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Abstract. One of the main factors contributing to wind power forecast inaccuracies is the occurrence of large
changes in wind power output over a short amount of time, also called “ramp events”. In this paper, we assess the
behaviour and causality of 1183 ramp events at a large wind farm site located in Victoria (southeast Australia).
We address the relative importance of primary engineering and meteorological processes inducing ramps through
an automatic ramp categorisation scheme. Ramp features such as ramp amplitude, shape, diurnal cycle and
seasonality are further discussed, and several case studies are presented. It is shown that ramps at the study site
are mostly associated with frontal activity (46 %) and that wind power fluctuations tend to plateau before and
after the ramps. The research further demonstrates the wide range of temporal scales and behaviours inherent to

intra-hourly wind power ramps at the wind farm scale.

1 Introduction

Environmental protection and sustainability have become the
main incentives to integrate more green energy sources into
electrical systems. Numerous countries are currently mov-
ing towards greener energy production sources to achieve
the Paris Agreement’s goal to keep global warming below
+2° by 2100 (UNFCCC, 2015). Since the early 2000s, wind
energy has gained significant traction and is currently the
fastest-growing mode of electricity production across the
globe (EIA, 2019), with up to 51.3 GW of wind power ca-
pacity installed worldwide in the year 2018 alone (GWEC,
2019). In emerging markets such as Australia, Canada and
the United States, newly built wind farms are installed in
large blocks, often exceeding 400 MW (Kariniotakis, 2017).
With ever-growing wind penetration in the grid, electricity
networks are increasingly subject to fluctuations in power
production. These fluctuations are called “ramp events”, re-
ferring to the sudden variations in wind power generation
over a short period of time. Motivated by the need to enhance
management of such events as well as by optimising inte-
gration and control of wind farms, there is currently a great
incentive to develop accurate and timely short-term (intra-

hourly) ramp forecasts (Zhang et al., 2017; Cui et al., 2015;
Gallego et al., 2015a).

Sharp increases (“ramp-up”) or decreases (“ramp-down’)
in wind power generation over a short period of time give
rise to both financial and physical impacts. First, wind power
ramps are a risk to electric system stability and their mis-
management can have dramatic consequences, such as power
outages (Tayal, 2017; Trombe et al., 2012). These can be par-
ticularly detrimental to electrical networks located in areas
with a low degree of inter-connectivity (i.e. remote regions
or islands), where significant power variations are not easily
balanced (van Kooten, 2010; Treinish and Treinish, 2013).
Both ramp-ups and ramp-downs can exhibit diverse levels of
severity (i.e. likelihood to cause disturbances) according to
the time and geographic scale over which the ramp occurs
(Zhang et al., 2014). However, ramp-downs are generally
considered more likely to impact grid system stability due to
the limited availability of reserve power (Zhang et al., 2017;
Jgrgensen and Mohrlen, 2008). Additionally, wind farms are
often curtailed during ramp-ups as electricity surplus cannot
be dispatched, which represents loss of potential profits for
wind farm owners. In many cases, wind farm owners also
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have to cover additional costs when they are unable to meet
specific loads and quotas.

Improved ramp prediction can help mitigate the issues
listed above. However, wind power ramps are particularly
challenging to predict. This is partly due to the wide variety
of timescales over which they occur, ranging from a few min-
utes up to several hours (Worsnop et al., 2018). At the wind
farm scale, numerical weather prediction models struggle
with forecasting wind power fluctuations occurring within
an hour and often fail to predict accurately the timing and
the amplitude of the ramps (Zack et al., 2011; Magerman,
2014). In practice, the vast majority of operational short-term
wind forecasts rely primarily on variations of the persistence
method (or “naive predictor”) (Wurth et al., 2018), which
assumes that there will be no variation between the current
conditions and the conditions at the time of the forecast. Per-
sistence forecasts inherently tend to perform poorly during
ramp events.

Wind power ramps are usually characterised by their mag-
nitude A P, duration At, rate A P/At, timing fy (central time
or starting time of the event) and gradient (ramp-up or ramp-
down) (Sherry and Rival, 2015; Lange et al., 2010; Ferreira
et al., 2010). However, defining a ramp event is a non-trivial
task. In fact, there is currently no commonly agreed upon
definition for a wind power ramp (Gallego et al., 2015a;
Mishra et al., 2017) as its interpretation can vary substan-
tially between applications (Wurth et al., 2019; Cutler et al.,
2007; Bradford et al., 2010; Greaves et al., 2009). In addi-
tion, some operators may need to evaluate the likelihood of
ramps occurring based on various definitions simultaneously
(Bianco et al., 2016). Many wind power ramp studies em-
ploy a binary, threshold-crossing identification system. How-
ever, these binary identification systems are limited by the
high sensitivity of the definition to the adopted threshold.
Furthermore, it implies all ramps are identical and does not
provide further insights into their severity. To alleviate these
shortcomings, the so-called “ramp functions” have been in-
troduced, which provide an estimation of the ramp intensity
at each time step. Gallego et al. (2013, 2014) first introduced
aramp function based on a continuous wavelet transform (the
“Haar” wavelet) of a wind power time series, and Martinez-
Arellano et al. (2014) proposed a ramp function based on
a fuzzy-logic approach to characterise ramps for the day-
ahead market. More recently, a continuous wavelet transform
(CWT) based on a Gaussian wavelet was used by Hannesdot-
tir and Kelly (2019).

