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Abstract. With a rapidly increasing capacity of electricity generation from wind power, the demand for accurate
power production forecasts is growing. To date, most wind power installations have been onshore and thus
most studies on production forecasts have focused on onshore conditions. However, as offshore wind power is
becoming increasingly popular it is also important to assess forecast quality in offshore locations. In this study,
forecasts from the high-resolution numerical weather prediction model AROME was used to analyze power
production forecast performance for an offshore site in the Baltic Sea. To improve the AROME forecasts, six
post-processing methods were investigated and their individual performance analyzed in general as well as for
different wind speed ranges, boundary layer stratifications, synoptic situations and in low-level jet conditions. In
general, AROME performed well in forecasting the power production, but applying smoothing or using a random
forest algorithm increased forecast skill. Smoothing the forecast improved the performance at all wind speeds,
all stratifications and for all synoptic weather classes, and the random forest method increased the forecast skill
during low-level jets. To achieve the best performance, we recommend selecting which method to use based
on the forecasted weather conditions. Combining forecasts from neighboring grid points, combining the recent
forecast with the forecast from yesterday or applying linear regression to correct the forecast based on earlier
performance were not fruitful methods to increase the overall forecast quality.

1 Introduction

With a growing concern about a future climate crisis and
a continuously increasing demand for electrical power, a
greater penetration of renewable energy sources in the power
supply system becomes crucial to meet the climate goals
(e.g., Sims, 2004; Quaschning, 2019). In the last 20 years,
more and more attention has been directed to wind power,
and as new technical inventions have enabled construction of
larger and more efficient turbines, this technique now also ac-
counts for a bigger share of the total power production (Lee
and Zhao, 2021).

As wind power production is highly dependent on the
weather, a deep understanding of the climate for a site is
needed when assessing the optimal location for a new wind
farm, taking both the average and extreme conditions into ac-
count. Once the farm is in operational use, the meteorological
focus shifts from site climatology to weather forecasting, to
be able to predict the instantaneous power production. Accu-
rate forecasts, especially for the short perspective (minutes to
hours) but also for longer timescales (weeks to seasons), are
requested by the grid operators, power production companies
and traders on the electricity market to balance the power in

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



1206 C. Hallgren et al.: A comparison of post-processing methods for offshore wind power forecasts

the grid, to plan ahead and to maximize the revenue (e.g., Fo-
ley et al., 2012; Heppelmann et al., 2017; Lledó et al., 2019).

When it comes to planning for new wind power farms,
offshore sites have recently gained more attention (Esteban
et al., 2011; Díaz and Soares, 2020). The main reason for this
is simple: as the wind speed is generally higher over water
than over land, constructing a new wind farm offshore allows
for higher production. However, similar to when planning for
a wind farm onshore, there are many aspects that must be
considered before a new farm can become a reality, such as
noise and visual disturbances (e.g., Bishop and Miller, 2007),
military restricted areas, natural resources and animal life
(e.g., Leung and Yang, 2012), topography/bathymetry, and
costs for grid connection (e.g., Swider et al., 2008).

The Baltic Sea is in many ways ideal for establishing new
offshore wind power farms, and with nine countries sur-
rounding the semi-enclosed sea there are many stakeholders.
Today, mostly the southwestern parts of the basin have been
utilized for wind energy purposes (mainly by Denmark and
Germany), but also other countries have well advanced plans
for wind power expansion in the Baltic Sea in the coming
decades (e.g., SWEA, 2019).

In general, forecast performance is better offshore than on-
shore as the sea surface is rather homogeneous and since di-
urnal cycles are less pronounced (Fennell, 2018). Still, fore-
casts struggle with accurate timing and magnitude of wind
ramps (in connection to convective cells or passing front
zones), extreme wind speeds, extreme wind shear and low-
level jets (LLJs), a phenomenon that is very common over the
Baltic Sea during spring and summer (Kalverla et al., 2017;
Tuononen et al., 2017; Hallgren et al., 2020).

With a close proximity to a coastline almost everywhere in
the Baltic Sea there are many frequently occurring mesoscale
meteorological events affecting the wind conditions to a
varying extent, such as the sea breeze–land breeze circula-
tion, LLJs and pronounced internal boundary layers (Svens-
son, 2018). Also, upwelling and wave–air interaction affects
the lower part of the wind profiles (Sproson and Sahlée,
2014; Wu et al., 2020).

In order to create an accurate forecast, usually numerical
weather prediction (NWP) models are applied using clusters
of supercomputers to calculate the evolution of the weather,
although other methods also exist (see, e.g., Hanifi et al.,
2020). As a starting point for the calculations in an NWP
model, a background field of assimilated initial conditions
with observations from multiple sources is used. The qual-
ity of this field is crucial for the quality of the forecast, to-
gether with the model setup regarding horizontal and vertical
resolution as well as the parameterizations used to describe
different physical processes. To improve the forecasts fur-
ther, different post-processing techniques can be applied to
the output from the NWP model; see, e.g., Vannitsem et al.
(2020) for a recent review.

This study presents a comparison of six commonly used
post-processing methods to improve short-term deterministic

wind power production forecasts for a site in the Baltic Sea,
using data from an operational high-resolution NWP model
and comparing with observations from a lidar (light detec-
tion and ranging). To provide a deeper understanding of the
characteristics that distinguish the methods, they were all im-
plemented in their basic form. The performance of the meth-
ods under different conditions were evaluated together with
an overview of their general performance.

As of today, one of the most popular post-processing meth-
ods is to apply machine learning (ML) algorithms to the
NWP data. The number of studies on different ways to im-
plement ML methods and their relative strengths and weak-
nesses have grown rapidly during the last decade (see, e.g.,
Foley et al., 2012; Treiber et al., 2016). Common for all ML
methods is that, using supervised or unsupervised learning,
the algorithm finds patterns in the data and uses these pat-
terns to make predictions based on data that were not in the
training set. Among the most popular ML algorithms applied
to post-processing of NWP data are neural networks, sup-
port vector regression algorithms and random forests (RFs).
In this study, we limited ourselves to test only the RF to
highlight the benefits and limitations of using ML as a post-
processing method. This particular method has been success-
fully applied to improve wind power forecasts by, e.g., La-
houar and Slama (2017) and Vassallo et al. (2020).

The paper is structured as follows. After the introduction
in Sect. 1, a description of the site location, the lidar observa-
tions and the NWP model is presented in Sect. 2. In Sect. 3
the six post-processing methods are described together with
a brief overview of the metrics applied to evaluate forecast
performance. The results are presented in Sect. 4 and fol-
lowed by a discussion in Sect. 5. A summary and concluding
remarks can be found in Sect. 6. To simplify for the reader, a
list of all abbreviations used throughout the text is presented
at the end of the paper.

2 Materials

2.1 Lidar measurements at Utö

Utö is a small island (approximately 1 km2 in area) in the
Baltic Sea, 60 km southwest off the coast of mainland Fin-
land; see Fig. 1. The island is located at the southern edge of
the archipelago, and the nearest islands of similar size are ap-
proximately 12 km to the east and west of Utö, respectively,
while to the south the sea is open (Tuononen et al., 2017).
As part of the Finnish ground-based remote-sensing network,
Utö hosts a scanning Doppler lidar and a number of other in-
struments allowing measurements of, e.g., concentration and
fluxes of greenhouse gases (Hirsikko et al., 2014).

