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Abstract. Recently, it has been shown that flow blockage in large wind farms may lift up the top of the bound-
ary layer, thereby triggering atmospheric gravity waves in the inversion layer and in the free atmosphere. These
waves impose significant pressure gradients in the boundary layer, causing detrimental consequences in terms of
a farm’s efficiency. In the current study, we investigate the idea of controlling the wind farm in order to mitigate
the efficiency drop due to wind-farm-induced gravity waves and blockage. The analysis is performed using a fast
boundary layer model which divides the vertical structure of the atmosphere into three layers. The wind-farm
drag force is applied over the whole wind-farm area in the lowest layer and is directly proportional to the wind-
farm thrust set-point distribution. We implement an optimization model in order to derive the thrust-coefficient
distribution, which maximizes the wind-farm energy extraction. We use a continuous adjoint method to effi-
ciently compute gradients for the optimization algorithm, which is based on a quasi-Newton method. Power
gains are evaluated with respect to a reference thrust-coefficient distribution based on the Betz–Joukowsky set
point. We consider thrust coefficients that can change in space, as well as in time, i.e. considering time-periodic
signals. However, in all our optimization results, we find that optimal thrust-coefficient distributions are steady;
any time-periodic distribution is less optimal. The (steady) optimal thrust-coefficient distribution is inversely re-
lated to the vertical displacement of the boundary layer. Hence, it assumes a sinusoidal behaviour in the stream-
wise direction in subcritical flow conditions, whereas it becomes a U-shaped curve when the flow is supercritical.
The sensitivity of the power gain to the atmospheric state is studied using the developed optimization tool for
almost 2000 different atmospheric states. Overall, power gains above 4 % were observed for 77 % of the cases
with peaks up to 14 % for weakly stratified atmospheres in critical flow regimes.

1 Introduction

Today, it is well known that turbines strongly interact when
clustered together in large arrays, increasing the momen-
tum deficit in the lowest region of the atmospheric boundary
layer (ABL). These turbine–turbine interactions, such as re-
duced wind speed and increased turbulence intensity, occur
within the wind-farm area and can lead to detrimental con-
sequences in terms of a farm’s efficiency (Barthelmie et al.,
2010). However, it has been recently discovered that non-
local effects such as gravity waves may also have strong im-
plications on the wind-farm energy extraction (Allaerts and
Meyers, 2018, 2019).

In a stable atmosphere, an air parcel which is vertically
perturbed will have the tendency to fall back to its origi-
nal position. In such a case, an oscillation is initiated that
is driven by gravity and inertia; this is called a gravity wave.
Mountains are examples of orographic obstacles that trigger
vertical flow displacement and consequently gravity waves
(Smith, 1980). The drag force exerted by the mountain is
usually transported upward by these waves. At the point of
breakdown, the drag force is released in the upper levels of
the atmosphere, causing a slowdown of the large-scale flow
(Eliassen and Palm, 1960; Durran, 1990). Moreover, when
air is lifted in a stable atmosphere, a cold anomaly is created,
which induces horizontal pressure gradients (Smith, 2010).
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In a wind farm, the upward displacement of the bound-
ary layer, caused by diverging fluid streamlines due to flow
deceleration by the turbines, can trigger gravity waves in
the stable free atmosphere above the boundary layer as well
(Smith, 2010; Allaerts and Meyers, 2017). As a result, an
adverse pressure gradient develops in the induction region
of the wind farm, which slows down the wind-farm inflow
velocity (Allaerts and Meyers, 2018). The size of this re-
gion scales with the length of the farm. This phenomenon
is one possible cause of flow blockage. Note that it differs
from classical hydrodynamic blockage caused by the turbine
induction, which typically scales with the turbine rotor di-
ameter and which has also been studied recently in much
detail (Bleeg et al., 2018; Segalini and Dahlberg, 2019).
The goal of the current study is to determine a wind-farm
thrust-coefficient distribution that minimizes the gravity-
wave-induced blockage effects, maximizing the flow wind
speed and therefore the power production. Moreover, we in-
vestigate the impact of different atmospheric conditions on
the optimal thrust-coefficient distribution and corresponding
power gains.

Gravity waves have been related to flows over mountains
for a long time (Queney, 1948). However, the cumulated
blockage effect induced by the wind farm in the induction
region was associated with wind-farm-induced gravity waves
only in recent years. In the pioneering work of Smith (2010),
a quasi-analytical model of atmospheric response to wind-
farm drag was used for modelling gravity-wave excitation
due to diverging streamlines above the wind-farm area. Re-
sults have shown that gravity-wave excitation is strongly de-
pendent upon the height of the boundary layer and the sta-
bility of the atmosphere aloft. Later, a fast boundary-layer
model was proposed by Allaerts and Meyers (2019), who
highlighted the crucial role of the inversion layer in determin-
ing gravity-wave patterns. The authors also used this model
for an annual energy production study of the Belgian–Dutch
offshore wind-farm cluster, showing that the annual energy
loss due to the effect of self-induced gravity waves might be
on the order of 4 % to 6 % (Allaerts et al., 2018).

Gravity waves were also observed in mesoscale and large-
eddy simulation (LES) models. Fitch et al. (2012) and Volker
(2014) proposed two different wind-farm parameterizations
for the Weather Research and Forecasting model (WRF).
Wind-farm-induced gravity waves were observed in both
cases, causing flow deceleration several kilometres upstream
of the farm. Allaerts and Meyers (2017, 2018) have investi-
gated the interaction between an “infinitely” wide wind farm
and both a conventionally neutral and stable boundary layer
in typical offshore conditions in a LES framework. They
found that for low ABL heights, gravity waves induce strong
pressure gradients and play an important role in the distribu-
tion of the kinetic energy within the farm. Wu and Porté-Agel
(2017) considered a large finite-size wind farm operating in
a conventionally neutral boundary layer (CNBL) with dif-
ferent free-atmosphere stratification, and they conclude that

strongly stratified atmospheres decrease the turbine power
output up to 35 % with respect to the weakly stratified cases.
Wind-farm flow blockage was also detected in field measure-
ments. Wind speed data taken before and after the placement
of three wind farms showed that there was a reduction in
wind speed of about 3 % in the induction region of each wind
farm after turbines were installed (Bleeg et al., 2018).

In the last decades, a considerable amount of research has
focused on wind-farm control strategies that allow the max-
imization of the farm power output. We refer to Kheirabadi
and Nagamune (2019) for a recent comprehensive overview.
However, earlier studies all focus on influencing wake dy-
namics and wake mixing, which occur at a much smaller
scale than wind-farm-induced gravity waves, to improve
power extraction in waked turbines. Important control mech-
anisms include wake redirection (by yawing and tilting of the
turbine), and turbine de-rating strategies. Control actions that
influence wind-farm physics on a much larger scale, such as
self-induced gravity waves, have not been explored to date.

In the current work, we concentrate on using wind-farm
control to alter/improve the interaction between the wind
farm and its self-induced gravity-wave system. To this end,
we use the fast boundary-layer model proposed by Allaerts
and Meyers (2019), which divides the vertical structure of
the atmosphere into three layers (from here on named the
three-layer model in the paper), and we reformulate it as
an optimization problem. The objective function is defined
as the wind-farm energy extracted over a time period T ,
while the constraints are the model equations plus a box con-
straint for the wind-farm thrust set-point distribution CT(x,
y, t). Note that we do not use the tip-speed ratio and/or
the pitch angle distribution as control parameters. Instead,
we directly control the thrust set-point distribution. In fact,
the former approach would not add further insight into the
study performed in the current manuscript. The model equa-
tions are derived following the theory for interacting grav-
ity waves and boundary layers developed by Smith et al.
(2006) and Smith (2007, 2010). Consequently, the optimal
thrust-coefficient distribution computed using the optimiza-
tion formulation of the three-layer model takes into account
the effects of self-induced gravity waves. Hence, we investi-
gate whether it is possible to mitigate gravity-wave-induced
blockage effects by varying the thrust set-point distribution
within the wind-farm area.

The remainder of this paper is formulated as follows. The
three-layer model and its optimization formulation are in-
troduced in Sect. 2. Next, Sect. 3 describes the numerical
setup, wind-farm layout and atmospheric state. Thereafter,
Sect. 4 presents optimization results. The optimal thrust set-
point distributions obtained in two different flow cases are
discussed in Sect. 4.1. The sensitivity of the power gain to
the atmospheric state is carried out in Sect. 4.2. Finally, con-
clusions and suggestions for further research are given in
Sect. 5.
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2 Methodology

We now introduce the approach used for modelling wind-
farm-induced gravity waves and the method applied for max-
imizing the wind-farm energy output. The three-layer model
is described in Sect. 2.1, and its optimization formulation is
derived in Sect. 2.2.