A precursor to successful ramp predictions is a sound
understanding of the conditions under which ramps occur
(Couto et al., 2015). Identifying the temporal and spatial
scales pertaining to ramps also provides valuable insights
into the limits of numerical weather prediction models and
associated uncertainties (Gallego et al., 2015a). Nonetheless,
ramping behaviour analysis is a relatively new research field
and very little is known about the main processes induc-
ing ramps (Mishra et al., 2017). In Cutler (2009), approxi-
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mately 40 % of the ramps observed at three Australian wind
farms were associated with frontal systems, while neighbour-
ing high- and low-pressure systems and troughs accounted
for 35 % of the ramps. In Jgrgensen and Mohrlen (2008) and
Sherry and Rival (2015), the authors observed a strong cor-
relation between ramp events and chinook (fohn) wind days,
emphasising the importance of local meteorological events
in forming ramps. Deppe et al. (2012) found the presence
of low-level jets was the primary driver of ramps at a site
located in Pomeroy (IA, USA). Other studies in central Eu-
rope have shown that most critical ramps arise from extreme
weather events such as cyclones (Steiner et al., 2017; Lacerda
et al., 2017). These findings suggest a relatively high degree
of association between ramping behaviour and large-scale at-
mospheric circulation processes, emphasising the great po-
tential to use synoptic-scale forecasts and operational de-
cision tools to support power systems with a high degree
of wind penetration. Although discussed in multiple studies
(Deppe et al., 2012; Ferreira et al., 2012; Freedman et al.,
2008; Kamath, 2010; Sherry and Rival, 2015), there is no
consensus in the literature on seasonal and diurnal ramp pat-
terns, underlining the influence of local features on ramping
behaviour. In summary, we see that the expected main drivers
of ramps can vary significantly according to geographic lo-
cation and that site-specific conditions such as terrain rough-
ness, orography and air—sea—land interactions play a critical
role in inducing ramps at the wind farm scale.

As pointed out by Cutler et al. (2007), Gallego et al.
(2013); Gallego et al. (2015b) and Mishra et al. (2017), ro-
bust ramp classifications are still currently needed owing to
the emerging nature of the subject. Review of the literature
revealed that while studies assessing the causality of wind
power ramps exist, these focus mostly on a limited number
of critical events rather than on more frequent fluctuations.
The lack of clear identification criteria prevents the imple-
mentation of automatic classification schemes and hence pre-
cludes tracing the causality of more common (less severe)
ramps. Hence, it is of both scientific and practical interest to
develop automatic schemes for (intra-hourly) ramp categori-
sation. This study aims at characterising intra-hourly wind
power ramps and their underlying processes at the wind farm
scale through such an approach. The paper is organised as
follows. The methodology to detect ramps and extract rel-
evant features, as well as to categorise ramps according to
their underlying processes, is established in Sect. 2. Sec-
tion 3.1 provides details on the main ramp features at the
study site. Section 3.2 addresses the underlying meteorolog-
ical and engineering causes of ramps, and ramp shapes are
discussed in Sect. 3.3. For illustrative purposes, characteristic
case studies are presented in Sect. 3.4. Finally, conclusions
and a discussion of future works are presented in Sect. 4.
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2 Methodology

2.1 Data

Data were collected at the Mount Mercer wind farm (“the
site””) in Western Victoria (southeastern Australia). The site
is comprised of a 2650ha area of moderately complex
topography. The prevailing wind direction at the site is
north-northwest, with occasional westerly and southeasterly
winds. A total of 64 identical doubly fed induction genera-
tor wind turbines manufactured by Senvion (model MM92)
of 2.05 MW nominal rated capacity are installed on-site, cor-
responding to a total installed capacity of 131.2 MW. The
power curve characteristic of the wind turbines is presented
in Fig. 1. The wind turbines are expected to reach their rated
capacity for wind speed above 11 ms™!. The cut-in speed of
the wind turbines is 3ms~!.

All data analysed as part of this study were collected be-
tween 1 October 2016 and 1 March 2019. Power data con-
sist of 1 min averaged total power generation of the wind
park. Outliers and periods of abnormal operation were fil-
tered out of the power generation time series. Wind data col-
lected at the site as part of this assessment include 1s res-
olution (1 Hz) wind speed and wind direction measurement.
Wind data originate from two 80 m high meteorological tow-
ers (“met masts”), MM1 and MM2, each of them compris-
ing two cup anemometers installed at 78 and 80 m above
ground level (a.g.l.) and two wind vanes installed at 35 and
76 ma.g.l. Likewise, pressure, temperature, and relative hu-
midity data are collected on both met masts at 76 ma.g.1. The
density of moist air is derived from these measurements us-
ing the ideal gas law and Dalton’s law of partial pressures.
MMI1 and MM2 are located in the northwest and southeast
corner of the site, respectively. Figure 2 shows the layout of
the wind farm along with the location of the turbines and met
masts.

The area surrounding each met mast contains several tur-
bines that have been considered according to the standard
IEC (2005). The resulting sector free of wake effect is [290°,
110°] for MM1 (measured clockwise from true north) and
[79°, 259°] for MM2, and all wind data from sectors outside
these ranges were removed from the data set (the valid data
from the two met masts are combined to create an almost
complete circle).

As no rain gauge was installed on-site at the time of the
study, precipitation data required for the ramp classification
scheme were collected from the Australian Bureau of Me-
teorology Sheoaks weather station (BOM, 2020a), located
approximately 25 km southeast of the site (lat —37.910000,
long 144.130000). We note here that precipitation measure-
ments from the meteorological station do not necessarily re-
flect on-site conditions, especially for rain events with short
spatial and temporal scales. As a result, using off-site data
to characterise on-site conditions can, in some cases, be ill-
founded. This is flagged as a limitation of the study and taken
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into account in the design of the ramp classification scheme
(see Sect. 2.3).

