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Abstract. Measure–correlate–predict (MCP) approaches are often used to correct wind measurements to the
long-term wind conditions on-site. This paper investigates systematic errors in MCP-based long-term corrections
which occur if the measurement on-site covers only a few months (seasonal biases). In this context, two common
linear MCP methods are tested and compared with regard to accuracy in mean, variance, and turbine energy
production – namely, variance ratio (VR) and linear regression with residuals (LR). Wind measurement data
from 18 sites with different terrain complexity in Germany are used (measurement heights between 100 and
140 m). Six different reanalysis data sets serve as the reference (long-term) wind data in the MCP calculations.
All these reanalysis data sets showed an overpronounced annual course of wind speed (i.e., wind speeds too
high in winter and too low in summer). However, despite the mathematical similarity of the two MCP methods,
these errors in the data resulted in very different seasonal biases when either the VR or LR methods were used
for the MCP calculations. In general, the VR method produced overestimations of the mean wind speed when
measuring in summer and underestimations in the case of winter measurements. The LR method, in contrast,
predominantly led to opposite results. An analysis of the bias in variance did not show such a clear seasonal
variation. Overall, the variance error plays only a minor role for the accuracy in energy compared to the error in
mean wind speed. Besides the experimental analysis, a theoretical framework is presented which explains these
phenomena. This framework enables us to trace the seasonal biases to the mechanics of the methods and the
properties of the reanalysis data sets. In summary, three aspects are identified as the main influential factors for
the seasonal biases in mean wind speed: (1) the (dis-)similarity of the real wind conditions on-site in correlation
and correction period (representativeness of the measurement period), (2) the capability of the reference data
to reproduce the seasonal course of wind speed, and (3) the regression parameter β1 (slope) of the linear MCP
method. This theoretical framework can also be considered valid for different measurement durations, other
reference data sets, and other regions of the world.
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1 Introduction

An extensive measurement campaign generally constitutes
an essential part of wind resource assessment and, therefore,
of a successful wind energy project. In most cases, these
measurements provide around 1 year of wind data at the site
of interest (Lackner et al., 2008). Inter-annual variations in
wind speed are reported to vary by between 4 % and up to
10 % (e.g., Corotis, 1976; Justus et al., 1979; Klink, 2002),
depending on the respective site; hence, the measured wind
data usually do not represent the long-term wind conditions.
This aspect becomes even more momentous when the energy
in the wind is considered, which has been reported to vary
by 6 % (Pryor et al., 2018) up to 20 % or even 30 % (Corotis,
1976; Albrecht and Klesitz, 2006; Pryor et al., 2006) from
year to year. To account for this issue, a long-term correction
is performed.

For this purpose, reference data are needed, which should
be available for a long-term period of one to two decades
(Lackner et al., 2008; Carta et al., 2013; Liléo et al., 2013)
and show a high degree of similarity to the measured wind
data (e.g., a high correlation coefficient of measured and ref-
erence data).

Over the recent past, reanalysis data gained more and more
popularity in the wind industry and are now used exten-
sively in wind resource assessment (Miguel et al., 2019; Ra-
mon et al., 2019). Reanalysis data sets are produced using
numerical weather simulations with a fixed state-of-the-art
model and assimilating historical weather data. In contrast
to models used for weather prediction, which are often up-
dated and changed during operations, they therefore provide
temporally consistent data sets over periods of up to sev-
eral decades. Different types of reanalysis data are available,
ranging from (often freely available) global data sets (e.g.,
MERRA-2 by NASA, NASA, 2019; ERA5 by ECMWF,
CDS, 2018) to mesoscale reanalyses, which are generally not
free of charge but provide higher spatial resolution.

A statistical procedure relating the reference data to the
measured data is performed to derive a correction function.
In this context measure–correlate–predict (MCP) approaches
have evolved to become a standard tool for wind farm de-
velopers (Carta et al., 2013). These methods model a sta-
tistical relationship between the time series of the reference
and the measurement data. Afterwards, the relationship is ap-
plied to the long-term reference data, providing the long-term
wind conditions. The relationship between reference and tar-
get data, therefore, is assumed not to be time-dependent, i.e.,
valid in the correlation period as well as in the correction pe-
riod.

Numerous MCP methods are used in modern wind re-
source assessment applications. They range from simple lin-
ear models (e.g., García-Rojo, 2004; Rogers et al., 2005a;
Romo Perea et al., 2011; Weekes and Tomlin, 2014a) to com-
plex machine learning approaches like neural networks (e.g.,
Bass et al., 2000; Albrecht and Klesitz, 2006; Bilgili et al.,

2007; Velázquez et al., 2011; Zhang et al., 2014). The in-
vestigation and comparison of different MCP approaches has
been subject to a large amount of studies. Carta et al. (2013)
present an extensive review on existing MCP methods ap-
plied in wind resource assessment and related research fields.
They concluded that, by far, the most commonly used MCP
methods in the wind industry are based on linear approaches.
Other studies confirm this observation and underline the ben-
efit of the simplicity of linear MCP methods for use in wind
energy applications (e.g., Sørensen et al., 2011; Weekes and
Tomlin, 2014c; Weekes et al., 2015). In a round-robin exper-
iment in Germany in 2018 it was found that 24 of 29 consul-
tants used linear correlation methods, which mostly outper-
formed more complicated approaches (Basse et al., 2018).

In order to enable a precise determination of the relation-
ship between measurement and reference data, a sufficient
amount of measurement data is necessary; that is, the con-
current period needs to be long enough. Various studies have
been presented in which the question is addressed of how
long the time span covered by the measurement should be.
In general, it is recommended to be at least 1 year (Carta
et al., 2013), while the use of complete years is important
as an uneven representation of different months increases the
uncertainty (Taylor et al., 2004; Liléo et al., 2013). As a con-
sequence of such studies, an amount of 12 months of mea-
surement is recommended or even a mandatory minimum
duration due to technical guidelines and standards such as
FGW e.V. (2020), IEC (2017), or MEASNET (2016).

From an economic perspective, though, there is a strong
desire to reduce the duration of the measurement in order to
save time and money (Carta et al., 2013). This is especially
true with the increasing popularity of lidar measurements,
which have a high mobility and low installation costs com-
pared to classical measurement masts with comparatively
high running costs. Moreover, an estimate of the wind con-
ditions on-site is often of interest for the wind park planner
before the measurement campaign is completed. In all such
cases, a smaller number of wind data need to be dealt with,
and a long-term correction is performed based on wind mea-
surement data which comprise much less than a year.

However, seasonal effects occur when the measurement
does not cover all seasons (Rogers et al., 2005a; Saarnak
et al., 2014; Weekes and Tomlin, 2014a, b, c), resulting in
a dependence of the estimated energy yield on the period in
which the measurement is conducted. These can induce sys-
tematic deviations and, thus, increase the uncertainty of the
resource assessment significantly. Therefore, understanding
seasonal patterns in long-term correction and their relation
to data sources and the choice of the MCP method is of high
interest for the wind industry.