The Doppler lidar at Utö is a fully scanning Halo Photon-
ics StreamLine pulsed Doppler lidar, which was upgraded
with an XR series amplifier and data acquisition in 2017.
Halo StreamLine is a 1.5 µm pulsed lidar with coherent de-
tector (Pearson et al., 2009) configured with 30 m range res-
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olution and 7 s integration time per beam. Here, similar to
Hallgren et al. (2020), we utilized only horizontal winds
retrieved from a 15◦ elevation angle velocity azimuth dis-
play scan, which was configured with 24 azimuthal direc-
tions and operated every 15 min. The instrument was lo-
cated 8 m above sea level, and horizontal winds were re-
trieved from 35 m above sea level up at 7.8 m vertical res-
olution. In this study, only measurements on the 36 lowest
height levels (35 to 307 m above sea level) were used. Before
wind retrieval, measurements were post-processed according
to Vakkari et al. (2019), and the radial data were filtered with
a signal-to-noise ratio threshold of −23 dB.

Based on the lidar wind profile, the wind speed at hub
height for a wind turbine (see Sect. 2.3) was calculated
using a piece-wise cubic Hermite interpolating polynomial
(PCHIP) fitted to the profile using logarithmic height coor-
dinates (Fritsch and Carlson, 1980; Brodlie and Butt, 1991).
Only 10 min averages with time stamps at even hours (hh:00)
were used in the analysis to get as instantaneous values as
possible and to allow for a fair comparison with the NWP
data (Sect. 2.2). The data set covered a time period of 2 years,
from 1 February 2018 to 31 January 20201. In this period, sea
ice coverage extended to Utö only during parts of February,
March and early April 2018.

Main criteria for data removal were positive and negative
spikes in the profile. Also, if more than 75 % of the data in
a profile were missing, the profile was discarded. Further-
more, the lidar data were compared with measurements from
a nearby meteorological tower at Utö, and some observations
were removed on manual inspection. In total 1.3 % of the
data were removed in the quality control. Data availability is
illustrated in Fig. 2. Throughout the study the lidar observa-
tions were used as the true values, not taking uncertainties of
the measurements into account.

2.2 AROME forecasts

Deterministic forecasts from the HARMONIE–AROME,
hereafter only called AROME (Applications of Research to
Operations at Mesoscale), model system was used in this
study. AROME is a high-resolution (2.5 km× 2.5 km and
65 vertical levels) convection-permitting atmospheric NWP
model operationally used for short-range weather forecast-
ing by a number of countries around the Baltic Sea, in-
cluding Sweden, Denmark, Finland, Estonia and Lithuania
(Bengtsson et al., 2017). The domain covers Scandinavia
and the Nordic Seas, and most of the domain is shown in
Fig. 1a. The AROME model used in this study was based on
HARMONIE version cy40h1.1; see Bengtsson et al. (2017)
for more details on the model setup. Boundary conditions

1There was a major update of the AROME model (Sect. 2.2) in
February 2020; thus the time period analyzed in this study was re-
stricted to 1 February 2018 to 31 January 2020 in order to keep as
recent data as possible. Two full year cycles were studied to mini-
mize seasonal bias in the analysis.

were from the European Centre for Medium-Range Weather
Forecasts (ECMWF) using the Integrated Forecasting Sys-
tem (IFS) and 4D-Var data assimilation. The AROME model
was run at 00:00, 06:00, 12:00 and 18:00 UTC with a data
assimilation cycle of 3 h. As only the effect and performance
of different post-processing methods were of interest in this
study, AROME was used only as a reference. We did not con-
sider the performance of the NWP model itself nor compared
it with other NWP models that potentially could have per-
formed better (such as, e.g., the high-resolution forecast from
ECMWF). For a comparison of AROME and the ECMWF
forecasts we refer to Müller et al. (2017) and Kalverla et al.
(2019).

In this study only forecasts initialized at 00:00 UTC
with forecasts lengths of 0–23 h (D1) in hourly time steps
were used. The forecasts were assumed to be available at
00:00 UTC without delay. For some post-processing methods
also the 24–47 (D2) hour forecasts were used (see Sect. 3.2).
Data were retrieved for the four grid points closest to the li-
dar, as marked in Fig. 1c. The distances between the lidar and
the grid points were all in the range 1.4 to 2.2 km.

Horizontal wind components and temperature at the 11
lowest model levels (reaching up to approximately 320 m
above sea level) were retrieved. By fitting a PCHIP to the
profile, the wind speed at hub height was calculated in the
same way as for the lidar observations (Sect. 2.1). The wind
direction at hub height was calculated using linear interpo-
lation between the wind components at the two model lev-
els closest to the hub height, and similarly the temperature at
hub height was calculated. Specific humidity and air pressure
at the two lowest model levels (approximately 12 and 37 m
above sea level) was retrieved, and the bulk Richardson num-
ber in this layer was calculated based on information on tem-
perature, pressure, humidity and wind speed (Stull, 1988).
Additionally, sea level pressure for the 16 grid points marked
in Fig. 1a was retrieved to allow for calculation of the Lamb
weather types (LWTs) (Lamb, 1972; Jenkinson and Collison,
1977).

Only time steps when forecasts and lidar observations
were available simultaneously were used; see illustration of
data availability in Fig. 2.

2.3 Power curve

Forecasting the actual power production from a wind farm
faces many challenges such as accurately predicting the wind
speed and the density of the air as well as production losses
related to, e.g., icing on the wind turbine blades (Lamraoui
et al., 2014; Molinder et al., 2021) and wake effects (Shaw
et al., 2009; Butler, 2014). To only focus on the contribu-
tion from the wind, a theoretical maximum production from
a wind turbine at the location of the lidar was calculated us-
ing the power curve for a Siemens SWT-3.6-120 wind tur-
bine (Siemens, 2011). This particular type of turbine is com-
monly used in the Baltic Sea today, with 111 turbines in the
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Figure 1. Land–sea mask from AROME (Sect. 2.2) over (a) the Baltic Sea region, (b) the Finnish archipelago and (c) the surroundings of
Utö. The position of the lidar is marked with an ×. In panel (a) the 16 grid points used for the JC method (see Appendix A) to classify the
LWTs are marked, as well as the focus area for the classification. In panel (c) the four grid points closest to the lidar are marked and labeled
according to their distance to the lidar, with 1 being the closest grid point.

Figure 2. Availability of lidar observations (after quality control) and forecasts from AROME for the period 1 February 2018 to 31 Jan-
uary 2020. The time period is split into 1 year that was only used for training (1 February 2018 to 31 January 2019) and 1 year that was used
for training, optimization and testing (1 February 2019 to 31 January 2020).

Anholt farm (commissioned 2013) and with 80 turbines in
the EnBW Baltic 2 farm (commissioned 2015). The turbine
has a hub height of 90 m and the blades sweep heights from
30 to 150 m. The cut-in wind speed is 3.5 m s−1, and the tur-
bine reaches its rated production of 3.6 MW at 14 m s−1. The
cut-out wind speed is 25 m s−1.

3 Evaluation metrics and methods for
post-processing

In this section the different metrics used to evaluate the per-
formance of the post-processed forecasts are presented, to-

gether with a detailed description of the different methods
applied.

3.1 Evaluation metrics

The deterministic 0–23 h AROME forecast was used as a
baseline for the statistics. As the key metric we selected the
mean absolute error (MAE) skill score defined as

MAEskill score = 1−
MAEnew

MAEdet
, (1)

where MAEnew and MAEdet are the mean absolute errors
from the new (post-processed) and original deterministic for-
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est respectively. All forecast lengths (0–23 h) were treated
equally as no substantial decrease in forecast performance
over D1 was expected. A MAE skill score of 1 indicates
a perfect forecast (MAEnew = 0), while a skill score of 0
means that the new forecast had the same skill as the orig-
inal forecast. A negative skill score implies that the post-
processing had deteriorated the original forecast quality and
that the new forecast had worse performance.

As a complement to the MAE skill score also the forecast
bias is presented, and the correlation coefficient, standard de-
viation and centered root mean square error (CRMSE) are
visualized in a Taylor diagram (Taylor, 2001). To compare
frequency distributions for forecast improvements, the Earth
mover’s distance (EMD) was used to objectively assess how
similar the distributions were to an optimal distribution (Rub-
ner et al., 2000). The EMD is equal to the area between the
cumulative distribution functions and can be conceptualized
as the minimum of work needed to transform one distribution
into the other. Accompanying the frequency distribution for
forecast improvements is also the forecast superiority score,
which reveals how often it would have been better to use the
new forecast rather than the original forecast.