2.1 Three-layer model

In the work of Smith (2010), the atmospheric response to
wind-farm drag is simulated by dividing the vertical struc-
ture of the atmosphere in two layers: the ABL and the free
atmosphere aloft. This approach has strong limitations. In
fact, the author is implicitly assuming that the turbine drag
is mixed homogeneously between turbine level and the top
of the ABL. In real wind farms, the turbine drag slows down
the flow only within a few hundred metres of the ground
level, triggering the formation of an internal boundary layer
(Wu and Porté-Agel, 2013; Allaerts and Meyers, 2017). To
overcome the limitations of Smith’s model, the three-layer
model divides the ABL into two layers: the wind-farm layer
in which the turbine forces are felt directly (a layer’s height
of twice the turbine hub height has been used by Allaerts and
Meyers (2019) based on insights from LES in Allaerts et al.,
2018) and a second layer up to the top of the ABL. Finally,
the third layer models the free atmosphere above the ABL
following the approach of Smith (2010).

The three-layer model has been validated against LES re-
sults by Allaerts and Meyers (2019) (see Sect. 3 VAL2) on
a two-dimensional (x–z) domain (i.e. all spanwise deriva-
tives are set to zero). The model shows a mean absolute er-
ror (MAE) of 1.3 % and 1.8 % in terms of maximum dis-
placement of the inversion layer and maximum pressure dis-
turbance, respectively. Moreover, the model underestimates
the velocity over the wind-farm area with a MAE of 5.6 %.
Note that the three-layer model is a linearized model; hence
the discrepancies with LES results increase with increasing
perturbation values. In fact, the model agrees very well with
LES data when perturbations are small (i.e. when non-linear
effects are negligible). From this perspective, it may be ex-
pected that errors decrease slightly in optimized settings in
which perturbation magnitudes are typically lower. For fur-
ther details about model validation, we refer to Allaerts and
Meyers (2019).

The model equations are derived starting from the in-
compressible three-dimensional Reynolds-averaged Navier–
Stokes (RANS) equations for the ABL (Stull, 1988). A depth
integration over the wind farm and upper layer height is fur-
ther computed, which removes the vertical velocity from the
equations. Hence, the basic equation system is reduced to a
set of only three equations: the continuity equation and the
momentum equations in horizontal directions. Subsequently,
the governing equations are linearized with respect to the
background state variables, using some additional modelling

assumptions for the turbulent stresses (see Allaerts and Mey-
ers (2019) for more details). As a result, we use the following
equations for the two layers in the ABL.

∂u1

∂t
+U1 · ∇u1+

1
ρ0
∇p+ fcJ ·u1− νt,1∇

2u1

−
D′

H1
· (u2−u1)+

C′

H1
·u1 =

f

H1
(1)

∂η1

∂t
+U1 · ∇η1+H1∇ ·u1 = 0 (2)

∂u2

∂t
+U2 · ∇u2+

1
ρ0
∇p+ fcJ ·u2− νt,2∇

2u2

+
D′

H2
· (u2−u1)= 0 (3)

∂η2

∂t
+U2 · ∇η2+H2∇ ·u2 = 0 (4)

When the wind farm is not operating (i.e. the wind-farm
drag force is zero), a horizontally invariant reference state
of (U1, H1) and (U2, H2) characterizes the wind farm and
upper layer, where U1 = (U1, V1) and U2 = (U2, V2) are the
height-averaged horizontal components of the background
velocity and H1, H2 represent the height of the two lay-
ers. Whenever the farm extracts power from the flow, small
velocity and height perturbations (u1, η1) and (u2, η2) are
triggered. The equations derived by Allaerts and Meyers
(2019) predict the spatial evolution of these perturbations.
In this article, we also consider the temporal evolution, and
thus, the relevant time derivatives are added to the equations.
Furthermore, ρ0 denotes the air density, assumed constant
within the ABL; νt,1 and νt,2 are the depth-averaged turbu-
lent viscosity; fc = 2�sinφ is the Coriolis frequency, with
� the angular velocity of the earth and φ the latitude; and
J= ex⊗ey−ey⊗ex is the two-dimensional rotation dyadic
with ex and ey two-dimensional unit vectors in the x and y
directions, respectively. Finally, the perturbation of the fric-
tion at the ground and at the interface between both layers is
described by the matrices C′ and D′.

The right-hand side of Eq. (1) is characterized by the wind-
farm drag force f . We use a box-function wind-farm force
model similar to that of Smith (2010) in our study. This
allows us to avoid the complexity of wake models while
gaining in computational time. In fact, this model uniformly
spreads the force over the simulation cells in the wind-farm
area and does not represent the disturbances caused by each
turbine in detail. The force magnitude depends on the wind-
farm layout, the wind speed and the thrust set-point distri-
bution (i.e. the CT value in every grid cell within the farm).
As for the flow equations, the wind-farm drag force model is
linearized around a constant background state. We retain the
first two terms of the Taylor expansion; both scale linearly
with the thrust-coefficient distribution. Hence, the drag force
is given by f = f (0)

+f (1) with

f (0)
=−βCTB(x,y) ‖ U1 ‖ U1, (5)
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f (1)
=−βCTB(x,y)U′ ·u1, (6)

where

U′ =
1
‖ U1 ‖

(
U1⊗U1+ I‖U1‖

2
)

(7)

and with B(x, y) a box function equal to 1 within the wind-
farm area and zero outside. The x and y axes denote the
streamwise and spanwise directions, respectively. The wind-
farm drag force magnitude in Eqs. (5) and (6) scales with

β =
πηwγ

8sxsy
, (8)

where sx and sy are the streamwise and spanwise turbine
spacings relative to the rotor diameter, ηw is the wake
efficiency and γ = u2

r / ‖ U1‖
2 is a velocity shape factor

with ur the rotor-averaged wind speed (Allaerts and Mey-
ers, 2018). Moreover, I= ex ⊗ ex + ey ⊗ ey denotes the unit
dyadic. Finally, CT(x, y, t) represents the thrust-coefficient
distribution. To compute the thrust coefficient C̃T,k(t) of a
turbine at location (xk , yk), it is possible to evaluate the thrust
set-point distribution CT(xk , yk , t). A more accurate connec-
tion between C̃T,k(t) and the drag force f would, for exam-
ple require the use of an analytical wind-farm wake model.
This is however not considered in the current work, so that
wake effects are not explicitly incorporated in the optimiza-
tion. Rather, we consider the optimization of the gravity-
wave system, while presuming that the wake efficiency pa-
rameter ηw does not change as a result of the optimization.
Relation (Eq. 6) is nonlinear since it contains a product be-
tween time- and space-dependent variables (i.e. CT and u1).
We decide to retain this term because it allows us to include
gravity-wave feedback on wind-farm energy extraction. In
fact, f (1)

≥ 0 so that it reduces the drag force that the farm
exerts on the flow, thereby reducing effects of blockage in
the model. We note that Allaerts and Meyers (2019) have
shown that the flow perturbations computed with this simple
drag force model have similar trends and orders of magnitude
as the ones computed using a drag model that relies on the
more detailed analytical wake model of Niayifar and Porté-
Agel (2016). Therefore, we believe that the model adopted is
a reasonable representation of reality.

The total vertical displacement of the inversion layer ηt =

η1+ η2 triggers gravity waves which induce pressure pertur-
bations p. The relation between these two quantities is given
by Smith (2010):

p

ρ0
= F−1(8̂)∗ηt , (9)

where F−1 and ∗ denote the inverse Fourier transform and
the convolution product, respectively. The pressure p is eval-
uated at the capping inversion height, and it is assumed
to be constant through the whole ABL (using the clas-
sical boundary-layer approximation ∂p/∂z= 0). The com-

plex stratification coefficient 8̂ in Fourier components is ex-
pressed as

8̂= g′+
i
(
N2
−�2)
m

. (10)

Relation (Eq. 10) is obtained from linear three-dimensional,
non-rotating, non-hydrostatic gravity-wave theory (Nappo,
2002) under the assumption of constant wind speed Ug =

(Ug, Vg) and Brunt–Väisälä frequency N . The reduced grav-
ity g′ = g1θ/θ0 accounts for two-dimensional trapped lee
waves (from here on named inversion waves) which corru-
gate the capping inversion layer. The potential-temperature
difference 1θ denotes the strength of the capping inversion,
and θ0 is a reference potential temperature. The effect of in-
ternal gravity waves is represented by the second term of re-
lation (Eq. 10), where m denotes the vertical wavenumber
which is given by

m2
=

(
k2
+ l2

)(N2

�2 − 1
)
. (11)

According to the sign of m2, we can have propagating
or evanescent waves. Moreover, �= ω− κ ·Ug denotes
the intrinsic wave frequency with κ = (k, l) the horizontal
wavenumber vector.

