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Abstract. Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with
the wind to redirect their wakes away from downstream turbines, thereby increasing the net wind plant power
production and reducing fatigue loads generated by wake turbulence. In this paper, we present results from a
wake-steering experiment at a commercial wind plant involving two wind turbines spaced 3.7 rotor diameters
apart. During the 3-month experiment period, we estimate that wake steering reduced wake losses by 5.6 % for
the wind direction sector investigated. After applying a long-term correction based on the site wind rose, the
reduction in wake losses increases to 9.3 %. As a function of wind speed, we find large energy improvements
near cut-in wind speed, where wake steering can prevent the downstream wind turbine from shutting down. Yet
for wind speeds between 6–8 m/s, we observe little change in performance with wake steering. However, wake
steering was found to improve energy production significantly for below-rated wind speeds from 8–12 m/s. By
measuring the relationship between yaw misalignment and power production using a nacelle lidar, we attribute
much of the improvement in wake-steering performance at higher wind speeds to a significant reduction in
the power loss of the upstream turbine as wind speed increases. Additionally, we find higher wind direction
variability at lower wind speeds, which contributes to poor performance in the 6–8 m/s wind speed bin because
of slow yaw controller dynamics. Further, we compare the measured performance of wake steering to predictions
using the FLORIS (FLOw Redirection and Induction in Steady State) wind farm control tool coupled with a
wind direction variability model. Although the achieved yaw offsets at the upstream wind turbine fall short of
the intended yaw offsets, we find that they are predicted well by the wind direction variability model. When
incorporating the expected yaw offsets, estimates of the energy improvement from wake steering using FLORIS
closely match the experimental results.

1 Introduction

Wake steering is a wind farm control strategy for mitigat-
ing wake effects in which upstream wind turbines are mis-
aligned with the wind, thereby deflecting their wakes away
from downstream turbines (Dahlberg and Medici, 2003; Wa-
genaar et al., 2012; Boersma et al., 2017). Despite the power
loss from yaw misalignment, wake steering can increase the
net power produced by the wind plant because of the higher

wind speeds encountered by downstream wind turbines. Ad-
ditionally, research suggests that wake steering can reduce
fatigue loads on downstream turbines by redirecting high-
turbulence wake flow away from the turbines and avoiding
partial wake interactions which can cause asymmetric rotor
loading (Kanev et al., 2018; López et al., 2020).

The potential for wake steering to improve wind plant
power production has been demonstrated for stationary wind
conditions using high-fidelity computational fluid dynam-
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ics (CFD) simulations, engineering models, and wind tun-
nel experiments. Using the National Renewable Energy Lab-
oratory’s (NREL’s) Simulator fOr Wind Farm Applications
(SOWFA) large-eddy simulation (LES) tool, Gebraad et al.
(2016) observed a 13 % increase in power production for a
2×3 array of wind turbines with a spacing of 5 rotor diame-
ters (5D; D for rotor diameter) apart in neutral atmospheric
conditions. Vollmer et al. (2016) used LES to investigate the
impact of atmospheric stability on wake steering, finding that
the ability to control the wake position strongly depends on
stability; low-turbulence stable atmospheric conditions were
shown to be more favorable for wake steering than unsta-
ble conditions with higher turbulence. Although high-fidelity
CFD simulations are valuable for studying the physics of
wake steering, computationally efficient engineering models
are needed to optimize wake-steering controllers and to esti-
mate performance for a variety of wind conditions. Gebraad
et al. (2017) and King et al. (2021) used NREL’s FLOw Redi-
rection and Induction in Steady State (FLORIS) engineering
wind farm control tool (NREL, 2021) to estimate annual en-
ergy production improvements of 3.8 % for a 60-turbine wind
plant and 2.8 % for a wind plant with 38 wind turbines, re-
spectively. Using scaled wind turbine models, wind tunnel
experiments have been used to investigate the effectiveness
of wake steering beyond simulation environments. For ex-
ample, using two-turbine arrays, Adaramola and Krogstad
(2011) and Campagnolo et al. (2016) achieved net power
gains of 12 % for a 3D turbine spacing and 21 % for a 4D
spacing, respectively. Similarly, Bastankhah and Porté-Agel
(2019) measured a 17 % increase in power production for a
row of five model wind turbines spaced 5D apart.

To bridge the gap between simulations and wind tunnel ex-
periments with static wind conditions and successful imple-
mentation of wake steering in the field, several recent stud-
ies have investigated the design of wake-steering controllers
for realistic dynamic wind conditions. Bossanyi (2018) used
field measurements of wind conditions as inputs to a dy-
namic engineering wind farm control model to evaluate com-
bined yaw and power set point control for increasing en-
ergy production and reducing loads. Rather than relying on
the turbines’ existing yaw controllers to implement the in-
tended yaw offsets, Bossanyi (2018) found that directly yaw-
ing the turbines at regular time intervals improved the con-
troller performance in dynamic wind conditions. By modi-
fying the FLORIS wind farm control tool to model dynamic
wind conditions, Kanev (2020) optimized the parameters of
a simple yaw offset lookup-table-based wake-steering con-
troller. A good balance between energy production and the
required yaw actuation was achieved by (1) updating the yaw
offset command at least every 2 min, (2) filtering the wind
direction input using a time constant similar to the update
rate, and (3) including hysteresis on the yaw offset com-
mand to reduce yaw activity. The concept of robust wake-
steering control has been explored by several authors to ad-
dress the challenge of operating in dynamic wind condi-

tions (Rott et al., 2018; Simley et al., 2020b; Quick et al.,
2020). Specifically, realizing that the wind direction can vary
considerably while a turbine’s yaw position remains fixed,
the authors identified yaw offsets that maximize energy pro-
duction assuming a certain degree of wind direction uncer-
tainty. As a last example, Doekemeijer et al. (2020) pre-
sented a closed-loop wake-steering controller that incorpo-
rates measurements from multiple wind turbines to estimate
wind-plant-level wind conditions, updating the yaw offsets
accordingly. Using CFD simulations with time-varying mean
wind directions across the wind plant, the authors demon-
strated a 1.4 % increase in energy production for a six-turbine
array when updating the turbines’ yaw positions every 20 s.

Following an early inconclusive test of wake steering dis-
cussed by Wagenaar et al. (2012), recently several wake-
steering experiments at commercial wind plants have been
described in the literature. Fleming et al. (2017) implemented
wake-steering control on a single wind turbine in an off-
shore wind plant in China to benefit three turbines located
7D, 8.6D, and 14.3D downstream in different directions.
The authors reported power gains as high as 29 % for cer-
tain wind directions for the 7D spacing, but they highlighted
large uncertainty in the results because of a lack of data. An
extensive field campaign at a US land-based wind plant, in
which two turbines were controlled to redirect their wakes
away from a turbine 2.9D and 5D downstream for southerly
and northerly wind directions, respectively, is documented by
Fleming et al. (2019, 2020). Limiting the controller to clock-
wise yaw misalignments relative to the wind direction, the
authors showed a 6.5 % reduction in overall wake losses from
wake steering for both turbine combinations. Further, the au-
thors observed that wake steering is significantly more effec-
tive during nighttime or stable atmospheric conditions than
during the daytime or in unstable conditions. Howland et al.
(2019) implemented wake steering on a row of six wind tur-
bines spaced 3.5D apart at a wind plant in Alberta, Canada.
Using a fixed yaw offset of 20◦ for the first five turbines en-
countering the wind, the authors measured power gains of up
to 47 % and 13 % for wind speeds between 5–6 and 7–8 m/s,
respectively. Large increases in power – as well as significant
reductions in the variability of the power production – were
achieved at low wind speeds because wake steering caused
the waked turbines to shut down less frequently by maintain-
ing wind speeds above the cut-in speed. Last, Doekemeijer
et al. (2021) described a wake-steering experiment at a wind
plant in Italy in which two turbines were controlled to im-
prove the net power production for either a row of three tur-
bines or pairs of turbines spaced 5.2D to 6.5D apart, depend-
ing on the wind direction. Using both positive and negative
yaw offsets, the authors observed increases in energy produc-
tion of up to 35 % for the two-turbine scenario and 16 % for
the row of three turbines while also acknowledging net losses
in energy production for certain wind directions. Addition-
ally, in some cases the authors measured unexpected gains
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in energy production for the misaligned turbines, suggesting
uncertainty in the results.

In this paper, we present results from a wake-steering cam-
paign at a land-based wind plant in France operated by EN-
GIE Green in which a single wind turbine is controlled to in-
crease the power production of a second turbine 3.7D down-
stream. Similar to work by Fleming et al. (2019, 2020), the
performance of wake-steering control is analyzed in terms of
the impact on energy production for the pair of turbines as
well as the ability of the upstream turbine to achieve the de-
sired yaw offsets. Moreover, a forward-facing nacelle lidar
installed on the upstream turbine is used to measure the yaw
misalignment and inflow wind speed to help assess wake-
steering performance. The main contributions of the paper
are as follows. First, we highlight the wind speed depen-
dence of the energy improvements as well as the ability to
achieve the intended yaw offsets, from cut-in to nearly rated
wind speed. Next, we compare the change in energy produc-
tion and the measured offsets to model predictions based on
the FLORIS wind farm control tool accounting for realistic
wind direction variability. To determine whether the nacelle
wind vane can be reliably used to implement wake steering,
we compare the yaw misalignments measured by the wind
vane to those measured by the nacelle lidar; we then suggest
wind-speed-dependent corrections to the wind vane to more
accurately measure the true yaw misalignment. Finally, we
use measurements of yaw misalignment and wind speed from
the nacelle lidar to determine the relationship between yaw
misalignment and power production as a function of wind
speed.