3.2 Methods for post-processing

Six different post-processing methods were applied to the
AROME forecasts, most of them using a measure–correlate–
predict approach. To facilitate evaluation of different aspects
of the results of post-processing, the methods were kept as
simple as possible. All methods tested are easy to imple-
ment and are commonly used in operational power produc-
tion forecasting. The methods were also selected on the basis
of cost efficiency (in terms of computational time), and all
can run on a laptop. As ML is a rapidly advancing field of
post-processing with many different approaches possible, we
selected only one of the most common methods (the random
forest) to demonstrate the benefits of ML.

All methods were applied and tested in the same manner
as they would have been if used operationally, except that the
forecasts from AROME were assumed to be available imme-
diately at 00:00 UTC, which would not be the case in op-
erational use where the delay is approximately 3 h. Also, at
00:00 UTC only observations up until 23:00 UTC from the
day before were assumed to be available. Thus, the most re-
cent observations were always at least 1 h old.

The 2 years of data were divided into 1 year (1 Febru-
ary 2018 to 31 January 2019) that was used for training only
and 1 year (1 February 2019 to 31 January 2020) that was
used for training, optimization of the RF algorithm and for
testing the performance of the methods. The optimization pe-
riod consisted of 20 % of the second year, randomly selected
in blocks of 3 d (see Fig. 2) to minimize problems with auto-
correlation in the data. For all methods, only historical data
up until the first time step of the current forecast were used
as training data, simulating a realistic power production fore-

casting methodology. The first day in the training data was
always 1 February 2018 unless otherwise stated, and hence
the number of training data grew by 1 d for each new fore-
cast.

In the following subsections, the six different post-
processing methods are described in detail.

3.2.1 Forecast from yesterday (D1/D2 MIX)

The AROME forecast issued at 00:00 UTC from the day be-
fore with a lead time of 24–47 h (D2) was compared to the
current 00:00 UTC AROME forecast valid for the coming 0–
23 h (D1). The wind speeds from the two forecasts were com-
bined into a common forecast with weights based on their
performance in terms of absolute error in power production
during the test period.

3.2.2 Persistence forecast (Pers)

A persistence forecast is typically used as a reference fore-
cast to study forecast improvements over a short time span
(see, e.g., Nielsen et al., 1998; Soman et al., 2010). In our
case, a persistence forecast was generated assuming that the
most recent (from 23:00 UTC) wind speed measured by the
lidar would remain constant throughout the following day.
Thus, the persistent power production would also remain
constant. If observations from 23:00 UTC were missing, no
forecast was created. This was the case for 4 d during the test
period.

3.2.3 Neighborhood method (NBH)

For the NBH method, the D1 forecasts from the four grid
points closest to the position of the lidar (see Fig. 1) were
combined into a common wind speed forecast. The forecasts
were weighted depending on their performance in terms of
the absolute error in power production during the training
period for eight wind directions (45◦ per sector). The wind
direction was calculated as the average wind direction at hub
height from the four grid points.

3.2.4 Temporal smoothing (Smooth)

The D1 forecast was smoothed in time by applying a low pass
filter (moving average) calculating the average wind speed at
every forecast lead time (0–23 h) using forecast data within
a window of ±1 h. For the first time step in the forecast,
00:00 UTC, the average was based on the lidar observations
at 23:00 UTC together with the forecast data for 00:00 and
01:00 UTC.

3.2.5 Linear regression (LR) methods

A set of four different methods applying linear regression
(minimizing the error in wind speed between the D1 fore-
cast and the lidar observations in terms of least squares) were
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tested using different criteria to split the training data into
non-overlapping subsets.

LR all

In the most basic LR method we fitted a first-order poly-
nomial to all data in the training set and corrected the D1
forecast accordingly. As the training data set grew by 1 d for
each new forecast, the polynomial was refitted every day to
include the new data.

LR stability

Using data from the two lowest model levels in AROME the
bulk Richardson number, Ribulk, was calculated. Based on the
classification by Lee et al. (2017), only changing the thresh-
old for strongly unstable stratification, the following five sta-
bility classes were used:

– strongly stable if Ribulk ≥ 0.25;

– stable if 0.05≤ Ribulk < 0.25;

– neutral if −0.05≤ Ribulk < 0.05;

– unstable if −1≤ Ribulk <−0.05;

– strongly unstable if Ribulk ≤−1.

For every new forecast all time steps in the training data were
split into five groups depending on their stability. Note that
also for the training data, stability from AROME was used.
A first-order polynomial was fitted to the wind speed data
for each stability class, and the different calibrations were
applied to the D1 forecast depending on the forecasted hourly
stability.

LR synoptic

To examine the synoptic conditions, the JC method (Jenkin-
son and Collison, 1977) was used to calculate a reduced set
of 11 LWTs; see Appendix A for details. The LWTs describe
the synoptic weather pattern over the Baltic Sea and can be
either cyclonic (C), anticyclonic (A), flow from any of the
eight wind directions (N/NE/E/SE/S/SW/W/NW) or unclas-
sified (weak) flow (U) (Lamb, 1972). Similar to the LR sta-
bility method, the LR synoptic method classified every time
step in both the training data and in the D1 forecasts and ap-
plied linear regression to adjust the forecasted wind speed
based on the forecasted LWT.

LR seasonal

To address seasonality in forecast performance the training
data were split into three seasons: late spring/early summer

(April–July), late summer/fall (August–November), and win-
ter/early spring (December–March). Following the same pro-
cedure as for the other LR methods, the D1 forecast was ad-
justed using a first-order polynomial fitted to the wind speed
training data for the current season.

3.2.6 Random forest (RF)

The RF method is a commonly used strategy to increase fore-
cast performance through ML post-processing of NWP data.
The technique has been successfully applied to different as-
pects of wind power production forecasting before, both on-
shore and offshore; see, e.g., Lahouar and Slama (2017) and
Vassallo et al. (2020).

A random forest (Breiman, 2001) creates a group (a forest)
of individual decision trees. Based on a random selection of
the training data, each tree outputs a prediction of the wind
speed or wind power production. The average of the predic-
tions from all trees then holds as the final prediction for the
RF.

As individual decision trees are prone to overfitting, the
random selection of training data given to the forest of de-
cision trees minimizes this problem. Here we used the boot-
strap aggregated random forest TreeBagger as implemented
in MATLAB 2018a (MathWorks, 2021). To allow the RF to
find patterns in the data and correct the forecast simultane-
ously for all aspects that were possible for the less complex
methods, the full training data set contained the same in-
formation2 that was available to the other methods together
with some additional information such as temperature at hub
height. The complete list of the 19 training features that were
available for the RF is presented in Table 1.

Feature selection can be performed in many different
ways, and there are several studies discussing the best ap-
proach; see, e.g., Kursa and Rudnicki (2010) and Cai et al.
(2018). In order to fully understand the relative importance
of the different training features, we performed feature selec-
tion using a step-by-step optimizing chain. First, the random
forest was trained using all the 19 training features individ-
ually and using standard settings for the random forest (see
below). The training feature that gave the best performance
in terms of MAE skill score for power production for the
optimization period (Fig. 2) was kept. For the second round
in the chain, the remaining 18 training features were tested
in combination with this feature. The process was repeated,
adding the feature that gave the maximum increase in MAE
skill score for each round in the chain, until there was no fur-
ther improvement. This optimal set of training features was
then kept constant as the number of trees in the forest were

2Instead of using the sea level pressure from the 16 grid points
used in the JC method, the derived synoptic vorticity Z (see Ap-
pendix A) was used. Together with information about wind direc-
tion it provides the same information as was used for LWT classifi-
cation.
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Table 1. All training features available for the RF algorithm. In the first column, training features based on the most recent forecast (D1) are
listed, and in the second column, training features based on the forecast from the day before (D2) are listed (see Sect. 3.2.1 for details). The
indices denote the grid points as marked in Fig. 1c. The persistence forecast for wind speed, listed in the third column, was generated using
the lidar observations at 23:00 UTC as described in Sect. 3.2.2. In the fourth column, training features based on index are listed. All forecasts
for wind speed, wind direction and temperature are valid for hub height (90 m).