2.2 Ramp function

Ramps typically correspond to sudden localised changes in a
wind power time series. It is possible to characterise ramps
based on the notion that ramps occur when a specific large
gradient is maintained during successive time steps in a wind
power time series through so-called ramp functions. The
main focus of ramp functions is to provide an estimation of
the intensity of the ramp at each time step of a wind power
time series.

Wavelet analysis has shown to be a powerful tool to study
variations in local averages (Percival and Walden, 2000).
CWT has been used in the wind energy space to charac-
terise wind power ramps (Gallego et al., 2013, 2014) and
wind speed ramps (Hannesdéttir and Kelly, 2019). The con-
tinuous wavelet transform (CWT) enables decomposition of
a time—amplitude signal in the time—frequency domain and
hence provides information on the timing ¢’ and the scale
y of particular events. Briefly stated, the CWT is obtained
by computing the product between a signal p; and a mother
wavelet W(¢) which has been transformed through shifting
and stretching operations:

, 1T t—1t
4 Y

where W, values are the wavelet transform coefficients,
which are functions of the scale dilatation y and time shift
t.

In the context of this study, a ramp function following
the procedure outlined by Gallego et al. (2013) was imple-
mented. For the sake of completeness, the methods and equa-
tions as per Gallego et al. (2013) are presented in the remain-
der of this section. The approach is based on the CWT of
the Haar wavelet to provide an estimation of the ramp in-
tensity at each time step. Amongst the numerous existing
wavelet forms, the Haar wavelet was chosen for the adopted
methodology because of its capacity to quantify the gradient
of a signal at various timescales (Percival and Walden, 2000).
The coefficients resulting from the CWT based on the Haar
wavelet transform of a wind power time series p; are denoted
Wy (¢, y) and expressed by

%- (Z;j{/zpﬁ-i—l - Zﬁ-j/zpt_i)
if y is even,
Wy, y) = | | 2)
%- (Z;jyil)/zpwri - Z;z(lyil)/zptfi)
if y is odd.
Note that the coefficients described in Eq. (2) are derived
from the additive inverse of the conventional Haar wavelet
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Figure 1. Manufacturer’s power curve of on-site turbines (Senvion
MM92).
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Image © 2020 CNES / Alrbus

Figure 2. Layout of the Mount Mercer wind farm (background map
data: © Google Earth, CNES/Airbus). The location of the 64 tur-
bines and the 2 met masts are designated by the red and blue mark-
ers, respectively.
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(obtained by changing the sign of the mother wavelet). This
was done so as to obtain coefficients whose signs are equal to
the sign of the gradient experienced by the time series. The
ramp function R; is then defined as the sum of each CWT
coefficient calculated for the scale interval [y, yn]:

Vi
Ri=) W,. 3)
y=vi
The ramp function (or “ramp score”) is considered a re-
flection of the ramp intensity as the contribution to the gra-
dient is assessed for different scales at each time step. The
ramp function defined by Eq. (3) can be normalised by its
maximum absolute value to generate the normalised ramp
function Rporm ¢, Which is between 1 (the strongest ramp-up)
and —1 (the strongest ramp-down).

2.3 Ramp detection and characterisation

First, a wavelet-based ramp function (Gallego et al., 2013)
is computed to quantify the ramp performance (or “score”)
at each time step of the time series. The ramp function is
computed on the time series using a scale range [y1, yny] of
[2,60], therefore primarily targeting ramps occurring over
a maximum time window of 60 min (intra-hourly ramps).
Times ¢’ of the most significant ramps are identified by se-
lecting the 1% of events associated with the strongest ab-
solute ramp intensity (i.e. times associated with the high-
est ramp scores). The maximum wavelet coefficient at the
timing of the ramp determines the timescale y (or “scale”)
of the ramp. The approach which consists of identifying
ramps’ timescales based on the maximum wavelet coefficient
was first implemented in a study by Hannesdéttir and Kelly
(2019), in which ramps in wind speed are studied. The subset
of the wind power time series of length y and centred on ¢’
will henceforth be referred to as “the ramp”.

Finally, two ramp features, namely the ramp amplitude
and the rise time, are retrieved. The ramp amplitude, denoted
AP, is defined as the maximum power variation over the sub-
set length y centred on ¢'. The rise time hereafter refers to the
elapsed time between the lowest and highest power level dur-
ing the ramp.

Figure 3 illustrates the decomposition of a wind power
generation time series into its wavelet coefficients. The thick-
ened red line on Fig. 3a represents the ramp of the scale
y = 20min, and the vertical and horizontal arrows indicate
the amplitude (65 MW) and the rise time (11 min), respec-
tively. The red dot on Fig. 3b displays the highest absolute
coefficient value at the timing of the ramp, which corre-
sponds to a scale ¥ of 20 min. Note that the longest ramp
scale to be identified through this method is 60 min since the
ramp function is calculated with an upper scale range limit
Ymax Of 60.

In order to avoid ramp over-identification (i.e. identifying
variations of the same event multiple times), ramps associ-
ated with a lower score occurring within the scale range of
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Figure 3. (a) Power generation time series surrounding ramp rank
ID number 5 and (b) coefficients of its continuous wavelet trans-
form based on the Haar wavelet. The ramp timing (central point of
the ramp) is on 27 December 2017 at 20:19 UTC+10. The thick-
ened red line in (a) represents the ramp, whose amplitude AP is
65 MW and rise time AT is 11 min. The red dot in (b) indicates the
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Figure 4. Frequency distribution of turbulence intensity at
the Mount Mercer wind farm between 1 October 2016 and
1 March 2019.

a more significant ramp are discarded. Based on the method-
ology above, a total of 1183 ramps are identified in the 29-
month period.

