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Abstract. To provide comprehensive information that will assist in making decisions regarding the adoption
of lidar-assisted control (LAC) in wind turbine design, this paper investigates the impact of different turbulence
models on the coherence between the rotor-effective wind speed and lidar measurement. First, the differences
between the Kaimal and Mann models are discussed, including the power spectrum and spatial coherence. Next,
two types of lidar systems are examined to analyze the lidar measurement coherence based on commercially
available lidar scan patterns. Finally, numerical simulations have been performed to compare the lidar measure-
ment coherence for different rotor sizes. This work confirms the association between the measurement coherence
and the turbulence model. The results indicate that the lidar measurement coherence with the Mann turbulence
model is lower than that with the Kaimal turbulence model. In other words, the potential value creation of LAC
based on simulations during the wind turbine design phase, evaluated using the Kaimal turbulence model, will
be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more
significant for larger rotors. As a result, this paper suggests that the impacts of different turbulence models should
be considered uncertainties while evaluating the benefits of LAC.

1 Introduction

Turbine-mounted lidar sensors provide preview information
about the inflow wind to be used for improving wind tur-
bine control, which is referred to as wind-turbine-integrated
lidar-assisted control (LAC). LAC is a promising technology
for reducing wind turbine loads and the levelized cost of en-
ergy (LCOE) (Scholbrock et al., 2016; Simley et al., 2020;
Schlipf et al., 2018). The potential benefits have been demon-
strated in several works by simulation (Schlipf et al., 2010;
Bossanyi, 2013; Schlipf et al., 2013b; Bossanyi et al., 2014)
as well as in field experiments (Kumar et al., 2015; Fleming
et al., 2014; Schlipf et al., 2014).

The topic of the optimal lidar scan pattern for wind
energy applications is critical for the widespread deploy-
ment of LAC. Both practical considerations for overcom-
ing the obstacles of LAC application and for optimizing li-

dar scan patterns were discussed at the International En-
ergy Agency (IEA) Wind Task 32 workshop (Simley et al.,
2018). Three commonly used simulated measurement qual-
ity metrics for LAC application are defined in Simley et al.
(2018): magnitude-squared coherence between the true rotor-
effective wind speed (REWS) and the lidar-based estimate,
mean square error (MSE) between the true REWS and the
lidar-based estimate, and MSE between the generator speed
and the rated generate speed. The REWS is commonly used
to indicate the rotor-averaged wind condition. The correla-
tion between the REWS measured by the lidar and experi-
enced by the rotor has been discussed in Haizmann et al.
(2015), Simley et al. (2012) and Schlipf et al. (2013a), in
which the magnitude-squared coherence is suggested as a
key metric to quantify the measurement quality. A funda-
mental component of simulation-based lidar measurement
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coherence is the theoretical spatial coherence of the turbu-
lence: (a) the lateral–vertical spatial coherence is defined in
the International Electrotechnical Commission (IEC) design
standard (IEC, 2019); (b) wind evolution models (Bossanyi,
2013; Simley and Pao, 2015) are defined in terms of longitu-
dinal spatial coherence. Note that the actual coherence in the
field could be different from the theoretical coherence; thus
experimental validation by field testing is important as well.

According to current wind turbine design requirements in
the IEC standard (IEC, 2019), for the standard wind turbine
classes the turbulence model must contain the following el-
ements: the turbulence standard deviation, the longitudinal
turbulence scale parameters and a recognized model for the
coherence. The standards recommend the use of either the
Kaimal turbulence model, together with a standard exponen-
tial lateral–vertical coherence model, or the Mann turbulence
model to represent the random wind velocity field. Although
extensive research has been carried out on evaluating lidar
measurement coherence, there is a clear knowledge gap re-
garding the impact of different turbulence models on the lidar
measurement coherence. The wind field model used in most
of the above-mentioned studies consists of the Kaimal tur-
bulence spectrum and the lateral–vertical spatial coherence
model defined in the IEC standard (IEC, 2019). The impact
of different turbulence models on the dynamic response of
an offshore wind turbine has been evaluated by Nybø et al.
(2020); the results showed that as the rotor size becomes
larger, the variation of the wind in time and space also be-
comes increasingly important. There is a need to evaluate
the load reduction potential of LAC using different turbu-
lence models, which is critical for determining the value cre-
ation of LAC during the wind turbine design phase. Held and
Mann (2019) extended the previous works by Haizmann et al.
(2015), Simley et al. (2012) and Schlipf et al. (2013a) to ana-
lyze lidar measurement coherence with both the Mann turbu-
lence model and Kaimal turbulence model. The theoretical-
coherence results were compared to field data from a nacelle
lidar mounted on a Vestas V52 wind turbine. The results
showed that the experimental data fit better to the coherence
predicted by the Mann turbulence model, and the prediction
based on the Kaimal turbulence model underestimates the co-
herence. However, the coherence analysis focused solely on
a turbine with a small rotor diameter of 52 m; the impact of
different rotor sizes and lidar scan patterns on coherence have
not been investigated by Held and Mann (2019).

