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Abstract. The flow upwind of an energy-extracting horizontal-axis wind turbine expands as it approaches the
rotor, and the expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long
been known to influence the axial momentum equation through the axial component of the pressure, although
the extent of the influence has not been quantified. Starting with the impulse analysis of Limacher and Wood
(2020), but making no further use of impulse techniques, we derive its exact expression when the rotor is a
circumferentially uniform disc. This expression, which depends on the radial velocity and the axial induction
factor, is added to the thrust equation containing the pressure on the back of the disc. Removing the pressure to
obtain a practically useful equation shows the axial induction in the far wake is twice the value at the rotor only
at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding
flow carries over to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches
the Joukowsky model of a hub vortex on the axis of rotation and tip vortices originating from each blade. The
additional assumption that the helical tip vortices have constant pitch allows a semi-analytic treatment of their
effect on the rotor flow. Expansion modifies the relation between the pitch and induced axial velocity so that the
far-wake area and induction are significantly less than twice the values at the rotor. There is a moderate decrease
– about 6 % – in the power production, and a similar size error occurs in the familiar axial momentum equation
involving the axial velocity.

1 Introduction

Conservation of axial and angular momentum are fundamen-
tal principles for wind turbine analysis. They are applied us-
ing control volumes (CVs) such as those in Fig. 1 or, more
commonly, to a CV coinciding with a mean streamtube and
extending into the far wake, the hypothetical region of no fur-
ther wake development. For blade-element momentum the-
ory, the CVs become expanding annular streamtubes inter-
secting the elements. The change in axial or angular momen-
tum of the flow determines the net thrust or torque, respec-
tively, acting on the rotor or blade elements (e.g. Burton et
al., 2011; Hansen, 2015; Sørensen, 2016). Angular momen-
tum is easier to analyze because in most cases it is generated
only at the blades.

When a turbine extracts kinetic energy from the wind, the
flow must expand both upwind and downwind of the ro-
tor. As noted on p. 185 of Glauert (1935) and by Goorjian
(1972), the axial momentum equation may receive contri-
butions from the pressure in the expanding flow upwind of
the rotor. The expansion causes the pressure force to have an
axial component which alters the rotor thrust by an amount
equal to the momentum flux external to the rotor. This is be-
cause the pressure forces acting on the cylindrical control
surfaces at radius RCV in Fig. 1 are entirely radial. Although
the role of pressure has been recognized for a long time and
is discussed by Sørensen (2016) and van Kuik (2018) among
others, a satisfactory analysis of it is lacking. The first main
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Figure 1. Control volumes (CVs) to be used in the present analysis. In both variants, the upstream face extends in z to −∞, where the
velocity is the wind speed, and RCV� R. The downstream control surface is just downstream and just upstream of the rotor plane in CV1
and CV2, respectively, and the corresponding downstream control surfaces (CS) are labelled SD and SU. Taken from LW.

result of the present analysis is a closed-form expression for
the pressure force for a circumferentially uniform rotor.

Limacher and Wood (2020) (hereinafter “LW”) investi-
gated steady wind turbine thrust, T , using an impulse anal-
ysis, whereby the pressure in the axial momentum equa-
tion for any CV is replaced by terms that include vorticity
fluxes across the CV boundaries. This removal of pressure
is achieved by the substitution of various integral identities
into a standard momentum-based control volume analysis, as
demonstrated by Noca (1997). We will use what we call the
“impulse perspective” as explained below but not impulse
techniques in this paper; the interested reader is referred to
LW for a short history and more details. LW showed that by
approximating a rotor as an actuator disc, T is given exactly
by integration over the face SD of CV1, situated just down-
wind of the rotor on the left of Fig. 1:

T

ρ
=

∫
SD

(
1
2
w2
+ λwx

)
dS, (1)

where ρ is the air density, and w is the circumferential veloc-
ity (in the direction of θ in Fig. 1) on SD; in LW, w denoted
the circumferential velocity at the rotor plane, which was as-
sumed to be one-half that on SD. This assumption is also
used in the present analysis. λ is the tip speed ratio (λ > 0
for clockwise rotation, as viewed from the positive z axis),
and x is the radius normalized by the tip radius so that x ≤ 1
for the rotor. The downwind face of the second CV in the
figure, SU, is just upwind of the rotor. The term “exact” will
be used throughout this paper to indicate that no assump-
tions beyond those listed below have been invoked. Taking
the “wake” to be the flow that has passed through the rotor,
which rotates with a constant angular velocity, these assump-
tions are as follows:

1. the flow upwind of the rotor and outside the wake is
inviscid, steady, and spatially uniform;

2. the total energy of the wake is reduced instantaneously
at the rotor, after which it is conserved;

3. viscous and/or Reynolds stresses can be neglected on
the CV surfaces;

4. the axial, u, and radial velocity, v, are continuous
through the rotor disc;

5. viscous drag is negligible;

6. w is zero in the upwind flow and outside the wake;

7. the vorticity in the wake is concentrated in line vortices
or vortex sheets aligned with the local streamlines in the
rotating frame of reference – in other words, the wake
vortices rotate rigidly with the blades and vortex lines
and streamlines coincide;

8. to derive the local or differential form of Eq. (1), the vor-
ticity piercing the lateral boundaries of the annular CVs
intersecting the blade elements must have no effect on
the element’s thrust.

Assumption no. 7 simplifies the terms involving the trailing
vorticity crossing SD in the impulse derivation. Assumptions
no. 3, no. 5, and no. 8 are likewise embedded in the equations
derived by LW and are not explicitly required in the analysis
to follow. As LW note, a thorough investigation of assump-
tion no. 8 remains an important area of future research, but as
yet the assumption remains necessary to recover the Kutta–
Joukowsky expression for local thrust that is conventionally
employed in blade-element momentum (BEM) analyses. As
such, we perpetuate the use of assumption no. 8 for the time
being. We also note, emphatically, that none of the eight as-
sumptions places any restrictions on flow expansion. Since
the impulse derivation of Eq. (1) is likewise unrestricted, the
equation is exact in the presence of flow expansion and for
any distribution of w(x).