The rest of the paper is organized as follows. Section 2
provides an overview of the field experiment, including the
wind plant and turbine specifications, instrumentation, con-
trol strategy, and wind resource information. The FLORIS
wind farm control model and the wind direction variability
model used to predict wake-steering performance are pre-
sented in Sect. 3. Data processing steps performed before an-
alyzing wake-steering performance are described in Sect. 4.
Section 5 compares the expected and measured yaw offsets
during the experiment as a function of wind direction and
wind speed. Suggested corrections to the wind vane mea-
surements, estimated using nacelle lidar measurements, are
described in Sect. 5.3. Next, the wind-speed-dependent re-
lationship between yaw misalignment and power production
for the upstream turbine is investigated in Sect. 6, again using
nacelle lidar measurements. Section 7 presents the impact of
wake steering on overall energy production for the two wind
turbines as well as the change in energy as a function of wind
speed. Results are compared to FLORIS predictions to help
validate the FLORIS model. Last, Sect. 8 concludes the paper
with a discussion of the results and suggestions for further re-
search.

2 Field experiment overview

The wind plant used for the experiment is Sole du Moulin
Vieux (SMV), a commercial wind plant operated by EN-
GIE Green. It is located in the northern part of France, ap-
proximately midway between Paris and Lille, and was al-
ready used in previous field tests as part of the SMARTE-
OLE project (Ahmad et al., 2017; Duc et al., 2019). It con-
sists of seven Senvion MM82 wind turbines (rotor diame-
ter of D = 82 m, nominal power of 2050 kW, hub height of
80 m) organized in a north–south axis, as shown by the lay-
out in Fig. 1. The terrain is simple, but a small forest south
of the plant slightly disturbs the flow for southerly winds.

Only two turbines, SMV5 and SMV6, are considered for
the wake-steering experiment. They were chosen because of
the short spacing between them (3.7D) and their alignment
close to prevailing wind directions observed at the site, as
shown by the long-term wind rose in Fig. 2. Consequently,
SMV5 experiences a strong and frequent wake from SMV6,
which makes it a very interesting case for testing wind farm
control strategies. The guaranteed power and thrust curves
for the Senvion MM82 wind turbines are shown in Fig. 3.

2.1 Instrumentation

Some additional instrumentation was set up on the wind
plant for the wake-steering experiment. First, all turbines
were equipped with a supervisory control and data acquisi-
tion (SCADA) system allowing 1 Hz data for the most criti-
cal variables to be recorded. A Vaisala Triton sodar was in-
stalled in the proximity of turbines SMV5 and SMV6, and
a Leosphere WindCube v1 profiling lidar was installed be-
tween turbines SMV2 and SMV3. Their precise locations are
presented in Fig. 1. Although data from the sodar and profil-
ing lidar were not used extensively during the analysis, they
were used to cross-check and validate wind measurements
from the turbines and to identify the best references for as-
sessing the ambient wind conditions. Additionally, measure-
ments from the WindCube lidar were used to estimate the
turbulence intensity distribution at the site.

A WindCube Nacelle lidar was installed on top of the con-
trolled turbine, SMV6, to measure the wind inflow, including
the turbine’s yaw misalignment with respect to the incoming
wind direction. This sensor collects radial-wind-speed values
from four beams at a sample frequency of 4 Hz at 10 range
gates spanning 50–200 m upstream. For the lidar-based anal-
yses presented here, we use the estimated horizontal wind
speeds and wind directions at hub height provided by the li-
dar. We use measurements at a range of 150 m (1.8D) to de-
termine wind speed and the average of measurements at 100,
150, and 200 m to estimate yaw misalignment.

Additionally, a Hemisphere GNSS compass was fixed on
the nacelle of SMV6 to monitor the offset of the turbine’s
reported yaw orientation relative to north during the ex-
periment. Indeed, this offset is known to deviate with time
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Figure 1. Layout of the SMV wind plant and experimental setup for the wake-steering field experiment. Along with the WindCube v1 lidar
and the Triton sodar indicated on the map, a WindCube Nacelle lidar and a GNSS (global navigation satellite system) compass were installed
on top of SMV6. Distances between wind turbines (normalized by the rotor diameter D = 82 m) and directions related to SMV6 and SMV5
are also shown.

(van der Hoek et al., 2019) and must be calibrated properly
when realizing wind farm control experiments. Figure 4 dis-
plays the evolution of this north offset with time by looking
at the difference between SMV6’s yaw position signal and
the GNSS measurement of the nacelle orientation. It shows
that even though some drifts were experienced at the end of
2019, a very stable offset was maintained for the full duration
of the field experiment, 17 February–25 May 2020.

Before analyzing the data, all variables are downsampled
to 1 min average values. As will be discussed further in
Sect. 3.2, 1 min samples are intended to provide a balance
between averaging small-scale turbulent variations and dis-
tinguishing between time-varying wind conditions.

2.2 Wake-steering controller

Because the wind turbine controller could not be accessed
or modified for this experiment, the wake-steering strategy
was implemented following the same approach as in Fleming
et al. (2020). A control box was installed to read the incom-
ing relative wind direction signal from the nacelle wind vane
installed on the turbine and to apply an offset before sending
it to the turbine’s existing yaw controller, thereby inducing
the intended yaw offset. The control logic implemented in

the control box is illustrated in Fig. 5. As shown in Fig. 5, be-
cause the lookup table defining the offset angles is dependent
on both wind speed and direction, the nacelle wind speed and
yaw position are also used as inputs to the control box. The
measured wind direction – formed by combining the abso-
lute yaw position and the relative wind vane direction – and
wind speed are passed through low-pass filters with a time
constant of 60 s before they are used to determine the cor-
responding target yaw offset in the lookup table. Finally, a
toggle allows the yaw offsets to alternate between the target
offsets and zero offset to analyze the effect of wake steering
in wind conditions that are similar to the baseline yaw con-
trol case. Note that the unfiltered wind speed signal recorded
through the control box is compared to the same signal mea-
sured by the 1 Hz SCADA system to remove any time lag
between the two systems and to ensure that the two clocks
are correctly synchronized.

The applied yaw offsets are represented by the offset
schedule in Fig. 6. To avoid excessive yaw activity from
switching between large positive and negative values of yaw
misalignment, only positive yaw offsets are used in this ex-
periment. Although energy improvements from wake steer-
ing are expected for both positive and negative yaw offsets,
research suggests that, overall, wake steering is more effec-
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Figure 2. Long-term wind rose for the SMV wind plant at hub
height (80 m). It was obtained through a correlation process be-
tween short-term met-mast measurements on site and long-term ref-
erence wind data (ERA5 reanalysis data; Hersbach et al., 2020).

Figure 3. Guaranteed power and thrust curves for the Senvion
MM82 wind turbines at the SMV wind plant.

tive with positive yaw misalignment (Fleming et al., 2018;
Nouri et al., 2020). Further, results from a field experiment
investigating the impact of yaw misalignment on loads show
a reduction in blade loads for positive yaw offsets but an in-
crease in loads for negative offsets (Damiani et al., 2018).
Adhering to an upper bound of 20◦, imposed to manage
structural loads, SMV6 is misaligned by up to 20◦ for full-
wake conditions (208–216◦), and then this angle is linearly
reduced throughout the partial wake sector until it reaches
zero at a wind direction of 236◦. The yaw offset schedule
for wind speeds below 10 m/s shown in Fig. 6 is a simplified

form of the optimal yaw offsets for maximizing the combined
power of SMV5 and SMV6 determined using FLORIS. The
FLORIS model used when designing the controller was cal-
ibrated using data from a previous wake-steering experiment
performed on the same wind turbines. Additional consider-
ations were included in the yaw offset schedule to provide
some robustness to wind direction uncertainty, following the
approach discussed by Simley et al. (2020b); specifically,
yaw offsets are applied for a wider sector of wind directions
in the partial wake region than suggested using the original
FLORIS model. Last, to further reduce the loading at higher
wind speeds, the target offsets are reduced in four steps above
10 m/s until wake steering is stopped for wind speeds above
14 m/s. Note that the target yaw offsets are binned by wind
speed in steps of 1 m/s rather than specified as a continuous
function of wind speed to enable a simple lookup table im-
plementation.

2.3 Wind conditions

The distributions of the wind directions, wind speeds, and
turbulence intensities analyzed during the wake-steering ex-
periment for the baseline and the controlled periods are
shown in Fig. 7 for the wind direction sector between 195
and 241◦ investigated in this paper. Specifically, Fig. 7 shows
the number of 1 min samples obtained for each wind direc-
tion, wind speed, and turbulence intensity bin. Note that the
reference wind direction and wind speed measurements are
obtained from nacelle-based wind turbine sensors, as will be
discussed in Sect. 4. Turbulence intensity is estimated using
measurements from the WindCube profiling lidar at the hub
height of 80 m.

The wind direction histogram shown in Fig. 7a reveals a
relatively uniform distribution of wind directions across the
sector of interest for both the baseline and the controlled pe-
riods. Compared to the long-term wind speed distribution
illustrated in Fig. 2, the wind speed histogram provided in
Fig. 7b indicates above-average wind speeds during the ex-
periment period; however, higher wind speeds are expected
because most of the data were collected during the winter (in
February and early March, as illustrated in Fig. 4), when the
wind resource is strong at the site. Figure 7c shows that simi-
lar turbulence intensity distributions were sampled during the
baseline and the controlled periods. Last, the joint distribu-
tion of wind direction and wind speed during the experiment
period is shown in Fig. 8, considering the total amount of
data analyzed for the baseline and the controlled periods. For
almost the entire wind direction sector, data were collected
for wind speeds from 3–13 m/s.

3 Models

To help determine how accurately engineering wind farm
control models represent wake steering in the field, the
FLORIS tool and a probabilistic model of wind direction
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Figure 4. Difference between the yaw position of SMV6 measured by the GNSS compass and the turbine SCADA system. The values have
been averaged during a period of 12 h to remove noise associated with the two signals. The vertical gray lines indicate periods when the
turbine was intentionally misaligned for the wake-steering experiment.

Figure 5. Yaw offset control architecture with hourly toggling between baseline and wake-steering control. The output wind vane signal is
input to the wind turbine’s existing yaw controller.

variability are used to predict realistic wake-steering perfor-
mance for the wind conditions observed during the experi-
ment. In Sect. 3.1, we briefly describe the FLORIS model of
the SMV wind plant, followed by a discussion in Sect. 3.2 of
the model of wind direction variability.