Based on AROME D1 Based on AROME D2 Based on lidar Based on index

wind speed 1 wind speed 1 persistence wind speed hour of day
wind speed 2 wind speed 2 day of year
wind speed 3 wind speed 3
wind speed 4 wind speed 4
wind direction 1 wind direction 1
temperature 1 temperature 1
Ribulk 1 Ribulk 1
synoptic vorticity (Z) synoptic vorticity (Z)

changed. Forest sizes of 10, 50, 100, 150, 200 and 250 trees
were tested, with 50 trees being the standard selection.

Most ML algorithms have a set of hyperparameters that
are used to control the learning process and adjust the algo-
rithm to the problem. In the case of TreeBagger, the hyper-
parameter minimum leaf size (MLS) refers to the minimum
number of observations per leaf in a decision tree and thus
is inversely related to the number of branch splits in a tree.
The default setting is 5 for regression problems, but MLS of
1 and MLS of 10 to 50 in steps of 5 were also tested. The
response of changing the MLS was tested for the optimal set
of features and the optimal number of trees and was evalu-
ated in terms of MAE skill score for power production for
the optimization period.

The RF was implemented in three different ways.

– Wind speed to wind speed (ws to ws). Using the train-
ing features described in Table 1, the RF was optimized
using the wind speed from the lidar as response data.

– Wind speed to power production (ws to pwr). Using the
training features in Table 1, the RF was optimized using
the calculated power production from the lidar measure-
ments as response data.

– Power production to power production (pwr to pwr).
Converting the wind speed features in Table 1 to power
production, the RF was optimized using the power pro-
duction calculated from the lidar measurements as re-
sponse data.

Out of these three setups, the one with the highest MAE skill
score for the optimization period was then selected for com-
parison with the other post-processing methods.

4 Results

In this section, the general meteorological conditions and
theoretical power production at Utö during the 2 years of

measurements and forecasts are presented, followed by an
overview of the performance of the original and the post-
processed forecasts. Also, the forecast performance in differ-
ent weather situations is presented. For the RF, details about
the optimization of the features and settings in the algorithm
are given.

4.1 Meteorological conditions

An overview of the lidar wind speed at 90 m hub height is
presented in Fig. 3a together with the theoretical power pro-
duction if a SWT-3.6-120 would have been placed at the site
and assuming that the power production was following the
power curve perfectly (Fig. 3b). The monthly average wind
speed was in the range 6.7–12.6 m s−1, with the lower val-
ues during the summer months and the higher wind speeds
during winter. The deterministic forecast error in terms of
CRMSE was somewhat higher during spring and summer
(April–July) for both years. Similarly, the average power pro-
duction reached its peaks during the winter months, with the
largest forecast errors during spring and summer (Fig. 3b).
Also, January 2019 displayed errors of similar size. Note
that the high values of CRMSE (both for wind speed and
power production) for February 2018 might be due to the
small number of data points in this month as there were a lot
of missing observations (see Fig. 2).

The monthly distribution of atmospheric stratification
classes, based on the bulk Richardson number from
the AROME forecast and the classification presented in
Sect. 3.2, is shown in Fig. 4a. Both years were similar, with
stable stratification being the dominant class during spring
and summer (April–July). February, March and August were
transition months, while the rest of the months were mostly
unstable or strongly unstable.

Using the JC method to calculate a reduced set of 11 LWTs
(see Appendix A), the monthly distribution of the synoptic
weather patterns is presented in Fig. 4b. It is clear from the
graphics that anticyclonic (A) and cyclonic (C) weather types
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Figure 3. Overview of hourly data and monthly averages of (a) wind speed and (b) theoretical power production at Utö during the 2 years
of measurements. Also CRMSE for wind speed and power production forecasts from AROME are presented.

Figure 4. Monthly occurrence rate of (a) the boundary layer stratification based on data from the two lowest model levels in AROME
forecasts and (b) the synoptic situation using a reduced set of 11 LWTs during the time period studied.

were dominating together with winds from south to west, but
variations between the months are noticeable. As mentioned
earlier, note that the result for February 2018 is based on a
much smaller number of data points.

The scatter plots for wind speed and power production in
Fig. 5 show that both years were similar. Thus, the first year
was a representative training set that could be used to im-
prove the forecasts for the second year. Although most of the

data points were located close to the 1 : 1 line, it was not un-
common that forecast errors reached 5 m s−1 or more (1.2 %
of the time). For power production, the spread was large for
intermediate wind speeds where the power curve is steep-
est as small errors in forecasted wind speed here get ampli-
fied in forecasted power production. For example, an error
of 0.1 m s−1 at 9 m s−1 would result in a power production
error of 70 kWh. In contrast to this, the forecasts performed
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better in terms of power production for both high and low
wind speeds as expected, since sensitivity to forecast errors
is lower in those ranges.

4.2 Optimizing the RF

The optimization period, see Sect. 3.2, was used to find
the optimal set of training features and settings for the RF
method. Using standard settings for the RF, the training fea-
tures were added one by one in a process described in detail
in Sect. 3.2.6. The features ordered according to their impor-
tance for the MAE skill score for the optimization period are
presented in Table 2. The full set of training features tested
are given in Table 1, and we note that the temperature and
synoptic vorticity Z were not used by any of the three setups.
Also, Table 2 indicates that data from grid point 4 seem to be
the most relevant. The increase in MAE skill score for the
optimization period when the features were added as listed
in Table 2 is presented in Fig. 6a.

Figure 6b shows how the MAE skill score changed with
the number of trees (keeping MLS constant at 5) and Fig. 6c
the response when changing MLS (keeping the number of
trees constant at the value found in Fig. 6b). For the RF
setup “wind speed to wind speed” the optimal settings were
150 trees and an MLS of 5. RF “wind speed to power”
(RF “power to power”) was optimized using 200 (250) trees
and an MLS of 5 (25). The effect of changing the training
length is shown in Fig. 6d, using the 10 most recent days
up to the full training period that was extended by 1 d for
each new 0–23 h forecast, at least including 365 d (forecast-
ing for 1 February 2019) and at the most 729 d (forecasting
for 31 January 2020). As seen in the figure the performance
changed drastically going from 10 to 50 trees but showed
only minor variations for 50–250 trees. Regarding MLS, all
setups indicate lower MAE skill score for an MLS of 1. In-
creasing the MLS from 5 to 50 decreased the performance
for the setup RF “wind speed to power” but was more or less
constant for the other two setups. When it comes to training
length, the more training data, the better the performance of
the RF.

The best performance in terms of MAE skill score for the
optimization period was achieved using RF “wind speed to
wind speed” with the eight features given in Table 2, 150
trees, a MLS of 5 and the maximum training length. This
setup is hereafter referred to only as RF.

4.3 Overall performance of the post-processing
methods

The overall performance for all post-processing methods
tested is shown in Fig. 7. Only the NBH method, smooth-
ing and the RF manage to slightly increase the MAE skill
score, with smoothing giving the skill score of 0.045. The
smoothing method was also the method with the least bias.
Most of the different post-processing methods are clustered

in the Taylor diagram (Fig. 7b), but also here it seems that the
smoothing method and the RF show the best performance, in-
creasing the correlation and decreasing the CRMSE. While
most methods decreased the variability of the forecasts, the
NBH and smoothing methods had the best conformity. It
should also be mentioned that the original forecast was al-
most perfect with regard to variability. Using the D2 deter-
ministic forecast (24–47 h lead time) or the persistence fore-
cast gave negative skill scores and lowered the correlation co-
efficient drastically. However, using the D2 forecast in com-
bination with the D1 forecast (D1 /D2 MIX) might still be an
option, even though the technique to combine the two fore-
casts tested here was not optimal. None of the LR methods
succeeded in improving the forecast.