Although Eq. (1) has been known since Glauert (1935) and
appears in modern texts, such as Eq. (4.6) in van Kuik (2018),
LW’s analysis provides the first proof of its exactness when
the trailing vortex sheets have finite thickness. LW’s second
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main finding for circumferentially uniform, expanding flow
is

0=
∫
SU

(
v2
− a2

)
dS =

∫
SD

(
v2
− a2

)
dS, (2)

where a = 1− u (when u is normalized by the wind
speed, U0) is the usual axial induction factor. To maintain
consistency we use only normalized velocities from here on.
The easiest was to do this is to mentally replace the density ρ
by ρU2

0 .
van Kuik (2020) found Eq. (2) was satisfied by his model

of the expanding flow through a wind turbine rotor. When
a and v are further assumed to be C0 continuous on SU
and SD, Eq. (2) tells us that |a| = |v| at some radial location,
and LW cite three simulations that show |a| ≈ |v| near the
rotor tip. The vanishing of the first integral on SU in Eq. (2)
is the more general result; the vanishing of the second inte-
gral on SD follows from assumption no. 4 above. Until the
end of Sect. 3, we treat the rotor as circumferentially uni-
form. Since Eq. (1) contains no terms representing pressure
redistribution, LW assert that its local version giving the con-
tribution to the thrust at radius x is also exact:

1
ρ

dT
dx
=

2π∫
0

(
1
2
w2
+ λwx

)
xdθ = 2πwx

(w
2
+ λx

)
, (3)

where θ is the circumferential co-ordinate, defined in Fig. 1.
This result is also not new: it is, for example, Eq. (4.24)
of van Kuik (2018). It is often referred to as the Kutta–
Joukowsky theorem for blade-element thrust because it gives
the axial force, dT/dx, as the product of the circumferential
velocity at the rotor, w/2+ λx, and the sum of the circu-
lation on all blades, 2πwx. Impulse analysis, however, can
also be applied if the CV outlet is moved to the far wake to
give dT/dx in terms of the w in the far wake. The Glauert
(1935) original derivation of Eq. (1) – based on the Bernoulli
equation – also suggests the exactness of Eq. (3).

Equation (2) can be derived using standard CV momen-
tum analysis, but the authors are unaware of it appearing in
the literature prior to LW. It is a natural outcome of the im-
pulse perspective which we use to investigate the effects of
flow expansion on the conventional axial momentum equa-
tion. It will be shown that Eq. (2) is closely related to the ef-
fects of pressure in the upwind flow on the conventional axial
momentum equation and the general relationship between a
and the far-wake induction, a∞. T is derived in Sect. 4 of
Sørensen (2016) and Sect. 5.2.4 of van Kuik (2018) using a
CV ending in the far wake. We take the different approach
of using the CVs shown in Fig. 1 because that choice clari-
fies the effects of expansion. We also make further use of the
impulse form of the T equation. The derivations of the re-
maining equations in this paper are straightforward and could
have been easily done in the past if the impulse perspective
had been available.

For context, we now examine the connection between
the impulse- and momentum-based approaches to turbine
thrust, which requires a relationship between a and w. As
explained by, for example, Wood et al. (2021), the Kawada–
Hardin (KH) equations for the velocity field of a constant
pitch, p, constant radius helical vortex, Kawada (1936) and
Hardin (1982), yield

p

x
=
w/2
a
, (4)

as only half of the near-wake azimuthal velocity is induced
by the wake (the other half is due to the blades). Pitch can
also be related geometrically to a and λ by treating the
wake as a non-expanding rigid helicoidal surface, as done
by Okulov and Sørensen (2008). In the limit where λx� w,
we have

p

x
≈

1− a
λx

, (5)

and the preceding two equations can be combined to give
λwx ≈ 2a(1− a). The high-λ limit of Eq. (3) thus becomes

1
ρ

dT
dx

∣∣∣∣
λ→∞

≈ 2πλwx2
≈ 4a(1− a)πx, (6)

recovering the familiar 4a(1− a) integrand from classical
momentum theory. At smaller λ, the relationship between the
momentum- and impulse-based thrust expressions has not
been fully investigated.

In the next section, we express the contribution of pres-
sure on the expanding upstream streamtube to actuator disc
thrust. The section thereafter analyzes the local form of the
thrust equation. It contains our second main result about the
behaviour of a – that it is negligible at λ= 0 and a∞ ≈ 2a
is possible at high λ only if Eq. (4) remains valid for ex-
panding flow. In Sect. 4, we apply the Biot–Savart law to an
expanding Joukowsky wake, which contains only hub and tip
vortices. On the further assumption of constant p, we show,
again for the first time, that a ≤ a∞ ≤ 2a depending on the
extent of the vortex expansion; the larger the expansion, the
closer a approaches a∞. Not surprisingly, the far-wake radius
is reduced as is the power extracted by the turbine. The final
two sections contain the general discussion and conclusions,
respectively.

2 Actuator disc thrust for expanding flow

Some results of the impulse analysis can be converted easily
to conventional equations containing the axial velocity and
the pressure on the CV surface even when the flow expands
through the rotor. For example, Bernoulli’s equation for PU,
the pressure on SU, is

2PU

ρ
= 1− v2

− u2. (7)
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PU and all pressures considered herein are gauge pressures
relative to the free-stream pressure in the wind. Equation (7)
allows the removal of v2 from Eq. (2) to give

∞∫
0

PU

ρ
xdx =

∞∫
0

u(1− u)xdx, (8)

which is also the outcome of a conventional momentum bal-
ance on CV2. The momentum balance on CV1 yields

T

2πρ
=

∞∫
0

u(1− u)xdx−

∞∫
0

PD

ρ
xdx, (9)

where PD is the pressure on SD. It is important to note that
the effective upper limit on the integrals in Eq. (9) is outside
the rotor. Nevertheless,

T

2πρ
=

1∫
0

PU−PD

ρ
xdx =

1∫
0

1P

ρ
xdx, (10)

since PD = PU for x > 1. In other words, there is no pressure
jump at z= 0 outside the rotor. The thrust equation with inte-
gration only over the rotor can be found by rewriting Eq. (9)
as

T

2πρ
=

1∫
0

a(1− a)xdx−

1∫
0

PD

ρ
xdx+

∞∫
1

a(1− a)xdx

−

∞∫
1

PD

ρ
xdx. (11)

To remove the last two integrals for x ≥ 1, we use Eq. (7) for
PD = PU and then Eq. (2) to arrive at

T

πρ
= 2

1∫
0

a(1− a)xdx− 2

1∫
0

PD

ρ
xdx+

1∫
0

(
a2
− v2

)
xdx. (12)