2.4 Ramp categorisation

In this section, we present the automatic scheme developed to
classify ramps according to their underlying causes. While it
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is expected that processes associated with ramps will present
common structural features, their realisations are, in essence,
unique and might involve a range of factors. Therefore, the
goal here is to identify the most likely ramp driver as opposed
to capturing every possible scenario that could have resulted
in a ramp. The method is designed to automate ramp classifi-
cation based on easily accessible data. The data set of ramps
to be classified excludes ramps occurring during periods of
environmental-sensor failure, identified by constant readings.
The filtering process effectively removed eight ramps from
the original data set. For the sake of clarity, a decision tree
used to diagnose ramp driver categories is summarised in
Fig. 5. Based on the review of the literature on ramp drivers,
we established criteria to classify ramps into six categories.
The criteria are as follows (by order of priority).

— Passage of a front. Weather fronts are caused by abrupt
changes in air mass and are often associated with strong
low-altitude winds, precipitation and a shift in wind di-
rection. Such macro-scale meteorological processes of-
ten incur large wind power generation fluctuations (in-
crease caused by the passage of the front and decrease
caused by the pre-frontal lull or post-frontal relax-
ation). The criterion to identify fronts is adapted from
the Melbourne Frontal Tracking Scheme (Simmonds
et al., 2012), initially developed to explore cold-front
behaviour in the Southern Hemisphere from reanalysis
data. The method was selected by the authors amongst
numerous objective algorithms due to its ability to iden-
tify fronts in the Southern Hemisphere with remarkable
accuracy while preserving a straightforward, easily un-
derstandable scheme. The front identification scheme
is summarised as follows: (1) the sign of the merid-
ional component of the wind (v) changes from posi-
tive to negative over successive time points [7, (¢ + 6h)]
(i.e. the wind direction shifts from the southwest to the
northwest quadrant), and (2) the amplitude change in
the meridional wind component is larger than 2ms™!
over the same 6 h interval. As the method was originally
developed for the ERA-Interim reanalysis (Dee et al.,
2011) on a 1.5° latitude-longitude (approx. 160km)
grid, the objective function was further adapted to pro-
cess data from discrete spatial points by applying a 4 h
moving-average filter to the wind data time series. The
use of such an averaging window is justified by the fact
that spatial averaging over a 160 km grid is somewhat
equivalent to temporal averaging over approximately
4 h, assuming an average wind speed during ramps of
11ms~!. Additionally, computing the adapted front de-
tection algorithm using a 4h averaging window pro-
vided high agreement with front identification through
inspection of mean sea-level pressure (MSLP) charts.
In short, the objective scheme for ramps associated with
frontal passages is a wind shift from the southwest to the
northwest quadrant combined with a change in merid-
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ional wind greater than 2ms~! when comparing wind
conditions with a 4h moving average 3 h before and
after the ramp timing. The reader interested in imple-
menting a similar automatic front scheme targeting the
Northern Hemisphere is referred to Bitsa et al. (2019).

— Post-frontal activity. To capture the strongly variable
wind conditions following the passage of a front, where
cold-air outbreaks and cellular convection often domi-
nate the flow fields, ramps occurring within 12 h of the
passage of a cold front but not related to the front itself
were labelled as post-frontal driven. The adapted front
identification scheme introduced above was applied to
the entire wind time series with an hourly time step. If
more than one front was detected over successive time
steps, the most likely front timing was selected with the
local maximum of the cumulative sum over a 6h win-
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dow. A total of 394 fronts were identified following this
methodology, which corresponds to a front occurring
approximately 2 % of the time within the time series.

Non-frontal precipitation. Precipitation not associated
with a front can also induce wind speed variations
through processes including convective downdrafts,
mesoscale circulations or microbursts (e.g. Fournier
and Haerter, 2019; Potter and Hernandez, 2017). The
gustiness can be organised as a gust front or cold
pool with potential to propagate through a wind farm,
which has been considered by Potter and Hernandez
(2017) in the context of fire weather. After classify-
ing frontal and post-frontally associated ramps, the re-
maining ramps where at least 1 mm of cumulative pre-
cipitation is recorded within a 2h window centred on
the ramp are defined as non-frontal precipitation ramps.
The 2 h timescale is chosen conservatively to allow for
propagation time between Sheoaks station and the site
and vice versa. A limitation of this method is that both
convective and stratiform precipitation will be included.
A full exploration of the role of gust fronts and convec-
tive downdrafts on wind power predictability is outside
the scope of this study.

— Large change in turbulence intensity. Another kind of

atmospheric process that can potentially cause ramps
is associated with vertical-momentum-flux changes af-
fecting the structure of the atmospheric boundary layer.
We suggest two ways in which a change in vertical
turbulent mixing can induce wind power ramps. First,
ramp-up events can occur in the instance of a high-
wind-speed layer situated above hub height in conjunc-
tion with the erosion of a stable boundary layer. The sec-
ond method is where rapid radiative cooling of the sur-
face layers can result in a substantial increase in thermal
stability, hence reducing vertical momentum flux and
wind power harvested at hub height. Albeit to a lesser
extent, a decrease in the turbulence intensity level may
also influence the potential development of wakes, low-
level jets and gravity waves, although the diagnosis of
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during the assessment period is shown in Fig. 4.

— Shutdown cases. Small changes in wind speed can have
a significant impact on power production when ve-
locities are close to the wind turbines’ cut-out wind

1 speed (wind speed above which the turbine will auto-

i matically shut down for safety reasons). Hence, ramps

were labelled as shutdown situations when the maxi-

mum 10 min averaged wind speed measured at the site
exceeded the cut-out wind speed (24 ms™!) during the

0.5 1 ramp. This criterion is based on the cut-out strategy as

outlined in the on-site turbines’ datasheet.