3.1 FLORIS wind farm control engineering model

Wake interactions are simulated for the SMV wind plant
using the default Gauss–curl hybrid (GCH) model within
FLORIS (King et al., 2021). The GCH model is built on the
Gaussian wake deficit model presented by Bastankhah and
Porté-Agel (2014) and Niayifar and Porté-Agel (2015), as

well as the wake deflection model developed by Bastankhah
and Porté-Agel (2016). To capture the effects that large-scale
trailing vortices generated through yaw misalignment have
on wake deflection, however, the GCH model includes a
computationally efficient approximation of the curl model
developed by Martínez-Tossas et al. (2019). The curl-specific
elements of the GCH model include secondary steering –
whereby the vortices created by a misaligned wind turbine
deflect the wakes of downstream turbines with which they
interact – and yaw-added recovery, in which the vortices in-
crease wake recovery through mixing with higher velocity
flow.
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Figure 6. Target yaw offset schedule for SMV6 as a function of
wind direction and wind speed.

The FLORIS model of the SMV wind plant relies on the
turbines’ theoretical power and thrust coefficients, shown in
Fig. 3, to determine wake behavior, and it is further tuned
using field measurements. As illustrated in Fig. 9, the the-
oretical power curve used in FLORIS closely matches the
observed power curve for SMV6 during baseline operation
using wind speed measurements from the WindCube Nacelle
lidar. The FLORIS model is tuned to match the depth of the
measured baseline wake losses for SMV5 during the exper-
iment by adjusting the turbulence intensity input, which af-
fects the rates of wake recovery and expansion; we found
that when using the “Gauss” velocity model, a turbulence
intensity of 11 % represents the overall wake losses during
the experiment reasonably well. We treat turbulence inten-
sity as a tuning parameter rather than using the measured
turbulence intensity as an input to FLORIS because (1) the
turbulence intensity measurements provided by the ground-
based and nacelle lidars do not represent traditional turbu-
lence measurements (e.g., from a cup or sonic anemometer)
because of volume averaging and line-of-sight measurement
limitations (Kelberlau and Mann, 2020) and (2) further work
is required to validate the relationship between turbulence in-
tensity and wake deficits (Niayifar and Porté-Agel, 2015) that
is used in the GCH model. Last, the power loss suffered as a
result of yaw misalignment is modeled in FLORIS by scaling
the rotor-averaged wind speed, vavg, used to determine power
and thrust as follows:

v′avg = vavg cos(γ )pv/3, (1)

where γ is the yaw misalignment, following the approach
suggested by Bossanyi (2019). We use a cosine exponent
of pv = 1.61, estimated using WindCube ground-based lidar
measurements and power data for SMV6 from previous ex-
periments at the wind plant (Duc et al., 2017).

Examples of the hub-height flow fields generated by
FLORIS for the SMV wind plant are provided in Fig. 10 for
a wind speed of 8 m/s. Figure 10a shows the flow field with
a wind direction of 195◦, which is the southernmost wind di-
rection investigated in this study. Figure 10b highlights the

impact of SMV6 operating with a 20◦ yaw misalignment for
a wind direction of 208◦, which is the first wind direction
(moving clockwise) for which yaw offsets are implemented
(see Fig. 6). Finally, Fig. 10c shows the FLORIS flow field
corresponding to the northernmost wind direction of 241◦ in-
vestigated here.

3.2 Wind direction variability

FLORIS is designed to model wake interactions for fixed
wind directions and yaw positions. But in realistic dynamic
wind environments with imperfect wake-steering control, un-
certainty exists in the yaw position a turbine achieves for a
particular wind direction. Further, after the turbine settles on
a specific yaw position, the wind direction will vary until the
yaw error is large enough for the turbine to yaw again, caus-
ing wind direction uncertainty. Quick et al. (2017) and Quick
et al. (2020) investigated the impact of yaw position uncer-
tainty on optimal wake-steering performance by performing
FLORIS simulations with a distribution of possible yaw po-
sitions for a given wind direction. Similarly, Rott et al. (2018)
and Quick et al. (2020) included wind direction uncertainty
when optimizing wake-steering control using FLORIS by as-
suming a distribution of possible wind directions about the
intended wind direction. Here, we model the uncertainty re-
sulting from wind direction variability and controller limita-
tions using the approach presented by Simley et al. (2020b),
wherein FLORIS simulations are performed assuming uncer-
tainty in both yaw position and wind direction.

As described in depth by Simley et al. (2020b) and Sim-
ley et al. (2020a), we model the impact of wind direction
variability on wake-steering performance by creating a joint
probability mass function (PMF) of the wind directions and
yaw positions for the controlled turbine (discretized using
1◦× 1◦ bins). First, the ideal PMF is established by assign-
ing a probability of one to the intended yaw position corre-
sponding to each wind direction using the yaw offset sched-
ule. Next, the ideal PMF is convolved with a zero-mean joint
PMF representing the uncertainty in the wind direction and
yaw position (approximated as a bivariate normal distribu-
tion). The predicted mean yaw offsets can then be calcu-
lated from the resulting PMF by finding the expected value
of the yaw position for a particular wind direction. Similarly,
the predicted mean power production can be determined by
calculating the expected value of the power from FLORIS
across all possible yaw positions corresponding to the wind
direction of interest.

The distribution of wind direction and yaw position uncer-
tainty is characterized using the standard deviations of the
wind direction uncertainty, σφ , and the yaw position uncer-
tainty, σθ . As explained by Simley et al. (2020b), we assume
a value of σθ = 1.75◦, which the authors found to closely
approximate the yaw position uncertainty observed in simu-
lations using a standard yaw controller. Assuming indepen-
dent wind direction and yaw position uncertainty variables,
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Figure 7. Number of 1 min samples collected for the baseline and the controlled periods grouped by (a) wind direction, (b) wind speed, and
(c) turbulence intensity. The wind speed and turbulence intensity distributions contain only periods corresponding to wind directions between
195 and 241◦. The gray dashed lines encompass the wind directions and wind speeds where wake steering is intended.

Figure 8. Number of 1 min samples collected for the combined
baseline and controlled periods grouped by wind direction and wind
speed. Only bins containing samples from both the baseline and the
controlled periods are shown.

Figure 9. Measured and theoretical power curves for SMV6 during
baseline operation normalized by rated power. Wind speed measure-
ments are obtained from the WindCube Nacelle lidar at a range of
150 m. The data are filtered using the approach outlined in Sect. 4.1.

Figure 10. FLORIS flow fields for the SMV wind plant with a wind
speed of 8 m/s; wind directions of (a) 195◦, (b) 208◦, and (c) 241◦;
and corresponding target yaw offsets for SMV6 of (a) 0◦, (b) 20◦,
and (c) 0◦.

σφ can be estimated from the standard deviation of the mea-
sured yaw misalignment, σγ , as

σφ =

√
σ 2
γ − σ

2
θ . (2)

We explore different methods for estimating the yaw error
standard deviation for SMV6 during baseline operation as a
function of wind speed, as shown in Fig. 11. Specifically, we
compare yaw error measurements using the turbine’s nacelle
wind vane, the WindCube Nacelle lidar, and the difference
between the reference wind direction – defined as the av-
erage wind direction measured by turbines SMV1, SMV2,
SMV3, and SMV7, as will be discussed in Sect. 4.2, and
the turbine’s nacelle position. Whereas the wind vane and
nacelle lidar sample the more variable wind directions lo-
cal to SMV6, the reference wind direction approximates the
slowly varying mean wind direction across the wind plant;
therefore, the latter method yields the lowest yaw misalign-
ment standard deviation. Because the wind direction input
to FLORIS is intended to represent the mean wind direction
across the wind plant, we use the yaw error standard devi-
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Figure 11. Standard deviation of 1 min yaw misalignment measure-
ments for SMV6 during baseline operation as a function of wind
speed. Yaw misalignment is measured using the turbine’s nacelle
wind vane, the difference between the reference wind direction and
the turbine’s nacelle position, and the WindCube Nacelle lidar.

ation determined from the reference wind direction as the
input to the wind direction variability model. As shown in
Fig. 11, the yaw misalignment standard deviation increases
for wind speeds below 8 m/s because (1) the wind direction
tends to be more variable at lower wind speeds and (2) this
turbine model’s yaw controller is less responsive to wind di-
rection changes for wind speeds below 7 m/s; therefore, we
use wind-speed-dependent yaw misalignment standard devi-
ation values in the wind direction variability model, but we
approximate the standard deviation as σγ = 5.2◦ for all wind
speeds greater than 8 m/s.

When analyzing the yaw offsets during the wake-steering
experiment in Sect. 5 as well as the change in energy from
wake steering predicted by FLORIS in Sect. 7, the following
nomenclature will be used to distinguish different methods
for determining the yaw offsets:

– Measured offsets are the yaw offsets measured using
SMV6’s nacelle wind vane or the WindCube Nacelle
lidar.

– Ideal offsets are the target yaw offsets determined from
the yaw offset schedule shown in Fig. 6 as a function
of the reference wind direction and wind speed (which
will be discussed in Sect. 4.2).

– Expected offsets are the yaw offset distributions pre-
dicted by the wind direction variability model presented
in this section as a function of the reference wind direc-
tion and wind speed.

4 Data processing

Before assessing the performance of wake steering, the mea-
sured 1 min data are filtered to remove periods with abnor-

mal wind turbine operation or poor data quality, which will
be discussed in Sect. 4.1. Next, the reference wind direc-
tion, wind speed, and power variables are derived using mea-
surements from turbines SMV1, SMV2, SMV3, and SMV7,
as will be explained in Sect. 4.2. Last, Sect. 4.3 describes
the procedure used for quantifying uncertainty in the wake-
steering performance metrics presented in Sects. 5–7.

