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Abstract. To accurately plan and manage wind power plants, not only does the time-varying wind resource at
the site of interest need to be assessed but also the uncertainty connected to this estimate. Numerical weather
prediction (NWP) models at the mesoscale represent a valuable way to characterize the wind resource offshore,
given the challenges connected with measuring hub-height wind speed. The boundary condition and paramet-
ric uncertainty associated with modeled wind speed is often estimated by running a model ensemble. However,
creating an NWP ensemble of long-term wind resource data over a large region represents a computational
challenge. Here, we propose two approaches to temporally extrapolate wind speed boundary condition and para-
metric uncertainty using a more convenient setup in which a mesoscale ensemble is run over a short-term period
(1 year), and only a single model covers the desired long-term period (20 year). We quantify hub-height wind
speed boundary condition and parametric uncertainty from the short-term model ensemble as its normalized
across-ensemble standard deviation. Then, we develop and apply a gradient-boosting model and an analog en-
semble approach to temporally extrapolate such uncertainty to the full 20-year period, for which only a single
model run is available. As a test case, we consider offshore wind resource characterization in the California
Outer Continental Shelf. Both of the proposed approaches provide accurate estimates of the long-term wind
speed boundary condition and parametric uncertainty across the region (R2 > 0.75), with the gradient-boosting
model slightly outperforming the analog ensemble in terms of bias and centered root-mean-square error. At the
three offshore wind energy lease areas in the region, we find a long-term median hourly uncertainty between
10 % and 14 % of the mean hub-height wind speed values. Finally, we assess the physical variability in the un-
certainty estimates. In general, we find that the wind speed uncertainty increases closer to land. Also, neutral
conditions have smaller uncertainty than the stable and unstable cases, and the modeled wind speed in winter
has less boundary condition and parametric sensitivity than summer.
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1 Introduction

Offshore wind energy keeps increasing its market penetration
as an inexpensive and clean source of energy. In some areas
of the world, such as the North Sea in Europe, offshore wind
represents a well-established source of electricity, with a to-
tal installed capacity of about 15 GW and a planned increase
of up to 74 GW by 2030 (van Hoof, 2017). As the cost of off-
shore wind energy has been decreasing faster than expected
(Stiesdal, 2016; Brandily, 2020), many other regions are cur-
rently planning to adopt offshore wind energy solutions to
meet their energy needs. The United States falls within this
group, with its offshore technical resource potential being es-
timated to be about twice the present national energy demand
(Musial et al., 2016). While one single 30 MW offshore wind
power plant has been operating since 2016 (Deepwater Wind,
2016), many other offshore wind plants are being planned,
mostly concentrated along the eastern seaboard and the Outer
Continental Shelf (OCS) off the coast of California, for a to-
tal of about 86 GW installed capacity expected by 2050 (Bu-
reau of Ocean Energy Management, 2018).

Such extensive growth requires an accurate long-term
characterization of the offshore wind resource (Brower,
2012). Direct observations of the wind resource offshore are
oftentimes limited to buoys, which offer measurements at
very limited heights. Hub-height measurement of the wind
resource offshore can be achieved with either offshore me-
teorological towers (e.g., Neumann et al., 2004; Fabre et al.,
2014; Peña et al., 2014; Kirincich, 2020) or floating lidars
(Carbon Trust Offshore Wind Accelerator, 2018; OceanTech
Services/DNV GL, 2020). However, the often prohibitive
costs connected to both these measurement solutions limit
their availability to a handful of locations despite recent ef-
forts in leveraging their punctual hub-height measurements
for wind speed vertical extrapolation over a larger region
(Bodini and Optis, 2020; Optis et al., 2021a). Given these
constraints, numerical weather prediction (NWP) models at
the mesoscale are often used to obtain an in space and time
continuous mapping of the available offshore wind resource

at the heights relevant for commercial wind power plant de-
ployment (e.g., Mattar and Borvarán, 2016; Salvação and
Soares, 2018), with some studies (Papanastasiou et al., 2010;
Steele et al., 2013; Arrillaga et al., 2016) also focusing on
the validation of modeled coastal wind effects, such as sea
breezes, which have a significant impact on offshore wind
energy production (Archer et al., 2014).

