategies
are the best (Shakoor et al., 2016; Baker et al., 2019; Hou
et al., 2019; Balasubramanian et al., 2020). For this paper,
we specifically studied how different algorithms performed
depending on the objective and the size of the optimization
problem. We compared a genetic algorithm and a greedy al-
gorithm in a gridded wind power plant domain, two com-
monly used wind power plant optimization methods, as well
as a genetic algorithm with the boundary-grid method and a
new repeated-sweep algorithm in a gridded domain.

The rest of this paper is outlined as follows: Sect. 2
presents the wake model we used in this paper and the rel-
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evant turbine parameters; Sect. 3 presents the power models,
cost models, and how they are combined to form the three ob-
jective functions we explored in this paper; Sect. 4 describes
the different sets of design variables we used to define the
locations of wind turbines; Sect. 5 explains the optimization
algorithms we used in this paper; Sect. 6 presents and dis-
cusses the results from our optimizations; Sect. 7 explains
the empirical considerations of this work and gives a gen-
eral overview of the different scenarios we considered; and
Sect. 8 contains our conclusions from this work.

2 Wake model

The wind speed downstream of a turbine is reduced because
turbines extract energy from the flow and from the complex
physics of the wakes they produce. In this paper, the desir-
ability of the wind power plants we examined was depen-
dent, to a large extent, on energy production. This energy
production is a function of the wind speeds throughout the
wind power plant. To calculate the wind speeds to be used
in turbine power calculations, we used an analytic Gaussian
wake model (Bastankhah and Porté-Agel, 2016; Abkar and
Porté-Agel, 2015; Niayifar and Porté-Agel, 2016). The wake
calculations were performed using FLOw Redirection and
Induction in Steady State (FLORIS), which is a computa-
tionally inexpensive, controls-oriented tool to calculate the
steady-state flow field in a wind power plant (National Re-
newable Energy Laboratory, 2021). We include a brief de-
scription of the Gaussian wake model in this paper but, for
more details, refer to the original model paper (Bastankhah
and Porté-Agel, 2016).

Using the Gaussian wake model, the velocity of the wake
behind a turbine is computed with the following analytical
expressions:

u(x,y,z)
U∞

= 1−Ce−(y−δ)2/2σ 2
y−(z−zh)2/2σ 2

z

C = 1−

√
1−

D2CT cos(γ )
8σyσz

,

(1)

where u is the velocity at a desired location (x,y,z), where
x, y, and z refer to the streamwise, cross-stream, and vertical
coordinates, respectively, U∞ is the freestream velocity, C
is the velocity deficit at the wake center, y− δ is the cross-
stream distance between the point of interest and the wake
center (where δ is the y coordinate of the wake center and
is assumed to extend straight back from the turbine creating
the wake if the turbine is not yawed), z− zh is the vertical
distance between the point of interest and the wake center
(where the wake center is assumed to be at zh, the hub height
of the turbine creating the wake),D is the rotor diameter, CT
is the thrust coefficient, γ is the rotor yaw angle (which is
assumed to be 0 in this paper), σy defines the wake width
in the y direction, and σz defines the wake width in the z

direction. The distributions σz and σy are defined as follows:
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where x− x0 is the downstream distance between the point
of interest x and the onset of the far wake x0, σy0 and σz0
refer to the wake width at the start of the far wake, ky defines
the wake expansion in the lateral direction, and kz defines
the wake expansion in the vertical direction. The length of
the near wake is defined as follows:

x0

D
=
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√
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√
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√
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,

where α = 0.58, β = 0.077, and I is the incoming stream-
wise turbulence intensity for which we used a freestream tur-
bulence of 6 % and the Crespo-Hernández model for wake
added turbulence (Crespo and Hernández, 1996). The vari-
ables σy0 and σz0 are given in the following equations:

σz0

D
=

1
2

√
uR
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D
=
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D
cosγ,

where uR and u0 are defined with the thrust coefficient CT
and the freestream wind speed U∞:

uR

U∞
=

CT

2(1−
√

1−CT)
u0

U∞
=

√
1−CT.

For this study, ky and kz are set to be equal, meaning the wake
expands at the same rate in the lateral and vertical directions.
These wake spreading parameters ky and kz are defined as
follows:

kz = ky = kaI + kb,

where ka = 0.38 and kb = 0.004. In the case of interacting
wakes, the wake deficits were combined using the traditional
sum of squares method (Katić et al., 1986). Equation (1)
defines the wind speed, u, at a single desired point. To de-
termine the average rotor wind speed used to calculate the
power production of a wind turbine, we averaged the wind
speeds sampled at nine locations across the swept rotor area,
which is the default in FLORIS. These nine sample locations
are shown in Fig. 1.

For this study, we used a 2.5 MW turbine definition. The
turbine parameters are shown in Table 1, and the power and
thrust coefficient curves, as well as the power curve, are
shown in Fig. 2. As seen in the power curve, the rated wind
speed is near 10 ms−1.
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Figure 1. The nine locations at which the wind speeds are calcu-
lated across a wind turbine rotor. D represents the rotor diameter,
while H is the turbine hub height. The effective turbine wind speed
is determined as the average of the wind speed at each of these
points.

Table 1. Wind turbine parameters.

rated power 2.5 MW
rotor diameter 117.8 m
hub height 88 m

3 Objective functions

For this paper, we explored three different objective functions
in our wind power plant optimizations: (1) AEP, (2) COE,
and (3) annual profit. In this section, each objective function
is described in detail. We acknowledge that the models we
used in this paper are simple. These simplified models are
sufficient for this demonstration and investigation into vary-
ing results from different objectives; however, more detailed
models can be easily included, depending on the use case and
data available.

3.1 Annual energy production

AEP is a standard objective in wind power plant optimization
(Pérez et al., 2013; Gebraad et al., 2017; Thomas and Ning,
2018). For problems where the value of energy produced by
the wind power plant is fixed throughout its lifetime and in-
dependent of the time of day, and where the project cost re-
mains constant or is not an important consideration, AEP is a
reasonable objective. AEP optimization simply aims to max-
imize the energy production. For example, AEP is a common
objective for wind power plant layout optimization where the
turbine number and design are fixed. Typically to calculate
AEP, the wind directions and wind speeds are grouped into
discrete bins in order to numerically calculate the integral:

AEP= 8760
nd∑
i=1

ns∑
j=1

Pf (φi,U (φi)j )fifj ,

where 8760 is the number of hours in a year, nd is the number
of wind direction bins, ns is the number of wind speed bins

Figure 2. (a) CP and CT curves for the 2.5 MW turbine used in this
study. (b) The power curve for this same turbine.

per wind direction, Pf is the power production of the wind
power plant, φ is the wind direction,U is the wind speed, and
fi and fj are the frequency of wind associated with a given
direction and speed.

The power of an individual turbine is calculated as fol-
lows:

Pt =
1
2
ρAV 3CP(V ),

where Pt is the power produced by a single turbine; ρ is the
density of air, which we assumed is 1.225 kgm−3; A is the
rotor swept area of the wind turbine; CP is the power co-
efficient of the turbine; and V is the effective wind speed
across the swept area, which for this paper was calculated
with the wake model discussed in Sect. 2. When there is
a variable number of turbines, one can expect that a wind
power plant optimized for maximum AEP will have many
turbines spaced close together, filling the available land. If
there are no penalties for costs considered in the optimiza-
tion, additional turbines will lead to an improved objective,
even if they are extremely inefficient and operate with high
wake interference.

3.2 Cost of energy

In some optimization problems, AEP may not be an appro-
priate objective as it does not account for the added cost or
complexity required to achieve gains in AEP. An example
of this is wind turbine blade design, for which an increase in
AEP comes at the cost of additional mass and, therefore, cost.
In a situation like this, it may be more appropriate to perform
multi-objective optimization or include both AEP and cost
into a single objective. COE is another common metric used
in wind power plant design that captures both energy produc-
tion and costs (Chen and MacDonald, 2014; Fleming et al.,
2016; Stanley and Ning, 2019a). We calculated COE as a
combination of costs divided by the AEP:

COE=
cost
AEP

cost= FCR(TCC+BOS)+O&M,

where FCR is the annual fixed charge rate, which we as-
sumed was 9.7 % (Previsic, 2011); TCC is the turbine capital
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Figure 3. The balance of station (BOS) cost model (per kilowatt of
installed wind power plant capacity) as a function of the total power
plant capacity (Key et al., 2020).

cost, which we assumed is USD 829 kW−1 of plant capacity
(Wiser et al., 2020); O&M is the operation and maintenance
cost, which we assumed is USD 44 kW−1 of plant capacity
per year (Stehly and Beiter, 2020); and BOS is the balance
of station cost. For this paper, we created a simple relation of
BOS costs as a function of the installed wind power plant ca-
pacity from a set of higher fidelity BOS cost data (Key et al.,
2020). This BOS cost function is shown in Fig. 3. As shown
in the figure, the cost per kilowatt decreases as the total ca-
pacity increases because of economies of scale. One should
expect that a wind power plant optimized for minimum COE
would have fewer turbines than one optimized for AEP. This
objective heavily considers the additional costs from adding
turbines to the wind plant. Extra turbines are only benefi-
cial if the economies of scale from a cost perspective out-
weigh the losses from additional wake interference that is
introduced.