With the advent of larger rotor sizes and more flexible
wind turbines, evaluating the value creation of LAC is be-
coming increasingly important. The analysis in this work is
based on the framework proposed by Simley et al. (2018)
and Held and Mann (2019). The specific objective of this
study is to investigate the impact of different turbulence mod-
els recommended by the IEC standards on the lidar mea-
surement coherence, especially for large rotor sizes (i.e., the
Technical University of Denmark – DTU – 10 MW reference
turbine with a rotor diameter of 178 m; Bak et al., 2013),

whereby the analysis can shed light on how to reasonably
evaluate LAC benefits during the wind turbine design phase.
First the differences between the Kaimal and Mann models
are discussed. Then two types of commercial continuous-
wave (CW) lidar systems are examined to analyze the lidar
measurement coherence, including a 4-beam lidar and 50-
beam circular scan lidar. The lidar measurement model has
been created based on work by Simley et al. (2011), and nu-
merical simulations have been performed to compare the li-
dar measurement coherence.

The remainder of this paper is organized as follows: Sect. 2
briefly describes the different turbulence models and com-
pares the power spectra. The lidar measurement model is es-
tablished in Sect. 3. In Sect. 4, numerical simulations for dif-
ferent lidar scan patterns and rotor sizes are performed. Con-
clusions and suggestions for future work are summarized in
Sect. 5.

2 Preliminaries and evaluation of different
turbulence models

Two different turbulence models are commonly used to eval-
uate the design loads in the IEC standard (IEC, 2019): the
Kaimal spectrum with the exponential lateral–vertical coher-
ence model (Kaimal model) and the Mann turbulence model
(Mann model). The turbulence models use similar power
spectra, and the major difference is the spatial distribution
of the wind velocities.

2.1 Kaimal model

The advantage of the Kaimal model is that the one-
dimensional spectra are expressed as simple analytic expres-
sions. The wind disturbance is described as turbulent veloc-
ity fluctuations and is assumed to be a stationary and random
vector field with zero-mean Gaussian statistics. The power
spectral densities (PSDs) of each wind component are given
in a non-dimensional form:

f Sk(f )
σ 2
k

=
4fLk/Vhub

(1+ 6fLk/Vhub)5/3 , (1)

where f is the frequency in hertz, while the subscript k de-
notes the index of the velocity component in the longitudi-
nal u, lateral v and upward w direction, respectively. The
single-sided velocity component spectrum is denoted as Sk ,
while σk and Lk represent the standard deviation and integral
length scale parameters of the velocity component, respec-
tively. The wind speed at hub height is denoted as Vhub.

For the longitudinal velocity component u, σu is the rep-
resentative value of the turbulence standard deviation, and
Lu is defined as Lu = 8.13u. For a modern wind turbine, the
hub height is typically above z ≥ 60 m, and the longitudinal
length scale parameter is 3u = 42 m.

The cross-power spectral density (CPSD) Sui ,uj (f ) be-
tween the wind at the two spatially separated points of ui ,
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uj can be determined from the definition of spatial co-
coherence γi,j :

γi,j (f )=<

(
Sui ,uj√

Sui ,uiSuj ,uj

)
, (2)

where Sui ,ui and Suj ,uj are the PSDs of the wind speed at
two different locations, i and j . The symbol < denotes the
real part of a complex number. Please note that the coherence
can be split into a real part and an imaginary part, which are
referred to as co-coherence and quad-coherence (Nybø et al.,
2020). The coherence expressed in Eq. (2) is in the real part
form.