Tens of billions of dollars will be invested in the US off-
shore wind energy industry in the coming years. In order to
minimize the financial risk associated with such major in-
vestments, not only is a characterization of the time-varying
offshore wind resource needed, but an assessment of the un-
certainty connected to this numerical prediction is of primary
importance. A 1 % uncertainty change in the mean wind re-
source translates to a 1.6 %–1.8 % uncertainty for the long-
term wind plant annual energy production (Johnson et al.,
2008; White, 2008; Holstag, 2013; Truepower, 2014) with
a significant increase in the interest rates for new project
financing. However, assessing the uncertainty in modeled
wind speed is a problematic task. NWP model ensembles
tend to lead to an underdispersive behavior (Buizza et al.,
2008; Alessandrini et al., 2013) so that only a limited com-
ponent of the actual wind speed error with respect to observa-
tions can be quantified. The full uncertainty in NWP-model-
predicted wind speed can be quantified only when direct ob-
servations of the wind resource are available. In this scenario,
the residuals between modeled and observed wind speed can
be calculated, and the model error is quantified in terms of
its bias (i.e., the mean of the residuals) and uncertainty (i.e.,
the standard deviation of the residuals). The obtained model
uncertainty would then be added to the inherent uncertainty
of the wind speed measurements by using a sum of squares
approach (JCGM 100:2008, 2008). However, as we have al-
ready mentioned, direct observations of the wind resource
are not always readily available, especially offshore, so that
other ways to quantify at least specific components of the full
wind speed uncertainty are needed.

When considering NWP models, the choices of the model
setup and inputs have a direct impact on the model wind
speed prediction and therefore on its uncertainty. Hahmann
et al. (2020) recently provided a detailed analysis of the sen-
sitivity in wind speed predicted by NWP models as part of
the development of the New European Wind Atlas. Among
the various sources of uncertainty, the choices of the plane-
tary boundary layer (PBL) scheme (Ruiz et al., 2010; Car-
valho et al., 2014a; Hahmann et al., 2015; Olsen et al., 2017)
and of the large-scale atmospheric forcing (Carvalho et al.,
2014b; Siuta et al., 2017) have been shown to have a major
impact. Model resolution (Hahmann et al., 2015; Olsen et al.,
2017), spin-up time (Hahmann et al., 2015), and data assim-
ilation techniques (Ulazia et al., 2016) have also been shown
to contribute to the wind speed sensitivity. The variability
in modeled wind speed that derives from all the different
model choices leads to what we will call boundary condition
and parametric uncertainty of the modeled wind speed. Optis
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et al. (2021b) recently explored best practices for quantify-
ing and communicating NWP-modeled wind speed bound-
ary condition and parametric uncertainty offshore. In their
approach, an ensemble of Weather Research and Forecast-
ing (WRF) model (Skamarock et al., 2008) simulations is
created by considering different WRF versions, namelists,
and external forcings, and the wind speed boundary condi-
tion and parametric uncertainty is then quantified in terms of
its across-ensemble variability. The use of numerical ensem-
bles for uncertainty quantification is not exclusive to the wind
energy community, as has been extensively applied in am-
ple spectrum fields (e.g., Zhu, 2005; Parker, 2013; Murphy
et al., 2004). However, running an NWP ensemble across a
large region and for the long-term period needed for an accu-
rate characterization of the naturally varying wind resource
is computationally prohibitive so that innovative and more
computationally efficient ways are needed to quantify some
components of the long-term wind speed uncertainty.

Here, we consider wind speed characterization in the Cal-
ifornia OCS, and we propose and compare two innovative
techniques for modeled wind speed long-term boundary con-
dition and parametric uncertainty quantification. To do so,
we consider a setup that is computationally more afford-
able, wherein WRF ensembles are only run over a short pe-
riod (1 year) and are accompanied by a single, long-term
(20 years) WRF simulation. First, we use a machine-learning
algorithm to temporally extrapolate the WRF-based bound-
ary condition and parametric uncertainty from the ensem-
ble year to the full 20-year period. While machine learning
has been successfully applied to various atmospheric (e.g.,
Xingjian et al., 2015; Gentine et al., 2018; Bodini et al.,
2020) and wind-energy-related (e.g., Clifton et al., 2013; Ar-
cos Jiménez et al., 2018; Optis and Perr-Sauer, 2019) prob-
lems, this represents, to the authors’ knowledge, its first ap-
plication for NWP uncertainty extrapolation. We compare
the machine-learning-based approach with the predictions
from the analog ensemble (AnEn) technique (Delle Monache
et al., 2013) to quantify uncertainty in the wind resource from
the variability in modeled cases with similar atmospheric
conditions. Typical applications of AnEn include renew-
able energy probabilistic forecast for both solar (Alessan-
drini et al., 2015a, b; Cervone et al., 2017) and wind (Junk
et al., 2015; Vanvyve et al., 2015) energy. The use of AnEn
for long-term offshore wind speed uncertainty quantification
represents a novel application of the technique.

In the remainder of this paper, we describe the experi-
mental setup and our proposed methods to quantify and tem-
porally extrapolate modeled wind speed boundary condition
and parametric uncertainty in Sect. 2. Section 3 validates the
techniques used and compares the mean long-term predic-
tions from the two approaches. Also, we discuss physical in-
sights into the main drivers for offshore wind speed boundary
condition and parametric uncertainty. Finally, we conclude
and suggest future work in Sect. 4.

Figure 1. Map of the inner domain of the WRF numerical simula-
tions for the California OCS. The current three wind energy lease
areas are shown in red.