4.1 Filtering

To improve the likelihood that observed differences in power
production for the baseline and the controlled periods are
caused by wake steering rather than abnormal turbine oper-
ation, the data are filtered using the following steps. First,
periods for which the reference wind speed (which will be
discussed in Sect. 4.2) is less than 4 m/s are removed because
relatively few samples were collected for these wind speeds
(see Fig. 7) and little energy production is expected during
these conditions (as shown in Fig. 9). Periods with known
derating, curtailment, or other forced downtime (aside from
periods with wind speeds below the cut-in speed) are then
removed from the data set by examining the wind turbine
status codes. Next, any remaining periods with anomalous
power production for any of the test or reference turbines
are removed using power curve filtering functions available
in NREL’s OpenOA (Open Operational Assessment) soft-
ware (Perr-Sauer et al., 2021) as follows (see Fig. 9 for con-
text):

– Samples for which the nacelle wind speed measurement
is greater than 6 m/s and power is less than 1 % of rated
power or greater than 101.5 % of rated power are re-
moved.

– Samples for which the nacelle wind speed measurement
is greater than 14 m/s and power is less than 91.5 % of
rated power are removed (note that the manufacturer-
specified rated wind speed is 14.5 m/s).

– The data are grouped by power into 50 bins with
bin edges evenly distributed between 1 % and 91.5 %
of rated power. Within each power bin, samples for
which the difference between the nacelle-measured
wind speed and the median wind speed exceeds 2 stan-
dard deviations are removed. The threshold is increased
to 3 standard deviations for SMV6 to account for in-
creased power variability from intentional yaw mis-
alignment.

Finally, data within the first 10 min after switching between
the baseline and the controlled periods are removed to ac-
count for yaw controller transients.

When investigating the yaw offsets achieved by the con-
trolled wind turbine, SMV6, in Sect. 5 or the impact of yaw
misalignment on the power production of SMV6 in Sect. 6,
additional filtering steps are performed. First, samples for
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which SMV6 is generating less than 10 kW are removed.
This step ensures that the turbine is operating and capable
of responding to yaw offset commands. Next, because the
analyses in Sects. 5 and 6 rely on the WindCube Nacelle
lidar measurements, the data are additionally filtered to re-
move 1 min samples in which the availability of the underly-
ing 4 Hz lidar measurements for any of the four beams is less
than 35 %. Note that because of periodic blade blockage, a
significantly higher availability threshold would result in too
much data removal.

4.2 Reference variables

The reference wind direction, wind speed, and power vari-
ables are derived from turbines SMV1, SMV2, SMV3, and
SMV7. The reference wind directions and wind speeds are
used to represent the wind conditions encountered by the test
turbines, whereas the reference power acts as an unbiased
reference to which the power produced by the test turbines
can be compared. Measurements from SMV6 are not used to
estimate the wind direction or the wind speed to avoid the
potentially confounding effects of yaw misalignment on the
estimated values. SMV4 is excluded from the set of refer-
ence wind turbines because of potential influences from wake
steering, given its close proximity to the test turbines (see
Fig. 1). Note that the WindCube ground-based lidar is not
used to provide reference measurements because of the im-
pact of wakes on measurement accuracy for southerly flow.

The reference wind direction is calculated as the mean
wind direction measured by SMV1, SMV2, SMV3, and
SMV7 using their nacelle position sensors and wind vanes.
Measurements from multiple turbines are averaged to smooth
small-scale wind direction variations that might be encoun-
tered at particular locations. The reference wind direction is
calibrated to true north by first identifying the measured wind
direction where the ratio between the mean power produced
by SMV5 and SMV6 during baseline periods reaches a min-
imum, representing the direction where the wake losses suf-
fered by SMV5 reach their peak. Assuming negligible wake
deflection relative to the true wind direction during baseline
operation, the offset between this observed wind direction
and the known direction of alignment between SMV6 and
SMV5 is then subtracted from the reference wind direction.

Similarly, the reference wind speed is based on the mean
wind speed measured by SMV1, SMV2, SMV3, and SMV7
using nacelle anemometry. We then apply additional steps
to estimate the free-stream equivalent wind speed encoun-
tered by the test turbines. First, to account for sensor bias,
wake effects, and the impact of terrain and surface roughness
on local wind conditions (e.g., the forest south of SMV7), a
wind direction and wind-speed-dependent transfer function
(i.e., a multiplier that is a function of wind direction and
wind speed) is applied to the reference wind speeds to re-
move any bias from the wind speeds measured by SMV6 dur-
ing baseline operation. This transfer function is estimated as

the ratio between the mean wind speed measured by SMV6
and the mean uncorrected reference wind speed for the base-
line periods, binned by the reference wind direction (in over-
lapping 3◦ bins) and uncorrected reference wind speed (in
1 m/s bins). Next, a nacelle transfer function (a wind-speed-
dependent multiplier in this case) is applied to estimate the
free-stream wind speed from the nacelle-anemometer-based
reference wind speed. The nacelle transfer function is cal-
culated as the ratio between the mean wind speed measured
by the WindCube Nacelle lidar at a range of 150 m (1.8D)
upstream of the rotor and the mean reference wind speed –
considering only periods with baseline control and wind di-
rections with free-stream inflow – binned by the reference
wind speed in 1 m/s bins.

Last, the reference power is formed by averaging the
power production of SMV1, SMV2, SMV3, and SMV7.
Following an approach similar to the reference wind speed
derivation, a transfer function is applied to the average power
produced by the four reference wind turbines to remove any
bias from the power generated by SMV6 during baseline op-
eration (e.g., caused by differences in turbine performance,
wake effects, or the impact of local terrain and surface rough-
ness). Again, this transfer function is a wind direction and
wind-speed-dependent multiplier that is estimated by divid-
ing the data into overlapping 3◦ reference wind direction bins
as well as 1 m/s reference wind speed bins, then calculating
the ratio between the mean power produced by SMV6 and
the mean uncorrected reference power for periods with base-
line control.

4.3 Uncertainty quantification

To quantify uncertainty in the wake-steering metrics pre-
sented in Sect. 5 through Sect. 7, we provide 95 % confi-
dence intervals to accompany the estimates. Because many of
the metrics require complicated calculations, analytic expres-
sions for the confidence intervals are difficult to derive; there-
fore, we use bootstrapping, wherein the collection of 1 min
data samples used to derive a particular metric is randomly
resampled with replacement many times to obtain a distri-
bution of the estimates of the metric (Dekking et al., 2005).
From this distribution, which we derive using at least 2000
bootstrap samples, the confidence interval containing 95 %
of the estimates is used as a measure of uncertainty. Many of
the results presented in Sect. 5 through Sect. 7 are shown as
a function of wind direction; for these cases, bootstrapping is
performed using data from each wind direction bin individu-
ally. Similarly, for metrics based on data from both the base-
line and the wake-steering periods, the data corresponding to
each control period are resampled independently before the
final metric is calculated.
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5 Yaw offset performance

In this section, we compare the yaw offsets achieved by the
wake-steering controller – measured using the nacelle wind
vane as well as the WindCube Nacelle lidar – to the ideal
yaw offsets determined from the yaw offset schedule and
the expected offsets based on the wind direction variability
model. The overall mean yaw offsets as a function of the
reference wind direction are presented in Sect. 5.1, whereas
Sect. 5.2 highlights the yaw offsets for different wind speed
bins. Next, in Sect. 5.3, we directly compare the yaw offsets
measured by the wind vane to those measured by the nacelle
lidar. Based on this comparison, we suggest corrections to
the nacelle wind vane measurements.

5.1 Overall yaw offsets

The ideal, expected, and measured mean yaw offsets for
all baseline and wake-steering control periods are shown in
Fig. 12 as a function of wind direction. As expected, the
mean yaw offsets measured by the wind vane with baseline
control are close to zero. But the mean offsets measured by
the nacelle lidar show a bias of 2–3◦ during baseline pe-
riods, suggesting that the wind vane might be poorly cali-
brated (as will be explored in more detail in Sect. 5.3). Dur-
ing wake-steering control periods, similar mean yaw offsets
are measured by the wind vane and nacelle lidar. Whereas
the measured yaw offsets fall short of the ideal offsets for
wind directions between 209 and 229◦, they are reasonably
well represented by the expected yaw offsets using the wind
direction variability model. Specifically, the wind direction
variability model predicts a reduction in the peak yaw offsets
accompanied by the unintended yaw offsets outside of the
target wake-steering sector. Although the measured yaw off-
sets match this predicted trend, they exhibit a higher, more
pronounced peak near the wind direction of 210◦. Differ-
ences between the expected and measured yaw offsets could
be partly explained by biases in the wind vane measurements
(see Sect. 5.3), which propagate to the estimated wind direc-
tion signal used by the wake-steering controller.

5.2 Wind speed dependence of yaw offsets

Whereas Fig. 12 revealed the mean yaw offsets aggregated
among all wind conditions, Fig. 13 highlights the wind speed
dependence of the ideal, expected, and measured yaw offsets.
The ideal yaw offsets reflect the yaw offset schedule shown in
Fig. 6; for wind speeds above 10 m/s, the target yaw offsets
are gradually phased out, until no offsets are applied when
the wind speed reaches 14 m/s. The more spread-out ex-
pected yaw offsets show a similar reduction for wind speeds
above 10 m/s, but they also vary for lower wind speeds be-
cause of the impact of the wind-speed-dependent yaw er-
ror on the wind direction variability model, as explained in
Sect. 3.2. Namely, because the standard deviation of the wind

Figure 12. Mean yaw offsets for the baseline and the controlled
operation for the upstream turbine, SMV6. Yaw offsets measured
using the nacelle wind vane and WindCube Nacelle lidar are com-
pared to the ideal yaw offsets given by the yaw offset schedule and
the expected yaw offsets using the wind direction variability model.
Shaded regions indicate the 95 % confidence interval of the mean.

direction uncertainty increases for low wind speeds, the ex-
pected yaw offsets reach a lower peak offset and are spread
out over a wider wind direction sector as wind speed de-
creases below 8 m/s.

Despite the large scatter and uncertainty in the measured
yaw offsets for certain wind speed bins – caused by the rel-
ative lack of data for wind speeds below 8 m/s and above
12 m/s (see Fig. 7) as well as the greater wind direction vari-
ability for wind speeds below 8 m/s, potentially causing the
reference wind direction measurements to poorly represent
the wind conditions at SMV6 – Fig. 13 reveals several trends.
First, the positive wind vane bias observed during the base-
line control periods, as measured by the nacelle lidar, is ap-
parent for wind speeds below 10 m/s, but it disappears for
higher wind speeds, suggesting wind-speed-dependent vane
error. Additionally, when wake-steering control is active, the
yaw offsets measured by the wind vane and nacelle lidar
closely agree for the 8–10 m/s wind speed bin. But relative
to the lidar-measured yaw misalignment, the wind vane ap-
pears to underestimate the yaw offsets at lower wind speeds
and to overestimate the offsets at higher wind speeds.