The frequency distributions in Fig. 8 show forecast im-
provement compared to the original forecast for the different
post-processing methods, compared to the maximum possi-
ble improvement for a perfect forecast. All methods show a
high peak for small changes compared to the original fore-
cast, in most cases with more than 30 % of the time steps
within the ±25 kWh bin. The NBH method alters the origi-
nal forecast the least, with 73 % of the time steps in this bin.

The forecast superiority value answers the question how
often it is better to use the post-processed forecast, counting
only hours with improvement greater than 25 kWh. For a per-
fect forecast these major improvements would occur 69 % of
the time. The RF had the highest forecast superiority score
of 32 % but failed to improve the forecast 28 % of the time.
The smoothing method, which was superior in 28 % of the
cases, was inferior to the original forecast 22 % of the time.
These two methods, together with the NBH method, are the
only methods that managed to improve the forecast more of-
ten than they deteriorated it.

The EMD values presented in Fig. 8 provide information
on the similarity of the distributions to that for the perfect
forecast – the lower the value the more similar the distribu-
tions. As expected from earlier results, the smoothing method
and the RF had the best EMD scores, while the persistence
and the D2 forecasts were furthest away from the optimal
distribution.

For comparison, adding Gaussian distributed noise with an
average of 0 m s−1 and a standard deviation of 0.5 m s−1 to
the original forecast resulted in an EMD value of 372 kWh
and a forecast superiority of 26 %. For this forecast, 42 %
of the data points were within ±25 kWh from the original
forecast, and the MAE skill score was −0.055.

4.4 Forecast performance in different meteorological
conditions

Studying the forecast improvement for different wind speed
bins based on the forecasted wind speed, Fig. 9, we see that
smoothing improved the forecast for almost all wind speeds
while the RF only resulted in improvement for intermedi-
ate wind speeds. This was also the case for the D1 /D2
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Figure 5. Scatter plots of (a) wind speed at hub height and (b) power production comparing the lidar data with the deterministic D1 forecasts
from AROME during the 2 years analyzed. The black line is the 1 : 1 ratio, and the dashed line in red is the best linear fit to the data. The
equation for the best fit is given together with the correlation coefficient (R) and the number of data points (N ). The coloring of the data
points indicate the density of the data with brighter colors representing higher density.

Table 2. Feature appearance in order of selection based on improvement of MAE skill score for the optimization period for the three tested
RF setups.

ws to ws ws to pwr pwr to pwr

1 wind speed 4 D1 wind speed 4 D1 power 4 D1
2 wind speed 1 D2 wind speed 3 D2 power 1 D2
3 wind direction 1 D2 wind direction 1 D2 wind direction 1 D2
4 Ribulk 1 D2 wind speed 3 D1 hour of day
5 hour of day Ribulk 1 D1 Ribulk 1 D1
6 persistence wind speed hour of day power 2 D1
7 wind speed 2 D1 – persistence power
8 day of year – –

MIX. Most methods underestimated the power production
for wind speeds up to 7.5 m s−1 and overestimated the pro-
duction for wind speeds above 10 m s−1 (until the rated wind
speed was reached). The errors were largest for intermedi-
ate wind speeds (Fig. 9b), related to the shape of the power
curve.

No clear pattern was visible when splitting the test data
into hours of the day (not shown), except that the smooth-
ing method gave a major improvement for the first time
step (00:00 UTC) due to interpolation of the observations at
23:00 UTC. The use of observations was also the reason for
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Figure 6. MAE skill score for the optimization period for the three RF setups tested. In panel (a) the improvement of MAE skill score when
training features were added according to the order in Table 2 is shown. Panels (b), (c) and (d) show how the MAE skill score was affected
by changing the number of trees (using the best set of features), the MLS (for the best set of features and optimal number of trees) and the
training length (for optimal selection of features, number of trees and MLS). The optimal setting for each setup is marked in white. Note that
the values for MAE skill score presented here are not directly comparable to the MAE skill scores presented in other figures in this paper as
these are for the optimization and not the test period.

Figure 7. Performance of all post-processing methods during the test period. Panel (a) shows the MAE skill score and bias and panel (b)
the Taylor diagram. The insets in panels (a) and (b) show enlarged portions of the figures to more clearly show the differences between the
methods.

the higher performance of the persistence forecast for this
time step.

The smoothing method managed to improve the forecast
in all stability classes and in all LWTs; see Figs. 10 and 11.
Errors were generally larger for stable cases and lower for
neutral stratification (Fig. 10b). Most methods, as well as
the original forecast, underestimated the power production
for strongly stable and strongly unstable conditions, while
biases were smaller for less strong stratification (Fig. 10a).
The RF performed well for stable and neutral cases but did
not improve the forecast as much for time steps with unstable
stratification (Fig. 10c). Interestingly, the D1 /D2 MIX was
the method that performed best under neutral conditions. Re-
lating to this, it can be noted in Fig. 11c that this method was

superior in the unclassified (weak) flow. It also performed
well in the 2.5–5.0 m s−1 bin (Fig. 9c).

The results for the performance in the different LWTs
are similar to what could be seen in earlier figures with the
smoothing method and RF on top for most synoptic situa-
tions. However, for easterly and northwesterly flow, the RF
method did not improve the forecast. Figure 11c indicates
that the performance of the RF was dependent on the number
of training data in the class (note however that the bars rep-
resent the number of hours per class during the test period,
not the training period). Forecast errors (Fig. 11b) are some-
what smaller for anticyclonic (A) and unclassified (U) flow
and winds from the sector south to northwest (the most com-
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Figure 8. Frequency distributions showing the forecast improvement compared to AROME D1 in kWh for the different methods tested.
The methods are compared to a perfect forecast (white bars), and the EMD values between the two distributions are given. The forecast
superiority (improvements greater than 25 kWh) is presented and also the percentage of the time steps with minor alterations of the original
forecast (changes less than ±25 kWh).

mon wind directions) and slightly higher for pure cyclonic
(C) flow and winds from north to southeast.

LLJs are frequently occurring over the Baltic Sea, and with
wind maxima on low levels they alter the ordinary logarith-
mic or power-law wind profile. When a falloff criterion of
1 m s−1, as defined in Hallgren et al. (2020), was applied
to the wind data on the 11 lowest model levels in AROME
(spanning from approximately 12 to 320 m; see Sect. 2.2),
LLJs were predicted during 13 % of the time in the test pe-
riod. Out of these events, 56 % were correctly forecasted
within the same time step as when an LLJ was identified in
the lidar data using the same criterion. The total frequency
of LLJs is somewhat underestimated by AROME, with the
lidar observing LLJs 16 % of the time in the test period (not
shown).

The RF method performed better than the other post-
processing methods when an LLJ was forecasted but pro-
duced no or negligible improvement when no LLJ; see
Fig. 12. Also the D1 /D2 MIX was successful during LLJs
but deteriorated the forecast quality otherwise. The per-
formance of the temporal smoothing was less sensitive to

whether a LLJ was present in the forecast or not, and it im-
proved the forecast in both cases.

5 Discussion

Even though NWP forecasts for offshore wind power pro-
duction are relatively good compared to forecasts for wind
conditions in complex terrain, there is still room for improve-
ment. The post-processing methods tested in this study are all
commonly used and are implemented as they would be used
operationally and in basic formulations, to allow a clean anal-
ysis of their respective advantages and disadvantages.