The first integral in Eq. (12) contributes half of the conven-
tional thrust. The first and second integrals are components of
conventional CV analysis, whereas the third integral is new.
It makes Eq. (12) exact for an actuator disc when the flow
expands and will be shown below to be generally positive.
We now change the CV from that shown in Fig. 1 to the
more commonly used one formed by the bounding stream-
surface (BS) dividing the flow passing through the rotor from
the external flow. BS begins at z=−∞, where z is the ax-
ial co-ordinate with origin at the rotor (Fig. 1). The vertical
faces of the new CV are, therefore, subsets of those shown in
Fig. 1. A straightforward momentum balance gives

T

πρ
= 2

1∫
0

a(1− a)xdx− 2

1∫
0

PD

ρ
xdx+ 2

0∫
−∞

(
P

dx
dz

)
BS
xdz, (13)

where the last integrand is evaluated on BS. dx/dz gives the
local slope of BS, so P dx/dz is the axial component of the
pressure acting on BS. It follows immediately from Eqs. (12)
and (13) that

0∫
−∞

(
P

dx
dz

)
BS
xdz=

1
2

1∫
0

(
a2
− v2

)
xdx, (14)

which gives the first quantification known to the authors of
the axial force due to the expanding flow through a wind tur-
bine rotor. It is easy to generalize this equation because there
is no thrust extracted in the upwind flow. For any x and z ≤ 0,
z∫

−∞

(
P

dx
dz

)
S(x,z)

xdz=
1
2

x∫
0

(
a2
− v2

)
xdx, (15)

where S(x,z) is the streamsurface passing through (x,z)
so that BS= S(1,0). The second integral is evaluated at
z ∈ [−∞,0].
PD in Eq. (12) can be evaluated in the standard manner by

assuming that the unsteady Bernoulli equation is valid from
immediately behind the rotor to the far wake:

−
2PD

ρ
= u2
+ v2
+w2

− u2
∞−w

2
∞−

2P∞
ρ

− 2λx∞w∞+ 2λxw, (16)

where the far-wake terms have the subscript “∞”. The last
two terms arise from the unsteady potential terms, evaluated
by assuming rigid wake rotation (see appendix B of LW).
Conveniently, these terms cancel due to conservation of an-
gular momentum, yielding

−
2PD

ρ
= u2
+ v2
+w2

− u2
∞−w

2
∞−

2P∞
ρ
. (17)

Combining Eqs. (12) and (17) we get

T

πρ
=

1∫
0

(
1− u2

∞

)
xdx−

1∫
0

(
2P∞
ρ
−w2

+w2
∞

)
xdx, (18)

where w∞ and P∞ are evaluated at x∞ in the wake, con-
nected to x at the rotor by a mean streamsurface.

In the far wake, the pressure and circumferential velocity
are related by

dP∞/ρ
dx

=
w2
∞

x
. (19)

The relationship between the area integrals of P andw can be
found using the technique introduced by McCutchen (1985)
and rediscovered by Wood (2007): multiply both sides by x2

and integrate by parts for the left side. If P∞x2
→ 0 as x ↓ 0,

and is zero at the edge of the far wake, then

R∞∫
0

P∞

ρ
xdx =−

1
2

R∞∫
0

w2
∞xdx. (20)
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As pointed out by van Kuik (2018) in conjunction with his
Eq. (6.8), any swirl at the edge of the wake makes P∞(x∞) 6=
0. The present analysis can accommodate this behaviour,
but for the present we take the simpler path of assuming
P∞(x∞)= 0. The main justification for this assumption is
that we expect the magnitude of the swirl to become negli-
gible everywhere at the edge of the wake at high λ. When
P∞(x∞)= 0, Eq. (18) reduces to

T

πρ
≈

1∫
0

(
1− u2

∞

)
xdx+

1∫
0

w2xdx. (21)

Defining the axial induction in the far wake as a∞ = 1−u∞,
we obtain

T

πρ
≈

1∫
0

a∞ (2− a∞)xdx+

1∫
0

w2xdx, (22)

and the standard thrust equation is recovered if a∞ ≈ 2a and
w2
≈ 0, which is typically the case at high λ but may not

be generally correct. Note that Eq. (22) is accurate at λ= 0,
where the first integral is negligible but a∞ 6= 2a.

To recover the classical thrust equation and to provide a
comparison to the analyses of Sørensen (2016) and van Kuik
(2018), we now move the downwind face of the CV to the far
wake and use Eq. (20). This results in

T

2πρ
=

R∞∫
0

a∞ (1− a∞)xdx−

R∞∫
0

P∞

ρ
xdx,

=

R∞∫
0

a∞ (1− a∞)xdx+
1
2

R∞∫
0

w2
∞xdx. (23)

If we ignore the second integral in Eq. (18) and the integrals
in Eq. (23) containing P and w, and assume a and a∞ are
constant with x, we again recover the conventional relation
a∞ ≈ 2a by invoking conservation of mass.

In considering the local equation for dT/dx in the next
section, it is useful to have the alternative form of Eq. (23)
from the impulse analysis of LW. The direct application of
LW’s Eq. (22),

T

2πρ
=

∞∫
0

(
1
2
w2
+ λwx

)
xdx+

1
2

∞∫
0

(
v2
− a2

)
xdx, (24)

together with v = 0 everywhere in the far wake and a∞ = 0
for r > R∞ gives

T

2πρ
=

R∞∫
0

(
1
2
w2
∞+ λw∞x

)
xdx−

1
2

R∞∫
0

a2
∞xdx. (25)

Note that Eq. (24) holds anywhere behind the rotor, i.e. for
z > 0 with the second integral approaching zero as z ↓ +0.

The results for the far wake can be used to estimate the
conventional thrust when λ= 0, and the expansion is neg-
ligible by application to SD. Equation (20) will then be ap-
proximately valid for a and PD replacing a∞ and P∞, and
comparison with Eq. (1) shows that the momentum flux term
2a(1− a) will be negligible. In other words, the thrust on a
stationary disc occurs predominately through the pressure on
its back face associated with w.