Finally, combining Eq. (9) with Eqs. (2) and (4), we can
write the continuity equations for the wind farm and upper
layer as

1
ρ0

∂p1

∂t
+

1
ρ0
U1 · ∇p1+H1∇ ·

[
F−1(8̂)∗u1

]
= 0, (12)

1
ρ0

∂p2

∂t
+

1
ρ0
U2 · ∇p2+H2∇ ·

[
F−1(8̂)∗u2

]
= 0, (13)

where p = p1+p2 is intended as the sum of the pressure per-
turbations induced by the vertical displacements η1 and η2,
respectively. This form will be used in the remainder of the
manuscript.

2.2 Optimization model

The goal of the optimization framework is to find a time-
periodic optimal thrust-coefficient distribution CO

T (x, y, t)
that minimizes the gravity-wave-induced blockage effects,
maximizing the flow wind speed and consequently the wind-
farm energy extraction over a selected time period T . The
background atmospheric state is presumed to be steady,
which is the reason why we use a time-periodic control
(i.e. leading to a moving time average of the optimal con-
trol that is steady and does not lead to end-of-time effects).
The wind-farm layout and the atmospheric state are inputs
of the optimization model and are detailed in Sect. 3. Note
that the relation between overall wind-farm drag and wind-
farm blockage is non-trivial. On the one hand, increased
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wind-farm drag leads to increased wind-farm blockage in-
duced by gravity waves. This results from mass conserva-
tion and the upward displacement of the free atmosphere. On
the other hand, increased wind-farm blockage reduces wind-
farm drag. Thus, the aim of the optimization is to find the
optimal balance between these two opposing trends.

By using axial momentum theory (Burton et al., 2001),
we find that the power coefficient Cp(x, y, t) depends upon
the thrust coefficient according to the following non-linear
relationship:

Cp =
CT

2

(
1+

√
1−CT

)
. (14)

The objective function of the optimization model consists in
the energy extracted by the farm in the time interval [0, T ];
hence it is defined as

J (ψ,CT)=−β ‖ U1 ‖

T∫
0

∫∫
�

CpB(x,y)

(
‖U1‖

2
+ 3U1 ·u1

)
dxdt, (15)

where �=Dx ×Dy is the computational domain area. The
non-linear relationship between Cp and CT and the product
between control and state variables in Eq. (15) imply that the
objective function J is non-convex.

The wind-farm optimal configuration that maximizes the
energy output (note that the objective function is defined with
a minus sign) is then obtained by solving the following non-
linear time-periodic optimization problem constrained by a
system of partial differential equations (PDEs):

minψ,CTJ (ψ,CT)

s.t.
∂u1

∂t
+U1 · ∇u1+

1
ρ0
∇p1+

1
ρ0
∇p2+ fcJ

·u1− νt,1∇
2u1−

D′

H1
· (u2−u1)+

C′

H1
·u1

=
f (0)
+f (1)

H1
in �× (0,T ],

∂u2

∂t
+U2 · ∇u2+

1
ρ0
∇p1+

1
ρ0
∇p2+ fcJ

·u2− νt,2∇
2u2+

D′

H2

· (u2−u1)= 0 in �× (0,T ],
1
ρ0

∂p1

∂t
+

1
ρ0
U1 · ∇p1+H1∇

·

[
F−1(8̂)∗u1

]
= 0 in �× (0,T ],

1
ρ0

∂p2

∂t
+

1
ρ0
U2 · ∇p2+H2∇

·

[
F−1(8̂)∗u2

]
= 0 in �× (0,T ],

0≤ CT < 1 in �× (0,T ],
CT(x,y,0)= CT(x,y,T ) in �. (16)

The constraints are the state (or forward) equations presented
in the previous paragraph. Since Eq. (14) is defined only for
CT ∈ [0, 1), we added a box constraint to the optimization
model. Moreover, the time periodicity is imposed by assum-
ing CT(x, y, 0)= CT(x, y, T ). The system state ψ = [u1,
v1, u2, v2, p1, p2] includes the velocity and pressure pertur-
bations in the wind farm and upper layer, which also define
the unknowns of the three-layer model. The control param-
eters consist of the value of the thrust set point in each grid
cell within the wind-farm area. Hence, the size of the con-
trol space is proportional to Nwf

x N
wf
y Nt , where Nt represents

the number of time steps within the time horizon T , while
Nwf
x and Nwf

y denote the number of grid points within the
wind-farm area along the x and y directions, respectively.

It is common practice in a PDE-constrained optimization
problem to not optimize the cost functional J (ψ , CT) di-
rectly because such a problem would span both the state and
control space. To avoid exploring the entire feasibility region,
we require ψ(CT) to be the solution of the state equations
throughout the optimization process. In other words, defin-
ing an operator N (ψ , CT) that denotes the state equations,
we are enforcing N (ψ(CT), CT)= 0 during optimization it-
erations. This technique leads us to a reduced optimization
problem with feasibility region given by the control space
(De Los Reyes, 2015). The reduced optimization problem is
written as
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minCTJ̃ (CT)= J (ψ (CT ) ,CT)

s.t.
0≤ CT < 1 in �× (0,T ],
CT(x,y,0)= CT(x,y,T ) in �, (17)

where the only remaining constraints are the ones on the con-
trol parameters.

The gradient of the reduced objective function ∇J̃ is
needed for the solution of the reduced optimization problem.
To this end, we use the continuous adjoint method. The ad-
joint (or backward) equations are given by (see Appendix A2
for detailed derivation)

−
∂ζ 1

∂t
−U1 · ∇ζ 1+ fcJ · ζ 1− νt,1∇

2ζ 1+
D′

H1
· ζ 1

+
C′

H1
· ζ 1−

D′

H2
· ζ 2−H1

[
F−1(8̂)(−x,−t)

∗∇51]+
βCTB(x,y)

H1
U′ · ζ 1 = 3βCpB(x,y)

‖ U1 ‖ U1 in �× (0,T ],

−
∂ζ 2

∂t
−U2 · ∇ζ 2+ fcJ · ζ 2− νt,2∇

2ζ 2+
D′

H2

· ζ 2−
D′

H1
· ζ 1−H2

[
F−1(8̂)(−x,−t)∗∇52

]
= 0 in �× (0,T ],

−
∂51

∂t
−U1 · ∇51−∇ · ζ 1−∇ · ζ 2

= 0 in �× (0,T ],

−
∂52

∂t
−U2 · ∇52−∇ · ζ 1−∇ · ζ 2

= 0 in �× (0,T ]. (18)

Note that the minus sign in the argument of F−1(8̂)(−x,−t)
is not a result of classical integration by parts, but rather ar-
rives from applying Fubini’s theorem to the convolution term
in Eqs. (12) and (13) (see Appendix A2 for details). The ad-
joint variables are grouped in the vector ψ∗ = [ζ 1, ζ 2, 51,
52], where ζ 1 = (ζ1, χ1) and ζ 2 = (ζ2, χ2) are the adjoint
velocity perturbation fields in the wind farm and upper layer,
respectively, while51 and52 are the adjoint pressure pertur-
bations. Using the solution of the adjoint equations, the gra-
dient of the cost function is expressed as (see Appendix A3
for details)

∇J̃ =
βB(x,y)
H1

[
‖U1‖U1 · ζ 1−H1‖U1‖

dCp

dCT(
‖U1‖

2
+ 3U1 ·u1

)
+u>1 ·U

′
· ζ 1

]
, (19)

where dCp/dCT is computed from Eq. (14). To compute the
gradient ∇J̃ , we need to solve the forward and backward
equations. Since the cost for solving the adjoint equations is

roughly the same as for the forward equation, the computa-
tional cost for evaluating ∇J̃ is proportional to the cost of
solving twice the state equations. To verify the approach, we
compare the adjoint gradient to a standard finite-difference
approximation in Appendix A4.

3 Numerical setup and case description

We define the model setup used to assess the potential of set-
point optimization in mitigating self-induced gravity-wave
effects in this section. We discuss the numerical setup in
Sect. 3.1. Next, the selected wind-farm layout is presented
in Sect. 3.2. Finally, the atmospheric state is discussed in
Sect. 3.3.