2 Data and methods

2.1 Numerical simulation setup

We consider a 20-year numerical data set recently developed
by the National Renewable Energy Laboratory to provide ac-
curate cost estimates for floating wind in the California OCS
(Fig. 1).

As described in detail in Optis et al. (2020), this product
includes a single WRF setup that is run for a 20-year period
(2000–2019) and an additional 15 WRF ensemble members
run over a single year (2017), which was selected because of
strong data coverage from the network of buoy and coastal
radar observations used for model validation. All of the sim-
ulations are run with the common attributes in Table 1. A to-
tal of over 200 000 grid cells are included in the WRF inner
domain, which we consider in our uncertainty analysis.

The 16 WRF ensemble members are constructed based on
variations in boundary conditions and key WRF model pa-
rameters that previous research determined to have a primary
impact on modeled wind speed:

– Reanalysis forcing product is selected between ERA5,
developed by the European Centre for Medium-Range
Weather Forecasts (Hersbach et al., 2020), and the
Modern-Era Retrospective analysis for Research and
Applications, Version 2 (Gelaro et al., 2017), developed
by the National Aeronautics and Space Administration.

– PBL parameterization is chosen between the Mellor–
Yamada–Nakanishi–Niino (MYNN; Nakanishi and Ni-
ino, 2004) and the Yonsei University (Hong et al., 2006)
schemes.
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Table 1. Common specification for all of the WRF runs considered in the analysis.

Feature Specification

WRF version 4.1.2
Nesting 6, 2 km
Vertical levels 61
Atmospheric nudging Spectral nudging on a 6 km domain, applied every 6 h
Microphysics Ferrier
Longwave radiation Rapid radiative transfer model
Shortwave radiation Rapid radiative transfer model
Topographic database Global multiresolution terrain elevation data from the United States Geological Service and

National Geospatial-Intelligence Agency
Land-use data Moderate resolution imaging spectroradiometer 30 s
Cumulus parameterization Kain–Fritsch

– Sea surface temperature product is selected between the
Operational Sea Surface Temperature and Sea Ice Anal-
ysis (OSTIA) data set produced by the UK Met Office
(Donlon et al., 2012) and the National Center for Envi-
ronmental Prediction Real-Time Global product.

– Land surface model is chosen between the Noah model
and the updated Noah multiparameterization model
(Niu et al., 2011).

The setup we chose to use for the single long-term WRF run
is the result of a validation process. We compared and vali-
dated the 16 model setups with observations from buoys from
the National Data Buoy Center and coastal radar measure-
ments from the National Oceanic and Atmospheric Admin-
istration profiler network. While these are the only observa-
tions in the area available for model validation, these data
sets cannot be used for quantifying the model uncertainty in
wind speed. In fact, both data sources have significant lim-
itations that do not allow for a direct comparison with off-
shore WRF data at heights relevant for wind energy develop-
ment. On one hand, buoys only measure wind speed close to
the water level, which can have a very different regime than
the hub-height winds. On the other hand, the coastal radars
measure at more relevant heights for wind energy but only at
the interface between the ocean and land. Results from the
validation (whose details can be found in Optis et al., 2020)
revealed that the WRF setup providing the most accurate re-
sults is the one using ERA5 as reanalysis product, MYNN as
a PBL scheme, OSTIA as a sea surface temperature product,
and Noah as a land surface model. Therefore, we selected
and adopted this WRF setup for the single 20-year WRF run.

In our analysis, we use hourly average data (calculated
from 5 min WRF raw output), and we quantify the WRF
wind speed boundary condition and parametric sensitivity in
terms of the across-ensemble standard deviation of the WRF-
predicted 100 m wind speed at any hour, t , normalized by the
hourly average 100 m wind speed itself:

σWS(t)=
1
N

∑N
i=1
(
WSi(t)−WS(t)

)2
WS1(t)

, (1)

where WSi is the mean hourly 100 m wind speed from each
ensemble member, WS is the mean hourly wind speed av-
eraged across the 16 ensemble members, WS1 is the mean
hourly 100 m wind speed from the WRF control run (i.e.,
the one used for the long-term period), and N = 16 is the
total number of WRF ensemble members. Within a numer-
ical ensemble framework, the use of (normalized) standard
deviation as a primary uncertainty metric has been recom-
mended by Optis et al. (2021b) as it provides more consis-
tent estimates than the ensemble interquartile range. While
we acknowledge that our quantification of the WRF wind
speed boundary condition and parametric sensitivity is going
to be limited by the finite number of choices made to con-
struct the ensemble members, we note how the considered
set of settings represents either state-of-the-art products or
the most popular and widely accepted choices for WRF ap-
plied to wind resource characterization. In the next sections,
we present the two approaches we propose to temporally ex-
trapolate this boundary condition and parametric uncertainty
from 2017 (i.e., the only year when the uncertainty can be
directly calculated from the WRF ensemble members) to the
remaining 19 years.