3 Local thrust in expanding flow

Having considered the thrust for the complete rotor, we now
consider the local contribution at radius x. We continue to
use a circumferentially uniform disc. It is easy to show that
the local form of Eq. (12),

1
πρ

dT
dx
=

[
2a(1− a)−

2PD

ρ
+ a2
− v2

]
x, (26)

is exact for a circumferentially uniform disc in expanding
flow. This can be done in at least two ways. First, using
Eq. (7) and simple manipulation, the bracketed terms can be
written as

1− u2
− v2
−

2PD

ρ
=

21P
ρ

, (27)

and the pressure difference across the annulus containing
the blade elements must give the exact thrust by assumption
no. 4. Secondly, starting from Eq. (15) it is easy to prove
that a2

− v2 in Eq. (26) accounts for the difference in pres-
sure acting on the top and bottom of the expanding annular
streamtube that intersects the blade elements.

We now consider the consequences of the exact Eq. (26)
for the far wake. If the w and P∞ terms in Eq. (17) are neg-
ligible at high λ, the bracketed term in Eq. (26) becomes

2a(1− a)−
2PD

ρ
+ a2
− v2
≈ 1− u2

∞. (28)

The exactness of the local form of Eq. (23) is not easy to
establish in general because all three velocity components
can be important in the wake and the total pressure is not
constant. This is the first reason we based our analysis on
the CVs shown in Fig. 1 rather than one extending to the
far wake. We note, however, that there is no interchange be-
tween pressure on BS and axial momentum in the flow out-
side the far wake where v2

= a2
= 0. In other words, the in-

terchange is completed before the far wake is reached. This is
the second reason we used the CVs in Fig. 1. The local form
of Eq. (23) will have a term corresponding to the bracketed
term in Eq. (26) of 2u(1−u∞). Combining with Eq. (28), we
retrieve the standard result that u= (1+ u∞)/2 or a∞ = 2a
which can be accurate only at high λ; note that the discussion
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immediately below Eq. (22) shows the result does not hold at
λ= 0. Further, from Eq. (7),

2PU

ρ
= 1− u2

− v2
= 2a(1− a)+ a2

− v2. (29)

If Eq. (6) is valid, then Eq. (26) becomes

−
2PD

ρ
≈ 2a(1− a)− a2

+ v2 (30)

for x ≤ 1.
The preceding analysis shows that PU 6= −PD in general,

in contrast to the familiar results of one-dimensional momen-
tum theory. PU =−PD would require a = v, which cannot
hold everywhere for several reasons. First, v→ 0 as x ↓ 0,
whereas there is no similar constraint on a. Secondly, we
argued above that the flow outside the wake has an axial
momentum deficit so a ≥ 0 but not necessarily equal to v
for x > 1. Equation (2) would then be violated if a = v for
x ≤ 1. Thirdly, van Kuik (2018) Sect. 5.4.4 points out that
there is no theoretical requirement that PU =−PD. They are
unlikely, however, to differ greatly in general. This suggests
v→ a as x→ 1, as argued by LW and shown by the model
calculations of van Kuik (2020), who found also that v was
significantly larger than a outside the wake until at least
x ≈ 1.2. If a > v over most of the rotor, then the positive
a2
−v2 in Eq. (26) corresponds to a positive pressure exerted

by the external flow on the wake.
A more definite statement about PU and PD can be made

for stationary rotors (λ= 0) following the last paragraph of
the previous section. It is shown there that a is negligible at
λ= 0 so that PU ≈ 0 and PD is associated with w behind
the rotor. The inequality reduces as λ increases but is always
present because of non-zero a2

− v2.
We now consider the far wake in more detail to determine

the vortex pitch and its relation to a∞, which are required
in the next section. Equation (19) requires P∞/ρ =−w2

∞/2
whenw∞ ∼ 1/x∞. We assume that at sufficiently high λ, the
wake approximates a Joukowsky wake with the hub vortex
lying along the axis of rotation and the tip vortices at radius
R∞ in the far wake, with no vorticity in between. The main
justification for this assumption comes from Eq. (1). When
λ= 0, the first term implies that the bound vorticity, 0, can-
not be constant; Wood (2015) showed that 0 ∼ x2. At high λ,
however, the first term becomes negligible in comparison to
the second for most x. The simplest wake for which the thrust
remains bounded on a turbine with N blades occurs when
N0λ∼ λwx is constant in x and λ; this is the Joukowsky
wake in which assumption no. 7 of Sect. 1 becomes irrele-
vant to the flow between the tip and hub vortices. Further,
the tip vortices now separate the wake and the external flow,
which may have very different velocities. The vortex velocity
should then be the average of these two, and the vortex lines
need not align with the wake streamlines.

Outside the hub vortex core of a Joukowsky wake, w∞ ∼
1/x∞ and, as pointed out by Sørensen (2016), the total pres-

sure is constant for all streamsurfaces. In addition, indepen-
dence will hold in the sense that the integrands in Eqs. (23)
and (25) must be equal. Thus,

1
2
w2
∞+ λw∞x−

1
2
a2
∞ = a∞ (1− a∞)+

1
2
w2
∞, (31)

without making any assumption about the relationship be-
tween a and a∞. p∞, the constant pitch of the constant ra-
dius tip vortices, is related to the velocities by the equivalent
of Eq. (4): p∞/x∞ = w∞/a∞. Equation (31) can be rewrit-
ten as

p∞ =
1− a∞/2

λ
. (32)

In the next section, λ will be calculated using Eq. (32) for
a given p∞ and the corresponding calculated value of a∞.
Equation (32) is the high−λ equivalent of Eq. (22) of Okulov
and Sørensen (2008) for vortex pitch provided the convection
velocity of the vortex – w in their notation but wv here – is
equal to a∞/2. Table 1 of Wood and Okulov (2017) shows
that wv→ a for ideal Betz–Goldstein rotors as λ→∞, and
so Eq. (32) is recovered since a∞→ 2a in the same limit.
Another way to view this result is that the axial velocity in the
Joukowsky far wake is constant and equal to 1− a∞ outside
the vortex cores, so the tip vortices must travel downwind at
a velocity of 1− a∞/2 to be force-free.

The KH equations for a doubly infinite helical vortex of
constant radius and pitch lead to

a∞ =N0/ (2πp∞) . (33)

If we ignore wake expansion, then a ≈N0/(4πp) for the
singly infinite near-wake, and if p∞ ≈ p, then a∞ ≈ 2a. This
result suggests the strategy for the next Section, where we
analyze the flow associated with expanding tip vortices by
assuming they have constant pitch everywhere. This allows
a semi-analytic determination of their influence on the flow
through the rotor. In other words, we relax one of the lim-
itations of the KH equations, that of constant radius, which
must be relaxed, but keep the limitation on p, which, hope-
fully, leads to results of sufficient generality.