3.1 Numerical setup

Both the forward and adjoint equations are discretized using
a Fourier–Galerkin spectral method in space and time. The
use of Fourier modes in time automatically results in sat-
isfying the periodicity conditions that we are aiming for in
our optimization setup. All terms in the equations are linear,
except for the first-order term of the wind-farm drag force
(and its adjoint). These terms contain products between tem-
porarily and spatially dependent variables. To avoid expen-
sive convolution sums, these products are computed in phys-
ical space. Full dealiasing is obtained by padding and trunca-
tion according to the 3/2 rule (Canuto et al., 1988). The use
of Fourier modes in space forces periodic boundary condi-
tions at the edges of the computational domain. Therefore,
the domain has a sufficiently large dimension Dx ×Dy =
1000×400 km2, so that the perturbations die out before being
recycled. The grid has Nx ×Ny = 4000× 1600 grid points,
which corresponds to a space resolution of 1= 250 m or
6.4× 106 DOF per layer. Finally, different time horizon val-
ues are used spanning from T = 10 min to T = 10 h with the
number of time steps ranging from Nt = 12 to Nt = 120.
The discretized forward and backward equations form two
systems of the dimension 6NxNyNt × 6NxNyNt , which are
solved using the LGMRES algorithm (Baker et al., 2005).

For the optimization, two different algorithms are com-
pared in Fig. 1. The L-BFGS-B (limited-memory Broyden–
Fletcher–Goldfarb–Shanno with box constraint) algorithm
(Byrd et al., 1995) is an iterative quasi-Newton method. In
the current application, the step length is evaluated with the
inexact line search Wolfe condition (Wolfe, 1969). The trun-
cated Newton method (TNC) computes the search direction
by solving the Newton equation iteratively, applying the con-
jugate gradient method. This inner loop is stopped (trun-
cated) as soon as a termination criterion is satisfied (Nocedal
and Wright, 1999). In both cases, the system matrix of the
Newton equation consists of an approximate Hessian ma-
trix, while the right-hand side needs gradient information to
be computed, which is provided by the continuous adjoint
method (see Appendix A for derivation and validation). Fig-
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Figure 1. Convergence of the cost functional over the (a) L-BFGS-B and (b) TNC iteration. The squares and triangles denote the cost
functional value and the number of function evaluations, respectively.

ure 1 shows that the cost function decreases rapidly in the
first two to three algorithm iterations, reaching a plateau af-
terwards. The use of a quasi-Newton method in combination
with the limited complexity of our optimization model (for
instance, the constraints are linearized equations) allow us to
reach such a fast convergence. Moreover, the continuous ad-
joint method limits the number of function evaluations, since
it is not necessary to evaluate J̃ (CT+αδCT) for all direc-
tions δCT in the control space (at the expense of solving an
auxiliary set of equations). In particular, Fig. 1a shows that
the cost functional is converged after six L-BFGS-B itera-
tions. Apart from the first iteration, the line search method
needs three “function evaluations” before updating the cost
functional. Hence, we need to solve 20 times the forward and
backward equations for reaching convergence. On the other
hand, Fig. 1b illustrates that the cost functional is mainly
minimized within the first TNC iteration, and convergence is
reached after only four iterations. However, 63 function eval-
uations are needed. Hence, we will use the L-BFGS-B algo-
rithm for solving the PDE-constrained optimization problem
in the remainder of the article. To limit computational effort,
a maximum of four L-BFGS-B iterations will be performed.

The solver (which is not parallelized) takes a couple
of hours to solve the equations for a grid with resolution
of 250 m (6.4× 106 DOF per layer). Since convergence is
reached after approximately 20 function evaluations (which
means that we solve state and adjoint equations 20 times),
the optimizer takes a couple of days to compute an optimal
thrust set-point distribution. However, after this work was
performed, we have upgraded the forward solver which is
now approximately 1000 times faster than our previous ver-
sion. Optimization of the backward solver is planned for the
future, and we expect that this will lead to an optimization
algorithm that will only take several minutes for the same
case.

3.2 Wind-farm layout

Allaerts and Meyers (2019) conducted a sensitivity study
on the effects of wind-farm layout on gravity-wave-induced
power losses. They show that these power losses monoton-

ically increase with the size of the farm. Also, they men-
tion that the losses are at a maximum when the wind-farm
ratio Ly/Lx is close to 3/2, while being negligible for a
very wide but short farm, and vice versa (i.e. negligible for
Ly/Lx � 1 and Lx/Ly � 1). Since we are interested in op-
timal thrust-coefficient distributions in the presence of grav-
ity waves, we have selected the “worst-case” wind-farm lay-
out (i.e. a wind-farm width and length of Ly = 30 km and
Lx = 20 km, respectively). We note that this was also the
farm layout chosen by Allaerts et al. (2018) and Allaerts and
Meyers (2019), which in size resembles the Belgian–Dutch
wind-farm offshore cluster located in the North Sea, but
simplified to a rectangular-shaped wind farm. Also, Smith
(2010), Fitch et al. (2012) and Wu and Porté-Agel (2017)
have used a farm with similar dimensions in their studies.
The wind turbine relative spacings along the x and y direc-
tions are sx = sy = 5.61 (both non-dimensionalized with re-
spect to the turbine rotor diameter D), so that the density of
turbines in the farm is similar to the one of Allaerts and Mey-
ers (2019) (i.e. leading to β = 0.01 in Eq. (8), setting both the
wake efficiency ηw and γ to 0.9 as in Allaerts and Meyers,
2018). Note that we do not define a specific layout or a num-
ber of turbines, but we only fix the density of turbines in the
farm. The turbine dimensions are based on a DTU 10 MW
IEA wind turbine (Bortolotti et al., 2019) with rotor diame-
ter D = 198 m and turbine hub height zh = 119 m.

3.3 Background state variables

The governing equations are linearized around a constant
background state. To determine this state, we need vertical
profiles of potential temperature, velocity, shear stress and
eddy viscosity plus the surface roughness z0 and the friction
velocity u∗. We describe the techniques used in determining
these profiles in the remainder of this section. Similar to Al-
laerts and Meyers (2019), we select two atmospheric states
for initial testing of the optimizer, corresponding to sub- and
supercritical flow conditions.

We choose a temperature profile that corresponds to a con-
ventionally neutral ABL. The potential temperature in the
neutral ABL is fixed to θ0 = 288.15 K. A capping inversion
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strength 1θ of 5.54 and 3.7 K is used, which leads to a
sub- and supercritical flow, respectively (see below). Finally,
a free-atmosphere lapse rate 0 = 1 K km−1 is chosen. The
lapse rate also defines the Brunt–Väisälä frequency N .

The velocity and stress profiles within the ABL are ob-
tained following the approach of Nieuwstadt (1983). The
non-dimensional surface roughness length z0 = z0/H and
the non-dimensional boundary-layer height h∗ =Hfc/u∗
are the input parameters of Nieuwstadt model, where fc is the
Coriolis frequency andH =H1+H2 is the ABL height. The
wind-farm layer height is assumed to be twice the turbine
hub height, so H1 = 2zh. The ABL height is fixed to H =
1000 m and the friction velocity is set to u∗ = 0.6 m s−1. Fi-
nally, a surface roughness of z0 = 10−1 m is adopted. Using
h∗ = 0.166 and z0 = 10−4 as input values for the Nieuw-
stadt model, we derive the velocity U1, U2, the eddy vis-
cosity νt,1, νt,2 for the wind-farm and upper layer, and the
friction coefficients C and D (used for computing the matri-
ces C′ and D′; see Allaerts and Meyers, 2019). Besides the
friction coefficients C and D, which are given at z= 0 and
z=H1, all other physical quantities are depth-averaged over
the height H1 and H2. Finally, the wind profile is oriented
such that the wind in the wind-farm layer is always directed
along the x axis (i.e. V1 = 0 m s−1).

The pressure gradient strengths induced by inversion and
internal gravity waves are dependent upon the Froude num-
ber Fr = UB/

√
g′H and a non-dimensional group PN =

U2
B/NH ‖ Ug ‖, respectively (Smith, 2010; Allaerts and

Meyers, 2019), where the velocity scale UB is defined as

UB =

(
H1

H

1
U2

1
+
H2

H

1
U2

2

) 1
2

. (20)

The chosen background state defines a Froude number of 0.9
for 1θ = 5.54 K, which implies subcritical flow conditions
(Fr < 1), and a Froude number of 1.1 for 1θ = 3.7 K,
which leads to supercritical flow conditions (Fr > 1). Fur-
ther, PN expresses the impact of internal waves in the tropo-
sphere, which increases when PN decreases. The background
state defined in Table 1 leads to PN = 1.92. The numerical
setup, wind-farm layout and background state variables are
summarized in Table 1.

4 Results and discussion

We discuss the results of the optimization problem in the cur-
rent section. Firstly, the optimal thrust-coefficient distribu-
tions and relative power gains are illustrated for two specific
flow conditions in Sect. 4.1. Thereafter, the sensitivity of the
power gain to the atmospheric state is studied in Sect. 4.2.

4.1 Optimal thrust-coefficient distributions

The optimization model described in Sect. 2.2 is time and
space dependent. Hence, the model is capable of finding a

Table 1. Numerical setup, wind-farm layout and atmospheric state
used in this manuscript.