3.3 Annual profit

Another metric that may be used for an objective function
is annual profit. Like COE, this objective takes into account
both energy production and costs. Additionally, an objective
of profit can consider more refined measures of the value of
energy, such as time-of-day pricing where the price of elec-
tricity varies depending on the time of day it is produced. Be-
cause a primary interest of most businesses is to make money,
this objective would likely be of more interest to wind power
plant developers, as opposed to AEP or COE previously dis-
cussed. For this paper, we defined profit simply with a fixed
power purchase agreement as follows:

profit= AEP ·PPA− cost,

where PPA is the power purchase agreement, which deter-
mines the monetary value of the energy produced. We as-
sumed that the PPA was a constant, as opposed to using time
of day pricing, seasonal or yearly PPA adjustments, or in-
cluding PPA incentives or penalties for power quality. For
a given optimization the PPA was defined as a constant, al-

Figure 4. A square wind power plant that has been discretized with
a square grid for wind turbine number and layout optimization.

though we varied this constant to study its effect during dif-
ferent optimizations. One should expect that a wind power
plant optimized to maximize profit would have fewer tur-
bines than one optimized for maximum AEP, but more tur-
bines than one that is optimized for minimum COE. This ob-
jective still penalizes costs from adding more turbines but
may find solutions with slightly suboptimal COE as long as
the AEP gains lead to sufficiently increased revenue.

4 Design variable parameterizations

For this paper, in addition to the different objective functions,
we explored different optimization techniques and how they
affect the final solution and the computational expense re-
quired to find it. One important part of any optimization is
how to parameterize the design variables. In this section, we
explain the two different parameterization methods we used
in this paper: a gridded domain, where the number of de-
sign variables increases as the grid refinement squared, and a
boundary-grid method, where the number of design variables
remains constant at 11, regardless of the size of the domain
or the number of turbines.

4.1 Gridded domain design variables

The first set of design variables that we used in our opti-
mization was similar to those initially used by Mosetti et al.
(1994) and involved dividing the domain into a square grid of
potential turbine locations. In this problem formulation, each
of the grid points is a design variable, with the possible in-
teger value of 1 (meaning a turbine exists in the associated
position) or 0 (meaning the associated position is empty).
Figure 4 shows this gridded domain for a square boundary
with eight row and column grid discretizations. Each of the
blue points represents a design variable and is a potential
location for a wind turbine. The computational expense re-
quired to optimize a problem generally scales poorly as the
number of design variables increases. So, the grid must be
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Figure 5. A description of the variables in the boundary-grid parameterization. Panel (a) shows the grid border variable, B, and (b) shows
the grid definition variables, h, w, (cx,cy), φ, and θ , which represent the grid height, width, center, shear, and rotation, respectively. The
number of grid rows and columns are also variables. Panel (c) shows how all of the grid variables in (a) and (b) combine to define the interior
grid turbine locations. Panel (d) shows the boundary turbine variables, which are the boundary start location, s, and the number of boundary
turbines. Panel (e) shows the combined results of the boundary turbines and the interior grid turbines.

refined enough to sufficiently search the design space but not
so refined that the optimization becomes computationally in-
feasible. Note that the number of design variables increases
as the grid refinement squared, indicating that the number of
design variables can quickly become impossible to optimize
if the grid becomes too refined.

4.2 Boundary-grid design variables

The second parameterization that we optimized with was
a modified version of the boundary-grid method. The
boundary-grid parameterization is a simple method to de-
fine the layout of turbines in a wind power plant with very
few design variables and still achieve layouts that perform
just as well as wind power plants designed with more com-
plex layout optimization techniques. In essence, it consists
of placing some of the turbines around the boundary and the
rest regularly arranged in a grid (Stanley and Ning, 2019b).
The boundary-grid parameterization has the huge benefit of
keeping the same number of design variables regardless of
the number of turbines being optimized. This means that the
layout of large wind power plants with hundreds or even
thousands of wind turbines could be optimized without pro-
hibitively high computational expense. In its original formu-
lation, the boundary-grid method was defined for use with a
gradient-based optimizer. This required the user to predefine

some of the discrete variables that could not be optimized
with gradients. Because we used gradient-free optimization
in this paper, we slightly reformulated the boundary-grid
method allowing integer variables and a discontinuous de-
sign space. In this paper, there are 11 design variables that
describe the location of every turbine and are shown in Fig. 5.

The turbines in the interior of the wind power plant are ar-
ranged in a grid that is defined with nine variables. First is the
grid border, B, shown in Fig. 5a. The grid border is a number
between 0 and 1 that defines the fraction of the boundary that
will contain the inner grid turbines. When B = 1, the grid
border is exactly the same as the wind power plant boundary
and proportionally decreases in size untilB = 0, meaning the
grid border vanishes in the center of the plant. The rest of
the variables that describe the interior grid turbines define a
complete distorted square grid of turbine locations; however,
only those that are inside of the grid border are used. Fig-
ure 5b represents the other eight variables used to define the
locations of the interior grid turbines. The grid height and
width are represented by h and w, respectively. The center
of the grid is shown as the point (cx,cy), which determines
the translation of all points in the grid, and the grid shear is
shown in this figure as φ. The grid rotation (about the cen-
ter (cx,cy)) is given by θ . Finally, the number of rows and
columns are also design variables used in the optimization.
Figure 5c shows how the design variables in Fig. 5a and b are
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combined to obtain the turbine locations. Turbines are placed
at all of the grid intersection points that are inside of the grid
border, shown by the blue dots. No turbines are placed at the
grid intersection points outside of the grid border, indicated
by the red dots in the figure.

The turbines around the boundary of the plant are equally
spaced, traversing the perimeter of the plant. The boundary
turbine locations are defined by two design variables repre-
sented in Fig. 5d. First, the number of turbines placed on the
boundary is a design variable. Second, the starting location
of the first boundary turbine, represented as s in Fig. 5d, is a
design variable. The starting location is the distance from a
constant anchor point at which the first boundary turbine is
placed. Because the turbines are spaced equally around the
wind power plant boundary, defining the location of this first
boundary turbine implicitly defines the location of the rest of
the boundary turbines. With the gridded domain design vari-
ables, the grid defines potential turbine locations which are
assigned a Boolean value during the optimization to deter-
mine if they have a turbine. For the boundary-grid method,
the design variables directly determine the location of every
turbine in the farm, meaning there is always a turbine placed
at the points defined by the boundary-grid parameterization.
Figure 5e shows the final turbine locations defined by the
boundary-grid parameterization variables shown in the rest
of the figure. Notice that this is the combination of the bound-
ary turbines in Fig. 5d and the blue inner grid turbines from
Fig. 5c.

5 Optimization algorithms

In this section, we discuss the details of the optimization al-
gorithms we used in this paper. There are many algorithms
that can be used to solve the wind power plant layout opti-
mization problem, including determining the optimal num-
ber of wind turbines. For this paper, we chose to compare
the performance of three gradient-free optimizers: a greedy
algorithm, a genetic algorithm, and a novel repeated-sweep
algorithm.

5.1 Greedy algorithm

The first optimization algorithm that we used was a greedy
algorithm. Several researchers in the past implemented a
greedy algorithm in performing wind power plant layout op-
timization, making this a good benchmark (Changshui et al.,
2011; Song et al., 2015; Chen et al., 2016). We applied our
greedy algorithm to the gridded plant parameterization. For
this algorithm, we started with one turbine placed in a ran-
dom location within the plant domain. We then found the op-
timal location to place one additional turbine by evaluating
the plant performance from placing the extra turbine at every
potential turbine location in the grid. This process of adding
one extra turbine was then repeated until adding an additional

turbine did not cause an improvement in the objective. This
algorithm is shown in Algorithm 1.

5.2 Genetic algorithm

The second algorithm we used to optimize was a genetic al-
gorithm. As with the greedy algorithm, genetic algorithms
have also been a popular choice when performing wind
power plant layout optimization studies with a discretized
plant domain (Mosetti et al., 1994; Grady et al., 2005; Chen
et al., 2013). We chose the tuning parameters for our algo-
rithm with a combination of trial and error and best practice
recommendations.