Ratio Ramp-ups / Ramp-downs

0o 20 40 60 80 100
Percentage of Total Number of Ramps [%] — Non-linearity of the power curve. Although sudden
changes in wind speed usually cause significant power
Figure 8. Proportion of ramp-ups as a function of the ramp score. variations, minor variations in a moderate wind regime

can also lead to substantial wind power fluctuation. This
is due to the non-linear relationship between wind speed
and power generation, shown in Fig. 1. Non-linearity of
the power curve is not a driver of its own, but this ramp
class aims to complement previously introduced drivers
and as such will be considered separately. Ramps are as-
sociated with the non-linear wind-to-power conversion
processes when the amplitude in 10 min averaged wind
speed is less than 3ms™! and comprised within the 5—

_ 10ms~! window (i.e. the steep portion of the power
and U [ms~!] are the average standard deviation of curve).

the horizontal wind speed and the average horizontal
wind speed over a 10 min period, respectively. Recall
that only wind data from undisturbed wind direction

these effects is outside the scope of this study. To iden-
tify ramps associated with sudden shifts in vertical mo-
mentum flux, we used a criterion based on turbulence
intensity (TI) at hub height. After removing the linear
trends from each of the 10 min long segments, we com-
puted the horizontal turbulence intensity from the on-
site cup anemometers: Tly cyp = %U, where oy [m s~h

2.5 Ramp shape

sectors (not in the wake of neighbouring wind turbines) As part of the ramp characterisation, the overall shapes of the
were included in the assessment. In this study, we re- power fluctuations encompassing ramps were investigated,
late ramps to large TI changes when the amplitude of T1 with a view to answering the question of whether particular
(difference between maximum and minimum) through- ramp drivers have a characteristic ramp shape. A subset of

https://doi.org/10.5194/wes-6-131-2021 Wind Energ. Sci., 6, 131-147, 2021




138 M. Pichault et al.: Characterisation of intra-hourly wind power ramps at the wind farm scale

the power generation time series is extracted for each ramp
identified above. The subset is centred on the ramp timing
t' and is of duration equal to three rise times (3AT). The
wind power subset with a duration of three scales and cen-
tred on the ramp timing will be hereafter referred to as the
“extended ramp”. To compare the shape of extended ramps,
all subsets are then normalised by their corresponding ramp
amplitude and rise time. Finally, time series are clustered in
eight groups using self-organising maps (SOMs).

An SOM is a method for clustering data based on similar-
ity using artificial neural networks (Kohonen, 1982). Based
on the assumption that power fluctuations can either level out
or follow an inverse trend before and after the ramp, we can
logically expect eight categories of shapes. For that reason,
the SOMs configured as part of this study comprise a neu-
ral network of 2 x 4 layers, hence identifying eight ramping
behaviour classes.

Finally, we used a re-sampling technique with the replace-
ment method, also referred to as “bootstrapping” (Efron,
1979), to investigate potential interactions between the shape
and the driver associated with a ramp. The 95 % confidence
interval around the mean is derived from a bootstrap method
with 1000 re-samples in which ensemble members are as-
sessed against the distribution of independent samples. For a
brief description of the implementation of the bootstrapping
method, interested readers are referred to Appendix A of this

paper.

3 Results

3.1 Ramp characteristics and behaviour or occurrence

The ramp detection scheme described in Sect. 2.2 identified
a total of 1183 ramps, which account for 5.16 % of the total
time series (in terms of total ramping time). The distribu-
tions of the ramp rise time and amplitude, along with the re-
lationship between them, are presented in Fig. 6. As shown in
Fig. 6, the amplitudes and the rise times of the intra-hourly
ramps at the site cover a range of AP € [29.0, 120.3] MW
and At € [4, 60] min, respectively, and the most common
intra-hourly ramp features at the site consist of a variation in
power of 46.0 MW (35 % rated capacity) and a rise time of
28 min.

Figure 7a displays the hourly distribution of ramp-ups
and ramp-downs for the data set. Both upward and down-
ward ramps exhibit higher propensity of occurrence during
daylight hours, with a moderate peak of upward ramps at
10:00 UTC+10. On the other hand, downward ramps tend
to occur in the late afternoon, with a maximum likelihood of
occurrence at 15:00 UTC+10. Both upward and downward
ramps are more common during warmer months, with a no-
ticeable peak in spring (Fig. 7b).

Amongst the 1183 ramps analysed, 590 (49.87 %) were
ramp-ups. The equal proportion between ramp-ups and
ramp-downs exhibited in the data set could be seen as a con-
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Figure 9. Categorisation of intra-hourly wind power ramps be-
tween 1 October 2016 and 1 March 2019.

tradiction, with other studies (Freedman et al., 2008; Ferreira
et al., 2012; Kamath, 2010; Jgrgensen and Mohrlen, 2008)
suggesting ramp-ups are more frequent as they often result
from rapidly moving transient features causing a sharp in-
crease in wind power followed by a gradual decrease (Freed-
man et al., 2008; Ferreira et al., 2012). However, the even
ratio between ramp-ups and ramp-downs observed in this
study is a direct consequence of the broad temporal coverage
of ramps considered within the power generation time se-
ries. It is naturally expected that the proportion of ramp-ups
vs. ramp-downs converges towards 1 as the proportion of in-
vestigated variability increases. This behaviour is depicted in
Fig. 8 showing the ratio of ramp-ups/ramp-downs as a func-
tion of the number of strongest ramps considered in the data
set. When considering larger power fluctuations (i.e. ramps
associated with higher normalised ramp scores Ryorm), the
ramp-up/ramp-down ratio increases as stronger ramps are
more frequently ramp-ups. These findings are thus consistent
with previous studies.