The methods tested are all general and could be applied to
longer forecast lead times, to other variables than wind speed
and onshore as well as offshore. However, as most methods
require a substantial amount of training, they are sensitive
to model updates and would need retraining from scratch in
case of a major update that affects the NWP performance
for the variable of interest. For AROME, there was a ma-
jor update in February 2020, which is the reason that we did
not include more recent forecasts. Also, if the observations
are prone to systematic errors or large uncertainties that are
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Figure 9. Performance of the post-processing methods for different wind speed bins. Panel (a) shows the bias, panel (b) the CRMSE and
panel (c) the MAE skill score for the methods with the highest scores together with the distribution of the number of hours forecasted within
each bin during the test period.

not removed or minimized through quality control, there is
a substantial risk of making the forecast worse when apply-
ing the above techniques, as the forecast will be adjusted to
these erroneous values. The D1 /D2 MIX, the NBH method
and smoothing (except for the first time step) are less sensi-
tive to observational errors than the other methods. Further-
more, the training data have to be representative for the con-
ditions at the site, including both seasonality and different
types of synoptic and mesoscale situations. As suggested by
Fig. 6d, at least 6 months of training data are needed for the
RF method, but preferably 1 to 2 years or more. It is likely
that the number of training data needed for the other methods
is similar. However, some methods (such as the smoothing
method) do not require any training data at all.

Even though the methods were only tested for one site, we
believe that the main findings in the study are not site specific
and will generalize to other parts of the Baltic Sea and pos-
sibly also to other (offshore) areas (Foley et al., 2012; Van-
nitsem et al., 2020). Since lidar observations are scarce in
the Baltic Sea, the post-processing methods might as well be
trained using wind speed data from, e.g., a nacelle-mounted
anemometer on an offshore wind turbine. More data in the
test period would open up for a more detailed analysis of
the performance of the post-processing methods, for example

how the methods perform in different wind speed bins given
the LWT. Also, a detailed analysis of the representativeness
of the years analyzed in this study would contribute to assess-
ing the uncertainty in the results. Building on this study, we
suggest for future work to compare the performance of the
different post-processing methods for other offshore (and po-
tentially also onshore) locations as well as testing other NWP
models and using a longer time series of observations and
forecasts. Although the post-processing methods have been
applied to mimic how they could be used in operational fore-
casting, a real-time test of the methods in fully operational
mode would be of interest.

In order to better represent the operational use of the
AROME forecast, the delay of the forecast could be included
in the analysis. In reality, the AROME forecast is available
approximately at 03:00 UTC, and thus forecasts could be
evaluated for 04:00 to 03:00 UTC the following day, using
the same forecast lengths as in our analysis. With observa-
tions available close to real time it is then possible to as-
sess the quality of the first 3 h of the forecast and use this
information in the subsequent correction. All methods can
be implemented on a laptop, and runtime is usually not an is-
sue for small problems (one site, short forecasts). For the RF,
the runtime increases when adding more training features, in-
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Figure 10. Performance of the post-processing methods for different stability classes. Panel (a) shows the bias, panel (b) the CRMSE and
panel (c) the MAE skill score for the methods with the highest scores together with the distribution of the number of hours within each
stability class during the test period.

creasing the number of trees or the training length, or when
decreasing the MLS. The reason for the lower performance
for MLS of 1 (as seen in Fig. 6c) is probably overfitting of
the data, using too many splits of the branches in the decision
trees. More training features could be added to the RF to in-
crease performance, but it is clear from Table 2 that training
features have to be relevant and not contain redundant infor-
mation. Examples of training features that provide additional
information and could be tested are for example turbulent ki-
netic energy and wave parameters.

The chain of adding training features one by one is imple-
mented to provide as much insight as possible into the im-
portance of the individual training features. No more training
features were added when the MAE skill score for the opti-
mization period started to decrease, but this does not guar-
antee an optimal final set of features. For examples of other
ways to arrive at an optimal set of training features, we refer
to Kursa and Rudnicki (2010), Huang et al. (2016), Cai et al.
(2018), and Shi et al. (2018). To perfectly mimic how the RF
could be optimized in a wind power forecasting company, the
optimization period could be selected from the historical data
to be, e.g., the same season, continuously adapting the train-
ing features and the settings in the algorithm to the seasonal
variations.

Although only the RF was tested here, there are many
other possible ML methods that could be applied, and the
promising result for the RF method should be interpreted as
yet another indicator of the great potential benefit of applying
ML methods for post-processing (Vannitsem et al., 2020).

As the wind field offshore is rather homogeneous, dif-
ferences in wind speed at a specific time between grid
points that are close to each other are small, which explains
the small changes to the forecast when applying the NBH
method (Fig. 8). Onshore, where spatial variation is higher,
or if a model with a lower horizontal resolution is used, the
method might still be important to consider (Molinder et al.,
2018). The NBH method smooths the forecast, and just as for
temporal smoothing it decreases the risk of double penalty,
e.g., in cases of wind ramps in connection with a passing
front zone or squall line. The increased skill resulting from
spatial smoothing of a NWP model is well studied, e.g., by
Mass et al. (2002), and also temporal smoothing has been
shown to be beneficial for offshore wind power production
before (Gilbert et al., 2020).

The reduced risk for double penalty is probably also the
reason why the smoothing method performs best when the
air flow is from N or NE (Fig. 11), since winds from those
directions typically are gusty due to the often unstable condi-
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Figure 11. Performance of the post-processing methods for different LWTs. Panel (a) shows the bias, panel (b) the CRMSE and panel (c)
the MAE skill score for the methods with the highest scores together with the distribution of the number of hours within each LWT during
the test period.

tions related to advection of cooler air. However, comparing
different stabilities (Fig. 10) the smoothing method has simi-
lar performance in all categories. It should also be mentioned
that all post-processing methods that apply averaging (that is,
all methods except the LR) reduce the variability in the data
and thus increase the risk of underestimating the occurrence
of extreme conditions.

Comparing diurnal averages of wind power production
data instead of hourly production, the correlation coefficient
increases to 0.97 and the CRMSE decreases to 300 kWh for
the deterministic 0–23 h forecast. Using the post-processing
methods based on hourly data, only the NBH and smooth-
ing methods result in positive MAE skill scores (0.007 and
0.005 respectively). However, the performance of most meth-
ods could probably be improved if diurnal data instead of
hourly data were used for training.

The major improvement for the smoothing method is due
to the interpolation of the observations at 23:00 UTC, as real-
time observations and short interpolations are the best way
to increase forecast improvement for short forecasts. To de-
velop the smoothing function further, a running average with
a longer block length duration could be used, and time steps
within the block could be given different weights.

Applying smoothing directly to the power production fore-
cast (instead of smoothing the wind speed forecast first and
then calculating the production) does not result in a higher
MAE skill score for the test period, even though the corre-
lation coefficient and the CRMSE both slightly improve; see
Fig. 13. Due to the shape of the power curve, error propa-
gation in the wind speed forecast is non-linear, and using the
smoothing method based on the forecasted power is better for
wind speeds around cut-in and the rated wind speed. In the
ranges 2.5–5.0 and 15.0–17.5 m s−1, the MAE skill scores
for the smoothed method based on power production are
0.24 and 0.10 respectively, to be compared with the results
for the smoothing method based on wind speed in Fig. 9.
For the other wind speed bins, smoothing the wind speeds in
the forecast is more beneficial than smoothing the forecasted
power production.