4 The expanding Joukowsky wake with constant
pitch

We assume p remains constant and use the results of the
previous section and the Biot–Savart law to investigate the
flow immediately behind the rotor to determine the thrust and
power coefficients. The circumferentially averaged velocities
are due entirely to the trailing vorticity: w is due to the hub
vortex only, whereas u and v result from the expanding tip
vortices only.

4.1 Biot–Savart analysis of expanding tip vortices

Without loss of generality, let the lifting line representing one
blade lie instantaneously along the x axis in Fig. 1 and con-
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sider the tip vortex beginning at (1, 0, 0). We now determine
the velocities induced at a point (x,θ,0) in cylindrical polar
co-ordinates or (x cosθ,x sinθ,0) in Cartesian co-ordinates
for constant p. A point on the vortex is (t(β),β,pβ) in Carte-
sian co-ordinates or (t(β)cosβ, t(β) sinβ,pβ) in cylindrical
polar co-ordinates, where radius t is a monotonically increas-
ing function of the vortex angle β that asymptotes to the far-
wake radius. Thus, 1≤ t ≤ R∞, and from here on, the depen-
dence of t on β will be understood. An increment dl along
the vortex is given by

dl =

(
−t sinβ +

dt
dβ

cosβ, t cosβ +
dt
dβ

sinβ,p
)

dβ, (34)

and the distance d from the point to the vortex is

d = (x cosθ − t cosβ,x sinθ − t sinβ,−pβ) , (35)

so that

d2
= x2
+ t2− 2xt cos(β − θ )+p2β2, (36)

which is an even function of β and θ . A straightforward ap-
plication of the Biot–Savart law yields the three velocities
associated with the trailing tip vortex as

(v(x,θ ),w(x,θ ),a(x,θ ))=
0

4π
(Iv,Iw,Ia)=

0

4π

∞∫
0

(iv(x,θ ), iw(x,θ ), ia(x,θ ))
d3 dβ, (37)

where 0 is the vortex strength,

iv(x,θ )=−p
[
tβ cos(β − θ )+

(
t −β

dt
dβ

)
sin(β − θ )

]
, (38)

iw(x,θ )= p
[
x+

(
β

dt
dβ
− t

)
cos(β − θ )−βt sin(β − θ )

]
, and (39)

ia(x,θ )= t2− xt cos(β − θ )− x
dt
dβ

sin(β − θ ). (40)

In forming the circumferential averages by integrating over
0≤ θ ≤ 2π , all the sin(β − θ ) terms will vanish as they are
odd in θ . The linearity of inviscid flow leads to equal con-
tributions to the averaged (u,w,a) from the N identical and
equi-spaced trailing vortices.

The simplest calculation of ia is for x = 0, for which the
circumferential average a(0)= a(0,θ ), and

a(0)=
N0

4π

∞∫
0

t2(
t2+p2β2

)3/2 dβ,

=
N0

4πp

∞∫
0

t2(
t2+ z2

)3/2 dz=
N0

4πp

∞∫
0

ia(0)dz,

=
N0

4π
Ia(0). (41)

Ia is, clearly, dependent only on the geometry of the tip vor-
tices. For an expanding wake with constant p, Eq. (4) will un-
derestimate a as Ia(x)≥ Ia(0)≥ 1/p when t is not constant.
If p varied with β, then pβ in Eq. (36) would be replaced by∫
pdβ and the direct relation between ∂/∂z and (1/p)d/dβ

would be lost. It is likely that an analytic expression for the
integrands in Eq. (37) would not be possible.

Performing the θ integration of Eq. (40) using Mathemat-
ica gives

iv(x)=
pβ

πx
√
p2β2+ (x+ t)2

[(
1+

m

2

)
E
(
mp
)

−K
(
mp
)]
, and (42)

ia(x)=
−1

π
√
p2β2+ (x+ t)2

[(
1+

m

2
−
mt

2r

)
E
(
mp
)

−K
(
mp
)]
, (43)

wherem= 4xt/(p2β2
+(x−t)2).E(.) andK(.) are the com-

plete elliptic integrals of the second and first kind, respec-
tively, whose argument mp =m/(1+m). Thus, v and a can
be obtained by integrating Eq. (41) along the trajectory of
the tip vortex, t(β) for 0≤ β ≤∞. This must, in general,
be done numerically, but several checks are possible. In de-
scribing these, we continue to use the notation I =

∫
idβ and

identify the limits to the integral if they differ from (0,∞).
If t remains constant at 1, say, and the integration is over
−∞≤ β ≤∞, that is, for a doubly infinite vortex or vortices
of constant radius and pitch, then Iv(−∞,∞)= 0 for any x,
and

Ia(−∞,∞)= 2/p, for x < 1,

= 1/p, for x = 1, and
= 0, otherwise. (44)

The interior and exterior solutions in Eq. (44) are conse-
quences of the KH equations, derived from the velocity po-
tential. All results in Eq. (44) follow from Eq. (37). Using
NIntegrate in Mathematica and MATLAB’s integral, these
results were reproduced to six significant figures for a similar
range of x to that used in the main text and limits of±1000π
on the integration. For a singly infinite helix, the values of Ia
for z= 0 when β = 0 are half those in Eq. (44). These were
reproduced numerically to the same accuracy. Iv is not avail-
able from the KH equations for this case.