Numerical setup

Domain size Dx ×Dy = 1000× 400 km2

Grid size Nx ×Ny = 4000× 1600
Grid resolution 1= 250 m
Time horizon Span from T = 10 min to T = 10 h
Time step Span from Nt = 12 to Nt = 120
Discretization technique Fourier–Galerkin
Equation solver LGMRES
Optimization method L-BFGS-B
L-BFGS-B iterations Nit = 4

Wind-farm layout

Wind-farm length Lx = 20 km
Wind-farm width Ly = 30 km
Turbine hub height zh = 119 m
Turbine rotor diameter D = 198 m
Rated wind speed Ur = 11 m s−1

Relative turbine spacing sx = sy = 5.61
Wake efficiency ηw = 0.9
Velocity shape factor γ = 0.9

Atmospheric state

ABL potential temperature θ0 = 288.15 K
Capping inversion strength 1θ = 5.54 K→Fr = 0.9

1θ = 3.70 K →Fr = 1.1
Free-atmosphere lapse rate 0 = 1 K km−1

Surface roughness z0 = 10−1 m
Coriolis frequency fc = 10−4 s−1

Friction velocity u∗ = 0.6 m s−1

Boundary layer height H = 1000 m
Friction coefficients C = 3.76× 10−3

D = 1.51× 10−1

time-periodic optimal thrust-coefficient distribution over the
wind-farm area in a fixed time interval [0, T ]. However, all
optimal thrust set-point distributions found for the different
combinations of time horizons and time steps reported in Ta-
ble 1 are constant in time. We have verified this using a range
of steady and unsteady starting conditions for CT in the al-
gorithm, but we did not find any unsteady optimum. We be-
lieve that this is due to the use of steady-state inflow con-
ditions, meaning that we neglect meso-scale temporal varia-
tions in the velocity field (these could lead to time-dependent
optimal control signals, but are not included in the current
work). Since we do not observe any unsteady behaviour in
our optimal solutions, we show only steady-state results in
the remainder of the manuscript, and we conclude for the
time being that unsteady time-periodic excitation is less ef-
fective than a stationary spatially optimal distribution in this
context.

We also note that our findings are in contrast with re-
cent works of Goit and Meyers (2015), Munters and Mey-
ers (2018), and Frederik et al. (2020), in which the authors
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illustrated the benefits of dynamic induction control over
yaw and static induction control. However, the characteristic
timescale of gravity-wave effects is estimated to be approxi-
mately 1 h (Gill, 1982; Allaerts and Meyers, 2019), which is
an order of magnitude above the typical timescale of wake
convection between turbines, and turbulent mixing in tur-
bine wakes (this also justifies the larger sampling time used).
Hence, while unsteadiness of the thrust coefficient (with a
typical timescale of 50 s for large-scale turbines) can lead
to improved wake mixing (Goit and Meyers, 2015; Munters
and Meyers, 2018; Frederik et al., 2020), it has no impact
on phenomena that occur at larger timescales, such as wind-
farm-induced gravity waves.

The steady-state optimal thrust-coefficient distributions
obtained in sub- and supercritical conditions are analysed in
the remainder of this section. To improve the understanding
of such distributions, gravity-wave-induced flow patterns ob-
tained with CO

T (x, y) are compared with a reference case.
The setup of the reference model is the one reported in Ta-
ble 1, but instead a uniform thrust set-point distribution over
the wind-farm area is used, with CR

T (x, y)= CBetz
T = 8/9.

Figure 2 illustrates a planform view of the perturbation
flow patterns obtained with Fr = 0.9 (top row) and Fr = 1.1
(bottom row) using the reference model setup. The farm ex-
tracts energy from the flow, causing a momentum sink in
the wind-farm layer. Due to the continuity constraint, an
upward flow displacement above the wind-farm area takes
place, which causes the boundary layer height to increase.
Figure 2a shows that an inversion-layer vertical displacement
of about 65 m takes place at the wind-farm entrance region
for the subcritical case. A second peak of lower magnitude is
located in the downwind region. On the other hand, for the
supercritical case, Fig. 2d displays a similar maximum value
of ηt attained close to the wind-farm centre. In both cases, the
inversion-layer vertical displacement decreases in the wind-
farm exit region and assumes a wavy behaviour in the wind-
farm wake. The vertical displacement of air parcels triggers
inversion waves on the 2D inversion-layer surface and inter-
nal waves in the free atmosphere (3D waves). These waves
induce pressure gradients, as visible in Fig. 2b and e, where
a region of high pressure builds up in correspondence with
high ηt values, leading to flow blockage. However, Fig. 2b
shows a stronger adverse pressure gradient in the wind-farm
induction region than the one in Fig. 2e. In fact, inversion
waves travel upstream in subcritical conditions, which leads
to more slow-down in the induction region. In both the sub-
and supercritical cases, favourable pressure gradients reduce
the velocity deficits in the bulk of the farm. Finally, Fig. 2c
and f illustrate relative velocity reductions in the wind-farm
layer. The stronger inversion strength found in the subcriti-
cal flow case transforms the inversion layer in a quasi-rigid
lid, which limits vertical displacements. The lower stream-
lines’ divergence over the wind-farm area implies lower ve-
locity reductions. Moreover, the favourable pressure gradi-
ent is stronger when Fr = 0.9, allowing for lower velocity

deficits within the wind-farm area. This explains the higher
velocity reduction (up to 20 %) seen in Fig. 2f. Such a strong
response could be on the limit of our small amplitude as-
sumption. The planform view of pressure and velocity per-
turbations in the wind-farm and upper layer in subcritical
flow conditions are also illustrated on a wider domain in Ap-
pendix A (see Fig. A1).

The goal of our study is to find an optimal set-point distri-
bution which reduces the velocity perturbations displayed in
Fig. 2c and f. While maximizing the flow wind speed through
the farm, we also maximize the wind-farm energy extraction.
To this end, we solve the optimization problem discussed in
Sect. 2.2. The inputs of the optimization model are the wind-
farm layout and the atmospheric conditions, which are de-
tailed in Table 1. Moreover, an initial thrust-coefficient distri-
bution needs to be specified. We have verified that for many
different initial conditions the algorithm always converges
to the same optimal solution. Therefore, a random initial
thrust set-point distribution is chosen. The optimal configu-
rations obtained for different Froude numbers are illustrated
in Fig. 3. We find that the optimal thrust-coefficient distribu-
tions are non-uniform in space and assume different spatial
distributions according to the atmospheric state. In particular,
when the flow is subcritical the optimal thrust set-point dis-
tribution assumes a sinusoidal behaviour in the streamwise
direction while it becomes a U-shaped curve when the flow
is supercritical. In both cases, CO

T is almost invariant along
the spanwise direction.

We denote with PR
= J̃ R/T and PO

= J̃ O/T the power
extracted using CT = C

R
T = 8/9 and CT = C

O
T , respectively.

Further, we define

G =
PO
−PR

PR , (21)

where G denotes the relative power gain obtained using an
optimal thrust-coefficient distribution instead of the refer-
ence one. Note that the optimal distributions are steady state;
therefore the power gain definition is not dependent on the
choice of the time horizon T . The power gains attained in
sub- and supercritical flow conditions are 5.3 % and 7 %, re-
spectively. Clearly, power gains are also strongly dependent
on the atmospheric conditions. Therefore, a sensitivity study
is carried out in Sect. 4.2. To assess the benefit of an opti-
mal non-uniform distribution over an optimal uniform one,
we have applied the optimization framework developed in
Sect. 2.2 assuming a spatially invariant CT. Results are dis-
cussed in Appendix B.

The optimal set-point distributions displayed in Fig. 3 are
related to the vertical displacement of the inversion layer
over the wind-farm area. Figure 4 shows streamwise profiles
of ηt and CO

T through the centre of the farm for Fr = 0.9 and
Fr = 1.1. To reduce gravity-wave excitation, CO

T is seen to
be inversely related with ηt. In fact, Fig. 4a shows that the
streamwise profile of ηt has a sinusoidal behaviour. Hence,
the optimal set-point distribution is sinusoidal as well, ex-
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Figure 2. Planform view of inversion-layer displacement (a, d), pressure perturbation (b, e) and relative velocity reduction (c, f) in the wind-
farm layer in subcritical (a–c, Fr = 0.9) and supercritical (d–f, Fr = 1.1) flow conditions. The black rectangle indicates the wind-farm
region.