Several studies have investigated the accuracy of a long-
term correction (LTC) of short-term wind measurements in
dependence of the measurement duration (e.g., Taylor et al.,
2004; Rogers et al., 2005a, b; Romo Perea et al., 2011;
Weekes and Tomlin, 2014c; Weekes et al., 2015; Miguel
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et al., 2019). While in some of these, seasonal effects are
broadly addressed, to the authors’ knowledge there is a lack
of scientific publications which give profound explanations
for seasonal patterns in biases of the LTC. This paper in-
vestigates seasonal effects and related biases in wind speed
(mean and variance) and annual energy yield in the LTC in-
duced by short (3 months) measurement periods. Motivated
by their relevance for practical use, two linear MCP methods
are applied and compared: linear regression with residuals
(Weekes and Tomlin, 2014a) and the variance ratio method
(Rogers et al., 2005a). First, theoretical considerations are
developed to assess the impact of varying statistical relation-
ships between the measurement and the reference data in the
short-term period when compared to the long-term period.
In a second step, wind measurement data from 18 sites in
Germany and six different reanalysis data sets are used to as-
sess the significance and magnitude of seasonal effects in the
LTC. Interrelations of the seasonal effects with properties of
the reference data and the correlation method are analyzed
both theoretically and experimentally.

2 Measurement and reanalysis data used in this
study

Table 1 presents an overview of the measurement campaigns
used in this study. All sites are located in Germany; the com-
plexity of the sites ranges from flat agricultural areas to the
hilly low mountain ranges in Central Germany (one of the
complex sites is described in Pauscher et al., 2018). For all
sites a time series of an entire year for a height level be-
tween 100 and 140 m is available, representing typical hub
heights of modern wind turbines. The data were collected by
profiling lidar (light detection and ranging; see, e.g., Emeis
et al., 2007) of type Leosphere WindCube V1 and V2 (Leleu,
2019), sodar (sound detection and ranging; see, e.g., Bradley,
2008), or mast measurements. The 1-year periods are dis-
tributed relatively homogeneously between May 2013 and
April 2019; only the year 2016 may be judged slightly over-
represented (with 8 of the 18 sites covering at least a few
months of the year 2016). The measurement data were col-
lected at a temporal resolution of 10 min and then averaged
to hourly values (centered at the full hour) to comply with the
typical temporal resolution of the reanalysis data (see below).
The availability of the measurement data is higher than 80 %
at all sites with more than 90 % data availability at 14 sites.
All data gaps are smaller than 100 consecutive hours except
for a single site (site 17 in Table 1), where approx. 10 d of
data are missing in winter (overall data availability for this
site: 95 %).

The following six different reanalysis data sets serve as
reference data in the MCP calculations.

1. MERRA-2 (GMAO, 2015). The Modern-Era Retro-
spective Analysis for Research and Applications Ver-
sion 2 (MERRA-2) is based on global numerical

weather analyses of the US National Aeronautics and
Space Administration (NASA). The data are available
as 1 h time series since 1980 for a height of 50 m and a
spatial resolution of 0.5◦×0.66◦. The time stamps refer
to average hourly values centered at 00:30, 01:30 UTC,
etc. In order to obtain comparability with the other re-
analysis data sets and consistency in temporal terms,
these were interpolated to values centered at the full
hour.

2. ERA5 (Hersbach et al., 2020). The data set is calculated
at the European Centre for Medium-Range Weather
Forecasts (ECMWF) and provided by the Copernicus
Climate Change Service. The ERA5 data represent the
follow-up data set to the ERA-Interim reanalyses of the
ECMWF. The spatial resolution of the ERA5 data is ap-
prox. 31 km (≈ 0.28◦). Long-term series of this data set
are available for 100 m above ground in an hourly reso-
lution. In contrast to the MERRA-2 data, these data are
instantaneous values instead of averaged wind speeds
(centered at the full hour).

3. EMD-ConWx (EMD, 2020a). This data set is created us-
ing the WRF model (Weather Research and Forecasting
Model; see, e.g., Powers et al., 2017) and is provided
by EMD International A/S from Denmark. It is based
on the ERA-Interim reanalysis data of the ECMWF, re-
fined to a resolution of 3 km. The temporal resolution
of the long-term time series is 1 h (instantaneous val-
ues centered at the full hour). Wind data are provided at
heights of 10, 25, 50, 75, 100, 150, and 200 m.

4. EMD-WRF Europe+ (EMD, 2020b). This data set is
a further development of the EMD-ConWx data. The
ERA5 reanalysis data have replaced the ERA-Interim
data, while spatial resolution and temporal properties
have not changed. Wind data are provided at the same
heights as in EMD-ConWx and six additional heights
up to 4000 m.

5. anemosM2: anemos Windatlas based on MERRA-2
(anemos, 2020a, c). Similar to the EMD data sets, these
data are created based on a downscaling of global re-
analysis data (here MERRA-2) using the WRF model
(version 3.7.1) to a resolution of 3 km. In contrast to the
other models, anemos uses statistical post-processing
based on measurement data, known as remodeling, to
improve the simulation results. Furthermore, additional
downscaling of the data from the 3 km grid to the spe-
cific site is applied. The heights of the wind data are
generally freely selectable between 40 and 200 m; for
the analysis in this study, wind data at 100 and 140 m
were provided.

6. anemosE5: anemos Windatlas based on ERA5 (anemos,
2020b, c). This data set is similar to the anemosM2 but
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Table 1. Details of the measurement sites. The duration of the individual measurements is exactly 1 year. The measurements were carried
out between May 2013 and April 2019.

Site Orography and surface cover Measurement Measurement device
no. height [m]

1 hilly, forested 140 lidar (WindCube V2)
2 slightly hilly, forested 140 lidar (WindCube V2)
3 mainly flat, forested 140 lidar (WindCube V2)
4 hilly, sparsely forested 140 lidar (WindCube V1)
5 slightly hilly, barely forested 140 lidar (WindCube V1)
6 slightly hilly, forested 140 lidar (WindCube V2)
7 hilly, forested 140 lidar (WindCube V1)
8 slightly hilly, no trees 140 lidar (WindCube V1)
9 slightly hilly, sparsely forested 140 lidar (WindCube V1)
10 mainly flat, buildings nearby 135 lidar (WindCube V2)
11 mainly flat, small town nearby 140 lidar (WindCube V2)
12 hilly, forested 135 mast
13 slightly hilly, forested 140 mast
14 rather flat, forested 130 mast
15 flat, close to a city 110 mast
16 flat, agricultural area 100 mast
17 rather flat, forest nearby 140 sodar
18 slightly hilly, forested 140 sodar

uses ERA5 data. Furthermore, in the course of the re-
modeling, a seasonal correction is performed, i.e., bi-
ases in the annual cycle of the ERA5 data are corrected
before the statistical downscaling is implemented. The
goal is to better capture the seasonal behavior of the
wind conditions. Additionally, a more precise consider-
ation of the roughness at the respective site represents a
further difference to the anemosM2 data. Both the mag-
nitude of the seasonal corrections and the modifications
on roughness constitute a trade secret of anemos (Mar-
tin Schneider, anemos GmbH, personal communication,
January 2021).

It should be noted that both the anemosM2 and anemosE5
models generally provide a temporal resolution of 10 min. In
order to guarantee comparability of the results, these were
averaged to 1 h, ensuring the same temporal resolution for
all reanalysis data sets.