As with any Biot–Savart analysis, the behaviour of
Eqs. (42) and (43) as x→ t(0)= 1 must be considered.
As mp→ 1, E(mp)∼ 1, Eq. (19.6.1) of NIST DLMF
(2021), and K(mp)∼ log(16/m′p)/2, where m′p +mp = 1,
Eq. (17.3.26) of Abramowitz and Stegun (1964). The lead-
ing terms in Eqs. (42) and (43) become
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iv(x)∼pβ
(
p2β2

+ x2
+ t2

)
/

√
p2β2+ (x+ t)2/x(

p2β2
+ (x− t)2

)
, and (45)

ia(x)∼−
(
p2β2

+ x2
− t2

)
/

√
p2β2+ (x+ t)2/(

p2β2
+ (x− t)2

)
, (46)

showing that a logarithmic singularity occurs in ia despite
it being the integrand for the circumferentially averaged ax-
ial velocity. This is a stronger singularity than that in Chat-
tot (2020) perturbation analysis of the flow near the edge of
the rotor, which assumes a vortex cylinder wake. There is no
logarithmic singularity in iv, but the slope div/dβ increases
without bound as β→ 0. These behaviours could be miti-
gated by using the well-known cut-off modification to the
limits of the Biot–Savart integrals as was done for helical vor-
tices by Ricca (1994); see also Sect. 11.2 of Saffman (1992).
There is, however, a simpler, heuristic alternative. The upper
limit on a(x) as x→ 1 is taken to be a∞. A partial justifica-
tion for this tactic comes from the wind tunnel measurements
of a model wind turbine by Krogstad and Adaramola (2012).
Their Fig. 9c shows that at λ= 9.51, a ≈ 0 at small x but
rises to the extraordinary value of around 0.8 at x = 1. Thus,
Ia ≤ 2/p was enforced in the calculations described in the
main text. Whenever this was done, Iv was assumed equal to
the maximum value below the limit on Ia.

The numerical evaluation of Ia and Iv can be improved by
considering the asymptotic behaviour of ia and iv for large β,
which corresponds to smallm andmp. The leading terms are
simple functions of β, allowing the infinite integrals to be
approximated. For Iv, we have

Iv(x)≈ Iv(x, β̂)+Rv(β̂), (47)

where the first term was obtained numerically over β =
[0, β̂] and the remainder, Rv(β̂), is an approximation to the
integral over β = [β̂,∞]. Rv(β̂) is

Rv(β̂)= xR2
∞/

(
2β̂3p4

)
. (48)

The remainder for Ia is independent of x:

Ra(β̂)= R2
∞/

(
2β̂2p3

)
. (49)

This result also follows from Eq. (41) when z� R∞.
It was found that β̂ = 200π was sufficient to ensure six-

figure accuracy of the integrals over the range of x considered
below. Iv converged faster than Ia, reaching 99 % of the final
value by β = 2π for any x.

The Biot–Savart integrands in Eq. (43) are plotted in
Figs. 2 and 3 for x close to the blade tip, in terms of axial
distance z= pβ, where β is the vortex angle starting from
zero at the rotor. The figures also show the small-β asymp-
totes in Eqs. (45) and (46) and the large-β remainders de-
fined in Eqs. (48) and (49). If the tip vortex radius t remains

Figure 2. Integrand, iv, for p = 0.1, R2
∞ = 1.597.©, x = 0.9; �,

x = 0.99,; and �, x = 0.999 from Eq. (42). iv increases with x.× is
the integrand in Eq. (45). For clarity, only every second data point
is plotted. The solid line shows the remainders from Eq. (48). The
differences with varying x are within the thickness of the line.

at 1, Eq. (44) gives Ia = 1/p for any x, and the conventional
momentum equation (Eq. 6) remains valid. We assume that
1/p is the minimum value of Ia, and, as explained in the Ap-
pendix, we impose a ≤ a∞ so that 1/p ≤ Ia ≤ 2/p. For max-
imum power, the familiar derivation of the Betz–Joukowsky
limit suggests R2

∞ ≈ 2, so we investigate R∞ around that
value. Note, however, the use of Eq. (6) to derive this limit
means that it is applicable only to a wake that expands either
very slowly, as explained above, or very rapidly to t =

√
2, as

Ia = 1/p for any constant t . We will show that generic wind
turbine wakes at high λ expand at a rate that is intermediate
between these extremes, which causes Eq. (6) to be inaccu-
rate. There is no direct maximization of power output in the
following analysis. Instead, the wake model is constrained as
we now describe.

Solving Eq. (37) for Ia and Iv requires p and the tip vortex
trajectory. We used the very simple form:

t = R∞− (R∞− 1)exp(−kβ), (50)

which satisfies three necessary conditions: t = 1 when β = 0,
t→ R∞ for large β, and t and its derivatives are continuous.
The fourth condition is that k must satisfy the reduced ver-
sion of Eq. (2):

∞∫
0

(
I 2

v − I
2
a

)
xdx = 0. (51)

This integral will be called the “expansion integral”. It
uniquely fixes k for any choice of R2

∞ and p. Ia and Iv were
obtained using the MATLAB function integral over β =
[0,200π ] to an absolute tolerance of 10−6. The remainders,
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Figure 3. Integrand, ia, for p = 0.1, R2
∞ = 1.597.©, x = 0.9; �,

x = 0.99,; and �, x = 0.999 from Eq. (43). ia increases with x.× is
the integrand in Eq. (46). For clarity, only every second data point
is plotted. The solid line shows the remainders from Eq. (49).

Figure 4. Axial induction, a, and radial velocity, v, for the condi-
tions in Table 1. p = 0.05: a, �; v, ×. The corresponding results
for p = 0.10 are the dashed lines. Note that −a is shown to make it
distinct from v. The solid lines are −a and v for no expansion, i.e.
k = 0, R∞ = 2. The x axis is logarithmic.

Eqs. (48) and (49), were then added. The expansion integral
and the mass flux integral described below were found by
trapezoidal integration using the points shown in Fig. 4. The
expansion integral is large for small k as v is (not obviously)
maximized when there is very little vortex expansion near the
rotor.

The mass flux through the rotor, using Eq. (33) to re-
move N0, determines a∞:

1− a∞p

1∫
0

Iaxdx = (1− a∞)R2
∞. (52)

Equation (32) then yields λ. A number of possible methods
were considered for solving the integral in Eq. (52). ia(x,θ )
can be written as

ia(x,θ )=
d

dx

(x
d

)
−
p2β2

d3 , (53)

which allows an analytic integration of ia(x,θ )x in x. The re-
sulting expression is complicated and probably requires nu-
merical integration in θ and β to obtain the mass flux. Fur-
ther, the integrand is singular at a point that varies with θ
and β. The simpler alternative of numerical integration of Iax

was used.
To find the unique R2

∞, we impose the further condition
that k must match the slope of the vortex surface at the rotor.
Then k in Eq. (50) equals k∗, given by

dt
dz

(β = 0)=
v(x = 1)

1− a(x = 1)
= (R∞− 1)

k∗

p
. (54)