3.2 Ramp categorisation

Figure 9 presents the distribution of ramps according to their
underlying processes. The proportion of each driver category
(following the decision tree in Fig. 5) and each criterion con-
sidered alone, together with the total number of ramps for
each driver category, are provided in Table 1. Of the intra-
hourly ramps at the wind farm site, 46 % are related to frontal
activity, with cold fronts and post-frontal conditions account-
ing for 21 % and 25 % of the ramps, respectively. Precipita-
tion and events associated with a large TI change account for
5% and 7 % of the ramps, respectively. Times during which
the wind farm production is externally restrained due to high
winds are relatively rare, accounting for only 0.4 % of the
ramps within the data set. Up to 17 % of the ramps sorted
by the decision tree are associated with small variations in
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Figure 10. (a) Hourly distribution of ramps associated with cold fronts vs. all other drivers and (b) hourly front distribution based on the
adapted Melbourne Frontal Tracking Scheme between 1 October 2016 and 1 March 2019.

Table 1. Results of the automatic ramp classification scheme.

Cold Post-frontal  Precipitation Large TI =~ Shutdown Non-linearity of Other

fronts activity  (non-frontal) change cases the power curve
Decision tree [%]  20.77 25.02 5.02 7.06 0.43 17.11 24.6
Absolute [%]  20.77 25.02 12.85 11.66 0.68 36.77 24.6
No. ramp-ups 109 135 26 50 3 117 150
No. ramp-downs 135 159 33 35 2 84 145

wind speed along the 5-10ms~! section of the power curve.
When considered separately, the “non-linearity of the power
curve” criterion was identified as a factor for approximately
37 % of the ramps (Table 1), demonstrating the importance
of accurate wind predictions within this range. Overall, all
drivers instigate both upward and downward ramps, as per
the expected processes described in Sect. 2.5.

Figure 10a shows the diurnal distribution of cold-front
ramp-ups against all other ramp-ups; the observed 10:00
peak in ramp-ups observed in Fig. 7a appears to be closely
related to the timing of frontal passages. In fact, most
10:00 ramp-ups are associated with cold fronts (41 %). Like-
wise, a majority (42%) of downward ramps observed at
15:00 UTC+10 are associated with post-frontal conditions
(explained by the relaxation of wind speed after the passage
of a front causing downward ramps). To investigate this fur-
ther, we consider the hourly distribution of frontal passages
during the assessment period based on the adaptation of the
front identification algorithm of Simmonds et al. (2012) dis-
cussed above (Fig. 10b), where a clear 10:00 maximum fre-
quency of incidence is observed. These findings are con-
sistent with the findings of Berson et al. (1957), in which
an early-afternoon maximum in the frontal passage was re-
ported in the region.

https://doi.org/10.5194/wes-6-131-2021

A number of caveats need to be considered for the ramp
classification scheme. First, off-site precipitation data were
used to determine precipitation-related ramps. One needs to
be careful with implementing such a method as localised
showers with short spatial and temporal scales might lead to
the misleading identification of rain events. After classifica-
tion, 25 % of the ramps could not be directly attributed to one
of the categories introduced above. While the proposed ap-
proach effectively portrays the prevalence of the most likely
ramp drivers, we acknowledge the method cannot capture all
possible events inducing ramps. For example, meteorological
phenomena such as microbursts, gravity waves and low-level
jets were not directly assessed, although they may implicitly
appear in some of the categories. In addition, the ramp classi-
fication does not consider other mechanical processes such as
wake effects and yaw misalignment (their contribution in ex-
plaining ramp events is expected to be marginal). Finally, the
front detection algorithm is limited by the fact that it is based
on a single point measurement. As discussed in Sect. 3.4,
some ramps classified as “other” are in fact associated with
the passage of fronts or troughs.

3.3 Extended ramp shape

Figure 11 displays the variety of power fluctuation be-
haviours obtained through self-organising maps with eight

Wind Energ. Sci., 6, 131-147, 2021




140
(a) SOM 1
| |
|
|
o} ' ‘ g
z | I I
o o
[a¥ | | o |
o I e
o) o)
2 I ‘ 2 ‘
| | | = |
g l \ £ \
) | o |
“ | \ “ \
Shape: [0,-1,1] ‘ Shape: [0,-1,0]
Freq: 7% Freq: 22%

Normalised Time

Normalised Power

M. Pichault et al.: Characterisation of intra-hourly wind power ramps at the wind farm scale

(c) SOM 3

Normalised Power

Shape: [1,-1,1]
Freq: 6%

Shape: [1,-1,0]
Freq: 14%

Normalised Time

(e) SOM 5 (f) SOM 6 (g) SOM 7 ;
| I I
| I I
[ \ | \ 08
) [ 5 \ | 5 \ | 5
z | 15 I z I | z N
1S 5 5 5 =
o | | oW | | [a¥ | o 0.6
o] | ] I I ] I | o] g
2 ) | [ & [ | & [ [ & A
= | e [ | = [ [ E E
g | g \ | g | | g 042
= = = o
s} | S} J | ) I | Q
Z | = | | “ | &
) ) ) 0.2
Shape: [-1,1,-1] Shape: [0,1,-1] Shape: [0,1,0] Shape: [-1,1,0]
Freq: 5% Freq: 15% Freq: 22% Freq: 8%
0

Normalised Time Normalised Time

Normalised Time Normalised Time

Figure 11. Extended ramp shape classes resulting from SOM clustering. The thick black lines show the averaged extended ramp shape, and
the grayscale contours display the point density for each SOM group. The dashed lines delineate periods equal to one rise time.

groups (SOM1-SOMS). For clarity, the thick black lines rep-
resent the mean extended ramp shape and the grayscale con-
tours display the point density for each SOM group. The
dashed lines delineate periods equal to one rise time. The
trend of the fluctuations before, during and after the ramp
is characterised by [x, y, z], in which x, y and z can exhibit
three discrete values: O for a plateauing trend, —1 for a down-
ward trend and 1 for an upward trend. The relative proportion
of ramps within each group is also indicated in Fig. 11. The
categories resulting from the SOMs correspond to the eight
shape classes expected when assuming power generation can
either level out or follow an inverse trend before and after the
ramp.