2.2 Machine-learning approach

The first approach we use to temporally extrapolate the
boundary condition and parametric uncertainty in 100 m
modeled wind speed is a machine-learning gradient-boosting
model (GBM) (Friedman, 2002). We select a GBM because
ensemble-based algorithms are known to provide robust and
accurate predictions in nonlinear problems. Moreover, we
have tested a set of other machine-learning algorithms (ran-
dom forest, generalized additive model), and the GBM pro-
vided the lowest prediction error. With this approach, at each
of the more than 200 000 grid cells, we train the model on
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calendar year 2017 to predict the WRF across-ensemble stan-
dard deviation of hourly average 100 m wind speed, normal-
ized by the hourly average 100 m wind speed itself (Eq. 1).
We then apply the trained model to quantify the modeled
wind speed boundary condition and parametric uncertainty
in the remaining 19 years for which only the single WRF run
is available (Fig. 2).

The input features we use to feed the GBM are all taken
(as hourly averages) from the single WRF setup that is run
for the full 20-year period and are

– wind speed at 100 m above ground level (a.g.l.)

– sine and cosine1 of wind direction at 100 m a.g.l.

– air temperature at 40 m a.g.l.

– wind shear coefficient calculated between 10 and
200 m a.g.l.

– inverse of Obukhov length at 2 m a.g.l.

– 100 m wind speed standard deviation calculated from
the preceding 2 h

– 100 m wind speed standard deviation calculated from
the preceding 6 h

– sine and cosine1 of the hour of the day

– sine and cosine1 of the month.

The distribution of these variables is presented and discussed
in Sect. 3.1. We acknowledge that a correlation exists be-
tween some of the input features used. However, we found
that including all the features produced the best model accu-
racy. Also, principal component analysis could be applied to
reduce the number of features used, but it is beyond the scope
of our analysis. We also acknowledge how different choices
for the atmospheric stability parameter could be explored,
potentially leading to a more accurate representation of sta-
bility at the heights of interest for wind energy development
compared to the near-surface Obukhov length.

The learning algorithm is trained using the root-mean-
square error (RMSE) as a performance metric to tune the
algorithm weights. To avoid overfitting, we implement reg-
ularization during the training of the learning algorithm us-
ing the hyperparameters and value ranges listed in Table 2.
At each site, we sampled 20 combinations of hyperparame-
ters using a randomized cross validation. More details about
the validation of the results from the proposed approach are
given in Sect. 3.1.

1Sine and cosine are used to preserve the cyclical nature of this
feature. Both are needed because each value of sine only (or cosine
only) is linked to two different values of the cyclical feature.

2.3 Analog ensemble approach

The second approach we use to quantify and extrapolate
modeled wind speed boundary condition and parametric un-
certainty is based on the AnEn approach. At each site and
for each hour (hereafter referred to as the “target hour”),
the AnEn considers a set of atmospheric variables, which
are consistent between the AnEn and the machine-learning
approach, in a 3 h window centered on the considered time
stamp. Then, the AnEn looks for analog atmospheric condi-
tions at the considered site using data from the single long-
term WRF setup for the year 2017. More in detail, the mul-
tivariate atmospheric state within the considered time win-
dow is compared with the atmospheric conditions modeled
by the long-term WRF setup in all of the 3 h time windows
in 2017. For each hour in 2017, the AnEn calculates a sim-
ilarity metric, formally defined as a multivariate Euclidean
distance measure (Delle Monache et al., 2013):

‖Ft ,At ′‖ =

N∑
i=1

ωi

σi

√ ∑
j=−1,0,1h

(
Fi,t+j −Ai,t ′+j

)2
, (2)

where F is the WRF-modeled atmospheric state at the search
window centered at time, t (where t varies over the full 20-
year period);A is the WRF-modeled atmospheric state over a
window centered at time, t ′ (where t ′ varies in 2017);N is the
number of atmospheric variables being considered to identify
the analogs; ωi is the predictor weight associated with the
atmospheric variable, i; and σi is the standard deviation of
the atmospheric variable, i, calculated over the search period.

Once the similarity metric is calculated for all of the hours
(t ′) in 2017, the m analog hours with the highest similarity
are selected to form the analog ensemble. Finally, the WRF-
modeled across-ensemble 100 m wind speed standard devia-
tion for each analog hour is considered. The average of these
m values, normalized by the 100 m wind speed at that target
hour from the single long-term WRF run, is then used as the
AnEn extrapolated uncertainty to associate with the initial
target hour. As previously mentioned, the AnEn approach is
then repeated at each grid cell in the domain and target hour
to generate anm-member ensemble forecast for the full long-
term period.