Focusing on the wind speed dependence of the measured
and expected yaw offsets with wake-steering control, Fig. 13
shows that the measured offsets for wind speeds below 8 m/s
generally agree with the expected offsets; because of the high
wind direction variability at these wind speeds, the measured
offsets are spread among a large wind direction sector. Un-
certainty in the reference wind direction measurements stem-
ming from wind direction variability could further contribute
to the broadening of the measured offset curves. For wind
speeds between 8–10 m/s, the measured yaw offsets closely
match the expected offsets. This wind speed bin is also fa-
vorable from a measurement perspective because of the large
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Figure 13. Mean yaw offsets for the baseline and the controlled operation for the upstream turbine, SMV6, binned by wind speed. Yaw
offsets measured using the nacelle wind vane and WindCube Nacelle lidar are compared to the ideal yaw offsets given by the yaw offset
schedule and the expected yaw offsets using the wind direction variability model. Shaded regions indicate the 95 % confidence interval of
the mean.

amount of data collected and the relatively low wind direc-
tion variability. Within the 10–12 m/s wind speed bin, the
measured yaw offsets tend to be higher than predicted, pos-
sibly because of lower wind direction variability or larger
yaw offsets persisting from operation in lower wind speeds.
Last, for wind speeds between 12–14 m/s, measurement un-
certainty caused by the relative lack of data obscures the yaw
offset trends. But, as expected, the measured offsets are rel-
atively low (the maximum target yaw offset for this wind
speed bin is only 5◦).

5.3 Lidar-based validation of yaw offsets

Given the biases between the yaw offsets measured by the
wind vane and the WindCube Nacelle lidar observed in

Figs. 12 and 13, in this section we estimate wind-speed-
dependent transfer functions to correct the vane measure-
ments. These transfer functions are determined by treating
the yaw misalignment measured by the lidar as unbiased for
all yaw offsets, although we assume that zero-mean lidar
measurement errors exist (e.g., from the limitations of the
wind field reconstruction based on line-of-sight wind speed
measurements). To increase the amount of data that can be
analyzed, the transfer functions are determined using refer-
ence wind directions up to 270◦. But to reduce the chance
that wake effects from SMV7 influence the yaw misalign-
ments measured by the vane or lidar (see Fig. 1), only data
corresponding to wind directions above 210◦ are included in
the analysis.
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Corrective wind vane transfer functions are estimated us-
ing least-squares regression by fitting a line to the lidar-
measured yaw offsets as a function of the wind-vane-
measured offsets. Although the actual relationship between
the vane-measured and true offsets could be nonlinear, we
use a simple linear approximation to reveal (1) the wind vane
bias when zero yaw misalignment is reported and (2) the
overall degree to which the wind vane tends to underesti-
mate or overestimate the magnitude of the yaw misalign-
ments. The best-fit slope and intercept could then be applied
to the wind vane measurements to remove measurement bi-
ases; however, applying linear regression to the individual
1 min yaw offset measurements poses a problem because we
assume that both the lidar-measured yaw misalignments and
the offsets measured by the wind vane contain random mea-
surement errors. When the predictor variable in a linear re-
gression contains measurement errors, the regression slope
tends to be underestimated through a process called “regres-
sion dilution” (Frost and Thompson, 2000). To overcome this
challenge, we attempt to remove zero-mean measurement er-
rors by first binning and averaging the yaw offset measure-
ments. Specifically, we bin the measured yaw offsets by a
separate reference yaw offset, given by the difference be-
tween the reference wind direction and the nacelle position of
SMV6 (see Fig. 14a). With the random measurement errors
significantly reduced, the bin-averaged yaw offsets measured
by the lidar and wind vane can then be compared to reveal
biases in the wind vane measurements. An example of a lin-
ear regression applied to the bin-averaged yaw offsets for all
wind speeds is provided in Fig. 14b, revealing an intercept
of only 0.2◦ but a slope of ∼ 0.92, indicating the tendency
for the wind vane to overestimate the magnitude of the yaw
misalignment.

Scatterplots of the bin-averaged yaw offsets measured by
the WindCube Nacelle lidar and the wind vane, along with
the corresponding best-fit lines, are provided in Fig. 15 for
different wind speed bins. Beginning with the wind vane bias
when the measured yaw misalignment is zero, indicated by
the intercept, a positive bias of ∼ 2◦ is observed for wind
speeds below 8 m/s. For the 8–10 m/s wind speed bin, a
bias of only 1◦ is observed; however, for wind speeds above
10 m/s, the wind vane measurement contains a negative bias
of approximately −3◦. This wind speed dependence of the
mean wind vane measurement error has been previously re-
ported by Kragh and Hansen (2015). Despite the measure-
ment bias for individual wind speed bins, it is likely that the
wind vane measurements are calibrated to achieve an average
measurement bias close to zero, as indicated by the results in
Fig. 14. In contrast to the intercepts, the slopes of the best-
fit lines in Fig. 15 are similar across different wind speeds;
slopes between 0.84 and 0.92 are observed, suggesting that
the wind vane measurements overestimate the true yaw mis-
alignment by roughly 10 %.

Although we did not apply any corrections to the wind
vane signals used by the wake-steering and yaw controllers

in this experiment, the identified transfer functions could be
used to help ensure that the intended yaw offsets are achieved
in future controller implementations. Note that because of the
somewhat nonlinear relationship between the vane-measured
and true yaw offsets shown in Figs. 14 and 15, more sophisti-
cated transfer functions (e.g., higher-order polynomial func-
tions) might be more appropriate than the linear approxima-
tions presented here. Further, the amount of wind vane bias
likely depends on the wind turbine model.

6 Impact of yaw misalignment on power production

Understanding the relationship between yaw misalignment
and power production is paramount to the design of opti-
mal wake-steering strategies. In this section, we use mea-
surements from the WindCube Nacelle lidar to estimate the
impact of yaw misalignment on power production. Although
later in the section we estimate the cosine exponent, pv , used
by FLORIS to model the power loss from yaw misalignment
via the effective wind speed (see Eq. 1), we first use the more
traditional method of identifying the cosine exponent, pP ,
used to model the ratio between the power with yaw mis-
alignment, P , and the power that would have been produced
during aligned operation, P0:

P/P0 = cos(γ )pP . (3)

A wide range of pP estimates are presented in the literature.
For example, Fleming et al. (2017) estimate pP = 1.43 using
data from a commercial wind plant; Gebraad et al. (2016)
find that a value of pP = 1.88 fits results from LES sim-
ulations; and Medici (2005) determines a value of pP = 2
from a wind tunnel experiment. But as discussed by Liew
et al. (2020), a value of pP = 3 is predicted by blade ele-
ment momentum theory, albeit without a skewed wake cor-
rection. Note that pP and the value of pv used in FLORIS
(see Eq. 1) are not necessarily equivalent, but they are ex-
pected to closely agree in below-rated wind speeds when the
wind turbine’s coefficient of power is roughly constant as a
function wind speed.

To estimate pP using Eq. (3), we measure the yaw mis-
alignment, γ , using the nacelle lidar. Rather than treating
the reference power defined in Sect. 4.2 as P0, we use the
power given by the theoretical power curve shown in Fig. 3
combined with the lidar-measured wind speed. Using this
nacelle-lidar-based reference power helps ensure that the
P0 estimates represent the wind conditions local to SMV6.
The exponent pP is then estimated by fitting the function
cos(γ −α)pP to the ratio between the mean power produced
by SMV6 and the mean value of P0 binned by γ using non-
linear least-squares optimization. Note that α is treated as an
independent variable in the curve-fitting procedure and rep-
resents the yaw misalignment where power is maximized. As
explained in Sect. 5.3, data corresponding to reference wind
directions from 210–270◦ are used in this analysis.
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Figure 14. (a) Mean yaw offsets for SMV6 measured by the nacelle wind vane and the WindCube Nacelle lidar binned by reference yaw
offset (the difference between the reference wind direction and the nacelle position of SMV6). (b) Relationship between the yaw offsets
measured by the nacelle wind vane and the WindCube Nacelle lidar along with the best-fit line.

Figure 15. Relationship between yaw offsets for SMV6 measured by the nacelle wind vane and the WindCube Nacelle lidar binned by wind
speed along with best-fit lines.
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Figure 16. Normalized power of SMV6 as a function of yaw offset measured using the WindCube Nacelle lidar binned by wind speed.
Best-fit cosine power law curves are provided along with the best-fit cosine exponents and wind direction offsets, with accompanying 95 %
confidence intervals. Shaded regions indicate the 95 % confidence intervals of the energy ratios for individual yaw offset bins (blue) and the
best-fit cosine power law curves (red).

The ratios between the mean power produced by SMV6
and the mean value of the lidar-estimated P0, along with the
best-fit cos(γ −α)pP curves, are shown in Fig. 16 for dif-
ferent wind speed bins. The highest pP cosine exponents
of 2.2–2.3 are estimated for wind speeds from 4–8 m/s. Re-
gion 2 of the wind turbine’s power curve, in which the con-
troller tracks the optimal tip-speed ratio to maximize power
production, roughly spans wind speeds from 5–8 m/s; there-
fore, the maximum value of pP is expected in this wind
speed range. As wind speed increases above 8 m/s, the esti-
mated value of pP decreases from ∼ 1.3 for wind speeds be-
tween 8–12 m/s to pP = 0.36 for the 12–14 m/s wind speed
bin. Once the wind turbine reaches rated power in the 14–
16 m/s wind speed bin, the estimated pP is close to zero, with
power showing almost no dependence on yaw misalignment
(albeit based on limited data). The reduction of the cosine
exponent pP as the wind speed increases above Region 2
of the power curve agrees with the shape of the power curve,

shown in Fig. 3. As the wind speed increases, the slope of the
power curve decreases; thus, reductions in the effective rotor-
averaged wind speed caused by yaw misalignment should re-
sult in a smaller change in power. The large reduction in pP
as wind speed increases above Region 2 could have signifi-
cant implications for wake-steering strategies; in some situ-
ations, wake steering might be most effective at higher wind
speeds where less power is lost from yaw misalignment. Fi-
nally, despite the observed trends in the pP values, we note
that the estimation uncertainty is high. For example, in the
6–8 m/s wind speed bin, the 95 % confidence interval of the
estimated cosine exponent of pP = 2.3 ranges from roughly
1.8–2.8.