In general, reanalysis data are modeled for different loca-
tions on a geographical grid. In this study, data were selected
from the grid point closest to the respective site. For data
sets 3–6 data at more than one height level were provided. In
these cases, the data at the height closest to the measurement
were used (i.e., 100 and 150 m for EMD-ConWx and EMD-
WRF Europe+, and 100 and 140 m for the two anemos data
sets). For the MERRA-2 and ERA5 data sets the data at the
given height (i.e., 50 and 100 m, respectively) were used; i.e.,
no vertical extrapolation (or interpolation) was performed in
this study.

3 Methodology

This study compares wind speed statistics as observed over
different periods in the investigated data – namely short-term
data and long-term data. For this purpose, the convention is
applied that capital letters are used for long-term variables
(e.g., the long-term corrected wind speed), while parameters
in lowercase letters represent data from the short-term pe-
riod. The subscript labels “meas”, “rea”, and “corr” refer to
measurement, reanalysis, and corrected data, respectively.

3.1 Selection of short-term periods and procedure of
long-term correction

In this study, short-term periods with a duration of 90 consec-
utive days are investigated. For the selection of these short-
term periods, a sliding window algorithm with an increment
of 3 d is used; i.e., the first 90 d period starts on 1 January, the
second on 4 January, etc. When this sliding window reaches
the end of the period of the original measurement campaign,
the data from the beginning of the data set are appended. This
ensures that all seasons are considered equally. In this way,
one hundred twenty-two 90 d measurement periods were in-
vestigated for all sites. This procedure is applied equally to
measurement and reanalysis data, guaranteeing that the re-
spective time series values match consistently.

In a first step, the data in each of the 90 d periods are in-
vestigated with respect to, e.g., mean and variance of wind
speed (Sect. 5.1–5.3). In this way, the temporal variations of
the wind climate can be analyzed. Furthermore, the perfor-
mance of the reanalysis data in reproducing the measured
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Figure 1. Illustration of the general procedure used in this study regarding the MCP predictions. After extracting the short-term data of
measured (umeas) and reanalysis (urea) data, a correlation function of these two wind speed time series is determined. This relationship is
used to correct the reanalysis data in the entire 1-year period Urea. Finally, the obtained corrected data Ucorr is compared to the actually
measured values (benchmark) Umeas in order to estimate the accuracy. This procedure is done with all one hundred twenty-two 90 d periods,
all sites, and all reanalysis data sets separately.

wind conditions is evaluated. Overall, this provides the ba-
sis for the further investigations of the seasonal effects in the
long-term correction of short-term wind measurements.

Secondly, MCP predictions are performed. Applying the
linear MCP methods described below in Sect. 3.2, regres-
sion parameters are determined by deriving a statistical re-
lationship between the measurement and reanalysis wind
speed time series from the short-term period. Afterwards,
the reanalysis data are adjusted to the entire 1-year period
for which measurement data are available. This is done by
using the previously derived statistical relationship. Finally,
the corrected data are compared to the measured 1-year data
(benchmark), and error scores are derived (see Sect. 3.3). The
general procedure is illustrated in Fig. 1.

The results, therefore, do not represent the overall errors
(or uncertainty) of an LTC in general, which is usually per-
formed over a period of 10 years or more (Lackner et al.,
2008; Carta et al., 2013; Liléo et al., 2013). Instead, the anal-
ysis provides findings on systematic errors (seasonal biases)
which emerge due to the reduction of the measurement dura-
tion from 1 year to 3 months.

The procedure as depicted in Fig. 1 is carried out for each
measurement site and for each reanalysis data set separately.
In order to derive robust, conclusive findings, the individual
results obtained at the 18 sites were averaged arithmetically,
resulting in one set of statistics (e.g., error scores) for each
reanalysis data set and each 90 d measurement period.

It should be noted that in practical applications, a sector-
wise regression is often performed for an LTC of measure-
ment data comprising a whole year. This means that the re-

gression parameters are calculated separately for different
wind direction bins, which allows taking the effects of ter-
rain on wind flow into account. This can be important espe-
cially in a complex environment (López et al., 2008). For the
shorter 3-month periods, sectorwise binning, however, gen-
erally yielded slightly worse results in this study (presumably
due to low data coverage in the different direction sectors).
This procedure is, therefore, not applied here. It is acknowl-
edged, though, that in some specific cases a sectorwise ap-
proach can be a reasonable choice for an LTC of short-term
measurements nevertheless.

When a correction is performed, the MCP methods may
generate a few negative wind speed values. In this study,
these values were set to zero.

As mentioned in the introduction, the correlation coeffi-
cient of site and reference data should be evaluated before
a long-term correction is performed. It is obvious that the
correlation coefficient is lower when considering short-term
periods (this will shortly be addressed in Sect. 5.4.2). In most
combinations of reanalysis and site data, the correlation co-
efficient was rrea,meas > 0.65 throughout, despite the small
amount of only 90 d of data. Only in the case of the EMD-
ConWx and EMD-WRF Europe+ data sets, values of less
than 0.5 were observed in summer periods at some sites.
This should be considered when assessing the results. How-
ever, it should be noted that this work intends to analyze the
effects of shortening the measurement campaign for MCP
approaches. Therefore, periods with low correlation coeffi-
cients are not excluded, but the effects of the correlation
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coefficient are explored in several sections (Sects. 4.3, 5.2,
and 5.4.2 in particular).

3.2 Long-term correction:
measure–correlate–predict (MCP) approaches

In this section, a brief overview of the two MCP methods
used in this study is given. Both implement a linear model to
derive a relation between measurement (umeas) and reference
wind speed (here reanalysis wind speed, urea) in the measure-
ment period. This linear relationship is generally expressed
in the form

umeas = β0+β1 · urea+ ε, (1)

where β0 and β1 represent the main regression parameters.
ε indicates the residuals (deviations from data points to fitting
line; see, e.g., Ellison et al., 2009).

3.2.1 Linear regression with residuals

The probably most widely used linear model is simple lin-
ear regression. In this approach the respective regression pa-
rameters β0,LR and β1,LR are calculated via the linear least
squares method, which minimizes the average squared devi-
ation of the data points from the fitting line (see, e.g., Draper
and Smith, 1998). This results in

β1,LR = rrea,meas ·
σmeas

σrea
(2)

and

β0,LR = umeas−β1,LR · urea, (3)

where σmeas and σrea represent the standard deviation of mea-
surement and reference (reanalysis) data in the measurement
period, and rrea,meas represents the Pearson correlation coef-
ficient of the respective data. The bar denotes the mean; the
subscript “LR” stands for linear regression. In the correction
period, the relationship is applied to each of the time series
values of the reanalysis dataUrea, yielding the corrected wind
speed values Ucorr:

Ucorr = β0,LR+β1,LR ·Urea. (4)

A disadvantage of this model is that the variance of the cor-
rected data ucorr is reduced in comparison to the measured
data umeas:

Var (ucorr)= β2
1,LR ·Var(urea)

= r2
rea,meas ·

σ 2
meas

σ 2
rea
·Var(urea)

= r2
rea,meas ·Var(umeas) . (5)

This yields Var(ucorr)< Var(umeas) as, in practical appli-
cations, the correlation coefficient rrea,meas < 1. Therefore,

simple linear regression can be considered a method which
generally yields accurate mean wind speeds (Bass et al.,
2000; Rogers et al., 2005a; Romo Perea et al., 2011; Weekes
and Tomlin, 2014a; Zhang et al., 2014) but not accurate vari-
ances; hence, biased estimates of wind speed distribution and
energy production can be expected.