According to the IEC standard (IEC, 2019), the following
exponential coherence model can be used in conjunction with
the Kaimal PSD:

γi,j (f )= exp

−12

((
f r

Vhub

)2

+

(
0.12r
Lc

)2
)0.5

 , (3)

where r is the magnitude of the distance between the two
points projected onto a plane normal to the averaged wind
direction and Lc = Lu is the coherence scale parameter. The
definition in Eq. (3) ignores the quad-coherence; thus the
wind velocity fluctuations are assumed to be in phase. This
assumption may be reasonable for small rotor sizes but can
be questioned for larger rotor sizes (Eliassen and Obhrai,
2016).

2.2 Mann model

The Mann turbulence model (Mann, 1994) is a spectral ten-
sor model based on von Kármán’s model, which combines
rapid distortion theory (RDT) with considerations about eddy
lifetimes. The RDT in the Mann model gives an equation for
the evolution or the “stretching” of the spectral tensor, and
the tensor will be more and more “anisotropic” with time.
The RDT will finally influence the lateral–vertical coherence
in the rotor plane.

The three-dimensional fluctuations around the mean wind
speed u(x) can be represented by the vector field

u(x)= ũ(x)−U (x)= (u1,u2,u3)= (u,v,w), (4)

where ũ is the turbulent velocity field and U (x) is the mean
wind field.

Because of homogeneity, the covariance tensor is a func-
tion of the separation vector r between two points and is de-
fined as follows:

Rij (r)=
〈
ui(x)uj (x+ r)

〉
, (5)

where 〈 〉 denotes ensemble averaging.
All second-order statistics of turbulence, such as variances

and cross spectra, can be derived from the covariance tensor.

The spectral tensor is given by

8ij (k)=
1

(2π )3

∫
Rij (r)e−ik·rdr, (6)

where
∫

dr =
∞∫
−∞

∞∫
−∞

∞∫
−∞

dr1dr2dr3, k = (k1,k2,k3) is the

non-dimensional spatial wavenumber for the three compo-
nent directions k = 2πf/U and U is the mean wind speed.
The resulting spectral tensor components can be found in An-
nex C of the IEC standard (IEC, 2019).

For three-dimensional turbulent velocity vector u(x), the
velocity components are determined from a decomposition
of the spectral tensor and an approximation by discrete
Fourier transform, following the procedure detailed in Mann
(1998). Compared to the Kaimal spectrum and exponential
coherence model, the advantage of using the Mann model
to analyze lidar measurements is that it provides a three-
dimensional spectral tensor. The Mann model includes corre-
lation between the components (u, v,w), whereas the Kaimal
model has no correlation between different wind compo-
nents.

The Mann model is based on three adjustable parameters:
αε2/3 (the Kolmogorov constant multiplied with the rate of
the viscous dissipation of specific turbulent kinetic energy
raised to the power of two-thirds), the length scale l and the
non-dimensional parameter 0 related to the lifetime of the
eddies.

The co-coherence γij for spatial separations (grid points i
and j ) normal to the longitudinal direction is defined as

γij
(
k1,1y ,1z

)
=<


∞∫
−∞

∞∫
−∞

8ij (k)eik21y eik31zdk2dk3√
9ii (k1)9jj (k1)

 , (7)

where 1y is the lateral separation distance and 1z is the
vertical separation distance. For the denominator in Eq. (7),
when the two indices i = j ,1y =1z = 0 and the wavenum-
ber auto-spectrum 9ii(k1) and 9jj (k1) are expressed as

9xx (k1)=

∞∫
−∞

∞∫
−∞

8xx(k)dk2dk3, (8)

where the subscript xx ∈ [ii,jj ].

2.3 Evaluation using different turbulence generators

The theoretical turbulence models are quite complicated, es-
pecially for the Mann model, although the application of the
Mann model only requires three parameters (αε2/3, l and
0). Therefore, numerical simulations have been performed
to compare the different turbulence models in this work.
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Figure 1. Coordinate system of wind box and lidar scan patterns.
The wind box is shown using the color map. Two corners are
marked as black squares (corner 1 and corner 2). Two commer-
cial CW lidar scan patterns are shown: (a) 4-beam CW lidar and
(b) 50-beam circular scan CW lidar. The dashed line represents the
line-of-sight direction.