4.2 Results

The results in Table 1 were obtained using the MATLAB
routine patternsearch to minimize the single objective func-
tion that combined the magnitude of the expansion integral
and |k− k∗|. This, surprisingly, occurred at a constant value
of k∗/p, implying that the vortex expansion to the far-wake
radius happens over a fixed distance and the surface contain-
ing the vortices has the same shape, independent of p or λ.
CT was calculated from Eq. (1) with w2 ignored because

λ is large:

CT ≈N0λ/π ≈ 2a∞pλ≈ 2a∞ (1− a∞/2) , (55)

using Eqs. (32) and (33). We note that Eq. (1) makes the high-
λ blade-element thrust constant across the rotor, whereas the
familiar form involving the axial velocity equation in Eq. (6)
requires a significant variation near the tip. From conser-
vation of angular momentum, and finding the power as the
product of torque and angular velocity,

CP ≈ CT (1− a∞)R2
∞, (56)

so the power extraction also decreases significantly near the
tip. Equation (56) and the third component of Eq. (55) also
hold for the conventional analysis that leads to the Betz–
Joukowsky limit.

From Table 1, the biggest change from the familiar Betz–
Joukowsky wake is the 20 % reduction in R2

∞, which occurs
because a > a∞/2 for much of the rotor (Fig. 4). In other
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Table 1. Results for the expanding Joukowsky wake with constant pitch.

p R2
∞ k∗ λ a∞ CP CT C′T 1CT

0.10 1.597 0.4947 7.13 0.574 0.557 0.819 0.866 0.047
0.05 1.592 0.2482 14.28 0.572 0.556 0.817 0.864 0.047

words, more of the expansion occurs upwind of the rotor. In
contrast, the maximum CP is reduced by only 6 % to 0.557
and the mass flux is increased by 2 %. The second to last col-
umn in Table 1 gives C′T, the conventional thrust coefficient
evaluated from Eq. (6):

C′T = 8

1∫
0

a(1− a)xdx. (57)

The positive values of 1CT = C
′
T−CT in Table 1 indicate

the conventional equation overestimates the thrust by around
5 %. From Eqs. (29) and (30), we get the integrated asymme-
try of the disc pressure distribution at high λ as

1∫
0

(
PU

ρ
+
PD

ρ

)
xdx ≈

1∫
0

(
a2
− v2

)
xdx. (58)

Using the data in Table 1, the integral of δP is 0.087, so
the magnitude of PD is generally significantly less than that
of PU. It was shown in the previous section that the pressure
integrals are equal in magnitude in the minimally expanding
wake when λ= 0, but the analysis in this section shows di-
vergence in the expanding Joukowsky wake at high λ.

The integrands iv and ia Figs. 2 and 3 are large in the vicin-
ity of the rotor. Their size implies that the simple assumed
shape of the tip vortex trajectory, Eq. (50), is reasonable and
that adding a term or terms, say, to control the approach to
the far wake would not change the analysis significantly. The
low- and high-β asymptotic approximations to iv and ia are
accurate at sufficiently large x for an appropriate range of β
but are not sufficiently general to yield analytic approxima-
tions to the integrals. The final figure, Fig. 5, plots the ratio
of a and a∞. The large differences from a∞ = 2a occur near
the edge of the rotor.

Figure 4 shows that a and v at the rotor for the cases in
Table 1 are independent of p. a(0)= 0.296, which is less
than the Betz–Joukowsky value of 1/3, and v(0)= 0 as it
must. The results for v and a = 1/3 in an unexpanding wake
(k∗ = 0) are plotted as solid lines. Note that a = 0 for x > 1,
but v is very large near the edge of the rotor, and it is clear
that the expansion integral cannot be satisfied. The limit a ≤
a∞ was applied near the blade tip for the expanding wake,
where v has increased to be nearly equal but smaller than a.
Outside the wake, v > a and takes until x = 3 to fall to 0.03.
Similarly shaped distributions of a and v for a Joukowsky
wake are shown in Fig. 5 of van Kuik (2020), who also found
that Eq. (2) was satisfied in his low-λ simulations.

Figure 5. Ratio of axial induction at the rotor, a, to value in the far
wake, a∞. p = 0.05; �. p = 0.10; dashed line. Note that the x axis
is logarithmic.

In the final figure, Fig. 5, the ratio a/a∞ documents the de-
parture from the conventional relationship a∞ = 2a near the
rotor edge. Note that a∞ is constant for a Joukowsky wake,
so the ratio is non-zero for x > 1.

5 Discussion

The pressure in the expanding flow ahead of a wind turbine
contributes to the axial force on the rotor and a momentum
deficit in the flow outside the rotor. Researchers have been
aware of these two effects for many years, but the present
analysis provides the first quantitative determination of them
in Eqs. (14) and (15) derived by approximating the rotor as
an actuator disc. The effects on the disc in integral and incre-
mental form depend on a2

− v2, where v is the normalized
radial velocity and a is the usual axial induction factor. Fur-
ther, v2

− a2 can be used to quantify the external flow dis-
turbed by the wind turbine and so may be useful to the study
of multiple rotors in close proximity, as analyzed by, for ex-
ample, Branlard and Meyer Forsting (2020). One way to do
this is by defining IE as

IE =

∞∫
xBS

(
v2
− a2

)
xdx =−

xBS∫
0

(
v2
− a2

)
xdx, (59)
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where xBS is the radius of BS at any z ≤ 0. The last integral is
a consequence of Eq. (2) being valid for SU lying anywhere
in the upwind flow. IE must be zero in the undisturbed up-
wind flow. It then increases to its maximum value at the rotor
according to the present analysis. IE then decreases in the
wake to be zero in the far wake. In other words, the perturba-
tion to the external flow is complete by the time the far wake
is reached. Note that the second equality in Eq. (59) does not
hold in the wake.

The impulse analysis of Limacher and Wood (2020) (LW)
showed that the Kutta–Joukowsky (KJ) equations for rotor
thrust, Eq. (1), and for the blade-element contributions to
the thrust, Eq. (3), are exact in the presence of wake ex-
pansion, where “exact” means using no more assumptions
or approximations than the eight listed in the Introduction.
The KJ equations, containing only the circumferential veloc-
ity and tip speed ratio, are not equivalent to the conventional
equation involving only the axial velocity, when the flow ex-
pands. This is the outcome of the analysis in Sect. 4, where
an expanding Joukowsky wake comprising tip and hub vor-
tices of constant pitch was analyzed. The conventional thrust
equation is altered by around 5 %–10 %, depending on the
trajectory of the tip vortices because the geometrical relation
in Eq. (4) is modified by the expansion.