A model which addresses this shortcoming and further de-
velops the simple linear regression approach is the linear re-
gression with residuals (LR) method discussed in Weekes
and Tomlin (2014a). In contrast to simple linear regression,
the residuals are explicitly considered, giving the missing
variance to the corrected data:

Ucorr = β0,LR+β1,LR ·Urea+ εrand. (6)

εrand is randomly drawn from a normal distribution εrand ∼

N (µ,σε) with mean µ and standard deviation σε. µ is
set to µ= 0 so that the mean value of the corrected wind
speeds Ucorr is not changed. The parameter σε can be esti-
mated using the data from the measurement period (Weekes
and Tomlin, 2014a). In this context, the deviations of the
data points from the regression line (applying simple lin-
ear regression) are determined; their standard deviation then
yields σε. Hence, the induced scatter resembles the scatter
which is observed in the measurement period. Weekes and
Tomlin (2014a) show that the LR method yields precise mean
wind speeds as well as accurate mean wind power densities.

3.2.2 Variance ratio

In Rogers et al. (2005a), the variance ratio (VR) method is
proposed as an alternative to the classical linear regression
methods. This approach is closely related to (simple) lin-
ear regression; in contrast, however, the regression parame-
ters β0,VR and β1,VR are not calculated using the linear least
square method. Instead, β1,VR is defined as

β1,VR =
σmeas

σrea
, (7)

which resembles the particular case of a simple linear re-
gression with correlation coefficient rrea,meas = 1 (compare
Eq. 2). This choice of β1,VR ensures that the variance is main-
tained, in terms of equal variances of measured data umeas
and corrected data ucorr in the measurement period. β0,VR is
then computed using Eq. (3) accordingly. This, in turn, en-
sures that the mean values of measured and corrected data (in
the measurement period) are equal. The VR approach there-
fore maintains both the first- and the second-order statistical
moment of the measured time series in the LTC. Correction
is performed via Eq. (4) using the respective regression pa-
rameters β0,VR and β1,VR.

In Rogers et al. (2005a) the authors found that the
VR method yielded accurate predictions of all investigated
metrics, including mean wind speed and wind speed distribu-
tion. Other studies confirm the suitability of the VR method
in the context of long-term correction of wind measurements
(see, e.g., Weekes and Tomlin, 2014a; Weekes et al., 2015).
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3.3 Statistical analysis and definition of error scores

For each MCP calculation according to Sect. 3.1, a 1-year
time series is generated (temporal resolution: 1 h). Based on
comparison with the measured 1-year data, the following er-
ror scores are derived to evaluate the accuracy of these time
series:

1. Bias in (annual) mean wind speed, Errmean =
U corr−Umeas

Umeas
(where the bar denotes the respective

1-year mean wind speeds).

2. Bias in variance of the (1-year) time series, Errvar =
Var(Ucorr)−Var(Umeas)

Var(Umeas) .

3. Bias in theoretical annual energy production of a wind
turbine, Errturbine.

To derive this error score, the theoretical 1-year en-
ergy production of a wind turbine is calculated using
the power curve of a 3.2 MW wind turbine (see Ener-
con, 2019). This power curve has a cut-in wind speed
at 2 m s−1, and the nominal power is reached at wind
speeds of 14 m s−1. When the winds are stronger than
25 m s−1, no energy is converted (cut-out wind speed).
Errturbine is given by the relative deviation of the energy
values calculated from the corrected and the measured
1-year time series (i.e., similar to Errmean and Errvar).
Two further power curves with significantly lower and
higher cut-in and cut-out wind speeds (nominal power:
1.8 and 4.2 MW) were used in order to quantify the vari-
ability for different power curves. As the results only
differed slightly and the essential conclusions remained
the same, only the results for this 3.2 MW turbine power
curve are presented in this study.

4 Theoretical considerations

Before experimental analysis is presented, in this section the-
oretical aspects are discussed. It should be noted that these
theoretical considerations are, to some extent, also valid for
a long-term assessment which is based on an entire year of
measurement data (i.e., as most commonly done in wind re-
source assessment today). In this case, the inter-annual vari-
ations of the wind conditions represent the key factor. How-
ever, these are usually smaller than the seasonal variations
during the year, which are discussed below.

4.1 Influence of mean and variance on the estimate of
energy

Both mean and variance of the predicted wind speed distri-
bution have an impact on the power production of a wind
turbine which is, eventually, the main target value of a wind
resource assessment. In this section, the importance of an er-
ror in each of the two statistical metrics is investigated.

It is known that the power in wind is proportional to the
wind speed in third power u3. Romo Perea et al. (2011) give
an approximation for the expected value E[u3

] based on the
first three statistical moments of the wind speed distribution,

E
[
u3
]
= u3
+ 3 · u · σ 2

u + γ · σ
3
u , (8)

with σu representing the sample standard deviation of wind
speeds u and γ the skewness coefficient. The bar denotes
the mean. Generally, γ is rather small (Romo Perea et al.,
2011), and the term γ · σ 3

u therefore will be neglected in the
following.

Applying the (simplified) formula of the Taylor series
method for propagation of error (see, e.g., Coleman, 2009),

1E
[
u3
]
=
∂E

[
u3]

∂u
·1u+

∂E
[
u3]

∂σ 2
u

·1σ 2
u , (9)

with 1 symbolizing the error of the respective parameter,
yields

1E
[
u3]

E
[
u3
] = (1+

2

1+ 3
A

)
·
1u

u
+

1

1+ A
3

·
1σ 2

u

σ 2
u

(10)

as a formula for the overall relative error of E[u3
]. The sub-

stitution A= u2/σ 2
u was introduced for means of readability.

The available 1-year measurement data (see Sect. 2) were
used to derive values forAwhich typically occur at the inves-
tigated sites. It was found that A= 5.0± 0.8 (mean± 1 SD
– standard deviation). Inserting this mean value of A in
Eq. (10) shows that the relative error in mean wind speed,
1u
u

, is weighted 6 times as much as the relative error in vari-

ance, 1σ
2
u

σ 2
u

.
Note that simplifications were applied (e.g., neglection

of the skewness of the distribution) and that the output of
Eq. (10) varies from site to site (due to a site dependence
of the parameter A). However, a clear impression of a much
larger importance of a high accuracy in mean than in the vari-
ance of the wind speed distribution is obtained.

Following these considerations, the sections below address
the question of which factors influence the accuracy of the
estimation of the mean and the variance when a long-term
correction is performed based on one of the two linear MCP
approaches.