For the results shown in this paper, we performed single-
point crossover and used a mutation rate of 2 %. For the grid-
ded plant domain, adjacent bits in the chromosome were ad-
jacent in the plant domain. This helped create offspring that
did not violate spacing constraints, as entire sections of the
wind power plant that were traded during crossover would
remain feasible (as long as they were feasible to begin with).
After each generation, the entire population, consisting of
parents and offspring, was ranked in order of performance.
The better-performing half of the entire population was kept
to act as parents for the next generation. Convergence was
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assumed after the best performance was within a tolerance
of 10−3 for 25 generations, or a maximum generation limit
of 1000 was met. For the results in this paper, the maximum
generation limit was never met. As the genetic algorithm was
used for both the gridded parameterization and the boundary-
grid method, continuous variables were binary encoded with
8 bits each. This means that for the boundary-grid parame-
terization, the variables were encoded into 76 bits – 3 bits
for the integer number of rows, 3 bits for the integer number
of columns, 6 bits for the integer number of turbines on the
boundary, and 8 bits for each of the 8 continuous variables.
A rule of thumb for genetic algorithms is to use a popula-
tion size of 10 times the number of design variables (Martins
and Ning, 2020). For the gridded plant domain, we followed
this rule of thumb exactly because there was a large number
of design variables. For the boundary-grid parameterization,
we used a population of 100, which was slightly less than
10 times the number of design variables. This gave us good
results for our formulation. The genetic algorithm is repre-
sented in Algorithm 2.

5.3 Proposed method: repeated sweep algorithm

The last optimizer we used was a novel repeated sweep al-
gorithm. As far as we are aware, no method similar to our
proposed repeated sweep algorithm has been used in past re-
search for wind power plant layout optimization. Like the
greedy algorithm, this optimizer was only used with the grid-
ded plant parameterization, where each of the design vari-
ables is an integer, either 0 or 1. The creation of this op-
timizer was inspired by attempting to apply gradient-based
optimization principles to discrete design variables. As de-
scribed below, the algorithm works by comparing adjacent
points, and switching the values if it would improve the ob-
jective function, which could be imagined as the discrete ver-
sion of a gradient. The repeated sweep algorithm consists of
three phases. First is a single search phase, followed by two
trade phases.

In the search phase, one by one and in a random order, the
value at each potential turbine location is switched from 1
to 0 or from 0 to 1. If the objective improves, the swapped
value is kept; if not, the design variable retains its original
value. This is done until every potential turbine location has
been evaluated, and the value has been changed or retained.
In both trade phases, each potential turbine location is again
searched through one by one. However, in these phases, in-
stead of exploring adding or removing turbines (like in the
search phase), the potential turbine location trades values
with the cell adjacent to it. In the way we formulated the
problem, in the first trade phase, each position trades places
with the cell to the right; in the second trade phase, each po-
sition trades places with the cell above it. As with the search
phase, if a trade results in an improvement in the objective,
the trade is kept. If not, the trade is rejected and the origi-
nal locations are retained. Also, as with the search phase, the

trades are done in a random order until a trade at each lo-
cation has been evaluated. The three phases are repeated in
order, search–trade–trade, until the objective function does
not improve after a complete cycle of all three phases. The
repeated sweep algorithm is shown in Algorithm 3.

5.4 Gradient-based optimization

The optimization algorithms discussed previously are
gradient-free and can simultaneously optimize the number
of turbines and their layout in a wind power plant. Another
way to optimize turbine number and layout in a wind power
plant is with gradient-based optimization. Gradient-based al-
gorithms cannot optimize integer design variables or discon-
tinuous design spaces – both of which are conditions that ap-
ply to the problem addressed in this paper. However, it is pos-
sible to repeat a gradient-based optimization multiple times
with different numbers of wind turbines and then choose the
overall best solution for the given objective. This process is
computationally expensive for two main reasons. First, a pri-
ori, it is difficult to determine the approximate number of
turbines that will be optimal. This means it is necessary to
repeat the optimization many times, using different numbers
of wind turbines. Second, gradient-based optimizers are es-
pecially susceptible to converging to local minima in the de-
sign space. This problem is also prevalent in gradient-free
optimization but is more pronounced in gradient-based op-
timization. The problem can be mostly accounted for by re-
peating the optimization many times with different randomly
initialized design variables, but this requires even more com-
putation.

In this paper, our purpose was to compare some gradient-
free methods that could be effectively used to solve for the
optimal turbine number and placement in a wind power plant.
For one case discussed in Sect. 6.2 we also used gradient-
based optimization in order to compare the results. For the
optimizations in this section, the time required to evaluate
the objective function was small, allowing us to quickly per-
form the hundreds of optimizations necessary to explore the
design space. To perform the gradient-based optimization,
we swept through all of the possible numbers of wind tur-
bines that could fit in the wind power plant without violating
the spacing constraints, which was 2–18 turbines. For each
number of turbines, we performed 50 optimizations with ran-
domly initialized turbine locations. This gave us relatively
high confidence that the solution we found with the gradient-
based optimization was near the global solution. We used
finite-difference gradients for these optimizations, which do
not perform as well as analytic gradients, both in quality
of the final solution and in computational expense. How-
ever, for the case in which we used the gradient-based op-
timizer, the wind rose was simple and the number of design
variables was relatively small, meaning the finite-difference
gradients performed sufficiently well. For the results in this
paper, we used the open-source SLSQP (Sequential Least
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Squares Programming) optimizer available in SciPy (Virta-
nen et al., 2020; https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html, last access: 30 Au-
gust 2021).

5.5 Constraints

In our layout optimizations, we assumed there were only two
constraints – a spacing constraint and a boundary constraint.
The turbines were constrained to be at least two rotor diam-
eters apart from each other. This minimum spacing is on the
small side and is used to exaggerate the differences in the
optimal solutions obtained with different objective function.
The minimum spacing constraint implicitly defined the max-
imum number of turbines that could be placed in the wind
power plant. Additionally, turbines were constrained to re-
main inside a prescribed boundary.

6 Results

In this section, we discuss the results of our wind power plant
simulations and optimizations. Included in this section is a
simple, one-dimensional (1D) sweep of the different objec-
tive functions versus the number of wind turbines, and then

full two-dimensional (2D) wind power plant layout optimiza-
tions run for the different objectives and with the different
optimization algorithms. The wind plants that we optimized
and discuss in this section are a small wind power plant with
a unidirectional wind rose, a large wind power plant with a
unidirectional wind rose, and a large wind power plant with
a full wind rose. Finally in this section, we present results
from optimizing wind power plants for maximum profit with
varying PPAs.

6.1 1D example

First we discuss a simple, 1D example to demonstrate the
effect different objective functions have on the optimal so-
lution. For this example, we simulated a single row of wind
turbines in line with the wind, which had a constant speed
of 10 ms−1. The length of this row was fixed at 25 km, and
the turbines were equally spaced. For this scenario, we calcu-
lated the value of each objective as a function of the number
of wind turbines in the simple wind power plant; results are
shown in Fig. 6.

One key takeaway from this figure is that the optimal num-
ber of turbines for each objective is very different. Obviously,
a wind plant designed for maximum AEP will look very
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Figure 6. Different objectives as a function of the number of turbines in the wind power plant. For this example, the turbines are in line with
the wind direction and are equally spaced in a wind power plant with a fixed length. From left to right, the objectives represented here are
annual energy production (AEP), cost of energy (COE), and annual profit.

different than wind plants designed with other objectives in
mind. When maximizing AEP, there is no penalty for the ex-
tra costs associated with building extra turbines. As long as
adding another turbine produces more energy, it is superior –
no matter how marginal the increase in energy and how large

the increase in cost. It makes sense that the wind power plant
optimized for AEP has the most wind turbines, 23 in this ex-
ample, because more turbines are added until the wake effect
from adding an extra turbine outweighs the additional power
it provides.
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On the other hand, when COE is the objective, the optimal
number of wind turbines is just nine, much lower than for the
AEP objective. If the cost of the wind plant was modeled as
a linear function of the number of turbines, the optimal COE
solution would be just one turbine. A single turbine would
have no wake interference from other turbines and would,
therefore, produce energy for the lowest cost. However, there
are some economies of scale involved with wind plant de-
velopment, represented in our cost model by the decrease in
BOS costs with increasing power capacity. This means there
is some optimum greater than one where the wake interfer-
ence is still relatively low and the costs per turbine in the
wind plant are decreasing steeply with additional turbines.