2.3.1 Coordinate system

The coordinate system of the wind box as well as the lidar
scan patterns is shown in Fig. 1. The size of the wind box
should cover the entire rotor disk. The directions of the wind
components (u, v, w) are aligned with the directions of the
coordinate system axes (x, y, z). The lidar scan pattern will
be elaborated in Sect. 3.2.

2.3.2 Turbulence generator

To generate the wind boxes for further analysis, two differ-
ent turbulence simulators are used. The Kaimal model can be
generated using the turbulence simulator TurbSim (Jonkman
and Buhl, 2006), while the Mann model is generated by
HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd
generation; Hansen et al., 2018).

All numerical simulations are performed for a wind
field with mean wind speed U = 12 m s−1 and turbulence
intensity given by the IEC Class A normal turbulence
model (NTM). The parameters of the three-dimensional
wind box are listed in Table 1. The grid size in the verti-
cal and lateral directions is defined by the size of the wind
box Lgrid and number of grid points Ngrids. Assuming Tay-
lor’s hypothesis of frozen turbulence, the grid size along the
mean wind direction is defined as UT/Nx , where U is the
mean wind speed, T is the total time and Nx is the number
of longitudinal grid points.

Since the Mann turbulence fields are normally rescaled
to the specified turbulence intensity inside HAWC2, the pa-
rameter αε2/3 is chosen to be 1 and the shear parameter 0
should be approximately 3.9 for neutral conditions. The
length scale l is recommended to be l = 0.73u for normal
conditions.

The method used in TurbSim is the Veers approach (Veers,
1988), wherein the PSDs in Eq. (1) and coherence function
in Eq. (3) are used to correlate the Fourier components of dif-
ferent points in the y–z plane. Then the inverse fast Fourier
transform (IFFT) is applied to obtain the correlated time se-
ries at each grid point. Although in the IEC standard the
coherence function is only applied to the u component, the
Veers approach is extended to apply the coherence to the
components (v, w) in this work as well. It is assumed that
the spatial coherence formula presented in Eq. (3) applies to
all wind components (u, v, w), and the length scales for the
different components are the same as defined for the PSDs.
Otherwise, without the correlation of the v and w compo-
nents the coherence between the REWS and its estimated
value based on lidar measurements could be unrealistically
high because the contribution of the v and w components
could be close to zero after spatial averaging along the lidar
beams (see Sect. 3.2). In contrast, the Mann model creates a
turbulence field that is fully correlated in the directions of x,
y and z.

2.3.3 Turbulence spectrum comparison

The differences between the Mann and Kaimal models are
discussed in this section.

Figure 2 shows the theoretical co-coherence γi,j at differ-
ent separation distances, in which the lateral separation dis-
tance 1y and vertical separation distance 1z are selected to
be 10, 30 and 50 m. Some interesting findings are the follow-
ing:
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Table 1. Settings for generating the turbulence box.

Symbol Description Value Unit

T Length of time series 600 s
ts Sampling time 0.05 s
zh Center height of the grid 119 m
Lgrid Width and height of the wind box 200 m
α Power law wind shear exponent 0.2 –
αv Vertical inflow angle 0 ◦

Iref Reference turbulence intensity 0.16 (Class A, NTM)
U Mean wind speed 12 m s−1

Ngrids Number of grid points 32 –
Nx Number of longitudinal grid points 8192 –

Figure 2. Co-coherence at different separation distances. 1y and
1z represent the lateral and vertical separation distances, re-
spectively. (a) Lateral co-coherence: 1z = 0 m. (b) Vertical co-
coherence: 1y = 0 m. Dashed lines denote the Mann model, and
solid lines denote the Kaimal model.

1. A clear trend can be seen in Fig. 2a, wherein the lateral
co-coherence reduces as the lateral separation distance
increases. With the small separation distance of 10 m,
the coherence with the Mann model is higher than with
the Kaimal model. Conversely, with increasing separa-
tion distance, the co-coherence with the Mann model
falls sharply compared with the co-coherence with the
Kaimal model; the co-coherence with the Mann model
is far below the co-coherence with the Kaimal model for
1y = 50 m.

2. For vertical separations in Fig. 2b, the co-coherence
with the Mann model is always higher than that with the
Kaimal model for low wavenumbers. Unlike the lateral
co-coherence, the vertical co-coherence does not drasti-
cally decrease with increasing separation distance.