4.2 Considerations on seasonal bias in mean wind
speed

In both cases of the VR and the LR method, the mean value
of the corrected wind speed data is given by

U corr = β0+β1 ·U rea, (11)

with the respective values of regression parameters β0 and β1
(again, the bar denotes the mean).
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Using the definition of β0 (see Eq. 3) leads to

U corr = umeas−β1 ·
(
urea−U rea

)
. (12)

For the (absolute) bias in mean wind speed this results in

Errmean,abs = U corr−Umeas

=
(
umeas−Umeas

)
−β1 ·

(
urea−U rea

)
. (13)

This formula is valid for both the LR and VR method (with
respective regression parameter β1,LR or β1,VR).

From Eq. (13) it can be seen that the accuracy in mean
wind speed is influenced by three factors.

1. umeas−Umeas: deviation of true mean wind conditions
(measured data) in the measurement and long-term pe-
riod.

This part of Eq. (13) denotes the difference of mean
wind speeds in the measurement and long-term period.
Therefore, it can be interpreted as a measure for the rep-
resentativeness of the period in which the measurement
is carried out.

2. urea−U rea: deviation of the mean wind speeds of the re-
analysis data in the measurement and long-term period.

Similarly to term (1) but related to the reanalysis data,
this term reflects the differences of wind conditions in
the measurement and long-term period given by the re-
analysis data.

3. Regression parameter β1.

The regression parameter β1 weights term (2). As β1 is
different for the LR and the VR method, the respective
results of an LTC will inevitably show differences, ac-
cordingly.

Note that Eq. (13) is valid independently of the duration of
measurement and correction period as well as the long-term
reference data set.

4.3 Considerations on seasonal bias in variance

Similarly to the considerations on mean wind speed above,
in this section a theoretical perspective on the accuracy
in variance is given. For the variance of the corrected
data Var(Ucorr) the following relationship is obtained when
the VR method is applied:

Var(Ucorr)= β2
1,VR·Var(Urea)= Var(umeas)·

Var(Urea)
Var(urea)

. (14)

The accuracy of the LTC in variance, therefore, directly
depends on the representativeness of the measured vari-
ance, Var(umeas), for the long-term period. Furthermore, the
ratio of the variances in the short-term and correction period
given by the reanalysis data (i.e., Var(Urea)

Var(urea) ) is decisive. This

means that the accuracy of the reanalysis data in reflecting
the (relative) seasonal variation of the variance plays an im-
portant role. The general accuracy of the reanalysis data re-
garding the variance, in contrast, is of minor importance.

In the case of the LR method, the respective formula reads
(cf. Eqs. 2 and 6):

Var(Ucorr)= r2
rea,meas ·Var(umeas) ·

Var(Urea)
Var(urea)

+Var(εrand) . (15)

Hence, besides the representativeness of the measured vari-
ance, the variance of the output data is mainly influenced by
three factors here:

1. the accuracy of the reanalysis data in reproducing the
annual variability of variance (similarly as discussed for
the VR method);

2. the correlation coefficient; and

3. the residuals determined in the measurement period or,
more specifically, the representativeness of their mea-
sured standard deviation σε =

√
Var(εrand) for the entire

correction period (see Sect. 3.2.1).

It should be noted that, from a mathematical point of view,
factors (2) and (3) are strongly connected (e.g., a lower cor-
relation coefficient implies higher scatter around the linear
fit and, hence, variance of the residuals). Therefore, in the
experimental section, the analysis is focused on factors (1)
and (2).

5 Experimental results

In the theoretical analysis, different factors were identified
which have an impact on the accuracy in mean and vari-
ance when an LTC is performed. In the following sections,
these are investigated experimentally. Afterwards, MCP cal-
culations are presented. Systematic biases are described and
discussed. In a last section, the variation of the results be-
tween the different sites is explicitly considered.

5.1 Seasonal cycle of mean wind speed in
measurement and reanalysis data

In Fig. 2 the average seasonal cycle of wind speed at the
18 sites as given by the different reanalysis data sets is pre-
sented. Additionally, the measured seasonal cycle is shown
(black dashed line). In all cases, relative values were used;
i.e., the mean wind speeds in the different 90 d periods (see
Sect. 3.1) were divided by the annual means of the respective
data sets.

As the diagram shows, the annual course of wind condi-
tions is marked by significantly lower mean wind speeds in
summer and stronger winds in winter periods. This pattern
typically prevails in Central Europe (Pryor et al., 2006). For
all reanalysis data sets, however, the seasonal variations are
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Figure 2. Average annual course of (normalized) wind speed in
reanalysis and measurement data. Normalization was done by di-
viding the mean wind speeds observed in the 90 d periods by the re-
spective annual mean. The individual results obtained at the 18 sites
were then averaged arithmetically.

overpronounced in comparison to the measured ones. In the
transitional seasons (spring, fall), the deviations of (relative)
reanalysis and measured wind speeds are smallest on aver-
age. The amplitudes of the curves in Fig. 2 differ, indicating
clear differences between the reanalysis data sets.

In order to further analyze this aspect, a parameter dmean
was calculated aiming to display the deviations from reanal-
ysis to measured data in the seasonal course. dmean is derived
based on mean values of reanalysis (urea) and measurement
data (umeas) during the 90 d periods in relation to their overall
annual mean values (U rea and Umeas, respectively):

dmean =
urea

U rea
−
umeas

Umeas
. (16)

Hence, this quantity represents the difference between the
colored lines and the measured seasonal course (black line)
in Fig. 2. It therefore indicates the average error of the reanal-
ysis data sets in reflecting the annual course of wind speed.
According to the theoretical considerations in Sect. 4.2, this
is an important aspect regarding the seasonal biases of an
LTC (cf. term 1 and 2 in Eq. 13). For each short-term period,
one value of dmean per site and reanalysis data set is derived.
Afterwards, values averaged over all sites are calculated, re-
sulting in one set of dmean values for each reanalysis data set.

Figure 3 shows the annual course of dmean. Relatively
large differences among the different reanalysis data sets can
be observed. The overpronounced seasonal course of mean
wind speed leads to negative values of dmean in summer and
positive values in winter periods for all reanalysis data sets.
Comparing the global reanalysis data sets MERRA-2 and
ERA5 shows advantages for the “older” MERRA-2 data set,
as a lower amplitude in Fig. 3 is present. This holds true de-
spite or because of the fact that the MERRA-2 data are pro-
vided at lower heights (50 m; see Sect. 2). This could gener-
ally be expected to yield a lower representativeness regard-

Figure 3. Deviation between reanalysis and measurement data in
(normalized) mean wind speed (period of 90 d, arithmetically aver-
aged over all sites).

ing the seasonal course at the measurement height. However,
the ERA5-based anemosE5 data give better results than the
MERRA-2-based anemosM2 data and, generally, show the
highest accuracy regarding the seasonal course. This might
be caused by the further developments by anemos when gen-
erating the anemosE5 model (e.g., the additional seasonal
correction or the remodeling; see Sect. 2). The largest am-
plitude prevails for the EMD-WRF Europe+ data set.

5.2 Seasonal variations of regression parameter β1 and
correlation coefficient rrea,meas

Motivated by their relevance in Eq. (13), average regression
parameters β1,VR and β1,LR and their temporal variation dur-
ing the year are investigated. These are shown in Fig. 4a
and b. The respective values were calculated during 90 d pe-
riods and arithmetically averaged over all sites. Note that, as
β1,VR =

σmeas
σrea

(see Eq. 7), Fig. 4a also gives an impression of
how the reanalysis data reproduce the variance of wind speed
and its temporal variation (Sect. 5.3 will address this aspect
in more detail).