While results from the SOMs indicate a great variabil-
ity in extended ramp behaviour, specific shape classes ex-
hibit different patterns. In particular, fluctuations commonly
tend to plateau before and after the ramp, with such be-
haviour being observed for 44 % of the ramps (22 % for both
[0, 1, 0] and [0, —1, 0]). Peaking ramps, namely [0, 1, —1]
and [1, —1, 0], account for 15 % and 14 % of the data set, re-
spectively. The representations of other SOM groups are all
less than 10 %.

Bootstrapping tests failed to identify statistically signifi-
cant interactions between extended ramp shapes and ramp
drivers in most cases, with the exception of plateauing ramp-
ups (SOM7; [0, 1, 0]). In particular, plateauing ramp-ups are
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found to be less frequent under post-frontal conditions. Post-
frontal processes are indeed expected to exhibit continuously
oscillating features rather than a steady increase between two
power generation levels. On the other hand, ramps associated
with a large change in TI are found to display proportionally
more SOM7 compared to the other ramp drivers. Overall,
these findings do not suggest there is a strong relationship
between ramp drivers and ramp shape. Specific results from
the bootstrap test and associated p values are provided in Ta-
bles Al and A2 in Appendix A.

3.4 Case studies

In this section, we present several characteristic events with
further details on the association between environmental con-
ditions and wind farm generation. The case studies are for
illustrative purposes and put into perspective the ramp driver
classes introduced earlier.

— Case Study 1, high winds during ramp on 9 Octo-
ber 2016. Strong winds were recorded throughout the
day, with the maximum wind speed exceeding 28 ms ™.
The automatic ramp categorisation scheme detected two
ramp-downs at 12:26 and 13:47 UTC+10, directly fol-
lowed by a ramp-up at 14:42 UTC+10. Environmen-
tal conditions centred on the ramp at 13:47 are pro-
vided in Fig. 12. It is evident from Fig. 12a that wind
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Figure 12. Time series of environmental variables encompassing the ramp on 9 October 2016 at 13:47:00 (UTC+10). (a) Total wind farm
power generation (red line) and mean wind power (mean wind speed from the two on-site meteorological towers converted to wind power
based on the turbine’s power curve and the number of turbines actively generating; dashed blue line), (b) mean wind speed (red line) and
wind direction (blue dots), (¢) temperature and 30 min normalised pressure (red and blue line, respectively), (d) air density and relative
humidity (red and blue line, respectively), and (e) mean horizontal turbulence intensity over a 10 min window (black dots). Thickened red
lines correspond to the extent of the ramp scale.
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Figure 13. (a) Time series of environmental variables encompassing the ramp on 7 December 2017 at 16:43:00 (UTC+10). (b) MSLP chart
on 7 December 2017, 16:00:00 (UTC+10) (source: Australian Bureau of Meteorology). The blue bars in (a) indicate precipitation recorded
at the weather station neighbouring the site (Sheoaks). The red cross in (b) indicates the approximate location of the site.
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Figure 14. Time series of environmental variables encompassing the ramp on 14 December 2018 at 16:00:00 (UTC+10). The blue bars
indicate precipitation recorded at the weather station neighbouring the site (Sheoaks).

power largely exceeded generated power and its varia-
tions are not accompanied by analogous changes in gen-
erated power throughout the day. This is explained by
the fact that groups of turbines periodically initiated a
shutdown-restart procedure to prevent structural load or
turbine damage. In addition, rapid changes in wind di-
rection observed during the day have caused misalign-
ment between the wind direction and the axis of the
turbine rotor blades, hence diminishing the wind power
generated.

Case Study 2, passage of a cold front on 7 Decem-
ber 2017. A typical example of a ramp associated with
a cold front is presented in Fig. 13a, during which
the power generation increased by 83 MW (63 % rated
power) in 26 min. Figure 13a shows typical cold-front
features such as a shift in wind from the northwest to the
southwest quadrant together with decreasing tempera-
ture, increasing air density and precipitation. Analysis
of the MSLP chart shortly before the ramp (Fig. 13b)
agrees with the cold-front classification by the auto-
matic ramp categorisation scheme.

Case Study 3, passage of a storm on 14 December 2018.
Severe thunderstorm activity was recorded throughout
the day, leading to flash flooding in the region (Press,
2018). Figure 14 shows a mid-afternoon increase in rel-
ative humidity coupled with a drop in temperature and
precipitation, likely associated with the onset of con-
vective activity. The increased wind speeds, likely as-
sociated with the thunderstorm downdraft, resulted in a
59 MW amplitude ramp-up centred at 16:00 UTC+10
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(Fig. 14). The relaxation in wind speeds following the
passage of the storm induced a downward ramp at
16:43 UTC+10, with an amplitude of 43 MW. The clas-
sification algorithm adequately categorised both ramps
as non-frontal precipitation events.