The synoptic classification using LWTs is beneficial com-
pared to other synoptic classification methods as it simplifies
the meteorological reasoning and understanding of the fore-
cast behavior for different classes. One drawback with LWTs
is, however, that it is less strict from a mathematical perspec-
tive than for example principal component analysis (PCA)
(Huth et al., 2008). Also, the JC method has a tendency to
classify the synoptic situation as anticyclonic or cyclonic too

https://doi.org/10.5194/wes-6-1205-2021 Wind Energ. Sci., 6, 1205–1226, 2021



1220 C. Hallgren et al.: A comparison of post-processing methods for offshore wind power forecasts

Figure 12. Performance of the post-processing methods for cases when an LLJ is forecasted compared to when there is no LLJ in the wind
profile. Panel (a) shows the bias, panel (b) the CRMSE and panel (c) the MAE skill score for the methods with the highest scores together
with the distribution of the number of hours with or without an LLJ in the forecast during the test period.

often, and hybrid classes and pure directional flow are less
common. To get a sufficient number of data in each class, we
used the reduced set of 11 LWTs instead of the original 27
classes (Demuzere et al., 2009). As a consequence of this, the
variability of the pressure field within a class is quite large.

The D1 /D2 MIX combines the D1 and D2 forecasts us-
ing a mix of approximately 60 % of the data from the new
forecast and 40 % from the old. Only forecasts issued at
00:00 UTC have been used in this study, but the method is
general and directly applicable to all earlier forecasts that
overlap in lead times.

It is well known that NWP models struggle with resolv-
ing strongly stable stratification (Holtslag et al., 2013; Sandu
et al., 2013). This can also be seen in Fig. 10b where this sta-
bility class has the highest CRMSE. Improving data assim-
ilation and schemes for turbulent mixing under these con-
ditions are key to improve the forecasts (Reen and Stauf-
fer, 2010; Wilczak et al., 2015) and would be beneficial
for the representation of, e.g., low-level jets and the extent
of turbine wakes. It is a promising result that some of the
post-processing methods tested, primarily smoothing and RF,
managed to improve the forecasts under these conditions.

The result in Fig. 4a was expected, as Utö is a pure off-
shore location in the AROME model (Fig. 1c) and stable
(unstable) stratification is known to be dominant in spring
and summer (fall and winter) (Svensson et al., 2016). How-
ever, in contrast to these results, using tower data from Utö
and calculating the stability for the 2–50 m layer, the stabil-

ity varies with a pattern typical for boundary layers over land
with a clear diurnal cycle during the summer months (sta-
ble during night and unstable during day) and mostly stable
conditions during winter (results not shown). Even though
the horizontal resolution in the model is high, many islands
in the Finnish archipelago (such as Utö) are not resolved by
the model as illustrated by the land–sea mask presented in
Fig. 1b, and the issue with the stability is most probably a
consequence of this.

As the RF and smoothing are the methods with the best
general performance (Fig. 7) it might be interesting to com-
bine the two methods to see if this would further improve
the forecast. This can be performed in two ways: either the
RF is run as before and the resulting forecast is smoothed or
the training features are smoothed before the RF is applied.
Both these methods were tested, and the result is presented
in Fig. 13. For the RF only the wind speed training features
for D1 and D2 for the four grid points (see Table 1) were
smoothed. The RF was optimized in the same manner as de-
scribed in Sect. 3.2.6.

Figure 13 shows that none of the two setups managed to
perform better than the smoothed forecast presented before.
Still, smoothing the RF gave an improvement over the origi-
nal RF method. It can also be seen that smoothing the train-
ing features for the RF improved the performance, but not as
much as when applying smoothing afterwards. This is prob-
ably due to the fact that smoothing decreased the variability
in the training data too much. The features selected in the op-
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Figure 13. Performance of the RF with applied smoothing and the RF with smoothed features. Also the performance of the combined
forecast using D1 /D2 MIX (during weak synoptic forcing), RF (during LLJs) and smoothing otherwise is plotted. The result of adjusting
the combined forecast using smoothing based on power production for wind speeds around cut-in and the rated wind speed is also plotted. In
panel (a) the MAE skill score and bias is presented and in panel (b) the Taylor diagram. To simplify comparisons, the original deterministic
forecast from AROME and the results for the smoothing and RF methods presented earlier are included. The inset in panel (b) shows an
enlarged portion of the figure to more clearly show the differences between the methods.

timization procedure turned out to be the same as for the RF
“wind speed to wind speed” setup (Table 2) with the excep-
tion of the final feature, which wasZ for D2 instead of persis-
tence. Since influence from the 23:00 UTC observation was
embedded in the smoothed training features, it is reasonable
that the persistence forecast was of secondary importance for
this RF setup.

Assuming that we would have known in advance that the
RF was the best selection in case of an LLJ (Fig. 12), that
the D1 /D2 MIX excelled during weak synoptic flow (U)
(Fig. 11) and that smoothing was the best method in gen-
eral (Fig. 7), we could have combined these methods accord-
ingly. The result is presented in Fig. 13. Since the combi-
nation of methods is based on how well the methods per-
formed for data in the test period and was then evaluated for
the same period, we know that this will improve the MAE
skill score but not by how much. To properly investigate the
effect of the combined forecast, an independent test period
is needed. Thus, the result in Fig. 13 can only be seen as
an indicator of to what degree this combined method could
have improved the forecast. The change in the MAE skill
score is noticeable. Using the smoothing method based on
power production for wind speeds forecasted in the ranges
2.5–5.0 and 15.0–17.5 m s−1 resulted in an additional minor
improvement of the MAE skill score. For comparison with
the results in Fig. 8, this combined forecast resulted in an
EMD value of 331 kWh compared to a perfect forecast and
was superior to the AROME D1 forecast 31 % of the time. A
more detailed investigation of the wind speed ranges where
the smoothing method based on power production is better
than the original smoothing and adjustment of the wind speed

ranges when it is applied would likely result in further im-
provement of the final forecast.

6 Conclusions

Six commonly used post-processing methods were applied to
the 0–23 h AROME forecasts for wind speed at an offshore
location in the Baltic Sea and evaluated in terms of perfor-
mance in forecasting power production during 1 year.

Applying smoothing to the forecast or using a RF algo-
rithm were the most promising methods to improve the fore-
cast, with the best performance in MAE skill score, high-
est correlation and lowest CRMSE. The smoothing method
performed slightly better than the RF and had a lower bias.
Combining the two techniques by smoothing the RF forecast
or by smoothing the training features before applying the RF
algorithm improved the performance of the RF but did not
surpass the original smoothing method.

Even though the smoothing and RF methods improved the
forecast for approximately 30 % of the time, almost equally
often the methods deteriorated the forecast. For 40 %–50 %
of the time, the changes compared to the original forecast are
small, and in terms of forecast superiority and EMD the per-
formance is only slightly better than what could be achieved
by chance. However, the MAE skill score for the forecast
with added noise is lower than for the smoothing method and
RF.

The major improvement for the smoothing method is for
the first time step of the forecast as interpolation of the
23:00 UTC observation was used. Both the smoothing and
the RF worked well for intermediate wind speeds, but for
the RF both lower and higher wind speeds were problem-
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atic. Smoothing improved the forecast in all stability classes,
while the RF mainly improved the forecast in stable and
neutral stratification. Similarly, smoothing increased the per-
formance for all synoptic situations, while the RF struggled
primarily with easterly winds, probably because the number
of training data for these situations was inadequate. RF im-
proved the forecast substantially when a LLJ was forecasted
but gave almost no improvement otherwise.

Among the other methods tested, the D1 /D2 MIX, us-
ing a combination of the new forecast and the forecast from
the previous day, resulted in improvement under some con-
ditions but mainly when the synoptic flow was weak and/or
neutral stratification. The best MAE skill score was achieved
using smoothing and switching to RF in case of a LLJ and
to D1 /D2 MIX during weak synoptic forcing (and no LLJ).
Further, if smoothing applied to the forecasted power produc-
tion (instead of the wind speed) was used in the combined
method for wind speeds in the ranges 2.5–5.0 and 15.0–
17.5 m s−1, an additional small improvement of the MAE
skill score was achieved.