Comparing the respective definitions of β1 (Eqs. 2 and 7)
shows that, for one pair of data sets, the LR method al-
ways produces smaller slopes than the VR method. In Fig. 4a
and b this is clearly reflected. In contrast to β1,VR, moreover,
β1,LR is subject to clear temporal variations showing lower
values in summer and higher values in winter. This reflects
the influence of the correlation coefficient rrea,meas, which
is part of the mathematical formulation of β1,LR and which
exhibits a seasonal pattern itself. This is depicted in Fig. 5,
where normalized values of rrea,meas are shown (similarly to
the β1 values in Fig. 4, these were averaged arithmetically
over all sites). The correlation coefficient shows a clear sea-
sonal variation for all reanalysis data sets and decreases sig-
nificantly towards the summer periods. More unstable strat-
ification and generally lower wind speeds (see Sect. 5.1)
might be possible reasons.
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Figure 4. Temporal variations of regression parameter (a) β1,VR
for the variance ratio and (b) β1,LR for the linear regression with
residuals methods. The respective values were determined using a
90 d sliding window and arithmetically averaged over all sites.

Figure 5. Normalized linear correlation coefficient between mea-
surement and reanalysis data (periods of 90 d, arithmetically aver-
aged over all sites). In the context of normalization the curves were
shifted to a mean of 1 to better identify the (relative) temporal vari-
ations during the year.

According to Eq. (13), the respective β1 value weights the
seasonal course of the reanalysis data in the determination
of the bias in mean wind speed. As a consequence of the
findings here, the overpronounced seasonal cycle of the re-
analysis data as depicted above is weighted more strongly
in winter than in summer periods when the LR approach is

Figure 6. Deviation from reanalysis to measurement data in (nor-
malized) variance (period of 90 d, arithmetically averaged over all
sites).

applied. Moreover, lower weighting (in comparison to the
VR method) occurs throughout as β1,VR > β1,LR.

5.3 Reproduction of the temporal variation of variance in
the reanalysis data

In order to further investigate the capability of the reanalysis
data in reproducing the seasonal course of variance, a mea-
sure dvar is calculated. Similarly to dmean in Sect. 5.1, dvar is
defined via the difference of relative values in the 90 d peri-
ods,

dvar =
Var(urea)
Var(Urea)

−
Var(umeas)
Var(Umeas)

. (17)

Figure 6 shows how the temporal variation of the measured
variance throughout the year is reproduced by the different
reanalysis data sets.

The differences in variance reach values of up to ±10 %
and are, therefore, generally higher than the deviations in
mean wind speed (see Fig. 3). No universal seasonal depen-
dence can be determined as it was observed for the mean
wind speed. Some curves in Fig. 6 show minima in summer
and high values in winter or spring, while others show con-
trary characteristics.

5.4 MCP calculations: seasonal bias in mean, variance,
and energy

MCP calculations based on 90 d of measurement are now
presented. For each reanalysis data set, an average value of
the individual error scores related to one measurement period
is calculated by arithmetically averaging over all sites. First,
the focus of the analysis is put on mean and variance of wind
speed. Afterwards, seasonal biases in the (theoretical) energy
production of a wind turbine are analyzed. In this context, the
influence of the systematic biases in both mean and variance
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Figure 7. Temporal variations during the year of the bias in mean
wind speed using the (a) variance ratio and (b) linear regression
with residuals methods.

on the accuracy in energy production is investigated on an ex-
perimental level. The analysis in these sections is focused on
systematic biases first. The variability of the results (standard
deviation) is presented and discussed in a dedicated section
afterwards (Sect. 5.4.4).

5.4.1 Seasonal bias in mean wind speed

Figure 7a shows the experimentally obtained bias in mean
wind speed (error score Errmean) using the VR method. An
inverse shape to the curves of dmean (i.e., the error of the re-
analysis data in the seasonal course; see Fig. 3) can be ob-
served: a measurement in summer months results in a pos-
itive bias in the corrected wind speed time series, while a
negative bias is produced when the measurement is con-
ducted in winter. Thus, a positive bias is obtained when the
reanalysis data underestimate the (relative) mean wind con-
ditions which prevail in the measurement period and vice
versa. These findings are valid for all reanalysis data sets, al-
though it should be noted that the shapes of the related curves
in dmean are not transformed in the (inverse) course of Errmean
in exactly the same way.

Strong differences compared to these observations and
even contrary behavior can be found when the LR method
is used (Fig. 7b). For all reanalysis data sets except ERA5,
the mean of the corrected wind speed time series is under-

estimated in the case of measurements in summer, while
overestimations prevail for winter measurements. The pat-
terns seem not to be directly related to how the reanalysis
data reproduce the measured seasonal course of the mean
wind speed. Moreover, the ERA5 data give an inverse curve
to all the other reanalysis data sets despite a high similar-
ity in dmean (Fig. 3). The amplitude of the respective curve
is rather small, indicating only small seasonal biases. For
most other data sets, the amplitudes of the curves in Fig. 7a
and b are of comparable magnitude with a slight advantage
for the LR method in predicting the mean of the corrected
wind speed time series.

In line with the theoretical considerations in Sect. 4.2, the
differences between Fig. 7a and b can be attributed to dif-
ferences in β1. As stated above, the VR method provides
larger β1 values than the LR approach. This leads to the
fact that, generally, the seasonal course of the reanalysis data
(term urea−U rea in Eq. 13) is weighted more strongly when
the VR method is used. As a consequence, the effect of
the overpronounced seasonal course of the reanalysis data,
as presented in Sect. 5.1, dominates the result. This is un-
derlined by the fact that Errmean and dmean roughly show
inverse shapes (compare Fig. 7a with Fig. 3). For the LR
approach, in contrast, the seasonal course of the reanaly-
sis data is weighted less due to smaller β1 values. There-
fore, in most instances the seasonal pattern measured on-
site (term umeas−Umeas in Eq. 13) dominates. Consequently,
most curves of Errmean show a high degree of similarity to
the annual course of wind speed (Fig. 2).

As was shown in Fig. 4, in the case of the ERA5 data, rel-
atively high β1,LR values were obtained. For the LR method
this causes a balancing effect (even slightly overbalanced).
Thus, a relatively small amplitude of Errmean can be ob-
served in Fig. 7b despite, or rather because of, the overpro-
nounced annual cycle of the ERA5 data. With regard to the
VR method, again, the highest slopes (β1,VR values) were ob-
served for ERA5 compared to the other reanalysis data sets.
As a direct consequence, the product of regression parame-
ter β1 and (overpronounced) seasonal course in the reanalysis
data clearly dominates the result of Eq. (13), and the highest
amplitude can be observed in Fig. 7a.

One further example is analyzed briefly here. The largest
overestimation of the annual course of wind speed was found
for the EMD-WRF Europe+ data set (see Fig. 3). In contrast
to the ERA5 data, though, remarkably lower β1,LR values are
obtained when this reanalysis data set is used (see Fig. 4b).
Eventually, the product of (small) regression parameter and
(large) deviation of the reanalysis data in the seasonal course
in Eq. (13) results in a relatively small amplitude of Errmean.