3. The co-coherence with the Mann model is negative in
some frequency ranges, which is not the case for the ex-
ponential coherence model with the Kaimal model ex-
pressed in Fig. 3. This implies an opposite phase of the
wind components for some frequencies. Chougule et al.
(2012) investigated the vertical cross-spectral phases in
neutral atmospheric flow; the work demonstrated that
the phase angle of the wind component u increases with
stream-wise wavenumber and vertical separation dis-
tance.

With the advent of larger rotor sizes, lidar measurements
must scan a larger area upstream of the rotor. So the find-
ings above indicate that the choice of the turbulence model
strongly influences the correlation between the lidar mea-
surement and true REWS. This impact should be considered
while evaluating the benefits of LAC.

3 Modeling of lidar wind speed measurements

3.1 Lidar coordinate system

Two different scan patterns based on commercial nacelle-
mounted lidars are investigated here to illustrate the impact
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Table 2. The optimal lidar scan parameters for maximizing co-
herence bandwidth. Optimal scan radii r and preview distances d
are expressed in non-dimensional units normalized by the rotor ra-
dius R. The parameters are chosen according to work by Simley
et al. (2018). The frequencies fS and fL are based on commercial
examples.

Symbol Description 4-beam 50-beam Unit

r Optimal scan radius 0.5R 0.6R –
d Optimal preview distance 1.2R 1.2R –
θ Optimal cone angle of LOS beam 22.6 26.6 ◦

fS Scanning frequency 1 1 Hz
fL LOS measurement frequency 4 50 Hz

of different turbulence models on lidar measurement coher-
ence: a 4-beam scan pattern (Fig. 1a) and a 50-beam circular
scan pattern (Fig. 1b). The lidar is mounted on the nacelle,
and the scan pattern may contain many different measure-
ment points as shown in Fig. 1. Each scan pattern is further
defined by the upstream preview distance d in the x direction
and radial distance r between the scan point and the hub cen-
ter in the y–z plane. The lidar is assumed to be installed at
the hub center for simplicity.

As suggested by Simley et al. (2018), the optimal lidar
scan radius and preview distance used to achieve the best
representation of the actual wind variables of interest that in-
teract with the turbine can be expressed in non-dimensional
units relative to the rotor radius. Coherence bandwidth is
commonly used as a lidar measurement performance met-
ric for LAC and will be described in detail in Sect. 4.2. The
optimal scan parameters for maximizing the coherence band-
width are summarized in Table 2, and the lidar scan parame-
ters are defined accordingly in this work. For both lidar scan
patterns, the scanning frequency for completing a full scan is
1 Hz, and the line-of-sight (LOS) measurement frequency is
4 and 50 Hz based on commercial examples.

3.2 Lidar simulator

The LOS velocity at one measurement point from a lidar sys-
tem can be expressed as

vLOS =−lxu− lyv− lzw, (9)

where l = [lx, ly, lz] denotes the unit vector in the direction
that the beam is oriented and [u, v,w] denotes the wind speed
vector at the measurement point. Note that the sign of the
upwind direction is negative.

The velocity measured by a real scanning lidar is a spatial
average of the LOS velocities along the lidar beam, which
is described by the range-weighting function. The range-
weighting function for continuous-wave lidars is expressed
as follows (Simley et al., 2014):

WL(F,1)=
KN

12+
(
1− 1

F

)2
R2

R

, (10)

where F denotes the lidar focal distance, 1 denotes the
distance from the focus position along the beam direction
and KN is a normalizing factor so that the integral of WL
from −∞ to∞ gives unity. RR is the Rayleigh range and is
given by

RR =
πa2

2
λ
, (11)

where λ is the laser wavelength and a2 is the beam radius at
the output lens, which is calculated for the point at which
the intensity has dropped to e−2 of its value at the beam
center. The lidar beam radius a2 takes the value 28 mm,
which is broadly equivalent to the beam radius for current
commercial lidar products (Pena et al., 2015). The wave-
length λ is assumed to be the telecommunications wave-
length of 1.55×10−6 m. More details regarding lidar model-
ing can be found in Simley et al. (2014).