Finally, a completely different solution is obtained when
optimizing the wind power plant for maximum profit. While
the COE objective optimizes the ratio between the value a
wind plant produces and the cost, the profit objective opti-
mizes the difference between the value a wind plant produces
and the cost. At first, it may seem nonintuitive that the solu-
tion for optimal profit is different than the solution for opti-
mal COE because minimized costs should be related to more
profit. In Fig. 6, notice that the optimal COE solution is nine
turbines and produces a COE of about USD 23 MWh−1. In
this case, energy generation and, therefore, revenue genera-
tion are limited because of the small number of turbines. For
18 wind turbines, a slightly higher COE is achieved of about
USD 25 MWh−1. From a COE perspective, this is subopti-
mal. However, the additional revenue produced from the ex-
tra turbines outweighs the increase in COE. The exact num-
ber of turbines for optimal profit depends on the monetary
value of the energy, which is defined with the PPA. This
means that the optimal solution is different depending on the
PPA, represented by the different colors in the subfigure on
the right. The optimal number of turbines increases from 13
to 16 as the PPA increases from USD 30 to USD 50 MWh−1,
then again to 18 as the PPA increases to USD 70 MWh−1.
However, when the PPA increases to USD 90 MWh−1, the
optimal number of turbines remains at 18. This is because
the number of turbines is not continuous and is only repre-
sented by integer values. For a given scenario, different PPA
thresholds could be defined, above which the optimal num-
ber of turbines would increase by one. From Fig. 6, it appears
that the optimal number of turbines is more sensitive at low
PPA values and becomes less sensitive as PPA increases.

As described previously, Fig. 6 shows different metrics as
a function of the number of turbines in a 1D wind power
plant. In addition to the number of turbines shown on the bot-
tom axis, this figure also shows the turbine spacing in rotor
diameters on the top axis. While this axis is useful in un-
derstanding the results from a more familiar perspective, one
must be careful not to interpret these values incorrectly. The
optimal turbine rotor diameter spacing reported in this fig-
ure is around 10 for AEP, 24 for COE, and between 12 and
18 for profit. These are very large turbine spacings for a wind
plant and are likely infeasible because of land or cabling con-

straints. One must remember that these results were obtained
from a very simple design space sweep with all wind turbines
exactly in line with the wind. Because real wind power plants
are built in two dimensions, with full wind-direction vari-
ability, it is actually possible to build turbines much closer
together than is indicated in Fig. 6.

As demonstrated in Fig. 6, when determining the number
of wind turbines to build in a wind power plant, an appro-
priate objective is essential to achieving a desirable solution.
This is true of any optimization problem, but it is particu-
larly important to remember for this application. COE is an
extremely common objective function in wind plant design
– and rightfully so. However, as demonstrated in this simple
example, the optimal number of turbines to minimize COE
is suboptimal if the aim is to maximize annual profit, which
may (or may not) be what is most important to those design-
ing the wind power plant. In this specific example, the op-
timal number of turbines for COE results in USD 5.1 mil-
lion of annual profit with a PPA of USD 50 MWh−1, just
72 % of the optimal profit of USD 7.1 million. This signif-
icant difference in the optimal performance and wind plant
design for different objectives has important implications for
techno-economic considerations in wind plant design. Eco-
nomic factors drastically change the optimal solution, which
highlights the importance of having accurate cost models and
again identifying the correct objective for design and opti-
mization.

Historically, capacity expansion models have assumed a
constant power density that does not vary with the PPA.
Not only does Fig. 6 demonstrate the differences between a
minimum COE objective and a maximum profit objective,
but it also shows that the cost modeling assumptions can
greatly affect the optimal number of turbines in a given land-
constrained wind plant. Aggressive carbon reduction scenar-
ios or other renewable energy goals typically result in high
PPAs for renewables, which would lead to a higher optimal
number of turbines and higher capacity densities for land-
constrained sites. This has important implications for capac-
ity expansion models and could play a role in the future de-
ployment of wind, as capacity density may often be much
higher than is currently assumed.

6.2 Small plant with unidirectional wind rose

With the 1D sweep of the design space complete to pro-
vide some intuition about the different objective functions,
we now discuss a simple layout optimization for a small wind
power plant with a unidirectional wind rose. As stated before,
we performed the optimization of each objective using a grid-
ded domain, optimized with a greedy algorithm, a genetic al-
gorithm, and a repeated sweep algorithm. We also optimized
a boundary-grid layout parameterization with a genetic algo-
rithm. Also, as mentioned before, for this small wind plant,
we optimized the layouts using gradient-based optimization.
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For this small wind power plant optimization, we assumed
the domain was square with 800 m sides. The wind came
from a direction of 300◦, or 30◦ north of west. The wind
speed was assumed constant at 10 ms−1, which is close to
the rated wind speed for our turbine model. The PPA was
assumed to be USD 30 MWh−1, which is close to the COE
solutions that were achieved, and is within the range of
the PPAs of real wind farms from the past few years (see
Fig. 16). For the gridded design variables, the domain was
discretized into a 10-by-10 grid. We ran each optimization
method five times to convergence because the final solution
is dependent on the randomly initialized population or design
space. Because each of the optimization algorithms has some
stochastic qualities, with enough time and randomly initial-
ized starts, each optimization method will potentially be able
to find a very good solution. However, we believe that five
optimizations for each is enough to give a good idea of their
performance relative to each other for each of the objective
functions.

Results for the small wind power plant optimizations with
a unidirectional wind rose are shown in Table 2 and Fig. 7.
Table 2 shows the optimization results and the computational
expense associated with each optimization method and for
each objective function. The first column shows the objec-
tive function, and the second column shows the optimiza-
tion method. The third column gives the optimized number
of turbines in the wind plant, the fourth column shows the
average turbine spacing in rotor diameters associated with
that number of turbines, the fifth column provides the best
solution from the five optimizations. In this column, the best
and worst solutions are indicated and bold in the table. The
sixth column shows the best solution normalized by the best
solution out of all of the optimization methods for the given
objective. The seventh and eighth columns provide the to-
tal time required to run the five optimizations, in seconds
and hours, respectively. Finally, the ninth column shows total
number of calls to the wind farm evaluation, or function calls,
required to run the five optimizations for each optimization
method. The separate, italicized bottom row for each objec-
tive in this table shows the gradient-based optimization re-
sults. Figure 7 shows the flow field for the best layout for
each objective function. These are the layouts corresponding
to the indicated bold cells in Table 2. These flow fields show
a horizontal slice of the wind power plant at the turbine hub
height. The black lines represent the wind turbines, the red
areas represent faster freestream wind speed, and the blue ar-
eas represent a slower waked wind speed. We did not include
a color legend because we only wish to demonstrate qualita-
tive information with this figure; therefore, exact values are
not important for this purpose.

6.2.1 Small power plant with unidirectional wind rose:
different objectives

First, we will discuss the differences between the optimal so-
lutions for the different objective functions. For optimal AEP,
the best solution has as many turbines as the optimizer can
fit into the wind power plant without violating spacing con-
straints. As can be seen in the top subplot of Fig. 7, the op-
timal layout has turbines that are spaced very close together.
Wakes are strong in the flow field, which contains several tur-
bines that are fully or partially waked. For this objective, it
does not matter if some turbines are greatly affected by wakes
as long as their energy contribution is positive. Now, in this
case, the optimal solution had the maximum number of tur-
bines as could fit into the boundary. However, from Fig. 6 we
see that even for the AEP objective, there is a point where
adding additional turbines actually becomes detrimental. We
also see from Fig. 6 that this could occur at a relatively large
turbine spacing, between 9–10 rotor diameters. For the 1D
sweep, the turbines are all exactly in line with the wind. Ad-
ditionally, rather than having two or three turbines waked in
line, there are many in line with each other. This indicates
that, in large part, the AEP is determined by deep array ef-
fects. For the small wind plant layout optimization discussed
in this section, there are at most three turbines in line with
each other. In this case, adding turbines, even if they are fully
waked, increases the AEP. If we were to repeat the optimiza-
tion for a much larger domain we could potentially see re-
sults similar to Fig. 6, where having too many turbines could
actually be detrimental for AEP.

While the wind power plant optimized for AEP maximizes
the number of turbines in the design space, the wind plant op-
timized for minimum COE looks very different. This wind
plant has 11 turbines, as opposed to 16 for maximum AEP.
The turbines are arranged such that waking is minimal. For
this objective, it appears that the optimizer maximizes the
number of unwaked wind turbines. For this case, we can con-
clude that when the turbines are waked, the loss in energy
production outweighs the benefits gained from economies of
scale in the cost model. Therefore, additional turbines are
good if they meet some minimum power production require-
ment, which is dictated by the cost model.

For the last objective, profit with a PPA of
USD 30 MWh−1, the optimized number of turbines is
13. This is between the optimal number of turbines for the
COE and AEP objectives. When optimizing for profit, the
solution appears to be a balance between minimizing COE
and maximizing AEP. A turbine is allowed to be waked as
long as the gains from the energy it produces outweigh the
costs of adding the extra turbine. As will be discussed in
more detail in Sect. 6.6, the point where adding an additional
turbine is no longer profitable is determined by the PPA. A
lower PPA will drive the solution for maximum profit toward
the solution for minimum COE, while a higher PPA will
drive it toward the solution for maximum AEP.
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Table 2. Complete optimization results for the small wind power plant with unidirectional wind rose. “BG” indicates the boundary-grid
design variables, and “GB” stands for the gradient-based optimization. The bold entries indicate the best and worst solutions for each
objective.