The estimated pP cosine exponents of 2.2–2.3 for wind
speeds below 8 m/s are significantly greater than the value of
pP = 1.61 estimated prior to the experiment; however, the
cosine exponent of pP = 1.61 was estimated using 10 min
data samples for wind speeds between 5–9 m/s (Duc et al.,
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2017). Measurements for wind speeds above 8 m/s likely
contributed to the lower cosine exponent (see Fig. 16). Fur-
ther, because 10 min power measurements corresponding to
small yaw misalignments contain contributions from a wider
range of instantaneous yaw offsets than 1 min measurements,
the average power production is expected to be less; there-
fore, the peak of the power curve as a function of yaw offset
is likely flatter when using 10 min data, leading to smaller
best-fit cosine exponents.

Next, we estimate the cosine exponent, pv , used by
FLORIS to describe the impact of yaw misalignment on the
effective wind speed (see Eq. 1) by slightly modifying the
method used to estimate pP . Instead of finding the best-
fit cosine exponent using the ratios between the measured
power, P , and reference power, P0, binned by yaw misalign-
ment, γ , we fit the function cos(γ −α)pv/3 (based on Eq. 1)
to the ratios between the effective wind speeds that corre-
spond to P and P0 as a function of γ . The effective wind
speeds are estimated by finding the wind speeds that map to
P and P0 using the measured power curve shown in Fig. 9
(note that this method is unreliable when the measured power
is greater than or equal to rated power).

Estimates of the pv cosine exponents are compared to the
pP estimates from Fig. 16 as a function of wind speed in
Table 1. As anticipated, compared to pP , the pv exponents
remain relatively constant (between 1.4 and 2.1) across all
wind speed bins because the impact of yaw misalignment on
the effective wind speed described by Eq. (1) is expected to
be roughly independent of wind speed. Note that for wind
speeds between 4–8 m/s, where the two different cosine ex-
ponents are expected to closely agree, we find that the esti-
mated pv values are lower than the corresponding pP esti-
mates; however, as indicated by the 95 % confidence inter-
vals in Table 1, the estimation uncertainty is high for both
variables. Despite the variations in the estimated pv values
for different wind speed bins, the relative stability of the pv
estimates as a function of wind speed compared to the cor-
responding pP values justifies the use of Eq. (1) to model
the impact of yaw misalignment on power production in
FLORIS. Finally, we note that the mean value of the pv es-
timates listed in Table 1 of 1.69 is close to the value of 1.61
used in the FLORIS model for this study.

Last, although Fig. 16 and Table 1 reveal the impact of
yaw misalignment on power production for a specific wind
turbine, recent research suggests that the relationship be-
tween yaw misalignment and power depends on the atmo-
spheric boundary layer as well as the turbine’s aerodynamic
properties and control system. Using rotor airfoil properties,
Howland et al. (2020) show how the power production of
a misaligned wind turbine depends on the wind shear and
veer profiles interacting with the rotor, which can introduce
asymmetry in the relationship between yaw misalignment
and power. The authors also explain how the generator torque
control logic used during below-rated operation can influ-
ence the impact of yaw misalignment on power via changes

Table 1. Estimated cosine exponents pP and pv (defined in Eqs. 3
and 1, respectively) as a function of wind speed, along with 95 %
confidence intervals in brackets.

Wind speed bin pP pv

4–6 m/s 2.22 [1.61, 2.86] 1.82 [1.31, 2.37]
6–8 m/s 2.30 [1.81, 2.83] 2.11 [1.65, 2.64]
8–10 m/s 1.35 [1.07, 1.63] 1.42 [1.11, 1.69]
10–12 m/s 1.31 [1.10, 1.52] 1.77 [1.51, 2.10]
12–14 m/s 0.36 [0.19, 0.54] 1.44 [0.04, 2.14]
14–16 m/s 0.07 [−0.07, 0.21] 1.56 [−2.79, 4.62]

in rotor speed. Further, using CFD simulations, Cossu (2021)
demonstrates that re-optimizing the blade pitch angle of a
yawed wind turbine in below-rated operation can both re-
duce the power loss from yaw misalignment and increase
the power gain from wake steering at downstream turbines.
Through a wake-steering field experiment, Doekemeijer et al.
(2021) observe asymmetry in the power loss as a function of
yaw misalignment, similar to the findings of Howland et al.
(2020), while also noting a relatively flat peak of the power
curve as a function of yaw offset followed by a sharp drop in
power production for more extreme offsets.

7 Energy improvement from wake steering

To assess the impact of wake steering on the performance of
the test turbines SMV5 and SMV6, we measure the change
in energy production between the baseline and the wake-
steering control periods as a function of wind direction.
Specifically, after dividing the measurement data into 2◦

wide wind direction bins, we quantify the ratio between the
energy produced by the test turbines and the reference tur-
bines for the baseline and the wake-steering control periods
using the balanced energy ratio method introduced by Flem-
ing et al. (2019). For each wind direction bin, the energy ratio
is calculated as

REnergy =

∑NWS
i=1 wiP Test,i∑NWS
i=1 wiPRef,i

, (4)

where P Test,i and PRef,i are the mean test and reference pow-
ers, respectively, in wind speed bin i; the weighting factor
wi is defined as the total number of samples in wind speed
bin i for the baseline and the controlled periods combined;
and NWS indicates the number of 1 m/s wide wind speed
bins used in the calculation. The test power PTest can be
the power produced by the downstream turbine, SMV5; the
power of the upstream turbine, SMV6; or the average power
produced by SMV5 and SMV6. PRef is given by the refer-
ence power defined in Sect. 4.2. The weights wi ensure that
the energy ratio is based on the observed distribution of the
wind speeds while providing a fair comparison between the
measurements from the baseline and the controlled periods.
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Normalization by the reference power is performed to at-
tempt to control for factors beyond wake steering that could
cause performance to change, such as wind shear or turbu-
lence intensity, assuming the test and reference turbines are
affected equivalently.

In Sect. 7.1, we present the overall energy ratios for the
baseline and the controlled periods as well as the change in
the energy ratio with wake steering for the downstream tur-
bine, SMV5; the upstream controlled turbine, SMV6; and the
two turbines combined. In Sect. 7.2, the energy ratios and the
changes in energy ratio with wake steering are shown for in-
dividual wind speed bins, highlighting wind speeds where
wake steering is most effective. Finally, in Sect. 7.3, we esti-
mate the long-term change in energy production from wake
steering for the combined turbines using the long-term wind
rose for the site, shown in Fig. 2. For all scenarios, the mea-
sured energy ratios and changes in energy production are
compared to estimates using the FLORIS model.

7.1 Overall energy gain

The overall energy ratios and the change in energy ratio for
the baseline and the wake-steering control periods for the
downstream turbine, SMV5, are plotted in Fig. 17 as a func-
tion of wind direction, along with 95 % confidence intervals.
The measured energy ratios and the change in energy ratio
with wake steering are compared to the same metrics based
on FLORIS simulations using the three different FLORIS
modeling assumptions discussed in Sect. 3.2. First, FLORIS
estimates of power production are calculated for the observed
distribution of wind directions, wind speeds, and yaw offsets
measured using SMV6’s nacelle wind vane (labeled “mea-
sured offsets”). Next, the ideal FLORIS estimates are calcu-
lated using the intended yaw offsets for SMV6 as a func-
tion of the observed wind direction and wind speed accord-
ing to the yaw offset schedule shown in Fig. 6 (labeled “ideal
offsets”). Last, the realistic expected energy ratios based on
FLORIS are calculated by combining the ideal yaw offsets
for SMV6 with the wind direction variability model dis-
cussed in Sect. 3.2 (labeled “expected offsets”).

As shown in Fig. 17, improvements in the energy produc-
tion of SMV5 from wake steering are observed for wind di-
rections from roughly 205–225◦, with a peak gain of nearly
0.15 (i.e., 15 % of the average energy production of the un-
waked reference turbines) at 213◦. The measured energy
gains are generally greater than the FLORIS estimates based
on the measured and expected yaw offsets, but, as antici-
pated, they are lower than the FLORIS gains using the ideal
offsets. A loss in energy is observed in the 203◦ wind direc-
tion bin, as predicted to a lesser extent using the expected
yaw offsets based on the wind direction variability model.
Because of unintended yaw offsets for wind directions be-
low 208◦ (see Fig. 12) the wake of SMV6 can potentially
be redirected back toward SMV5, causing a loss in energy
production (i.e., “wrong-way steering”). Note that although a

Figure 17. Energy ratios for the baseline and the controlled peri-
ods and the change in the energy ratio for the downstream turbine,
SMV5. Energy ratios are derived from field observations as well as
from FLORIS calculations using (1) measured yaw offsets, (2) ideal
yaw offsets given by the yaw offset schedule, and (3) expected yaw
offsets using the wind direction variability model. Shaded regions
indicate the 95 % confidence intervals of the energy ratios for in-
dividual wind direction bins. The gray dashed lines encompass the
intended wake-steering sector.

similar loss in power for wind directions immediately below
the intended wake-steering sector was observed in a previous
experiment (Fleming et al., 2020; Simley et al., 2020a), the
power loss shown in Fig. 17 coincides with a wind direction
bin where the baseline energy production appears anoma-
lously high; therefore, the loss could potentially be an ar-
tifact of significantly different operating conditions experi-
enced by the wind turbines during the baseline and the con-
trolled periods. Finally, as evidenced by energy ratios greater
than one for both the baseline and the controlled periods, a
slight speedup effect at the edge of the wake likely exists for
wind directions between approximately 221–233◦.