As the forecasted wind speeds for neighboring grid points
offshore are similar in a high-resolution NWP model, com-
bining nearby grid points in a NBH method gave only minor
changes compared to using the forecast from the closest grid
point. Applying LR to improve the forecast was in general
not a successful method.

The different post-processing methods applied in this
study are all general and can be applied to any NWP model,
any parameter and any forecast length offshore as well as
onshore. For further studies, we suggest comparing state-of-
the-art ML methods in combination with nudging techniques
to include real-time observations in the forecasts. Different
methods to smooth the forecast or the training features for
ML should be investigated. Also, an overview of different
methods to improve probabilistic forecasts for offshore wind
energy in the Baltic Sea would be of interest to the commu-
nity.

Wind Energ. Sci., 6, 1205–1226, 2021 https://doi.org/10.5194/wes-6-1205-2021
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Appendix A

Using only the instantaneous sea level pressure from 16 grid
points, Jenkinson and Collison (1977) constructed an ob-
jective method to calculate the LWT valid for a focus area
(Fig. 1a). In total there are 27 different LWTs (Lamb, 1972):
anticyclonic (A), unclassified/weak flow (U), 8 types of di-
rectional flow (N/NE/E/SE/S/SW/W/NW) and 16 types of
hybrid flow (anticyclonic or cyclonic with a component of
directional flow). The 27 classes can be reduced to 11 by
treating all the hybrid flow classes according to their direc-
tional component, following Demuzere et al. (2009).

The first step in the procedure to obtain the LWTs is to cal-
culate the sea level pressure deviations from 1000 hPa at the
grid points (Jenkinson and Collison, 1977). The zonal (west-
erly) and meridional (southerly) flow can then be calculated
as

W =
1
2

(12+ 13)−
1
2

(4+ 5) (A1)

and

S =
1

cosψ

(
1
4

(5+ 2 · 9+ 13)−
1
4

(4+ 2 · 8+ 12)
)

(A2)

respectively. The bold numbers in the formulas indicate the
sea level pressure deviations (in hPa) at their respective grid
point (see Fig. 1a), following the notation in Jenkinson and
Collison (1977). The variable ψ is the latitude of the center
line for the focus area where the LWT classification is valid.
In this study we used ψ = 63◦, resulting in the focus area
marked in Fig. 1a. The reason for Utö not being in the center
of the focus area is due to the domain size of AROME.

The resultant wind speed (in geostrophic units) is calcu-
lated as

ws=
√
W 2+ S2, (A3)

and the wind direction is given by

wd= tan−1 (W/S) , (A4)

with an addition of 180◦ if W is positive (Jones et al., 2012).
Using an eight-point compass rose (45◦ per sector) the wind
direction is classified.

The westerly and southerly components of the shear vor-
ticity (in geostrophic units) are

ZW =
sinψ

sin(ψ − 5)

(
1
2

(15+ 16)−
1
2

(8+ 9)
)

−
sinψ

sin(ψ + 5)

(
1
2

(8+ 9)−
1
2

(1+ 2)
)

(A5)

and

ZS =
1

2cos2ψ

(
1
4

(6+ 2 · 10+ 14)

−
1
4

(5+ 2 · 9+ 13)−
1
4

(4+ 2 · 8+ 12)

+
1
4

(3+ 2 · 7+ 11)
)

(A6)

respectively, and the total shear vorticity for the focus area
can then be calculated as

Z = ZW +ZS. (A7)

Based on these variables, the synoptic situation can be
uniquely classified as one of the 27 LWTs following this
scheme of conditions (Jones et al., 2012):

1. If ws< 6 and |Z|< 6: weak flow (unclassified); LWT
is U.

2. Else, if |Z| ≤ ws: directional flow; LWT is
N/NE/E/SE/S/SW/W/NW.

3. Else, if |Z|> ws and |Z|< 2 ·ws: hybrid flow that is
either cyclonic (if Z > 0, LWT is, e.g., CSE) or anticy-
clonic (if Z < 0, LWT is, e.g., ASE).

4. Else, if |Z| ≥ 2 ·ws: the LWT is either cyclonic (C) if
Z > 0 or anticyclonic (A) if Z < 0.

Appendix B: List of acronyms and abbreviations

AROME Applications of Research to Operations at
Mesoscale

CRMSE Centered root mean square error
D1 /D2 0–23 and 24–47 h forecasts
EMD Earth mover’s distance
JC Jenkinson and Collison
LLJ Low-level jet
Lidar Light detection and ranging
LR Linear regression
LWT Lamb weather type
NBH Neighborhood
NWP Numerical weather prediction
MAE Mean absolute error
ML Machine learning
MLS Minimum leaf size
PCHIP Piece-wise cubic Hermite interpolating

polynomial
RF Random forest
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Schmeits, M., Taillardat, M., van den Bergh, J., van Schaey-
broeck, B., Whan, K., and Ylhaisi, J.: Statistical postpro-
cessing for weather forecasts–review, challenges and avenues
in a big data world, B. Am. Meteorol. Soc., 102, 681–699,
https://doi.org/10.1175/BAMS-D-19-0308.1, 2020.

Vassallo, D., Krishnamurthy, R., Sherman, T., and Fernando,
H. J.: Analysis of Random Forest Modeling Strategies for
Multi-Step Wind Speed Forecasting, Energies, 13, 5488,
https://doi.org/10.3390/en13205488, 2020.

Wilczak, J., Finley, C., Freedman, J., Cline, J., Bianco, L., Ol-
son, J., Djalalova, I.,Sheridan, L., Ahlstrom, M., Manobianco,
J., Zack, J., Carley, J. R., Benjamin, S., Coulter, R., Berg, L. K.,
Mirocha, J., Clawson, K., Natenberg, E., and Marquis, M.: The
Wind Forecast Improvement Project (WFIP): A public–private
partnership addressing wind energy forecast needs, B. Am. Me-
teorol. Soc., 96, 1699–1718, https://doi.org/10.1175/BAMS-D-
14-00107.1, 2015.

Wu, L., Shao, M., and Sahlée, E.: Impact of Air–Wave–
Sea Coupling on the Simulation of Offshore Wind
and Wave Energy Potentials, Atmosphere, 11, 327,
https://doi.org/10.3390/atmos11040327, 2020.

Wind Energ. Sci., 6, 1205–1226, 2021 https://doi.org/10.5194/wes-6-1205-2021

https://doi.org/10.1109/NAPS.2010.5619586
https://doi.org/10.3402/tellusa.v66.24041
https://swedishwindenergy.com/wp-content/uploads/2019/10/Svensk_Vindenergi_ROADMAP_2040_rev_ENG-1.pdf
https://swedishwindenergy.com/wp-content/uploads/2019/10/Svensk_Vindenergi_ROADMAP_2040_rev_ENG-1.pdf
https://doi.org/10.1016/j.renene.2007.11.005
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1007/978-3-319-31858-5_2
https://doi.org/10.1175/JAMC-D-16-0411.1
https://doi.org/10.5194/amt-12-839-2019
https://doi.org/10.1175/BAMS-D-19-0308.1
https://doi.org/10.3390/en13205488
https://doi.org/10.1175/BAMS-D-14-00107.1
https://doi.org/10.1175/BAMS-D-14-00107.1
https://doi.org/10.3390/atmos11040327

	Abstract
	Introduction
	Materials
	Lidar measurements at Utö
	AROME forecasts
	Power curve

	Evaluation metrics and methods for post-processing
	Evaluation metrics
	Methods for post-processing
	Forecast from yesterday (D1/D2 MIX)
	Persistence forecast (Pers)
	Neighborhood method (NBH)
	Temporal smoothing (Smooth)
	Linear regression (LR) methods
	Random forest (RF)


	Results
	Meteorological conditions
	Optimizing the RF
	Overall performance of the post-processing methods
	Forecast performance in different meteorological conditions

	Discussion
	Conclusions
	Appendix A
	Appendix B: List of acronyms and abbreviations
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