Objective Optimization No. turbines Avg spacing (D) Optimal value Normalized Time (s) Time (h) Function
optimal value calls

AEP (GWh) greedy grid 12 2.76 238 (worst) 0.792 15 0.004 2267
genetic grid 16 2.26 293 0.973 1867 0.52 105 872
sweep grid 15 2.36 270 0.897 4 0.001 204
genetic BG 16 2.26 301 (best) 1.000 1022 0.28 50 519

GB 17 2.17 299 0.993 12 082 3.36 651 265

COE (USD MWh−1) greedy grid 10 3.14 22.16 (worst) 1.015 11 0.003 1860
genetic grid 11 2.93 21.84 (best) 1.000 1443 0.40 106 755
sweep grid 10 3.14 21.88 1.002 8 0.002 656
genetic BG 9 3.40 22.16 1.014 319 0.09 26 604

GB 11 2.93 21.93 1.004 12 071 3.35 655 392

Annual profit (USD MM) greedy grid 11 2.93 1.88 0.918 15 0.004 2208
genetic grid 12 2.76 1.99 0.971 1306 0.36 95 687
sweep grid 12 2.76 1.76 (worst) 0.860 5 0.001 341
genetic BG 14 2.48 1.85 0.905 532 0.15 36 510

GB 13 2.61 2.04 (best) 1.000 13 130 3.65 702 650

Figure 7. The optimal layouts for each objective for the small wind
power plant with a unidirectional wind rose. From top to bottom,
the associated objective functions are AEP, COE, and profit. The
text within each figure provides the values for all three metrics for
each wind plant.

We want to emphasize that the results we show are not
meant to demonstrate exact solutions or guidelines for deter-
mining the number of turbines in a wind power plant. Spe-
cific solutions will depend on wind resources, turbine param-
eters, boundary shape and size, PPA, constraints, and other
factors. Our purpose is to demonstrate that the optimal num-
ber of turbines and their layout are completely different de-
pending on the objective. The true objective must be care-
fully formulated when optimizing the layout of a wind power
plant. Figure 8 shows how the wind plants optimized for
the three different objectives compare in other metrics. We
demonstrated objectives of AEP, COE, and profit and how
they all produce different solutions. All of the wind plants
optimized for a specific metric greatly underperform in the
other metrics that we calculated. The one exception is the
optimal profit solution, which also accomplishes a relatively
low COE.

While we included three specific objective functions in
this paper, there are many other considerations that could
be included in the objective. For example, it may be desir-
able to maximize the profit generated by each turbine in the
wind power plant above some minimum value. This would
keep the optimizer from adding a turbine that only provided
a marginal return on investment. One could also optimize for
profit or COE while constraining the AEP to be above some
desired minimum value. When using mathematical optimiza-
tion, the objective function must be designed to truly repre-
sent the desired performance because this will drive the final
solution.
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Figure 8. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.
These results are shown for the small wind plant with a unidirectional wind rose.

6.2.2 Small power plant with unidirectional wind rose:
different algorithms

In this section, we discuss the performance of the solutions
found with each optimization strategy and their computa-
tional expense. This information is presented in the last five
columns of Table 2. As explained previously, the fifth col-
umn shows the optimized solution, and the sixth shows the
normalized value, to easily see how the optimized solutions
compare to each other. The last three columns are measures
of the computational expense. The time columns are straight-
forward and show the total wall time required to run the op-
timizations. For this paper, everything was run without par-
allelization on a laptop with a 2.4 GHz 8-core Intel proces-
sor. However, just the time as a measure of computational
expense may be misleading. There is another overhead in
the optimization time other than just objective function calls;
therefore, we included a column for total objective function
calls and run time, which together give a decent representa-
tion of the total computational expense of each algorithm.

For this small wind power plant with the unidirectional
wind rose, the greedy algorithm did not perform very well. It
found the worst solution for both the AEP and COE objec-
tives and only the third best solution for the profit objective,
but it still underperformed by more than 8 % compared to the
best solution in this objective. This algorithm relies on plac-
ing turbines far apart to get the maximum benefit possible at
each step of the optimization. Because the domain for this
scenario was small, this made it difficult to add additional
turbines without violating the spacing constraint. Doing so
would require adjusting the location of multiple turbines at
once to make room, which is not something this algorithm
does. Although the computational expense for the greedy al-
gorithm in this scenario was minimal, its poor performance
does not justify its use.

For the objectives with higher turbine density, AEP and
profit, the repeated sweep algorithm performed poorly. The
answers for these objectives were either the worst or second
worst solution found. However, for the COE objective this
algorithm performed quite well and found the second best

solution, within 0.2 % of the best solution. Like the greedy
algorithm, the repeated sweep algorithm has a step that re-
lies on greedily placing turbines in the domain if they result
in an improvement of the objective function. This algorithm
has difficulty placing the turbines without violating spacing
constraints for objectives that have many turbines in the op-
timal solution. For the COE objective however, the optimal
number of turbines was much fewer. Thus the repeated sweep
algorithm could place the turbines and move them around to
a certain extent to find an excellent solution for this objec-
tive. The negligible computational expense for this algorithm
could justify its use for this scenario, for an objective with
optimal turbine spacings that are sufficiently larger than the
minimum spacing constraints.

The genetic algorithm with the gridded plant domain per-
formed very well for each objective function. It even out-
performed the gradient-based optimization for the COE ob-
jective and performed within 3 % of the best solution found
for the AEP and profit objectives. However, the computa-
tional expense was high, requiring the most time of any of
the gradient-free algorithms and by far the most function
calls. However, because this problem was relatively small,
the computational expense was not prohibitive.

The boundary-grid optimization solved with a genetic al-
gorithm performed in the middle of the pack for the gradient-
free algorithms. It performed very well with the AEP ob-
jective but poorly with the COE and profit objectives. This
was because of the small wind plant area. The boundary-grid
formulation forces turbines to be equally spaced around the
boundary. With a unidirectional wind rose, this means that
some turbines will always be in the back of the power plant
relative to the incoming wind. As discussed before, waked
turbines were very detrimental for COE and, by extension,
detrimental from a profit perspective as well.

Finally, the gradient-based optimizer, while sweeping
across the number of wind turbines, performed well for each
objective function. Because this algorithm uses continuous
design variables and allows full access to the wind plant do-
main, permitting each turbine to be placed wherever the op-
timizer deems best, we always expected the gradient-based

Wind Energ. Sci., 6, 1143–1167, 2021 https://doi.org/10.5194/wes-6-1143-2021



A. P. J. Stanley et al.: Objective and algorithm 1157

optimizations to perform well. In fact, we expected this op-
timizer to perform the best of all for each objective, mak-
ing it quite surprising that it was outperformed for both the
AEP and COE objectives. Even though the gradient-free al-
gorithms do not provide as much freedom as the gradient-
based optimization, they were able to find the best solution
for these objectives.

At this point, we would like to reiterate that the results
shown in Table 2 are for a limited number of starting opti-
mizations. They do not indicate that the solutions found are
the best solution that each optimizer is capable of finding.
These results simply show the optimizer performance with
a small sample size. That said, for a small number of dis-
cretizations, finding the optimal number and layout of wind
turbines for various objectives can be achieved with a simple
genetic algorithm.

6.3 Large power plant with unidirectional wind rose

The performance and required computational expense of op-
timization algorithms can vary dramatically depending on
the problem size. In this section, we will present another set
of optimizations we ran for a larger domain. This wind power
plant is a square with 1.6 km sides. For the gridded domain,
the plant was divided into a 20-by-20 square grid which, be-
cause of the increased size of the plant area, maintained the
same spacing between grid points as in the small wind plant
example. For a wind plant of this size, we did not run the
gradient-based optimizer because of the large computational
expense required to run the sweep across all of the possible
optimal number of turbines. We only ran the optimizations
for the four gradient-free methods we previously discussed.
As was done in Sect. 6.2, we ran each optimization method
five times to convergence for each objective. The wind re-
source and PPA for this wind power plant were also assumed
to be the same as for the small wind plant. The results for
this wind power plant optimization are presented similarly to
those for the small wind plant, with full results shown in Ta-
ble 3, and the best layout for each objective shown in Fig. 9.