The energy ratios for the upstream turbine, SMV6, shown
in Fig. 18, reveal energy losses from the yaw misalignment
of up to ∼ 5 % when wake steering is active. Losses are ob-
served for wind directions from 199–237◦, corresponding to
the sector where nonzero-mean yaw offsets are observed,
as shown in Fig. 12. The greatest energy losses occur be-
tween 211–217◦, near where the highest measured yaw off-
sets occur. The measured reductions in energy production are
roughly in line with the FLORIS losses using the expected
yaw offsets based on the wind direction variability model,
but they are generally lower than the FLORIS losses using
the ideal yaw offsets; however, significant measurement un-
certainty resulting from the relatively small changes in en-
ergy production precludes a direct comparison between the
observed and the modeled energy losses as a function of wind
direction.
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Figure 18. Energy ratios for the baseline and the controlled pe-
riods and the change in the energy ratio for the upstream turbine,
SMV6. Energy ratios are derived from field observations as well as
from FLORIS calculations using (1) measured yaw offsets, (2) ideal
yaw offsets given by the yaw offset schedule, and (3) expected yaw
offsets using the wind direction variability model. Shaded regions
indicate the 95 % confidence intervals of the energy ratios for in-
dividual wind direction bins. The gray dashed lines encompass the
intended wake-steering sector.

To reveal the net impact of wake steering on energy pro-
duction as a function of wind direction, the energy ratios for
the baseline and the controlled periods along with the change
in energy ratio for the average power produced by SMV5
and SMV6 are provided in Fig. 19. Despite the energy loss
at SMV6 from the yaw misalignment, a net increase in en-
ergy production of up to 3 %–5 % of the energy produced by
the unwaked reference turbines is measured for wind direc-
tions from 205–225◦. The increases in energy production in
this sector are generally greater than the FLORIS gains using
both the expected and the ideal yaw offsets. As predicted by
FLORIS using the expected yaw offsets based on the wind
direction variability model, losses are observed near 207◦ –
possibly because of unintentional wrong-way steering – and
above 225◦. In the latter case, a minor loss in energy is pre-
dicted by FLORIS because the gains at SMV5 are not large
enough to outweigh the loss in energy from the yaw mis-
alignment at SMV6.

Because increases in energy production are observed for
the combined upstream and downstream turbines for most
wind directions, as shown in Fig. 19, but losses are measured
as well, we assess the net impact of wake steering on en-
ergy production over the entire wind direction sector from
195–241◦. We quantify the net impact by estimating the per-
centage of wake losses in the sector that are reduced by wake
steering, as discussed by Fleming et al. (2020). Wake losses
are calculated for the baseline and the controlled periods sep-
arately by first binning the difference between the reference
power and the average power produced by SMV5 and SMV6

Figure 19. Energy ratios for the baseline and the controlled pe-
riods and the change in the energy ratio for turbines SMV5 and
SMV6 combined. Energy ratios are derived from field observations
as well as from FLORIS calculations using (1) measured yaw off-
sets, (2) ideal yaw offsets given by the yaw offset schedule, and
(3) expected yaw offsets using the wind direction variability model.
Shaded regions indicate the 95 % confidence intervals of the energy
ratios for individual wind direction bins. The gray dashed lines en-
compass the intended wake-steering sector.

by wind direction (in 2◦ bins) and wind speed (in 1 m/s bins).
Next, the power losses are weighted by the fraction of the to-
tal samples contained in each bin, including the baseline and
the controlled periods. The weighted power losses are then
summed to determine the average wake losses over the entire
wind direction sector. Using this method, wake steering was
found to reduce wake losses by 5.6 % but with a large 95 %
confidence interval of −0.4 % to 11.2 %, estimated through
bootstrapping.

7.2 Wind speed dependence of energy gain

The changes in the energy ratios with wake steering for
wind turbines SMV5 and SMV6 combined for different wind
speed bins are provided in Fig. 20, followed by the wind-
speed-dependent energy ratio changes for the downstream
turbine, SMV5, and upstream turbine, SMV6, separately, in
Figs. 21 and 22, respectively. For reference, the energy ratios
for the combined upstream and downstream wind turbines
during the baseline and the controlled periods are provided in
Fig. A1 in Appendix A. Note that because fewer data samples
comprise the energy ratios for the individual wind speed bins,
the uncertainty is larger than that of the overall energy ratios
shown in Sect. 7.1. Nevertheless, trends in wake-steering per-
formance as a function of wind speed can be observed.

Mixed wake-steering performance is observed for wind
speeds below 8 m/s, as shown in Fig. 20. For the 4–6 m/s
wind speed bin, significantly larger increases in energy pro-
duction are achieved with wake steering than predicted by
FLORIS, with energy ratios increasing by as much as 0.1–
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Figure 20. Change in the energy ratios for the baseline and the controlled periods for turbines SMV5 and SMV6 combined, binned by wind
speed. Energy ratios are derived from field observations as well as from FLORIS calculations using (1) measured yaw offsets, (2) ideal yaw
offsets given by the yaw offset schedule, and (3) expected yaw offsets using the wind direction variability model. Shaded regions indicate the
95 % confidence intervals of the energy ratios for individual wind direction bins. The gray dashed lines encompass the intended wake-steering
sector.

0.3 for wind directions from 195–233◦. The large energy
gains for wind speeds below 6 m/s are potentially caused by
wake steering preventing SMV5 from shutting down by al-
lowing higher velocity inflow to interact with the rotor, as
discussed by Howland et al. (2019). As shown in Figs. 21 and
22, however, significant energy improvements are observed
for the upstream wind turbine, SMV6, in addition to SMV5
for the 4–6 m/s wind speed bin; therefore, additional sources
of the apparent energy improvement for this wind speed bin
might exist. For wind speeds between 6–8 m/s, wake steering
appears to cause little net change in energy production for
the combined wind turbines despite the large energy gains
predicted using FLORIS with all three yaw offset calcula-
tion methods. Specifically, as illustrated in Figs. 21 and 22,
lower-than-predicted energy gains at SMV5 are roughly can-
celed by losses at SMV6. Poor wake-steering performance
for wind speeds between 6–8 m/s is likely related to relatively
high wind direction variability, as explained in Sect. 3.2.

As revealed in Fig. 20, significant energy gains from wake
steering are observed for wind speeds from 8–12 m/s. For the
8–10 m/s wind speed bin, the energy improvement is roughly
in line with the energy gains predicted using FLORIS with
the expected yaw offsets. Notably, large gains at SMV5,
shown in Fig. 21, outweigh the relatively high losses at
SMV6, as illustrated in Fig. 22. Note that the individual
changes in energy ratio from wake steering for SMV5 and
SMV6 closely match the FLORIS-based predictions using
the expected yaw offsets for this wind speed bin as well. For
the 10–12 m/s wind speed bin, the energy gains at SMV5
are slightly greater than the improvements predicted using
FLORIS with all three yaw offset calculation methods, yet
very little change in energy is observed at SMV6 from yaw
misalignment. Consequently, a greater-than-predicted net en-
ergy gain is observed for the wind turbine pair.

Last, the performance of wake steering for the 12–14 m/s
wind speed bin is unclear based on the data collected. Fig-
ure 20 suggests that energy ratio increases of up to 0.1 are
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Figure 21. Change in the energy ratios for the baseline and the controlled periods for the downstream turbine, SMV5, binned by wind speed.
Energy ratios are derived from field observations as well as from FLORIS calculations using (1) measured yaw offsets, (2) ideal yaw offsets
given by the yaw offset schedule, and (3) expected yaw offsets using the wind direction variability model. Shaded regions indicate the 95 %
confidence intervals of the energy ratios for individual wind direction bins. The gray dashed lines encompass the intended wake-steering
sector.

achieved for wind directions between 213–221◦. But these
gains appear to be largely canceled by losses for wind di-
rections from 201–211◦, which could be caused by wrong-
way steering. On the other hand, the target yaw offsets are
limited to a maximum of 5◦ for wind speeds between 12–
14 m/s; consequently, the FLORIS predictions show very lit-
tle change in energy production across the wind direction
sector investigated. Further, because the yaw controller is
less responsive to small yaw offset commands, it might not
be able to effectively implement the intended offsets of 5◦

or less. Finally, the large variations in the observed changes
in energy ratio for different wind directions could be caused
by the relative lack of data collected for wind speeds above
10 m/s, as indicated in Fig. 7b.

7.3 Long-term corrected energy gain

As discussed in Sect. 2.3, above-average wind speeds were
observed during the experiment period because of the typi-

cally stronger wind resource at the site in the winter. To esti-
mate the expected impact of wake steering on energy pro-
duction during a typical year, we compute long-term cor-
rected energy ratios for the baseline and the wake-steering
periods based on the long-term wind rose frequencies shown
in Fig. 2. The calculation of the long-term corrected energy
ratio requires only a slight modification to the energy ratio
definition in Eq. (4); instead of weighting the mean power
for the test and reference turbines in a particular 2◦× 1 m/s
wind direction and wind speed bin by the total number of
samples measured in that bin, we weight the mean power by
the long-term frequency of occurrence of the wind conditions
within the bin.

Using the modified energy ratio calculations, the long-
term corrected energy ratios for the baseline and the wake-
steering periods together with the change in energy ratio with
wake steering for SMV5 and SMV6 combined are provided
in Fig. 23. Energy gains of up to 3 %–5 % of free-stream en-
ergy production are measured for wind directions between
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Figure 22. Change in the energy ratios for the baseline and the controlled periods for the upstream turbine, SMV6, binned by wind speed.
Energy ratios are derived from field observations as well as from FLORIS calculations using (1) measured yaw offsets, (2) ideal yaw offsets
given by the yaw offset schedule, and (3) expected yaw offsets using the wind direction variability model. Shaded regions indicate the 95 %
confidence intervals of the energy ratios for individual wind direction bins. The gray dashed lines encompass the intended wake-steering
sector.