Figure 3. Planform view of (a) optimal thrust-coefficient distribution in subcritical (Fr = 0.9) and (b) supercritical flow conditions (Fr =
1.1). The length and width of the wind farm are 20 and 30 km, respectively.

plaining the pattern displayed in Fig. 3a. On the other hand,
ηt assumes a U-shaped profile through the wind farm in su-
percritical conditions (see Fig. 4b), a profile that is also found
in CO

T (see Fig. 3b). Moreover, Fig. 2a and d show that the
gradient of ηt along the spanwise direction is much smaller
than the one along the streamwise direction, explaining the
almost constant thrust set-point distributions along the y di-
rection. Figure 4 also shows that ηO

t,max < η
R
t,max in both sub-

and supercritical conditions, meaning that the optimal thrust
set-point distribution decreases the upward flow displace-
ment over the wind-farm area. The maximum inversion-layer
displacement is located at the entrance region of the farm. If
we compare ηR

t and ηO
t in this region, a displacement reduc-

tion of 14.5 % and 16.8 % is attained with the optimal con-
figuration for the sub- and supercritical cases, respectively.

A lower vertical displacement of the inversion layer re-
duces gravity-wave excitation; therefore we also expect a
lower strength of the adverse pressure gradient at the en-
trance of the farm compared to the one obtained with CR

T .
Figure 5a and c confirm this hypothesis, showing stream-
wise profiles of pressure perturbations pR and pO through
the centre of the farm for Fr = 0.9 and Fr = 1.1. The pres-
sure peak is located at the entrance of the farm and a pressure
peak reduction of 14.3 % and 16.2 % is attained with the opti-
mal configuration for the sub- and supercritical cases, respec-
tively. Figure 5b and d show streamwise profiles of velocity
perturbations uR

1 and uO
1 through the centre of the farm for
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Figure 4. Streamwise profiles of optimal thrust set-point distribution (CO
T ), reference (ηR

t ) and optimal (ηO
t ) inversion-layer displacement

in (a) subcritical (Fr = 0.9), and (b) supercritical flow conditions (Fr = 1.1). The wind-farm region is marked by vertical dashed lines, and
the profiles have been obtained through the centre of the farm (y = 0).

Figure 5. Streamwise profiles of (a, c) reference (pR) and optimal (pO) pressure perturbation and (b, d) reference (uR
1 ) and optimal (uO

1 )
velocity perturbation in subcritical (a, b, Fr = 0.9) and supercritical (c, d, Fr = 1.1) flow conditions. The wind-farm region is marked by
vertical dashed lines, and the profiles have been obtained through the centre of the farm (y = 0).

Fr = 0.9 and Fr = 1.1. The lower adverse pressure gradient
strength attained with the optimal configuration allows for a
lower velocity perturbation u1 in the induction region with
respect to the reference case. Moreover, the optimal configu-
ration also reduces the streamline divergence, accounting for
higher flow wind speeds through the farm. Consequently, a
velocity perturbation reduction of 13.4 % and 15.5 % is at-
tained for the sub- and supercritical cases, which explains
the higher power gain obtained for Fr = 1.1. The relative
change in percentage between optimal and reference maxi-
mum flow perturbation values is summarized in Table 2.

The optimal thrust-coefficient distributions and power
gains discussed in this section are obtained with data listed in

Table 2. Relative change in percentage between optimal and refer-
ence maximum flow perturbation values. Power gains are also in-
cluded.

Fr = 0.9 Fr = 1.1

Maximum inversion-layer displacement −14.5 % −16.8 %
Maximum pressure perturbation −14.3 % −16.2 %
Maximum velocity perturbation −13.4 % −15.5 %
Power gain 5.3 % 7.0 %
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Table 1. However, the atmospheric state changes in real case
scenarios, and we have seen that the optimal configuration
strongly depends upon the atmospheric parameters. There-
fore, the sensitivity of the power gain to the atmospheric state
is performed in the next section.

4.2 Sensitivity study

Allaerts and Meyers (2019) pointed out that gravity-wave-
induced power loss is significant only for certain atmospheric
states. Since our aim is to recover its power loss, we also ex-
pect the power gain to be sensitive to the atmospheric condi-
tions. We note that gravity-wave patterns are also sensitive to
the wind-farm layout. However, a sensitivity study over the
wind-farm layout is beyond the scope of the article.

The nondimensionalization of the three-layer model equa-
tions with respect to the boundary layer height H and the
friction velocity u∗ highlights four non-dimensional groups
that govern the atmospheric state, which are as follows.

– The non-dimensional boundary layer height h∗ =

Hfc/u∗. Values of h∗ ≈ 0.1 denote shallow boundary
layers typically found over sea, while h∗ ≈ 0.35 rather
relates to a deep land-based boundary layer. We vary h∗
between 0.16 and 0.4.

– The non-dimensional surface roughness length z0 =

z0/H . This number varies several orders of magnitude
according to the sea state or land surface. We vary
log10(z0) between −4.2 and −2.8 in the current study.

– The non-dimensional Brunt–Väisälä frequency N/fc.
The Brunt–Väisälä frequency is an important param-
eter in gravity-wave theory which expresses the high-
est possible frequency for internal gravity waves (Gill,
1982). Typical values of free-atmosphere lapse rate 0
range between 1 and 10 K km−1. Low and high 0 val-
ues are associated with weakly and strongly stratified
atmospheres, respectively. We vary 0 between 0.03 and
12 K km−1 corresponding to 10≤N/fc ≤ 200.

– The inversion parameter g′H/Au2
∗. According to

Csanady (1974), the height of the inversion layer is de-
termined by a balance of surface stress and buoyancy.
Equilibrium conditions are reached when g′H/Au2

∗ ≈

1, with A= 500 being an empirical constant. We vary
the inversion parameter between 0.5 and 1.5.

Allaerts and Meyers (2019) conducted a similar sensitivity
study on the gravity-wave-induced power loss on a wider
range of non-dimensional numbers. However, since we are
optimizing turbine thrust set points, we need to ensure that
U1/Ur < 1 (Ur = 11 m s−1 is the rated wind speed of the
DTU 10 MW IEA wind turbine), otherwise turbines would
operate in an above-rated wind speed regime and it would
not make any sense to optimize their power production. The

choice of the four ranges for the non-dimensional groups dis-
cussed above ensures that U1/Ur ≤ 0.9 for all atmospheric
states.

Using the atmospheric state reported in Table 1, the
non-dimensional numbers assume values h∗ = 0.166, z0 =

10−4 and N/fc = 58. The inversion parameter is equal
to 1.046 and 0.691 in the sub- and supercritical cases, respec-
tively. The optimal thrust-coefficient distributions discussed
in Sect. 4.1 were obtained using these dimensionless group
values. The sensitivity of the power gain to atmospheric con-
ditions is performed by varying h∗, z0 and N/fc against
the inversion parameter g′H/Au2

∗, similarly to Allaerts and
Meyers (2019). The numerical setup is the one detailed in
Table 1. However, we use a grid cell size which is 4 times
bigger (1x×1y = 1000× 1000 m2), meaning that we use
4×105 cells instead of 6.4×106, so that the necessary com-
putational resources remain reasonable. To assess the validity
of this choice, we performed a grid sensitivity study in Ap-
pendix C showing that the power gain value changes about
1 % when the number of grid cells is increased by 1 order of
magnitude (see Fig. C1). The high computational efficiency
of the three-layer model allowed us to perform a sensitivity
study of the optimization results over 1960 different atmo-
spheric conditions (thus effectively running an optimization
problem for every atmospheric state). Since the wind-farm
layout impact on power gains is beyond the scope of our
study, we impose the wind direction to be along the x axis
in the wind-farm layer in all simulations (V1 = 0 m s−1).

To better understand the power gain sensitivity to atmo-
spheric conditions, we examine how the non-dimensional
parameters Fr and PN impact the flow fields. The pres-
sure gradients induced by inversion waves scale with g′;
therefore high inversion strengths correspond to strong
inversion-wave feedback and low Froude number values.
These two-dimensional waves are non-dispersive with phase
speed

√
g′H (Sutherland, 2010). Therefore, Fr also repre-

sents the ratio of the bulk wind speed within the ABL to the
velocity of the inversion waves. If Fr < 1 (subcritical flow)
the two-dimensional waves can affect the upstream flow,
while they can travel only downstream if Fr > 1 (supercrit-
ical flow). The flow is said to be critical when Fr = 1. On
the other hand, internal-wave-induced pressure gradients are
governed by the second non-dimensional group PN. Strong
internal-wave feedback corresponds to low PN values. In
fact, strongly stratified atmospheres imply high N values,
meaning that they account for higher internal-wave oscilla-
tion frequencies and phase speed (Sutherland, 2010).

Two different flow regimes can be identified.