The results from the AnEn approach are sensitive to the
predictor weights, ωi , and the number of analog members,
m (Junk et al., 2015; Alessandrini et al., 2019). Therefore,
the AnEn approach first needs to be trained to determine the
optimal values of these parameters which maximize the accu-
racy of the AnEn predictions. In doing so, we use RMSE be-
tween 2017 AnEn-predicted and WRF-predicted wind speed
uncertainty as the score metric for the optimization process.
Training AnEn at each grid cell over our large domain is a
computationally challenging task (Hu et al., 2021a). There-
fore, we explore whether the same number of analogs and a
single combination of optimized weights can be used over the
whole domain. First, we perform a site-specific weight opti-
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Figure 2. Qualitative illustration of the concept used to temporally extrapolate the 100 m modeled wind speed boundary condition and
parametric uncertainty through the proposed machine-learning and analog ensemble approaches. Wind speed uncertainty is directly quantified
as its WRF across-ensemble normalized standard deviation (Eq. 1) for the single year in which ensembles were run and then extrapolated to
the remaining 19 years, which were run with only a single WRF setup using the proposed GBM and AnEn approaches.

Table 2. Hyperparameters considered for the gradient-boosting model.

Hyperparameter Meaning Sampled values

Number of estimators Number of trees in the forest 100–300
Learning rate Rate by which the contribution of each tree is shrunk 0.05–1
Maximum depth Maximum depth of the tree 4–10
Maximum number of features Number of features to consider when looking for the best split 1–7
Minimum number of samples to split Minimum number of samples required to split an internal node 2–20
Minimum number of samples for a leaf Minimum number of samples required to be at a leaf node 1–20

Table 3. Variability in the RMSE of two weight optimization
schemes: site-specific optimization and general domain optimiza-
tion.

Location Variability RMSE (m s−1)

Site-specific General domain
optimization optimization

Morro Bay 0.5709 0.5723
Diablo Canyon 0.5523 0.5548
Humboldt 0.7240 0.7261

mization at three sites, one for each wind energy lease area
in the California OCS (Fig. 1). Then, we alternatively tune a
single combination of weights for all three sites, and we refer
to this second approach as the general domain optimization.
We compare the RMSE values from the two approaches in
Table 3. At each site, the RMSE from the general domain
optimization is only slightly higher (< 0.5 % increase) than
that from the much more expensive site-specific optimiza-

tion. Therefore, we select the optimal number of analogs
(m= 16, notably the same as the number of WRF ensem-
ble members) and weights resulting from the AnEn training
at the three sites all together. The optimal weights are listed
in Table 4.

3 Results

3.1 Validation of the proposed approaches

As a first step, we need to assess the accuracy and validity of
our proposed approaches for the wind speed boundary con-
dition and parametric uncertainty extrapolation. As an initial
validation step, we compare the distributions of the atmo-
spheric variables used as inputs to the machine-learning and
AnEn algorithms for 2017 with what is found in the full 20-
year period. In fact, in order for both approaches to be accu-
rate, it is essential that the considered atmospheric variables
in 2017 (i.e., with which the models are trained) experience
a range of variability representative of the full 20-year period
(i.e., to which the models are applied).
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Table 4. Optimal weights associated with each physical variable in assessing the closeness of the match metric to identify the analogs.

Physical variable AnEn weight

Wind speed at 100 m a.g.l. 0.2
Wind direction at 100 m a.g.l. 0.1
Temperature at 40 m a.g.l. 0.1
Inverse of Obukhov length at 2 m a.g.l. 0
Standard deviation of 100 m wind speed over preceding 6 h 0.2
Standard deviation of 100 m wind speed over preceding 2 h 0.2
Shear exponent calculated between 200 and 10 m a.g.l. 0.2

Figure 3. Distributions of the atmospheric variables considered as inputs to the machine learning and AnEn algorithms from 2017 only and
from the full 20-year period for a single site within the Humboldt wind energy lease area. Data are expressed in terms of their probability
densities.

By qualitatively comparing the distributions of the seven
atmospheric variables at one of the three wind energy lease
areas (Fig. 3), the variability found in 2017 appears sim-
ilar to what is found in the long-term 20-year period. To
quantitatively confirm this, we apply a Levene’s test (Lev-
ene, 1961) to assess the equality of the variances of the two
samples (2017 vs. 20-year period) for each atmospheric vari-
able. We find that for all the seven variables, the null hypoth-
esis of homogeneity of variance cannot be rejected (with p-
values< 0.05), thus confirming that it is highly unlikely that
the variability found in 2017 is significantly different from
the variability in the long term. Similar results are found at
the two other wind energy lease areas (figures not shown).

After proving that the basic assumptions of the proposed
approaches are validated by the data, we need to test the ac-
curacy of their predictions.