Case Study 4, other — cold air outbreak with cellu-
lar convection on 25 September 2017. As discussed in
Sect. 2.4, not all meteorological phenomena are cap-
tured through the ramp classification scheme. An exam-
ple categorised as other took place at 14:34 UTC+10
on 25 September 2017; a day characterised by constant
power generation fluctuations (Fig. 15a). Satellite im-
agery around the timing of the ramp (Fig. 15b) sug-
gests the variability observed throughout the day is at-
tributable to sustained cellular convection, which has
been shown to drive wind speed fluctuations (Vincent
et al., 2012). In particular, MSLP charts indicate a low-
pressure system with an embedded front passing over
the site at around 01:00 AEST on the same day, and as
such, the ramp should be considered a particular case of
post-frontal convection. While the automatic front iden-
tification scheme accurately detected the frontal pas-
sage, the ramp was not associated with post-frontal con-
ditions because it occurred more than 12 h after the cold
front.

4 Conclusions

Sudden wind power variations and associated underlying
processes need to be accurately characterised to enhance
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Figure 15. (a) Time series of environmental variables encompassing the ramp on 25 September 2017 at 14:34:00 (UTC+-10). (b) Satellite

imagery on 25 September 2017, 14:45:00 (UTC+10) (source: MODIS,
The red cross in (b) indicates the approximate location of the site.

ramp forecast accuracy and hence reduce grid instability. Al-
though the influence of more common (i.e. less extreme)
wind power ramps is evident, the current body of literature
on ramp characterisation focuses mostly on the largest ramps
owing to a lack of an automated classification methodology.
This paper bridges this knowledge gap by assessing power
variations with a temporal coverage exceeding 5 %. In this
study, we introduced a robust method to characterise intra-
hourly wind power ramps at the wind farm scale. We then
explored the underlying causes of the identified ramps. Fi-
nally, we investigated the shape of the fluctuations surround-
ing ramps to improve ramp modelling.

The results are significant in three respects. First and fore-
most, we show how simple statistics can provide valuable
insights into the complex mechanisms shaping ramp event
dynamics. Second, although the behaviour of the power fluc-
tuations before and after a ramp can vary greatly, some ramp-
ing behaviours are more frequent than others. For instance,
power fluctuations tend to plateau before and after the ramp
in 44% of the cases. Such considerations need to be ac-
counted for when modelling ramps. Third, the study showed
that cold fronts and post-frontal activity accounted for most
of the ramps investigated (46 %). Implications in terms of
forecastability are significant. As passages of cold fronts are
often predictable several days in advance using numerical
weather prediction models, albeit with timing errors, these
can be used to warn operators in the control room of days
with high chances of ramp occurrence. Likewise, wind farm
operators can expect more wind power variability within 12 h
of the passage of a front (post-frontal conditions). Similarly,
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2020). The properties of the plots in (a) are analogous to Fig. 12.

precipitation events can be challenging to predict accurately
more than a couple of hours in advance, particularly where
stochastic convective-scale processes are present.

The present research opens up new lines of inquiry into
the existing relationships between frontal passages and wind
power ramps. In particular, it would be helpful to explore
further whether fronts always result in wind power ramps at
the wind farm scale. The results presented here also indicate
the potential for real-time, upstream ramp detection using re-
mote sensing and in situ observations. Finally, we note that
the accurate modelling and prediction of wind power ramps
is also beneficial to other areas of research, such as aviation
safety and building design.

Wind Energ. Sci., 6, 131-147, 2021
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Appendix A: Bootstrapping method

In this paper, we use a bootstrapping approach to as-
sess whether specific ramp drivers have characteristic ramp
shapes. Bootstrapping is a common statistical test used to
evaluate the sampling distribution of a variable based on ran-
dom sampling. The population is sampled a number of times
equal to the number of samples (there are 1183 ramps in
the data set), according to weights given by the probabil-
ity distribution assuming no relationships between the ramp
shapes and drivers. This random sampling with replacement
is repeated 1000 times. The observed ensemble frequencies
falling outside of the 95 % confidence interval of their boot-
strapped distributions indicate statistically significant differ-
ences. Results from the bootstrap test and associated p values
are provided in Table A1 and A2, respectively.

Table A1. Interactions between ramp driver and associated shape
class —results from the bootstrap test in which —1 represents obser-
vations below the 95 % confidence interval lower bound from the
bootstrapped distribution, 1 represents observations higher than the
95 % confidence interval upper bound and O denotes no statistically
significant differences.

M. Pichault et al.: Characterisation of intra-hourly wind power ramps at the wind farm scale

SOM1 SOM2 SOM3 SOM4 SOMS5S SOM6 SOM7 SOMS8
Cold fronts 0 0 0 0 0 0 0 0
Post-frontal activity 0 0 0 0 0 0 -1 0
Precipitation (non-frontal) 0 0 0 0 0 0 0 0
Large TI change 0 0 0 0 0 0 1 0
Shutdown cases 0 0 0 0 0 0 0 0

Table A2. Bootstrap test p value.
SOM1 SOM2 SOM3 SOM4 SOMS SOM6 SOM7 SOMS
Cold fronts 0.63 0.46 0.45 0.8 0.59 0.57 0.065 0.28
Post-frontal activity 0.17 0.72 0.15 0.8 0.72 0.36 0.027 0.69
Precipitation (non-frontal) 0.11 0.29 0.56 0.48 0.97 0.43 0.095 0.93
Large TI change 0.37 0.81 0.079 091 0.93 0.68  0.0025 0.14
Shutdown cases 0.3 0.3 0.4 0.21 0.62 0.75 0.41 0.52
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