The first three sections of the paper used only the standard
form of control volume (CV) analysis for axial momentum
to determine the thrust of the rotor and the incremental thrust
of the blade elements comprising the rotor. To clarify the ef-
fects of expansion, most analysis in this paper used CVs with
downwind faces in the immediate vicinity of the rotor, as op-
posed to their common placement in the far wake. The rotor
and the flow are assumed to be circumferentially uniform. We
argued in the Introduction that the impulse analysis provides
a simple and novel perspective on the role of the pressure.
The thrust equations derived in Sect. 3 for the rotor, and in
Sect. 4 for the local flow at any radius, contain the pressure
acting on the downwind face of the actuator disc, which must
be removed to make the equations suitable for actual blade
analysis. Removal can be done accurately only for very low
tip speed ratios where the expansion and its effects are small.

To the rotor thrust, the pressure along the bounding
streamsurface adds a term containing the integral of a2

− v2

over the rotor. This integral is equal and opposite the inte-
gral for the flow outside the wake, so there is no net con-
tribution to the thrust determined using the CVs shown in
Fig. 1. Unsurprisingly, the corresponding term in the local
thrust equation at any x also contains a2

− v2. It follows that
the conventional local thrust equation implies a ≈ v, but a2 is
generally larger than v2 over the rotor, but more precise es-
timates of v do not appear to be possible. a2 > v2 implies
that the pressure adds to the rotor thrust and is associated
with a momentum deficit in the external flow. The common
derivation of the axial momentum equation, which leads to
the Betz–Joukowsky limit, ignores the interaction of pres-
sure and external momentum and then ignores the radial ve-

locity in relating the pressure at the rear of the disc to the
far wake. These errors cancel, so the main failing of the con-
ventional equation is the breakdown of the relation a∞ = 2a
when expansion is significant. The previous section suggests
this breakdown is due to the expanding tip vortices at high λ
in the Joukowsky wake. At the rotor, the slope of the stream-
surface containing the tip vortices is 53◦ for maximum power
extraction, Table 1, so their trajectory is intermediate be-
tween very slow and very rapid expansion, either of which
would require a∞ = 2a. This analysis used Eq. (32) for the
pitch of the tip vortex, found by moving the CV outlet to the
far wake and using LW’s impulse equation for thrust. We note
that van Kuik (2020) estimated the streamsurface angle at the
rotor edge to be 46◦, which is close to the present value. The
effect of the expansion on a was constrained so that a ≤ a∞
as an alternative to using a cut-off in the Biot–Savart integral.
Figure 4 shows that a increased with radius to reach a∞ in
the streamtube bounded by the tip vortex, suggesting a very
substantial effect of expansion. Qualitatively, this large value
of a is in agreement with the wind tunnel measurements of
Krogstad and Adaramola (2012), who found that a increased
across the rotor to reach 0.8 at the tip at high λ.

Including v in the axial momentum equation effectively
adds an extra unknown to the conservation equations that
may render them useless unless another equation for u, v, or
w could be derived. Further, high v may cause significant al-
terations to the lift and drag of the blade elements near the tip.
To our knowledge, radial velocity effects on airfoil lift and
drag have not been studied in the context of blade-element
theory.

The role of the radial velocity and flow expansion is prob-
ably more complicated in rotors with a limited number of
blades than the actuator discs considered here. Eriksen and
Krogstad (2017) measured u, v, and w immediately behind
the rotor of a model three-bladed turbine out to a radius 20 %
larger than the blade tip radius. They used phase-locked av-
eraging to obtain the flow field as seen by an observer ro-
tating with the blades. Significant phase variations occurred
in a and v, showing that the averages a2 and v2 over a blade
revolution could be large even if the mean values of a and
v are small. Nevertheless, the magnitude of both a and v was
largest near the angular location of the blades, suggesting that
the issues with radial deflection will occur in real turbines.
We hope that these comments, and the present analysis, will
inspire further measurements to be made far enough outside
the wake to help clarify the role of flow expansion and the
disturbances to the external flow.

6 Conclusion

This analysis started from the impulse-derived Kutta–
Joukowsky equation for wind turbine thrust, which does not
involve the axial velocity. The equation is valid for any
amount of expansion in the upwind flow and the wake and
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any distribution of bound circulation on the rotor. We were
able to

– demonstrate the conventional thrust equation containing
the axial velocity can be correct only when the tip speed
ratio is large;

– derive an exact expression for the effects of flow ex-
pansion on the conventional momentum equation – this
involves the axial induction factor and the radial veloc-
ity;

– apply the conventional and impulse thrust equations in
the far wake to give the pitch of the tip vortices in the
Joukowsky wake in terms of the tip speed ratio and the
far-wake induction;

– find a semi-analytic solution of the Biot–Savart law for
the induced velocities at the rotor by assuming the tip
vortex had constant pitch – the axial velocity near the
rotor tip approached the far-wake value, but was pre-
vented from exceeding it as an alternative to using the
familiar cut-off in the Biot–Savart integrals, and the in-
crease in the rotor value contradicts the familiar relation
that the axial induction factor everywhere at the rotor is
half that of the far wake; and

– derive in Sect. 5 the following results from the model of
constant pitch, expanding tip vortices:

a. the angle of the tip vortex surface to the wind direc-
tion was 53◦ for maximum power production, inde-
pendently of the tip speed ratio and vortex pitch;

b. because it is neither very small nor very large, this
expansion leads to an error of around 6 % in the
conventional thrust equation, which would be ac-
curate for both extreme expansions;

c. the resulting wake expands less than the familiar
Betz–Joukowsky wake – for two pitch values cor-
responding to tip speed ratios of 7 and 14, the far-
wake area was 1.59 times the rotor area;

d. we find the reduction in the rotor power and thrust
due to expansion – the maximum power coefficient
and corresponding thrust coefficient were 6 % less
than the values given by the Betz–Joukowsky limit;
and

e. we quantify the influence of the expansion on the
flow outside the rotor – for example, the radial ve-
locity at three rotor radii is still 3 % of the wind
speed when the rotor is producing maximum power,
and the axial induction factor decays to zero more
rapidly than the radial velocity as radius.
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