To do so, at each grid cell we quantify the mean bias, cen-
tered or unbiased root-mean-square error (cRMSE), and co-
efficient of determination, R2, between the machine-learning
or AnEn predictions and the actual WRF ensemble variabil-
ity. For the machine-learning approach, we calculate these
error metrics over a testing set, obtained by training the learn-
ing algorithm on 80 % of the 2017 data and then testing it on
the remaining 20 %. To minimize the effects of the autocor-
relation in the data, we select the testing set without shuffling
the data. Also, to test the algorithm on the full seasonal vari-
ability in the atmospheric variables, we create the test set by
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Figure 4. Map of testing bias, cRMSE, and R2 determination coefficient from the GBM model (a, c, e) and the AnEn approach (b, d, f).
The wind energy lease areas are highlighted in red.

selecting a contiguous 20 % of data for each month in 2017.
We compare these results with the three error metrics cal-
culated when applying the AnEn approach at each grid cell
for 2017. The maps of the various error metrics for the two
approaches are shown in Fig. 4. In general, the maps show
how both approaches are capable of providing accurate pre-
dictions of the WRF boundary condition and parametric un-
certainty across the whole offshore domain. We find that the
uncertainty predicted by the machine-learning model has a
negligible bias (which is expressed as a percentage of the
mean wind resource, the same as our normalized uncertainty
metric) throughout the domain, whereas the uncertainty pre-
dictions from the AnEn approach are, on average, slightly
lower than the WRF ensemble variability with differences
of less than 3 % at the three wind energy lease areas. The
machine-learning approach also provides lower error after
the bias is removed, especially closer to the coast where the
AnEn approach has local cRMSE values as high as 40 %.
On the other hand, we see that the AnEn approach provides
a slightly stronger correspondence with the WRF data, with

R2 > 0.80 at the vast majority of the sites, whereas for the
machine-learning model, R2 > 0.75 with slightly lower val-
ues near the coast. The bias from the AnEn approach is likely
because of the reduced length of the search period (1 year),
which might be too limited for identifying a significant num-
ber (16) of analogs. This setup constrains the AnEn ability
to account for rare events (e.g., particularly high-wind-speed
cases) when looking for similar atmospheric conditions in
such a short repository. Also, when searching for the optimal
number of analogs to use, there is always a trade-off between
the prediction accuracy (e.g., the RMSE) and the prediction
bias. For our analysis, the main goal was to maximize the
prediction accuracy in alignment with the machine learning
(ML) approach, and therefore we set the RMSE as the opti-
mization metric. During our grid search analysis to determine
the optimal number of analog members, we observed that
AnEn archives better bias with fewer members, which would
however worsen the prediction accuracy (RMSE). Applying
the bias correction proposed in Alessandrini et al. (2019),
using a machine-learning similarity for analog definition (Hu
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et al., 2021b), or adopting a quantile mapping that uses quan-
tiles of the analog ensemble instead of its mean (Sidel et al.,
2020) would help reduce the AnEn bias at the potential ex-
pense of computational costs.

3.2 Analysis of extrapolated wind speed boundary
condition and parametric uncertainty

Now that the accuracy of both the proposed approaches has
been assessed, we can analyze their long-term results. Fig-
ure 5 shows maps of the long-term median hourly bound-
ary condition and parametric uncertainty for the 100 m wind
speed predicted by the two proposed techniques, as well as
the difference between the two.

A strong agreement between the two approaches clearly
emerges, with the AnEn approach predicting slightly lower
values, as discussed from the analysis of the mean bias in
Fig. 4. In general, we find a larger uncertainty close to land,
with values locally greater than 30 % of the mean wind speed,
whereas in open waters the median hourly uncertainty is
smaller than 10 % of the WRF-predicted wind speed. The
difference between the median prediction from the two ap-
proaches also gets larger close to the land. For the current
three wind energy lease areas in the region, the machine-
learning approach quantifies a long-term median hourly un-
certainty between 12 % and 14 % at all three sites. On the
other hand, the AnEn approach provides slightly lower val-
ues, between 10 % and 13 %, again with little variability
across the three sites.

When focusing on offshore wind energy development, ad-
ditional considerations are needed to understand how mod-
eled wind speed uncertainty varies for the most relevant sce-
narios for energy production. When segregating data, hav-
ing a long-term record allows for robust assessments of the
variability among the considered classifications, which might
otherwise have been much murkier when considering data
from a short-term period only. Therefore, the 20-fold in-
crease in the size of the uncertainty data set provided by our
proposed approaches brings an essential advantage to this di-
rection.

Seasonality has a primary importance for the energy mar-
ket, especially in a region such as California, with a strong
peak in annual demand in summer, which recently led to
detrimental rolling blackouts in the region. In this fragile
scenario, assessing the uncertainty in the naturally varying
long-term wind speed predictions could help assess the value
that offshore wind energy can deliver to the California energy
market and achieve more accurate planning of the balance
between supply and demand. Figure 6 compares maps of the
seasonal deviation in median hourly normalized uncertainty
for the 100 m wind speed in winter (December, January, and
February) and summer (June, July, and August). For each
season, the values shown are the difference between the me-
dian hourly uncertainty for that specific season and the over-
all median value (i.e., what is shown in Fig. 5).