– Regime 1 represents low-PN flows. The strongly strati-
fied free atmosphere limits vertical displacement of air
parcels; hence reduced streamline divergence over the
wind-farm area is observed. This results in low veloc-
ity reductions and ηt values. Moreover, the flow fields
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Figure 6. Sensitivity of (a–c) Froude number Fr = UB/
√
g′H and (d–f) PN = U

2
B/NH ‖ Ug ‖ to atmospheric conditions. (a, d) Non-

dimensional boundary layer height h∗ (with z0 = 10−4 andN/fc = 58), (b, d) logarithm of the non-dimensional surface roughness length z0
(with h∗ = 0.166 and N/fc = 58) and (c, f) ratio of Brunt–Väisälä frequency to Coriolis parameter N/fc (with h∗ = 0.166 and z0 = 10−4)
against the inversion parameter g′H/Au2

∗. The black solid lines in (a–c) correspond to critical flow conditions (Fr = 1) while the dashed
black ones in (d–f) correspond to flow conditions of PN = 1.5. The markers 4 and ◦ represent the sub- and supercritical flow cases studied
in Section 4.1, respectively. Note that (f) uses a different scale than (d, e).

are Fr independent in these atmospheric states (Smith,
2010).

– Regime 2 represents high-PN flows. The inversion-layer
strength determines the flow fields’ properties since the
influence of internal waves is negligible. The weakly
stratified atmosphere makes the ABL behave like an ide-
alized shallow-water system for Fr ' 1 (choking effect;
Smith, 2010). Moreover, the perturbations’ magnitude
is strongly dependent upon the Froude number.

Smith (2010) and Allaerts and Meyers (2019) defined a third
regime where N = 0 and g′ = 0, which would correspond to
Fr , PN→∞ or a purely neutral atmosphere. Gravity waves
are not excited in this particular flow condition, and only drag
forces and frictional effects play a role in the flow behaviour.
Since we are interested in finding optimal thrust set-point dis-
tributions which allow the recovery of gravity-wave-induced
power loss, we did not investigate this regime in the current
study.

Figure 6a–c illustrate the sensitivity of Fr to changes
in h∗, z0 and N/fc against the inversion parameter. In all
cases, the Froude number ranges from approximatively 0.5
to 1.4. The black line denotes critical flow conditions. Lines
of constant Froude number run parallel to this line, meaning
that Fr is invariant and quasi-invariant to N/fc and h∗, re-
spectively. On the other hand, changes in z0 have a strong

impact on the wind profile convexity and therefore on Fr .
The sensitivity of PN to the atmospheric state is displayed
in Fig. 6d–f. PN is not dependent on the inversion parameter.
Hence, lines of constant PN values are vertical and parallel to
the dashed black line, which denotes atmospheric conditions
for which PN = 1.5. This line divides the domain in regions
where the internal-wave effects are important (regime 1, right
side) or limited (regime 2, left side). However, internal waves
still play a crucial role in softening the flow perturbations’
magnitude when PN values are only slightly greater than 1,
as in Fig. 6d and e. On the other hand, very high PN numbers
(PN > 10) are attained in weakly stratified conditions (see
Fig. 6f). We will use the above-mentioned regime classifica-
tion as a proxy for the interpretation of the power gain sensi-
tivity patterns (note that the terms high and low in the regime
characterizations refer to the maximum and minimum Fr

and PN values found over the sensitivity domain).
Figure 7a–c and d–f illustrate the sensitivity of the opti-

mal inversion-layer vertical-displacement reduction Gη and
power gain G to changes in h∗, z0 and N/fc, against the in-
version parameter. The displacement reduction is defined as

Gη =
∣∣∣∣ηO

t,max− η
R
t,max

ηR
t,max

∣∣∣∣, (22)
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Figure 7. Sensitivity of (a–c) inversion-layer vertical-displacement reduction Gη and (d–f) power gain G to atmospheric conditions.
(a, d) Non-dimensional boundary layer height h∗ (with z0 = 10−4 and N/fc = 58), (b, d) logarithm of the non-dimensional surface rough-
ness length z0 (with h∗ = 0.166 and N/fc = 58) and (c, f) ratio of Brunt–Väisälä frequency to Coriolis parameter N/fc (with h∗ = 0.166
and z0 = 10−4) against the inversion parameter g′H/Au2

∗. The black solid line corresponds to critical flow conditions (Fr = 1) while the
black dashed line corresponds to flow conditions of PN = 1.5. The markers 4 and ◦ represent the sub- and supercritical flow case studied in
Sect. 4.1, respectively. Note that (c) and (f) use a different scale than (a, b) and (d, e).

where ηO
t,max and ηR

t,max denote the maximum inversion-layer
displacement attained with the optimal and reference model
configurations, respectively. As we discussed in Sect. 4.1, the
lowering of the inversion-layer vertical displacement reduces
the strength of the adverse pressure gradient, increasing the
flow wind speed and consequently the wind-farm power out-
put. Figure 7 confirms this statement. In fact, regions of high
vertical displacement reduction strictly correspond to regions
of high power gain.

Allaerts and Meyers (2017, 2018, 2019) found that for
low ABL heights, gravity waves induce strong pressure gra-
dients and play an important role in the distribution of the
kinetic energy within the farm. Indeed, the large geostrophic
wind angle found in shallow boundary layers redirects the
favourable pressure gradient seen over the wind-farm area of
90◦ for h∗→ 0, decreasing the dispersive impact of inter-
nal gravity waves. Figure 7d shows that the maximum power
gain is indeed attained for h∗ = 0.17 (i.e. for shallow bound-
ary layer) in supercritical flow conditions, with gains of about
7.5 % corresponding to a displacement reduction of 17.5 %.
A similar pattern is seen in Fig. 7e, where a maximum power
gain of 8.4 % is attained again in supercritical conditions for
log10(z0)=−4.2, corresponding to a displacement reduction
of 19%. Both G and Gη show higher sensitivity to changes
in z0 than in h∗, decreasing rapidly for increasing value of

surface roughness. Interestingly, power gains are close to
zero in the case of high z0 values. This is due to the additional
frictional drag which dissipates perturbation energy, limiting
gravity-wave excitation and consequently the potential of our
optimization.

The sensitivity of G and Gη to changes in free-atmosphere
stability is shown in Fig. 7c and f. The high PN sensitiv-
ity to changes in N (from PN ≈ 11 to PN ≈ 0.5 for increas-
ing values of N/fc) accounts for a clear distinction between
regime 1 and regime 2. The former shows power gains of
about 5 % while the latter attains gains of 14 % correspond-
ing to inversion displacement reductions of 24 %. Figure 7f
illustrates that the power gain peak is obtained in critical flow
conditions (Fr = 1), differently from the previous cases. The
very high PN values (hence, the limited presence of internal
waves) attained when Fr = 1 allow for the choking effect to
take place (Smith, 2010; Allaerts and Meyers, 2019). Very
large flow perturbations are triggered in these atmospheric
conditions, leaving greater potential for power recovery. The
choking effect is not visible in Fig. 7d and e since there
PN ≈ 2 when Fr = 1 (the flow perturbations are softened by
internal waves).

Overall, higher inversion-layer displacement reductions
and power gains are attained in critical and supercritical flow
conditions for high PN values (regime 2), that is for low h∗,
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z0 and N/fc. This is not surprising due to the strong im-
pact that gravity waves have on a farm’s performance in such
conditions (see Sect. 4.1 or Smith, 2010, and Allaerts and
Meyers, 2019). Moreover, we observe strong gradients of G
and Gη along contours of PN in regime 2 and weak gradients
in regime 1. This suggests that the flow properties are Fr in-
dependent for low PN values, confirming the observations of
Smith (2010).

5 Conclusions

In the current study, we for the first time investigated the po-
tential of thrust set-point optimization in large wind farms
for mitigating gravity-wave-induced blockage effects, with
the aim of increasing the wind-farm energy extraction. Thus,
a fast boundary layer model proposed by Allaerts and Meyers
(2019) was adopted. The three-layer model simulates the at-
mospheric response to turbine drag in large wind farms by di-
viding the vertical structure of the atmosphere into three lay-
ers. This approach accurately captures the effects of regional
pressure gradients induced by large wind farms at low com-
putational expenses. We first added the time dependency to
the model so that time-periodic gravity-wave patterns could
be reproduced. Further, we reformulated the model as an op-
timization framework with the objective of maximizing the
wind-farm energy output at all costs. Gradient information
was derived using the continuous adjoint method. To limit the
computational cost, a box-function wind-farm force model
was used, which assumes that the force is distributed over the
whole wind-farm area. The wind-farm layout was inspired
by the works of Allaerts et al. (2018) and Allaerts and Mey-
ers (2019), roughly representing the Belgian–Dutch offshore
wind-farm cluster.