6.3.1 Large power plant with unidirectional wind rose:
different objectives

The general trends that we observed from the smaller wind
power plant optimizations hold true for this larger wind plant
as well. The wind plant optimized for AEP has as many wind
turbines in the plant as possible without violating the spac-
ing constraints, leading to a large number of turbines. The
wind plant optimized for COE has turbines that are mini-
mally waked, leading to a very small number of turbines. The
wind plant optimized for profit is a middle ground between
the previous two objectives. One main difference between the
results for this large wind plant and the small wind plant is in
the optimal solution for maximum profit. For the large plant,
the wake losses for the optimal profit solution are signifi-

Figure 9. The optimal layouts for each objective for the large wind
power plant with a unidirectional wind rose. From top to bottom,
the associated objective functions are AEP, COE, and profit. The
text within each figure provides the value of all three metrics for
each wind plant.

cantly higher than for the small wind plant, 12 % compared
to 5.4 % (see Figs. 10 and 8). More turbines can fit within the
boundary of the large plant, pushing the plant further down
the BOS cost curve shown in Fig. 3. The reduced costs from
economies of scale make up for higher wake losses in the
optimal solution.

Figure 10 shows several metrics for the three wind power
plants that were optimal for the different objective functions.
Although the trends in this figure are similar to those in
Fig. 8, the differences in metrics are more extreme for the
different objective functions. While all of the metrics are in-
teresting, there are a few specific observations that are worth
pointing out. First, the COE for the wind plant optimized
for profit is relatively low, which is impressive because COE
was never directly minimized. Second, the profit for the wind
plant optimized for AEP is very low. Even though the plant
produces a lot of energy, the tight turbine spacing causes high
wake losses and inefficient turbines; thus, the high costs are
not offset by the high energy production. Third, the wake
losses for the wind plant optimized for minimum COE are
very low, less than 2 %. This is impressively low and is only
possible because of the unidirectional wind rose.
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Table 3. Complete optimization results for the large wind power plant with unidirectional wind rose. “BG” indicates the boundary-grid
design variables. The bold entries indicate the best and worst solutions for each objective.

Objective Optimization No. turbines Avg spacing (D) Optimal value Normalized Time (s) Time (h) Function
optimal value calls

AEP (GWh) greedy grid 40 2.55 663 0.920 746 0.21 34 012
genetic grid 23 3.58 450 (worst) 0.624 2539 0.71 44 095
sweep grid 47 2.32 710 0.985 113 0.03 1220
genetic BG 48 2.29 721 (best) 1.000 3310 0.92 48 824

COE (USD MWh−1) greedy grid 22 3.68 20.51 1.007 423 0.12 28 393
genetic grid 16 4.53 21.00 (worst) 1.031 2656 0.74 63 104
sweep grid 20 3.91 20.37 (best) 1.000 119 0.03 4895
genetic BG 18 4.19 20.73 1.018 1002 0.28 35 814

Annual profit (USD MM) greedy grid 31 2.97 4.98 0.979 592 0.16 31 902
genetic grid 20 3.91 3.33 (worst) 0.655 2826 0.79 47 977
sweep grid 31 2.97 4.93 0.970 116 0.03 2528
genetic BG 33 2.86 5.09 (best) 1.000 2126 0.59 52 869

Figure 10. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.
These results are shown for the large wind plant with a unidirectional wind rose.

6.3.2 Large power plant with unidirectional wind rose:
different algorithms

While the general trends found for the solutions with differ-
ent objectives were similar between the small and large wind
power plants, the computational expense and performance of
different algorithms were not. In the last five columns of Ta-
ble 3, we see how well each optimization method performs.
The most glaring difference is seen in the performance of
the genetic algorithm with the gridded turbine domain. While
with the small wind plant, this method provided the best or
near-best results for each objective, in this larger domain it
severely underperformed compared to the other optimization
methods. While the genetic algorithm was easily able to han-
dle the 100 design variables from the 10-by-10 grid of the
small wind plant, it appears unsuited to find a good solution
for the 20-by-20 grid of the large wind plant. This obser-
vation agrees with our previous intuition with genetic algo-
rithms in that they tend to perform poorly as problem com-
plexity increases.

Next, the greedy algorithm performs relatively better in
the larger wind plant than it did in the smaller wind plant.
For the AEP objective, this algorithm still underperformed

compared to the best solution, for the same reason as in the
small plant. However, for the other objectives the greedy al-
gorithm found a very good solution: within 1 % of the best
solution for the COE objective and within 2.1 % of the best
solution for the profit objective. Like the greedy algorithm,
the repeated sweep algorithm performed relatively better in
the larger wind plant than it did in the smaller wind plant. In
fact, this algorithm performed well for each objective, find-
ing a solution within 1.5 % of the best for the AEP objective,
the best solution for the COE objective, and within 3 % of the
best for the profit objective.

In addition to the optimal solution, it is also important
to analyze the computational expense for the greedy and
repeated-sweep algorithms. In the gridded formulation, the
number of design variables quadruples when going from the
10-by-10 grid to the 20-by-20 grid. However, the computa-
tional expense increases much more than a factor of 4 be-
tween these two scenarios. For the greedy algorithm, the re-
quired time increased roughly 40–50 times between the small
and large scenarios, and the required function calls increased
about 15 times. For the repeated sweep algorithm, the re-
quired time increased by a factor between 15–30, while the
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required function calls increased by a factor of 6–7.5. This
is an indication of the poor scaling of computational expense
with increasing design variables for gradient-free algorithms.
It is a combination of each iteration requiring more function
calls, with each function call requiring more time with the
larger domain.

Finally, the boundary-grid algorithm performed excel-
lently for each objective function for this large wind power
plant optimization. The organized structure forced by the
boundary-grid method was able to fully take advantage of
the unidirectional wind rose and create layouts with the ap-
propriate number of turbines where waking is minimal. This
method found the best solution for the AEP and profit ob-
jectives, and it was within 2 % of the best solution for the
COE objective. Even though it used a genetic algorithm, the
boundary-grid optimization performance did not suffer with
the increased size of the wind plant. With this formulation,
the number of design variables remains constant, indepen-
dent of the number of turbines being modeled and the size
of the domain. There was still an increase in the computation
time between the small and large domain scenarios, but this
was because each function call requires more time. The to-
tal number of function calls between the scenarios remained
fairly constant.

6.4 Large power plant with full wind rose

The final scenario in which we examine the performance
of each optimization algorithm is for the large wind power
plant domain. Unlike the previous examples, the optimiza-
tion results shown in this section include a full wind rose, dis-
cretized into 72 wind direction bins. As shown in Fig. 11, the
most probable wind directions are from the west and south-
southeast. The wind rose we used for this scenario is similar
to the one used in the first International Energy Agency (IEA)
Task 37 wind plant layout optimization case study, with more
finely discretized bins (Baker et al., 2019). The wind rose was
specifically chosen to have a dominant wind direction in line
with the upper and lower wind plant boundaries. Because the
boundary-grid method is formulated to place turbines around
the wind plant boundary, we wanted to see how it would per-
form with an unfavorable wind rose. Everything else for this
optimization scenario was the same as in Sect. 6.3, including
the wind plant dimensions, the grid discretizations, number
of random starts, and PPA. The results for this section are
shown in Table 4 and Fig. 12. Because the wind resource was
unidirectional in the previous wind power plant layout fig-
ures, only one figure was needed to represent the flow field
associated with each layout. Because this section includes
optimization results that were run with a full wind rose, we
show two wind directions in Fig. 12, with each column repre-
senting the two dominant wind directions of west and south-
southeast.

Figure 11. The full wind rose used for the optimizations in this
study. The wind rose is divided into 72 bins with dominant wind
directions from due west and from south-southeast.

6.4.1 Large power plant with full wind rose: different
objectives

Again, many of the general trends for the different objectives
are the same as the results for the unidirectional wind rose
cases. In this section, we only focus on the key differences
between the results for the large wind power plant with a
unidirectional wind rose and the results for the large wind
plant with the full wind rose. There are two observations we
would like to point out.

First, and most importantly, the optimal number of tur-
bines for the COE and profit objectives is much lower for the
full wind rose than for the unidirectional rose. For the unidi-
rectional rose, the optimal numbers of turbines for COE and
profit are 20 and 33, respectively. For the full wind rose, these
numbers are 15 and 24, respectively. With the full wind rose,
turbines will always be unfavorably waked for some wind
directions. It is impossible to find a turbine layout in which
all of the turbines are always unwaked. For a unidirectional
rose, the turbines can be very closely spaced in directions not
aligned with the wind and still avoid wakes and perform well
in each objective. This luxury does not exist for a full wind
rose. Turbines spaced close together will perform poorly at
least some of the time. Therefore, fewer turbines are placed
in the optimal wind plants with a full wind rose so that the
average spacing can be higher and reduce the wake effects.

Second, notice that the optimal number of turbines for the
AEP objective is higher for the full wind rose (54 turbines)
than for the unidirectional wind rose (48 turbines). This is
simply an artifact of our methodology. For the AEP objec-
tive, the unidirectional wind rose would also benefit from
having more turbines spaced closer together. However, the
optimizer did not find this solution from the five optimiza-
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Table 4. Complete optimization results for the large wind power plant with full wind rose. “BG” indicates the boundary-grid design variables.
The bold entries indicate the best and worst solutions for each objective.