For most of the considered domain, we find a larger sensi-
tivity in WRF-predicted wind speed in the winter months,
with the GBM showing a slightly larger seasonal devia-
tion than the AnEn approach. At the Morro Bay and Diablo
Canyon lease areas, the median winter uncertainty is between
2 % and 8 % larger than the annual median at the same lo-
cations. On the other hand, the Humboldt lease area shows
a near-zero winter deviation, with the machine-learning ap-
proach predicting slightly increased winter uncertainty val-
ues and AnEn predicting slightly negative ones. We find op-
posite results when considering the more energy-demanding
summer months. Both Morro Bay and Diablo Canyon show
a lower boundary condition and parametric uncertainty in
summer with a difference from their annual median values
smaller than 4 %. On the other hand, negligible variability is
observed at the Humboldt lease area. We note that spring and
fall months displayed intermediate results when compared to
summer and winter (figures not shown).

Finally, we quantify the impact of different stability
regimes on the long-term wind speed uncertainty. Various ap-
proaches to classify atmospheric stability offshore have been
proposed and applied offshore (e.g., Archer et al., 2016), in-
cluding the shape of the wind speed profile, the use of the
Richardson number, and the use of turbulent kinetic energy.
Here, we classify atmospheric stability based on the bulk
Richardson number, RiB, calculated over the lowest 200 m,
as done in Rybchuk et al. (2021) for the same data set:

RiB =
g z200 (θ200− θ0)

0.5 (θ200+ θ0) WS2
200
, (3)

where g = 9.81 m s−2 is the acceleration caused by gravity,
z200 = 200 m, θ is potential temperature (K), and WS200 is
the 200 m wind speed (m s−1). We consider stable condi-
tions for RiB > 0.025, unstable conditions for RiB <−0.025,
and near-neutral conditions otherwise. Figure 7 shows a his-
togram of the diurnal variability in the three stability regimes
at the Humboldt wind energy lease area.

We see a predominance of near-neutral and stable con-
ditions with a very weak diurnal variability. This is consis-
tent with the sea surface temperature being generally colder
than the near-surface air (because of ocean upwelling), which
causes a predominantly stable stratification. Similar condi-
tions are found at the other two wind energy lease areas. The
maps in Fig. 8 quantify how wind speed boundary condi-
tion and parametric uncertainty varies as a function of at-
mospheric stability. For each atmospheric stability class, we
show the difference between the median hourly uncertainty
for that specific stability condition and the overall median
value (i.e., what is shown in Fig. 5).

The proposed approaches show a remarkable agreement.
Neutral conditions show the lowest boundary condition and
parametric uncertainty. At the three wind energy lease ar-
eas, we find uncertainty values about 2 %–4 % lower than the
overall median in near-neutral conditions. On the other hand,
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Figure 5. Median hourly boundary condition and parametric uncertainty for the 100 m wind speed, as derived from the machine-learning
approach (a), the analog ensemble (b), and the difference between the two (c).

Figure 6. Seasonal deviation in median hourly normalized uncertainty in 100 m wind speed for winter (December, January, and February)
and summer (June, July, and August), as derived from the machine learning approach (a, c) and the analog ensemble (b, d).

the rare unstable cases show the largest uncertainty with de-
viations up to+10 % from the median at the considered wind
energy lease areas. Finally, stable conditions also show pos-
itive deviations in uncertainty throughout the considered do-
main with differences on the order of +2 %–5 % at the wind
energy lease areas.

4 Conclusions

As offshore wind energy becomes a widespread source of
clean energy worldwide, the importance of having an ac-
curate, long-term characterization of the offshore wind re-
source is crucial, not only in terms of its mean value but
also of the uncertainty associated with this estimate. In our
analysis, we focused on the California Outer Continental
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Figure 7. Daily distribution of atmospheric stability at the Hum-
boldt wind energy lease area, as determined from the bulk Richard-
son number calculated over the lowest 200 m from the 20-year WRF
simulation.

Shelf (OCS), where a significant offshore wind energy de-
velopment is expected in the near future, to propose inno-
vative techniques to temporally extrapolate hub-height wind
speed boundary condition and parametric uncertainty from a
short-term mesoscale numerical ensemble to a long-term sin-
gle model run. First, we propose a gradient-boosting model
algorithm, in which a regression model is trained over the
short-term numerical ensemble to predict its variability and
then applied to the long-term single model run. We compare
this technique with an analog ensemble (AnEn) approach,
wherein the extrapolated uncertainty for each time stamp in
the long-term run is calculated by looking for similar at-
mospheric conditions within the short-term mesoscale nu-
merical model ensemble. Adopting our proposed approaches
for uncertainty extrapolation helps save significant computa-
tional resources as the desired long-term boundary condition
and parametric uncertainty information can be derived from a
much simpler setup, wherein the computationally expensive
numerical ensembles are only run over a short-term period.