In summary, it can be stated that the capability of the re-
analysis data in reproducing the seasonal course of the true
wind conditions on-site is an important aspect when consid-
ering the bias in mean wind speed. However, positive (or neg-
ative) deviations in the seasonal course do not transform to
negative (or positive) biases directly. The regression parame-
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ter β1, depending on both the MCP method and the selected
reanalysis data set, strongly influences the outcome addition-
ally.

Note that the influence of the seasonality in β1,LR as shown
in Fig. 4b can not be determined exactly here, as the lower
values in summer coincide with a stronger effect of the
overpronounced seasonal cycle of the reanalysis data (lower
dmean values).

In a study of Bass et al. (2000), long-term measurements
instead of reanalyses were used as reference data. Long-term
corrections of 1-year on-site data from Europe and the US
were performed, testing a variety of MCP methods including
linear models as well as a neural network approach. Regard-
ing the bias in mean wind speed they found that none of the
investigated methods stood out in comparison to the others.
It was concluded that the success of the methods has “less to
do with the mechanics of the methodology itself, and more to
do with facets of the data being analysed”. Carta et al. (2013)
confirmed that the uncertainty of long-term predictions de-
pends much more on the (reference) data than on the MCP
method.

With regard to an LTC of short-term wind measurements,
the results of this work only partly agree with these find-
ings from literature. It was shown both theoretically and ex-
perimentally that, concerning systematic, seasonal biases, a
strong dependence on the selected MCP method occurs.

In a study of Weekes and Tomlin (2014a) seasonal pat-
terns in the long-term correction of short-term wind mea-
surements are addressed briefly. For both LR and VR, higher
(more positive) values of the bias in mean wind speed were
observed when measuring in summer, while smaller (more
negative) values were obtained for winter measurements. The
VR method yielded a smaller amplitude and, in contrast to
the LR approach, resulted in negative biases throughout. Fur-
thermore, it was concluded that the sign of the bias varied
depending on the specific site when the VR method was ap-
plied. Weekes and Tomlin (2014a) related these seasonal ef-
fects to temporal changes in synoptic weather patterns and,
connected to that, seasonal patterns in wind direction. No
specific explanations were given for the differences between
the results obtained with the VR or the LR method. It has
to be noted that Weekes and Tomlin (2014a) used measure-
ments instead of reanalysis data as reference, and all data
were collected at heights of around 10 to 20 m. The theo-
retical background derived in Sect. 4.2, however, is valid in-
dependent of height and origin of the reference wind data.
Against this background, it is likely that not all the reference
data used in Weekes and Tomlin (2014a) exhibited an over-
pronounced seasonal cycle as is the case for the reanalysis
data used in the study here.

Saarnak et al. (2014) applied a linear regression approach
to wind data from a site on a Swedish island using MERRA
reanalysis (predecessor of MERRA-2). Systematic underes-
timations in a long-term correction were found when short-
term data of 3-month winter periods were used. Summer

Figure 8. Temporal variations during the year of the bias in vari-
ance Errvar using the (a) variance ratio and (b) linear regression
with residuals methods.

measurements, in turn, resulted in positive biases in mean
wind speed. Hence, results similar to the ERA5 curve in
Fig. 7 were obtained. Explanations for this seasonality were
not given in the study.

In contrast to existing publications, therefore, this study
delivers in-depth explanations of the seasonal biases and the
differences when applying either the VR or the LR method
for an LTC. The considerations in Sect. 4.2 provide the theo-
retical framework for this. In this context, it was shown that
the biases are connected to properties of the reanalysis data
set as well as characteristics of the MCP method.

5.4.2 Seasonal bias in variance

In this section, the bias of the MCP predictions with respect
to variance is presented and discussed. Figure 8a and b show
the respective error score Errvar.

The curves displayed in Fig. 8a for the VR method resem-
ble the inverse course of that observed in Fig. 6 and, thus,
the patterns in the differences in variance of reanalysis and
actually measured data. This is consistent with the theoret-
ical considerations presented in Sect. 4.3 (in particular, see
Eq. 14). Connected to that, no clear mean seasonal course
can be observed when the VR method is used. The ampli-
tudes of the variations, however, are of distinct magnitude,
and remarkable errors can be observed.
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As shown in Fig. 8b, there is a clear seasonal cycle
of Errvar when applying the LR method. Lower values are
found for measurements in summer, and higher values can be
found for winter measurements. This effect can be observed
for all reanalysis data sets. In Sect. 4.3 three parameters were
identified which have a notable impact on Errvar when using
the LR method. It is expected that the most important factor
is the correlation coefficient rrea,meas, since it contributes as
a quadratic term to the theoretical calculation of Errvar (see
Eq. 15). Moreover, this parameter exhibits a strong seasonal
cycle similar to the course in Fig. 8b (see Sect. 5.2).

In summary, the amplitudes in Fig. 8b are generally of
slightly larger magnitude than those of the variations pro-
duced by the VR method. This indicates that the VR method
enables us to obtain a more accurate variance of the corrected
data on average. Differences occur regarding the type of re-
analysis data. Similar to the bias in mean wind speed, ERA5
gives the lowest bias in variance when the LR method is used,
while large biases are obtained when the VR method is ap-
plied on the ERA5 data. In contrast to the mean wind speed,
to the authors’ knowledge the accuracy in variance has not
been investigated in the literature.

5.4.3 Seasonal bias in the energy production of a wind
turbine

In Sect. 4.1 a much greater importance of a high accuracy in
mean than in variance was derived theoretically when aim-
ing for a precise estimate of the energy in the wind. This
contrasts with the finding of significantly higher biases in
variance than in mean wind speed. In this section, the bias in
the theoretical energy production of a wind turbine, Errturbine,
is discussed and compared to the other error scores. Going
beyond the theoretical considerations on energy density in
Sect. 4.1, this quantity involves the influence of the power
curve and, therefore, reflects a practical measure for a central
target value of wind resource assessment.

Errturbine as obtained when using either the VR or the
LR method is shown in Fig. 9. Comparison with the plots
of Errmean and Errvar (Figs. 7 and 8) reveals that the curves
obtained here are very similar to those of the bias in mean
wind speed (with about doubled amplitude). The influence
of the bias in variance, in contrast, is barely visible. Only in
specific periods when Errvar is large and its seasonal course
does not follow the pattern of Errmean, the influence of Errvar
can be seen. This is most clearly visible in the case of the
VR method (see, e.g., the data points related to the anemosE5
data in fall in Fig. 9a in comparison to Fig. 7a). It can be con-
cluded that the biases in variance as depicted in Sect. 5.4.2
are even less relevant for the energy estimate of a wind tur-
bine than the theoretical considerations in Sect. 4.1 suggest.
One explanatory aspect here may be that variations of very
large wind speed values (exceeding the rated wind speed of
the turbine) contribute strongly to variance but have no influ-
ence on the energy output.

Figure 9. Temporal variations during the year of the bias in the
theoretical annual energy production of a wind turbine Errturbine
using the (a) variance ratio and (b) linear regression with residuals
methods.