Objective Optimization No. turbines Avg spacing (D) Optimal value Normalized Time (s) Time (h) Function
optimal value calls

AEP (GWh) greedy grid 43 2.44 582 0.928 38 329 10.65 35 680
genetic grid 26 3.31 429 (worst) 0.685 37 208 10.34 48 739
sweep grid 50 2.24 604 0.964 5560 1.54 1166
genetic BG 54 2.14 627 (best) 1.000 157 191 43.66 41 175

COE (USD MWh−1) greedy grid 14 4.95 22.61 1.002 10 434 2.90 21 561
genetic grid 11 5.86 22.90 (worst) 1.015 28 386 7.89 46 823
sweep grid 15 4.73 22.57 (best) 1.000 7400 2.06 7812
genetic BG 12 5.51 22.74 1.007 25 260 7.02 37 071

Annual profit (USD MM) greedy grid 23 3.58 2.68 0.967 22 020 6.12 29 538
genetic grid 19 4.04 2.27 (worst) 0.821 34 824 9.67 47 266
sweep grid 24 3.48 2.77 (best) 1.000 8277 2.30 4201
genetic BG 24 3.48 2.59 0.936 60 995 16.94 40 959

Figure 12. The optimal layouts for each objective for the large wind power plant with a full wind rose. From top to bottom, the associated
objective functions are AEP, COE, and profit. The text within each figure provides the value of all three metrics for each wind plant. The two
columns represent the flow field for each objective from the two dominant wind directions.

tions that we ran. Setting up an optimization run always in-
volves a trade-off between trying to find the best solution and
minimizing computational expense. One can imagine two
extremes for a genetic algorithm. The first extreme has an
enormous population size and very strict convergence crite-
ria. This optimization would theoretically find a very good,
maybe the best solution, but at a restrictively high computa-

tional expense. The other extreme would have a minuscule
population and very lax convergence criteria. This popula-
tion would converge very quickly but would lend very little
confidence that a good solution was found. For this paper, our
goal was to examine overall trends, and not to find the global
solution for every scenario and optimizer combination. For
a one-off optimization, it may be prudent to run more than
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five optimizations with different initialization of the design
space and maybe tune the optimizer parameters and conver-
gence criteria to the specific problem. However, for this paper
our goal was to run a large quantity of optimizations across
a range of scenarios, which required us to make some de-
cisions to keep the computational expense reasonable. Even
though the optimizers for the large wind farm and unidirec-
tional wind rose scenario failed to find the best solution for
the AEP objective, we can stand behind our methodology and
have confidence that the general trends we have observed are
accurate and valid.

Similar to Figs. 8 and 10, Fig. 13 shows the different wind
power plant performance metrics for each optimal wind plant
with the different objectives. The general trends are similar
to Fig. 10 with a few differences. First, and most apparent,
the profit for the wind plant optimized for AEP is extremely
low. In fact, this wind plant loses more than USD 3 mil-
lion each year because both the costs and wake losses are
so high. There are at least two reasons for this extreme neg-
ative value for profit: (1) our cost model has low economies
of scale. At large numbers of turbines, the cost reductions for
adding more turbines is low, and (2) our minimum spacing
constraints for this paper were small, only two rotor diame-
ters. At this close spacing, the wake losses are high. For wind
plants where the minimum spacing is much larger (5 or more
rotor diameters), a wind plant optimized for AEP may still
perform well in the other objectives. The second difference
in general trends is that the wake losses for these wind plants
are much higher than for the optimal wind plants and the
unidirectional wind rose. The reason for this was previously
mentioned – with multiple wind directions, there will always
be some wind directions for which a turbine operates within
a wake.

6.4.2 Large power plant with full wind rose: different
algorithms

There are three main differences we observe between the uni-
directional wind rose algorithm performances and those for
the full wind rose. First is the expected increase in compu-
tational time. The function calls for each algorithm and for
each objective are very close for the different wind roses.
However, the computational time for the full wind rose is sig-
nificantly and expectedly higher. The computational expense
of each function call for the full wind rose is about 72 times
that of the unidirectional rose – 72 being the number of wind
direction bins. The reason the time does not scale exactly lin-
early with the number of function calls is the certain number
of infeasible layouts that are produced during the optimiza-
tion that do not call the full wake model. These calls are very
fast, but not instantaneous, and do add up over time.

The second observation is about the impressive per-
formance of the boundary-grid problem formulation, even
though the wind rose is specifically selected to put this
method at a disadvantage. As expected, the boundary-grid

method tremendously outperformed the other methods for
the AEP objective because this formulation can add many
turbines to the wind power plant with very small adjustments
to the design variables. For the COE objective, the boundary-
grid optimization performed well, within a percent of the best
solution found. The boundary-grid optimization performed
the worst for the profit objective, about 6.5 % worse than the
best solution found. For many wind plants, the boundary-grid
method would perform much better because prominent wind
directions will not always be aligned with the wind plant
boundaries.

The third and final observation is about the performance
of the repeated-sweep algorithm. For the AEP objective, this
algorithm performed worse than the boundary-grid method
but still produced a wind power plant layout that per-
formed favorably compared to the overall optimal, within
4 %. The repeated-sweep algorithm is ineffective at placing
as many turbines as possible into the wind plant but still per-
formed relatively well. For the COE and profit objectives, the
repeated-sweep algorithm found the best solution. For the
COE objective, the greedy, repeated-sweep, and boundary-
grid optimizations all performed similarly. However, for the
profit objective, the repeated-sweep algorithm impressively
outperformed all of the other algorithms. With a full wind
rose and objectives that favor solutions where the turbines are
minimally waked, this algorithm performed extremely well.
Because the best solutions have turbines that are spaced far-
ther apart, the optimizer is able to search the design space
without violating the turbine spacing constraints. In addi-
tion to finding superior optimal solutions, the repeated sweep
algorithm required much less computational expense. For
this problem size, the repeated-sweep algorithm performed
the best overall. In short, the boundary-grid method per-
formed relatively well even with an unfavorable wind rose
and boundary. The repeated-sweep algorithm performed well
for the COE and profit objectives and optimized very quickly
compared to the other methods.

6.5 Overall algorithm performance

In this section, we discuss the overall performance of each
optimization algorithm for the small wind power plant with
a unidirectional wind rose, the large wind plant with the uni-
directional wind rose, and the large wind plant with the full
wind rose. Figure 14 shows the overall performance of each
algorithm and the computational expense for each objective
and size of wind plant. Much of this information has been
discussed in previous sections, but we review each of the al-
gorithms here from an overall perspective.

The greedy algorithm performed poorly for the small wind
power plant and better for the larger wind plant, although it
never performed the best. The computational expense for this
algorithm was very low for the small wind plant but greatly
increased for the large wind plant. We can conclude that the
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Figure 13. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.
These results are shown for the large wind plant with a full wind rose.

Figure 14. Overall performance representations of the different optimization algorithms. The different colors represent the different opti-
mization methods. The top figure shows the best solution quality, and the bottom figure shows the number of function calls required.

computational expense of the greedy algorithm scales poorly
with increasing design variables.

The genetic algorithm with the gridded plant domain per-
formed very well for the small wind plant and was close
to the best solution for each objective. However, for the
larger wind plants, this optimization method performed very
poorly. We want to reiterate that part of the reason this opti-
mization method performed so poorly was because we kept
the convergence criteria the same for the small and large
wind plants. Individual parameters could be altered to get

better performance with the gridded domain and the genetic
algorithm; however, it is unlikely that it would perform as
well as the other algorithms. Genetic algorithms typically
have a hard time finding a good solution with large numbers
of design variables.

Like the greedy algorithm, the repeated-sweep algorithm
performed comparatively poorly for the small wind power
plant but much better for the large wind plants. In fact, this
algorithm achieved the best, or close to the best, solution for
all of the objectives for each of the large wind plant opti-
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mizations. In addition, the computational expense for this al-
gorithm was by far the lowest for the problem sizes included
in this paper. That said, similar to the greedy algorithm, the
number of function calls required for the repeated-sweep al-
gorithm increased greatly from the small wind plant to the
large wind plants. Even though it was computationally ef-
ficient for the problem sizes in this paper, as the problem
grows, the computational expenses would grow as well and
eventually limit the size of wind plant that can be optimized.

The boundary-grid optimization consistently performed
the best for the AEP objective. It generally performed poorly
for the COE objective, and its performance for the profit ob-
jective varied. For the large wind power plant and unidirec-
tional wind rose, the boundary-grid method found the best
solution for the profit objective. However, with the full wind
rose, the boundary-grid method performed the worst for the
profit objective. This is largely because, for our specific case,
the full wind rose had a dominant wind direction directly in
line with the wind plant boundaries. This will not always be
the case; for most other scenarios, the boundary-grid method
would perform comparatively well. A primary reason that
the boundary-grid method is so effective is that the required
function calls do not change with the problem size. While the
greedy and repeated-sweep algorithms required many more
function calls as the wind plant domain increases in size,
the boundary-grid method remained constant between the
small and large wind plants. At some point, the boundary-
grid method would be more computationally efficient than
any of the other algorithms because the number of design
variables always remains constant.