207–225◦, generally matching the predicted energy improve-
ments using FLORIS with the expected yaw offsets. Slight
losses in energy production are observed for wind directions
below 207◦ and above 225◦, as also predicted by FLORIS
using the expected offsets. Overall, the long-term corrected
change in energy ratio from wake steering follows the same
trends as the change in energy ratio for the experiment period
shown in Fig. 19; however, the peak gains and losses are less
extreme when the long-term corrected wind rose is applied.

To estimate the long-term net impact of wake steering for
the combined upstream and downstream wind turbines over
the entire wind direction sector from 195–241◦, we repeat the
analysis of the wake loss reduction from wake steering intro-
duced in Sect. 7.1. But similar to the method of the long-term
corrected energy ratio, we modify the procedure for calcu-
lating the wake losses by weighting the difference between
the mean power of the reference and test turbines in each
2◦× 1 m/s wind direction and wind speed bin by the long-
term frequencies of occurrence of the wind conditions within

the bin rather than by the frequencies observed during the
experiment period. Based on this procedure, we estimate a
long-term corrected wake loss reduction of 9.3 % from wake
steering but with a large 95 % confidence interval spanning
from 1.3 %–16.2 %. Note that this confidence interval is es-
timated through bootstrapping by randomly resampling the
data used to calculate the mean power values, as explained
in Sect. 4.3; however, the long-term wind condition frequen-
cies are fixed at the values determined from the long-term
wind rose shown in Fig. 2. The expected long-term corrected
wake loss reduction from wake steering is greater than the
value of 5.6 % calculated for the experiment period in part
because wind speeds from 4–6 m/s occur more frequently in
the long-term wind rose. Although the wind turbines’ power
production is relatively low for this wind speed bin, the large
energy improvements from wake steering contribute to a sig-
nificantly higher reduction in overall wake losses.
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Figure 23. Long-term corrected energy ratios for the baseline and
the controlled periods and the change in the energy ratio for tur-
bines SMV5 and SMV6 combined. Energy ratios are derived from
field observations combined with the long-term wind rose shown in
Fig. 2 as well as from FLORIS calculations using (1) measured yaw
offsets, (2) ideal yaw offsets given by the yaw offset schedule, and
(3) expected yaw offsets using the wind direction variability model.
Shaded regions indicate the 95 % confidence intervals of the energy
ratios for individual wind direction bins. The gray dashed lines en-
compass the intended wake-steering sector.

8 Conclusions

In this paper, we analyzed the performance of wake-steering
control for two wind turbines spaced 3.7D apart at a com-
mercial wind plant by examining the change in energy pro-
duction from wake steering as well as the achieved yaw off-
sets during the 3-month experiment period. To highlight the
wind speed dependence of wake-steering performance, we
presented results in aggregate as well as for individual wind
speed bins between 4–14 m/s. The overall improvement in
energy production was quantified by estimating the percent-
age of wake losses reduced by wake steering, both during
the experiment period and extended to represent the long-
term wind resource for the site. To help validate the use of
the FLORIS engineering wind farm control tool for wake-
steering controller design, we compared the measured energy
production to the FLORIS predictions based on the mea-
sured yaw offsets, the ideal offsets, and the expected yaw
offsets using a model of wind direction variability. We also
compared the measured yaw offsets to the expected offsets
based on the wind direction variability model. Finally, we
used measurements from a WindCube Nacelle lidar to deter-
mine the accuracy of the nacelle wind vane used to imple-
ment wake steering as well as to better understand the power
loss caused by the yaw misalignment.

Overall energy gains of up to 3 %–5 % of the potential
free-stream energy production were observed for the com-
bined upstream and downstream wind turbines for specific
wind directions, resulting in an estimated 5.6 % net reduc-

tion in wake losses over the wind direction sector investi-
gated. Large energy improvements from wake steering were
observed for wind speeds from 4–6 m/s, likely because the
higher inflow velocities at the downstream wind turbine pre-
vented it from shutting down as frequently; however, poor
wake-steering performance was measured for wind speeds
from 6–8 m/s as a result of significant wind direction vari-
ability and power loss from the yaw misalignment. On the
other hand, significant energy improvements were observed
for wind speeds between 8–12 m/s. Because of smaller tar-
get yaw offsets and a relative lack of data, the effectiveness
of wake steering in the 12–14 m/s wind speed bin – just be-
low the turbines’ manufacturer-specified rated wind speed of
14.5 m/s – is inconclusive. After correcting the change in en-
ergy from wake steering during the experiment period us-
ing the long-term site wind rose, we estimated that the wake
loss reduction from wake steering increases to 9.3 % for the
wind directions analyzed. Despite the large uncertainty in
the estimated reductions in wake losses, this improvement
underscores the importance of assessing wake-steering per-
formance in wind conditions representative of the long-term
wind resource at the site. Note that the wake loss reduction
values estimated here represent the reduction in wake losses
caused by the controlled wind turbine, SMV6, waking the
downstream turbine, SMV5; the potential reduction in wake
losses from wake steering for the entire wind plant, across
all wind directions, will depend on several factors (e.g., the
particular set of wind turbines that are controlled and the yaw
offset schedules that are used).

As revealed by the analysis of nacelle lidar measurements,
the wind speed dependence of wake-steering performance
largely stems from the impact of yaw misalignment on power
production. For wind speeds from 4–8 m/s – encompassing
Region 2 of the power curve, wherein power is maximized
– the greatest power loss from yaw misalignment was mea-
sured. But for wind speeds from 8–12 m/s, the power loss for
a given yaw misalignment is roughly half the loss observed
in Region 2. As wind speed increases to 12–14 m/s – just be-
low the official rated wind speed for the turbine investigated
– almost no impact on power production from yaw misalign-
ment was detected; this is expected because changes in the
effective wind speed from yaw misalignment result in rela-
tively small reductions in power for this wind speed bin (see
Fig. 9). Thus, aside from the benefits observed near the cut-
in wind speed, the greatest opportunities for wake steering
might be at higher wind speeds where a significantly lower
penalty is incurred when operating misaligned with the wind.

Further, yaw misalignment measurements from the nacelle
lidar revealed a wind-speed-dependent bias in the wind vane
measurements as well as the tendency for the wind vane to
overestimate the true yaw misalignment. Although we found
that the resulting wind vane measurement error was typically
within a few degrees, we suggest that sensors used to mea-
sure yaw misalignment as part of a wake-steering control
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strategy be carefully calibrated to maximize the effectiveness
of wake steering.

When combined with the expected yaw offsets using the
wind direction variability model, we found that FLORIS pre-
dicts the impact of wake steering on energy production rea-
sonably well. But for the combined upstream and down-
stream wind turbines, the observed energy gains were gen-
erally higher than those predicted by FLORIS. Note that
we used a relatively high turbulence intensity of 11 % in
the FLORIS model to match the measured baseline wake
losses. The energy gain predictions from FLORIS could be
improved by using a lower turbulence intensity value (the ef-
fectiveness of wake steering improves as turbulence intensity
decreases), suggesting that further work is needed to recon-
cile the wake deficit and wake deflection models in FLORIS,
at least for relatively short turbine separations such as the
3.7D spacing investigated here. The wind direction variabil-
ity model was found to relatively closely predict the trend
of the measured yaw offsets achieved by the wake-steering
controller. Specifically, because of imperfect yaw tracking
in variable wind conditions, the measured yaw offsets were
found to be lower than the target offsets in the intended wake-
steering region, with undesired yaw offsets persisting outside
of the intended sector. As reflected by the measured impact
on energy production, these unintended yaw offsets appear
to cause slight reductions in energy for wind directions out-
side of the intended wake-steering sector. Overall, the wind
direction variability model offers a simple way of accounting
for unintentional yaw misalignment when optimizing robust
wake-steering control strategies.

Despite the increase in energy production observed in this
study, there are several opportunities to improve the perfor-
mance and field validation of wake steering. First, a con-
servative yaw offset schedule was employed in this experi-
ment to limit the impact of yaw misalignment on structural
loads. After performing a detailed load assessment for the
specific wind turbine used, the effectiveness of wake steer-
ing could be increased by allowing larger yaw offsets for a
wider range of wind speeds in addition to leveraging both
positive and negative yaw offsets. Further, whereas this ex-
periment showed that the effectiveness of wake steering de-
pends on wind speed, the energy gains achieved through
wake steering strongly depend on atmospheric stability as
well, as shown by Fleming et al. (2019, 2020). Thus, if rel-
evant measurements are available, yaw offsets could be op-
timized and scheduled as a function of stability – or other
variables related to stability such as turbulence intensity, as
described by Doekemeijer et al. (2021) – in addition to wind
speed and direction. Additionally, whereas we used an indi-
rect wake-steering control strategy based on modifying the
input to the wind turbine’s existing yaw controller, more ad-
vanced controllers, such as those discussed in Sect. 1, could
improve performance by directly controlling the yaw posi-
tion and responding more quickly to changing wind condi-
tions. Opportunities also exist to increase the accuracy of

the inputs to the wake-steering controller. For example, the
consensus control strategy described by Annoni et al. (2019)
uses information sharing between neighboring wind turbines
to improve local wind direction estimates. Finally, the energy
gains estimated in this study are accompanied by a significant
amount of uncertainty. In addition to extending the duration
of wake-steering experiments, we expect uncertainty can be
greatly reduced by increasing the number of wind turbines
used to validate the overall impact of wake steering. ENGIE
and NREL aim to incorporate some of these improvements
by collaborating on a larger-scale wake-steering campaign
as part of the upcoming AWAKEN (American WAKE ex-
perimeNt) experiment in the United States (Moriarty et al.,
2020).
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Appendix A: Wind speed dependence of energy
ratios for combined downstream and upstream
turbines

Figure A1. Energy ratios for the baseline and the controlled periods for turbines SMV5 and SMV6 combined, binned by wind speed. Energy
ratios are derived from field observations as well as from FLORIS calculations using measured yaw offsets. Shaded regions indicate the 95 %
confidence intervals of the energy ratios for individual wind direction bins. The gray dashed lines encompass the intended wake-steering
sector.

Code availability. The FLORIS code used to model wake-
steering performance and calculate the energy ratios in this paper
is available at https://github.com/NREL/floris (NREL, 2021).

Data availability. The operational wind turbine data analyzed in
this paper are proprietary and cannot be shared publicly.
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