3.3 Reconstruction of the rotor-effective wind speed

The REWS is modeled as a sum of the u component wind
speeds across the entire rotor disk area, assuming Np points
on the rotor disk:

ueff =
1
Np

Np∑
i=1

ui . (12)

The method of reconstructing the REWS from lidar mea-
surements has been discussed by Schlipf et al. (2011). The
lidar can only measure the wind speed component along the
LOS; therefore, at least three beams are needed to estimate
the three-dimensional wind vector at a single point. This lim-
itation is referred to as the cyclops dilemma (Schlipf et al.,
2011). Due to the cyclops dilemma and for the purpose of
collective blade pitch control, the most common assumptions
for reconstructing wind speeds from lidar measurements are
the following:

1. no lateral v or vertical w wind components,

2. no shears or inflow angles.

The solution for estimating the REWS from LOS measure-
ments is given by

ulid =−
1
N

N∑
i=1

vlos,i

lx,i
, (13)

where N denotes the number of unique beams and lx,i de-
notes the x component of the orientation of beam i. The wind
speed estimate ulid represents the average wind speed for a li-
dar measuring N points upstream of the turbine.
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4 Influence of different turbulence models on lidar
measurement coherence

4.1 Numerical simulation settings

In order to investigate the impact of different turbulence
models on lidar measurement coherence, numerical simula-
tions have been performed. Apart from the Vestas V52 with
a 52 m rotor diameter, two other reference wind turbines
are used, including the National Renewable Energy Labo-
ratory (NREL) 5 MW reference turbine with a 126 m rotor
diameter (Jonkman et al., 2009) and the DTU 10 MW ref-
erence turbine with a 178 m rotor diameter. These two rotor
sizes represent typical values for onshore and offshore tur-
bines, respectively.

The numerical simulations include 18 random turbulence
boxes with different seeds for each turbulence model. The
simulation time is 600 s. Therefore, the combination of two
types of lidars, three different rotor sizes and two turbulence
models results in 12 separate scenarios and 18 random real-
izations for each scenario.

4.2 Criteria for evaluating measurement quality and
benefits

For indicating the measurement quality, the wavenumber k at
which the magnitude-squared coherence γ 2 between ulid in
Eq. (13) and ueff in Eq. (12) drops below 0.5 is commonly
used as a performance metric (Schlipf et al., 2013b, 2018).
This metric is referred to as the coherence bandwidth k0.5
in this work. The wavenumber is inversely proportional to
the eddy size in the longitudinal direction. So, the small-
est detectable eddy size measured by a lidar is defined by
the wavenumber k0.5. In other words, the smallest detectable
eddy can be interpreted as the eddy size that can be captured
with a correlation of 50 %.

For reducing fatigue loads using LAC, detecting eddies
with a length as small as 1D (rotor diameter) in the longitu-
dinal direction is important, because the thrust load induced
by eddies with diameters of 1D or larger across the rotor
in the lateral and vertical directions can be mitigated using
collective pitch control (Schlipf et al., 2018); in turn, eddies
covering the entire rotor disk in the lateral and vertical di-
rections are expected to extend at least 1D in the longitudi-
nal direction. Thus, the magnitude-squared coherence γ 2 at
k = 2π/D is the most critical metric.

By optimizing the lidar scan pattern, the measurement co-
herence bandwidth can be maximized, but the cost of the li-
dar will increase as well. Meanwhile, the benefits of fatigue
load reduction may reach a plateau. Generally speaking, the
lower the value of k0.5 is, the lower the LAC benefits are. In-
tegrating LAC into the turbine design phase involves a trade-
off optimization problem to consider the turbine cost and li-
dar cost simultaneously.

4.3 Coherence analysis

Based on the simulation results, the magnitude-squared co-
herence γ 2 between the lidar measurements and REWS are
presented in Fig. 3 for the different scenarios investigated.
For brevity, the dash–dot line labeled as 1D represents the
wavenumber corresponding to the rotor diameterD, whereas
2D indicates the wavenumber corresponding to two rotor di-
ameters. It can be clearly seen that the 50-beam circular scan
lidar can achieve higher measurement coherence compared
to the 4-beam lidar. For the NREL 5 MW turbine and the
Kaimal model (see Fig. 3c and d), the maximum coherence
bandwidth k0.5 is approximately 0.03 rad m−1 for the 4-beam
scan and 0.05 rad m−1 for the 50-beam scan. These results
corroborate the findings of previous work by Simley et al.
(2018).