6.6 Varied power purchase agreement

The final set of results we present in this paper explores
how the optimal profit solution is affected by the PPA.
For this section, the problem formulation was identical to
Sect. 6.4, including using the full wind rose shown in
Fig. 11, the wind speed (10 ms−1), the wind power plant
size (1600-by-1600 m2), grid discretization (20-by-20), and
the number of randomly initialized optimizations run (five).
However, in this section, instead of assuming a PPA of
USD 30 MWh−1, we repeated the optimization while vary-
ing the PPA from USD 25–USD 100 MWh−1. Because the
repeated-sweep algorithm performed the best for the profit
objective in Sect. 6.4, combined with this algorithm’s low
computational expense, we performed these optimizations
only with the repeated-sweep algorithm and did not com-
pare with the performance of the other algorithms. The re-
sults for these optimizations are shown in Fig. 15. From top
to bottom, this figure shows the optimal number of turbines,
profit (which was the objective of the optimizations), AEP,
and COE as a function of the PPA.

As the value of the energy produced increased (repre-
sented by increasing the PPA), the optimal number of tur-
bines in the wind plant also increased. With a low PPA,

Figure 15. The effect of PPA on the optimal solution for wind
power plants optimized for profit. From top to bottom are the num-
ber of turbines, profit, AEP, and COE as a function of the PPA.

the optimal solution resembles the optimal COE solution
from Sect. 6.4. Wakes are avoided as much as possible, and
the number of turbines in the wind plant is low. With a
higher PPA, the solution approaches the optimal AEP solu-
tion. Gains in AEP can be worthwhile with higher PPA –
even if they come at the expense of reducing the overall effi-
ciency of each individual turbine.

Some typical PPAs in the United States are shown in
Fig. 16, which includes the levelized PPA for various projects
in the United States since 2010. For the data shown in this fig-
ure, the levelized PPA does not take into account any federal
tax credit. The different colors represent projects in different
parts of the country, which indicates that projects in the cen-
tral states tend to have lower PPAs. A decade ago, the range
of PPAs in the United States was quite large, from around
USD 40 MWh−1 all the way up to USD 120 MWh−1; how-
ever, more recent PPAs are much lower, closer to USD 20–
USD 40 MWh−1. This decrease in PPA prices in recent years
has been the combined result of higher capacity factors, de-
clining installation costs and operating costs, and low interest
rates (Wiser and Bolinger, 2019).
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Figure 16. The PPAs for wind power plants built in the United
States since 2010. Different colors represent wind plants in different
regions of the United States.

7 Further discussion

7.1 Empirical considerations

The wind power plant layout optimizations in this paper as-
sumed a fixed land area in which the wind turbines must re-
main inside. This is typically referred to as a land-constrained
site and empirically represents a scenario where terrain,
resource availability, social and siting considerations, or
other factors limit the amount of land that is available for
wind turbine installations. Although there are many sites
in the United States that are capacity constrained (limited
by the capacity of the transmission interconnection), the
wind plants optimized for this paper assume land-constrained
sites, which are also found throughout the United States. Ex-
amples of land-constrained sites in the United States with
high turbine density are New England and San Gorgonio,
California. These high turbine densities are driven by high
PPAs in New England and exceptional wind resources and
high-capacity transmission in San Gorgonio.

Land availability, combined with installed project cost,
project size, power purchase prices, and others, influences ca-
pacity density. Another driving factor that can determine the
capacity density of a given wind plant is market competition,
which was not considered in this analysis. Wind plant de-
velopers and owners have target profitability values that they
wish to achieve. In any energy market, the competition be-
tween developers will result in a range of profitability values
that results in limited variation in capacity for a specific loca-
tion. Variations in PPA prices for actual projects are typically
due to variations in resource, cost, tax policy, and investment
strategies.

As shown in Fig. 15, as PPA price increases for a constant
project area so does the optimal number of turbines. At high
turbine densities, the AEP gain from adding additional tur-
bines is minimal because of large wake losses. The minimal
gains of AEP can justify the extra costs in these scenarios be-
cause the value of the small amount of additional electricity

is so high. The optimal solutions that we found for our results
greatly depend on the assumptions and models we used.

7.2 Overview of optimization cases

In Sect. 6, we present a one-dimensional wind farm sweep,
a small wind farm layout optimization with a unidirectional
wind rose, a large wind farm layout optimization with a uni-
directional wind rose, and a large wind farm layout optimiza-
tion with a full wind rose. For each of these scenarios, we as-
sumed a constant wind speed, a square wind farm domain, a
constant PPA, a relatively small minimum spacing constraint
of 2 rotor diameters, a constant turbine capital cost, and a
one-dimensional relation between BOS costs and wind farm
capacity. These modeling assumptions were made to reduce
the complexity of the problem and identify key relationships
and trends between different scenarios. Future work could
benefit from increasing the fidelity and realism of these as-
sumptions, such as including full wind direction and wind
speed distributions in the wind resource, exploring more re-
alistic wind farm boundaries, and testing the sensitivity of
the results to the minimum spacing constraint. Also it is im-
portant to note that the work presented in this paper is for
land-constrained sites. These results could change dramati-
cally for sites without a fixed wind farm boundary.

The optimization parameters for each optimizer were set
with a combination of trial and error and best practice rec-
ommendations. As with any optimizer, with the exception of
brute force testing every possible combination of design vari-
ables, there was some randomness in the solutions that were
found. This randomness comes from the starting point for
the greedy algorithm, the starting point and order of sweep-
ing through the space for the repeated sweep algorithm, and
the starting population, the crossover points, and the muta-
tions for the genetic algorithms. As with many optimization
algorithms, this randomness is inherent in the optimizer. To
reduce the variability and converge on a solution close to
the global optimum, several runs should be made with dif-
ferent initializations of the design variables. For this study,
we repeated each optimization five times. Although this is
much better than a single optimization run, better results may
be obtained by performing more random starts. In future re-
search, it may be beneficial to consider fewer scenarios but
perform more random starts.

8 Conclusions

In this paper, we present our work on wind power plant lay-
out optimization, which includes optimizing the number of
wind turbines. We specifically discuss the effect of differ-
ent objective functions on the optimal solution, as well as
the pros and cons associated with using different problem
formulations and optimizers to solve the problem. We ex-
plore optimizing several different wind plants for objectives
of AEP, COE, and profit. We found that the number of tur-
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bines in each optimal solution was highly sensitive to the ob-
jective function that was used. The plants that we optimized
for AEP tended to have the most wind turbines, while those
optimized for COE had the least, and those optimized for
profit were somewhere in between. The purpose of this paper
is not to provide an optimal wind plant layout for a specific
wind plant boundary and wind conditions, nor is it to suggest
general rules of thumb for designing wind plants with differ-
ent objective functions. The purpose is to clearly demonstrate
that the solution from optimizing a wind plant can be heavily
influenced by the objective function, particularly when con-
sidering the number of wind turbines as a design variable.
Specific solutions and layouts should be determined by the
models and problem parameters, and the objective must be
carefully chosen to represent the desired outcome because
any mathematical optimizer will exploit this objective. From
the models we used in this paper, the optimal number of tur-
bines for a square wind plant with a full wind rose was 15,
24, or 54, depending on the objective of COE, profit, or AEP,
respectively.

The other area that we discuss in this paper is problem
formulation and algorithm selection for performing the op-
timization of turbine number and wind power plant layout
optimization. We also present a very simple repeated-sweep
algorithm that performs well, especially for the larger design
spaces and for a full wind rose. For a coarse wind plant dis-
cretization, in this paper we used a 10-by-10 grid and found
that a simple genetic algorithm performed extremely well in
selecting turbine number and location, even compared to a
gradient-based optimizer. However, for a 20-by-20 grid, the
genetic algorithm performed poorly. A greedy algorithm and
the presented repeated-sweep algorithm performed well for
the COE and profit objectives, particularly with a full wind
rose leading to turbines that are spaced farther apart on av-
erage. At least for the wind plant sizes that we used in this
paper, the computational expense of the greedy and repeated-
sweep algorithms was comparatively low, even for cases with
more grid points. The boundary-grid problem formulation
optimized with a simple genetic algorithm performed well
regardless of the size of the wind plant, but it performed com-
paratively better for the larger wind plant size. Another bene-
fit of the boundary-grid method is that the number of function
calls required to optimize the plant stayed relatively constant
as the size of the wind plant domain changed. As long as the
time required for the function calls is reasonable, or can be
made reasonable, optimizing with the boundary-grid method
will produce a layout that performs well regardless of the ob-
jective.
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