We find that both our proposed approaches agree well with
the mesoscale model ensemble variability, thus providing a
robust representation of the long-term wind speed bound-
ary condition and parametric uncertainty. While AnEn has
a slightly larger R2 coefficient with the mesoscale model
across-ensemble data, we find that the gradient-boosting
model has lower bias and centered root-mean-square error.
However, we expect the AnEn performance to improve if ei-
ther the bias correction for rare events proposed in Alessan-
drini et al. (2019) or the quantile mapping approach pre-
sented in Sidel et al. (2020) is incorporated in the analysis. In
general, we find that the offshore wind speed boundary con-
dition and parametric uncertainty increases near the coast.
While the accuracy of the AnEn approach significantly de-
grades near the coast, the larger values in hub-height wind
speed boundary condition and parametric uncertainty near
the coast were also seen from the variability among the WRF

ensembles (Optis et al., 2020) and attributed to diverging
wind profiles associated with the choice of PBL scheme un-
der strong stable atmospheric conditions near the coastline.
We also find that uncertainty is larger in stable and unstable
conditions and lower in near-neutral cases. On average, the
hourly uncertainty at the current three wind energy lease ar-
eas in the California OCS is between 10 % and 14 % of their
mean hub-height wind speed. Summer months also experi-
ence lower uncertainty, which will benefit the energy plan-
ning in a season with a strong demand, which has, in the
past, led to detrimental rolling blackouts.

Clearly, the magnitude of the boundary condition and
parametric uncertainty component that we quantified in our
analysis is strictly connected to the (limited) number of
choices sampled within the considered model setups. Given
this underdispersive behavior of the numerical weather pre-
diction ensembles (Buizza et al., 2008; Alessandrini et al.,
2013), we expect the uncertainty quantified from our ensem-
ble to be lower than the model error with respect to measure-
ments. Still, we note that the same caveat would apply if the
uncertainty was directly quantified by running a long-term
numerical ensemble, and thus the computational advantages
of our proposed approaches still hold. Moreover, we empha-
size how the choices made to build our numerical ensemble
represent either state-of-the-art resources or the most widely
accepted choices within the wind energy modeling commu-
nity. Also, a quantification and temporal extrapolation of the
full uncertainty in modeled wind speed would require con-
current observations (and the knowledge of the inherent un-
certainty associated with them) to be computed. Given all
these considerations, many opportunities exist to further ex-
pand our work. While floating lidars with publicly available
data have only been deployed in the California OCS very
recently (Gorton, 2020), a few lidars have been deployed
off the US eastern seaboard for more than 1 year. Obser-
vations from long-term offshore meteorological towers are
also available in the North Sea in Europe. Our analysis could
be expanded by first comparing the model-related bound-
ary condition and parametric uncertainty with the full mod-
eled wind speed uncertainty calculated by comparing mod-
eled data and observations. Then, our proposed approaches
could be expanded to temporally extrapolate the full mod-
eled wind speed uncertainty: for example, quantified in terms
of the variability in the residuals between modeled and ob-
served wind. Testing additional input features to the algo-
rithms could also help further improve the accuracy of the
proposed extrapolation. Also, the site specificity of the pro-
posed approaches would need to be investigated to under-
stand if a learning model trained at a site, e.g., one ocean
basin, can still provide accurate predictions when applied
at a different location. Analog-based techniques could also
be applied onshore, where the impact of more complex to-
pography would likely need to be taken into account and in-
corporated in the algorithms. Finally, future work could fo-
cus on how interannual wind speed variability caused by cli-
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Figure 8. Deviation in median hourly normalized uncertainty for the 100 m wind speed from the annual median for different atmospheric
stability regimes, as derived from the machine-learning approach (a, c, e) and the AnEn approach (b, d, f).

mate change or long-term climatic and atmospheric oscilla-
tions (e.g., the North Atlantic oscillation) compares with the
quantified uncertainty in modeled wind speed and how that
should be taken into account for wind energy development
purposes. To facilitate this extension, we have included in
the Supplement a map of the interannual variability in 100 m
wind speed quantified from the 20-year WRF run.

Code and data availability. Data from the WRF sim-
ulations over the California OCS are available at
https://doi.org/10.25984/1821404 (Bodini, 2021a). The code
for the considered machine-learning model is available at
https://github.com/nbodini/ML_UQ_offshore (last access: 29 Oc-
tober 2021) and https://doi.org/10.5281/zenodo.5618470 (Bo-
dini, 2021b). The code for the AnEn approach is available at
https://weiming-hu.github.io/AnalogsEnsemble (Hu, 2021).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/wes-6-1363-2021-supplement.
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