The key findings of this study are included in the fol-
lowing discussion. For brevity, the magnitude-squared co-
herence with the Mann model is represented by γ 2

Mann, and
the magnitude-squared coherence with the Kaimal model is
represented by γ 2

Kaimal. Corresponding theoretical-coherence
curves are also included in this figure following methods de-
scribed in works by Held and Mann (2019) and Schlipf et al.
(2013a).

1. For the Vestas V52 turbine in Fig. 3a and b, γ 2
Mann is

higher than γ 2
Kaimal in the low-wavenumber region k ≤

0.06 rad m−1, which aligns with the findings of the work
by Held and Mann (2019), in which the authors sug-
gested that the Kaimal model gave a slight underesti-
mation of the measurement coherence for a 52 m rotor
diameter, and the coherence predicted from the Kaimal
model is lower than the coherence predicted from the
Mann model.

2. For the NREL 5 MW turbine in Fig. 3c and d, γ 2
Mann is

slightly higher than γ 2
Kaimal for low wavenumbers. Then,

the coherence starts to separate around 2D. Specifi-
cally, γ 2

Mann decreases more sharply than γ 2
Kaimal when

k exceeds 2D.

3. For the DTU 10 MW turbine in Fig. 3e and f, the trend
follows the trend with the NREL 5 MW turbine, but
γ 2

Mann is considerably lower than γ 2
Kaimal. The coherence

of γ 2
Mann drastically decreases before 2D. For increas-

ing wavenumbers, larger discrepancies are noticeable
between γ 2

Mann and γ 2
Kaimal.

4. The additional measurement points with the circular
scan provide an obvious improvement in measurement
coherence in the frequency band k ∈ [ 2π

2D ,
2π
1D ]. The

maximum coherence bandwidth k0.5 can reach 1D with
the 50-beam circular scan. The Kaimal model indicates
that the 50-beam circular scan is a better scan pat-
tern and can lead to realizing the full potential benefits
of lidar-assisted collective pitch control. Surprisingly,
the maximum coherence bandwidth k0.5 with the Mann
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Figure 3. Magnitude-squared coherence γ 2 between lidar measurements and the REWS. Results (a, c, e) for the 4-beam scan pattern and
(b, d, f) the 50-beam circular scan pattern. From top to bottom, the plots show results for the Vestas V52 turbine, NREL 5 MW turbine and
DTU 10 MW turbine. The dash–dot lines labeled 1 and 2D represent the wavenumbers k = 2π

D
and k = 2π

2D , respectively. In the legend,
“theory” denotes the theoretical coherence.

model is far below 1D, which will lead to lower bene-
fits during the wind turbine design phase.

5 Conclusions

A novel finding in this work is that the coherence with the
Mann model is lower that with the Kaimal model for large ro-
tors, and this difference becomes larger with increasing rotor
size. Conversely, for small rotor sizes, the coherence with the
Mann model is higher than that with the Kaimal model. The
differences between γ 2

Mann and γ 2
Kaimal are significant. These

results are in accord with the theoretical coherence shown in
Fig. 2, indicating lower coherence with the Mann model for
larger separation distances.

In summary, these results provide important insights into
the impact of different turbulence models on lidar measure-
ment coherence. If the wind conditions at a site agree more
closely with the Mann model, the lower coherence with the
Mann model will diminish the advantages of LAC because
inappropriate blade pitch actions in response to the lidar mea-
surements will deteriorate the turbine structural loading. It

can therefore be suggested that the turbulence model needs
to be carefully considered while integrating the LAC solution
with larger-rotor turbine designs.

This work confirms the association between lidar mea-
surement coherence, the turbulence model and rotor size.
Our results suggest that this impact should be considered
an uncertainty when evaluating the benefits of LAC during
the wind turbine design phase. Note that the impacts on the
load reduction need to be further investigated using reference
turbines and aero-elastic tools following the IEC standards.
More broadly, further research should be undertaken to pro-
vide guidelines on how to determine the optimal scan pattern
for different site-specific atmospheric conditions and rotor
sizes. Field validation is strongly recommended to mitigate
the risk induced by site-specific wind conditions if LAC is
adopted, especially for large rotors.

Data availability. The turbulence box data could be made avail-
able on request.
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