Besides that, one specific characteristic of Errturbine stands
out when the VR method is applied (Fig. 9a): some curves
mostly lie above or below zero for the entire year. Such over-
all biases are present especially in the case of the EMD-
ConWx (positive overall bias) and the MERRA-2 data (neg-
ative overall bias). When applying the LR method (Fig. 9b),
hardly any overall bias can be found.

Towards an explanation approach for this observation, the
regression parameters β0 (offset) and β1 (slope) have to be
considered. For the VR method, higher β1 values and, due
to the relationship of β1 and β0 in Eq. (3), lower β0 values
are obtained compared to the LR approach. This is visual-
ized in the scatter plot in Fig. 10 where distinct differences
between the regression lines can be observed. As a conse-
quence, smaller wind speed values are generally corrected
towards smaller values, while higher values are increased
compared to the correction applied in the LR method. Sim-
ilar correction is performed for wind speeds near the mean
(i.e., values close to 1 in Fig. 10).

This aspect can be expected to average out when consider-
ing mean wind speeds. However, it apparently becomes im-
portant in the case of energy production estimation where
the shape of the power curve leads to a different importance
(or weighting) of wind speed values of different ranges. Any
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Figure 10. Scatter plot of normalized measured and MERRA-2
data and regression lines to these data using either the VR or the
LR method. Normalization was performed by dividing all wind
speed values by the overall measured mean. The diagram was pro-
duced using the entire measurement data of the 18 sites (at the
heights specified in Table 1) and the related MERRA-2 data (see
Sect. 2).

wind-speed-dependent errors of the reanalysis data can fur-
ther contribute to this issue.

5.4.4 Variations between the sites

The variations between the sites can be judged an important
measure to characterize the reliability of the results. Further-
more, they give an indication for the uncertainty if the sys-
tematic, seasonal biases could be removed (e.g., by apply-
ing a correction function). Therefore, the standard deviations
of Errmean and Errturbine in dependence of the measurement
period are addressed here and shown in Fig. 11. The analysis
is restricted to these error scores as they are expected to be
most useful for the wind industry.

Similar to the biases, the variations (standard deviations)
are significantly higher for Errturbine than for Errmean. In gen-
eral, both methods (VR and LR) produce comparable mag-
nitudes, while the results, again, strongly depend on the se-
lected reanalysis data. The maximum values for individual
reanalysis data sets in Fig. 11 are lowest for the anemos data
sets and range from approximately 1 % to 5 % in the case
of Errmean. Differences regarding the MCP method occur
in winter periods when considering Errturbine (9 % in maxi-
mum values for the VR method and more than 11 % for the
LR method). In summary, the variation between the sites is
roughly of the same magnitude as the bias values themselves
(see Fig. 9).

On average, smallest values can be observed in the begin-
ning of the year and in fall (i.e., measurement periods starting
in January/February or September/October) for both Errmean
and Errturbine. This indicates that not only strong biases are
present when the measurement is conducted in summer or
winter but also higher variations and, hence, smaller reliabil-
ity of these biases can be expected. Moreover, this underlines
the significance and importance of a sorrow selection of the

measurement period, with transitional seasons (spring, fall)
to be recommended in Central Europe.

6 Conclusions and outlook

This study delivered in-depth analysis of seasonal effects in
the long-term correction of short-term wind measurements.
The provided findings can contribute to a further develop-
ment of reanalysis data as well as improved MCP methods in
this respect.

In a first step, the importance of the accuracy in mean and
variance of wind speed was evaluated with regard to a precise
estimate of the energy in the wind. It was shown on a theo-
retical level that the relative error in mean contributes 6 times
as much as the relative error in variance in this context. Ex-
perimental analysis, in contrast, showed that much larger bi-
ases in variance than in mean prevail when MCP predictions
are performed (absolute values of more than 15 % were ob-
tained in comparison to values of±4 %, respectively). It was
demonstrated that – apart from overall biases – the shape of
the seasonal course of the bias in mean wind speed was more
or less replicated in the bias of the theoretical energy produc-
tion. Therefore, it can be concluded that a precise estimate of
the mean is much more important than the correct estimate of
the variance when assessing the energy production of a wind
turbine.

A formula was derived which delivered the explanation
for the seasonal biases in mean wind speed when applying
either the variance ratio or linear regression with residuals
method. It was shown that the representativeness of the mea-
surement period, i.e., the similarity of the wind conditions
in correlation and correction period, is important. Moreover,
the capability of the reference (here reanalysis) data to re-
produce the seasonal course proved to be a decisive factor.
Lastly, the regression parameter β1 (computed differently for
the two MCP methods used in this study) was shown to influ-
ence the magnitude of the seasonal biases significantly. With
this theoretical framework, it was possible for the first time to
attribute errors in the long-term correction to characteristics
of the MCP method as well as properties of the reanalysis
data set.

The largest biases were obtained in the case of measure-
ment periods with non-representative wind conditions (i.e.,
significantly lower or higher mean wind speeds compared
to the annual mean – usually summer and winter periods in
Central Europe). The magnitude was shown to depend on the
reanalysis data set. Furthermore, a strong dependence on the
MCP method was identified; very different, partly even con-
trary characteristics in the seasonal biases were found for the
VR and LR methods.

In general, measurement periods in transitional seasons
(spring, fall) not only resulted in smallest biases but also gave
the smallest variation between the sites and, thus, the high-
est reliability of the results. The amplitudes of seasonal bias
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Figure 11. Bias variations between the sites (1 SD – standard deviation) with regard to the accuracy of predicting the mean wind speed (a, b)
and the theoretical energy production of a wind turbine (c, d). The panels on the left (a, c) refer to the VR method, while in panels (b) and
(d) the results produced by the LR method are shown.

and standard deviation of the results obtained at the individ-
ual sites were roughly of the same magnitude. If short-term
wind measurements are used for wind resource assessments,
it is, therefore, highly recommended to conduct these mea-
surements in periods which are likely to be characterized by
representative wind conditions (with respect to mean wind
speed).

Further research is necessary on how the systematic bi-
ases and, finally, the uncertainty of the long-term correction
of short-term wind measurements can be reduced in an effi-
cient and expedient way. The authors suggest that this could
be approached in different ways. On the one hand, a manual
correction based on the experiences described above would
reduce the biases. However, the reliability (standard devia-
tion) would not change. A statistics-based approach (e.g., av-
eraging the results of different MCP approaches and/or ref-
erence data) as well as machine learning approaches (e.g.,
learning the seasonal effects from other data sets) might re-
sult in larger improvements. On the other hand, the short-
comings of the reference (here reanalysis) data in reproduc-
ing the seasonal course could be addressed. Discrepancies
regarding temporal changes in synoptic weather patterns or
atmospheric stability processes can be named as possible ex-
amples for such weaknesses. The inclusion of further meteo-

rological data reflecting these characteristics could form the
basis of a physically motivated approach here. The useful-
ness of removing seasonal biases in, e.g., wind profile ex-
trapolation by including additional parameters like relative
humidity was demonstrated in Basse et al. (2020). This ap-
proach could also be taken here.
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