The optimization model was applied to two different at-
mospheric states representative of subcritical (Fr = 0.9) and
supercritical (Fr = 1.1) flow conditions. The optimal config-
urations were then compared with a reference model setup
which uses a uniform thrust-coefficient distribution. We did
not observe dynamic behaviour in the optimal thrust set-
point distributions for different choices of time horizon and
time step, meaning that it is not necessary to excite non-
stationary wave patterns to further increase the wind-farm
energy output. However, we observed interesting spatial pat-
terns. The optimal thrust set-point distributions turned out
to be inversely related with the inversion-layer vertical dis-
placement ηt. This has led to a sinusoidal and U-shaped
CO

T distribution along the streamwise direction in sub- and
supercritical conditions, respectively. An inversion-layer dis-
placement reduction of 14.5 % and 16.8 % was observed in
sub- and supercritical conditions, which lowered the adverse
pressure gradient strength in the wind-farm induction and
entrance region. The reduced blockage effects allowed for
higher flow wind speeds through the farm. The optimal con-
figurations showed power gains of 5.3 % and 7 % in sub- and

supercritical conditions with respect to the reference model
setup.

The atmospheric state is far from being constant in
real case scenarios; therefore the power gain sensitivity to
changes in atmospheric conditions was further studied. Thus,
the developed thrust set-point optimization tool was ap-
plied for several wind profiles, inversion strengths and at-
mosphere stratifications for a total of 1960 different atmo-
spheric states. Regions of high inversion-layer-displacement
reduction in the sensitivity domain strictly corresponded to
regions of high power gain. This has confirmed that it is es-
sential to reduce the streamline divergence over the wind-
farm area for limiting gravity-wave-induced power loss. The
strong gravity-wave feedback in high-PN conditions made
these atmospheric states the most suitable for power recov-
ery purposes. Power gains of up to 14 % were found for
weakly stratified atmospheres (PN ≈ 11) in correspondence
with critical flow conditions (Fr = 1). This is related to
the large flow perturbations induced by the choking effect
(Smith, 2010). Overall, power gains above 4 % were ob-
served for 77 % of the cases. We note that the gravity-wave-
induced power losses are also sensitive to the wind-farm lay-
out. Optimization of layout (including, e.g. relevant techno-
economical constraints) is however not considered here and
can be an interesting topic for future research.

The results discussed in the current manuscript make
wind-farm set-point optimization a promising tool for
gravity-wave-induced power loss recovery. However, many
challenges remain before this can be translated to real wind-
farm applications. In the current work, we did not include
an explicit wake model in our model, and we have pre-
sumed that wake losses remain unchanged during optimiza-
tion (i.e. ηw is assumed to be constant). In the future, an an-
alytical wind-farm wake model, such as, e.g. the one devel-
oped by Niayifar and Porté-Agel (2016) and used by Allaerts
and Meyers (2019), could be adopted for optimization. This
would however also require better representation in the wake
model of changing background variables and pressure gra-
dients. For instance, gravity-wave-induced pressure gradient
effects on turbine wake recovery could be included using the
model proposed by Shamsoddin and Porté-Agel (2018) that
incorporates effects of pressure gradients. Furthermore, the
use of a wind-farm drag model which analytically computes
the wake of each turbine would allow us to separately inves-
tigate the influence of wake effects and gravity waves on the
optimal turbine set points. This is work for future research.
Moreover, the three-layer model has been validated with LES
results only (Allaerts and Meyers, 2019). We are planning
to perform a more extensive validation of the model in the
near future. Next, we also plan to apply the results obtained
in this article to a higher-fidelity model (i.e. our in-house
LES solver SP-Wind). However, this requires some work on
the efficiency of non-reflecting boundary conditions in our
LES solver (Allaerts and Meyers, 2017, 2018). Finally, we
assumed that the free atmosphere is uniformly stratified and
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steady. The relaxation of these assumptions would extend the
applicability of the model, e.g. to atmospheres with height-
dependent Brunt–Väisälä frequency and geostrophic wind,
among others.
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Appendix A: Derivation and verification of the adjoint
equations and the adjoint gradient

The continuous adjoint method is briefly explained in Ap-
pendix A1. Next, the three-layer model adjoint equations
and cost functional gradient are derived in Appendices A2
and A3, respectively. Finally, the comparison between a
finite-difference approximation of the cost function gradient
and the adjoint evaluation is performed in Appendix A4.

A1 Continuous adjoint method

We adopt the standard L2 inner product over the time inter-
val [0, T ] and simulation domain �:

(a,b)=

T∫
0

∫∫
�

a · bdxdt, (A1)

where a and b are two generic vectors. Moreover, we denote
with ψ = [u1, v1, u2, v2, p1, p2] the vector containing the
state variables and with CT = CT(x, y, t) the control param-
eter.

The reduced cost functional is defined as

J̃ (CT)=

T∫
0

∫∫
�

K (ψ (CT) ,CT)dxdt, (A2)

where

K (ψ (CT) ,CT)=−β ‖ U1 ‖ CpB(x,y)
(
‖U1‖

2
+ 3U1 ·u1

)
.

(A3)

The gradient of the reduced cost functional∇J̃ is interpreted
as the Riesz representation of the Gâteaux derivative operator
at CT in any arbitrary direction δCT:

J̃CT (δCT)≡
d

dα
J̃ (CT+αδCT)

∣∣∣∣
α=0

=
(
∇J̃ ,δCT

)
∀δCT ∈H, (A4)

where H denotes the control Hilbert space.
Next, we define the state constraints of the optimization

problem (i.e. the three-layer model equations) with short-
hand notation N (ψ , CT). The reduced formulation of the
optimization problem implies by definition that N (ψ(CT),
CT)= 0; therefore we can write the reduced cost functional
as

J̃ (CT)= J (ψ (CT) ,CT)+
(
ψ∗,N (ψ (CT) ,CT)

)
, (A5)

where ψ∗ = [ζ1, χ1, ζ2, χ2, 51, 52] denotes the vector con-
taining the adjoint variables which play the role of Lagrange
multipliers. In fact, it is easy to notice that J̃ (CT)= L(CT,
ψ(CT), ψ∗), where L is the Lagrangian of the optimization
problem in Eq. (16).

Using Eqs. (A4) and (A5), the gradient of the reduced cost
functional can be expressed as

(
∇J̃ ,δCT

)
=

(
∂K
∂CT

,δCT

)
+

(
ψ∗,

∂N
∂CT

δCT

)
+

(
∂K
∂ψ

,δψ

)
+

(
ψ∗,

∂N
∂ψ

δψ

)
, (A6)

where δψ = dψ/dCTδCT. The adjoint of the operator
∂N /∂ψ is given by(
ψ∗,

∂N
∂ψ

δψ

)
=

([
∂N
∂ψ

]∗
ψ∗,δψ

)
+BT1, (A7)

where the right-hand side is found using integration by parts.
Similarly, the adjoint of ∂N /∂CT is expressed as(
ψ∗,

∂N
∂CT

δCT

)
=

([
∂N
∂CT

]∗
ψ∗,δCT

)
+BT2. (A8)

The boundary terms BT1 and BT2 arise as a result of the
integration by parts. Due to spatial and time periodicity con-
straints, it is easy to show that BT1 = BT2 = 0. Hence, sub-
stituting Eqs. (A7) and (A8) into Eq. (A6), we obtain

(
∇J̃ ,δCT

)
=

(
∂K
∂CT
+

[
∂N
∂CT

]∗
ψ∗,δCT

)
+

(
∂K
∂ψ
+

[
∂N
∂ψ

]∗
ψ∗,δψ

)
. (A9)

Further, we assume that the adjoint variables satisfy the fol-
lowing relation:(
∂K
∂ψ
+

[
∂N
∂ψ

]∗
ψ∗,δψ

)
= 0, (A10)

which defines the adjoint equations. Therefore, the adjoint
gradient is given by

∇J̃ =
∂K
∂CT
+

[
∂N
∂CT

]∗
ψ∗. (A11)

A2 Derivation of the adjoint equations

We apply relation Eq. (A7) for deriving the adjoint of the
operator ∂N /∂ψ . Starting with the velocity perturbations in
the wind-farm layer, we have
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(
ψ∗,

∂N
∂u1

δu1

)
=

T∫
0

∫∫
�

[
∂δu1

∂t
+U1 · ∇δu1

+fcJ · δu1− νt,1∇
2δu1+

D′

H1
· δu1

+
C′

H1
· δu1+−

1
H1

∂f (1)

∂u1

∣∣∣∣
δu1

]

· ζ 1dxdt +

T∫
0

∫∫
�

[
−

D′

H2
· δu1

]

· ζ 2dxdt +

T∫
0

∫∫
�

[
H1F−1(8̂)

∗∇ · δu1]51dxdt, (A12)

and by computing an integration by parts we obtain

([
∂N
∂u1

]∗
ψ∗,δu1

)
=

T∫
0

∫∫
�

[
−
∂ζ 1
∂t
−U1

·∇ζ 1+ fcJ · ζ 1− νt,1∇
2ζ 1

+
D′

H1
· ζ 1+

C′

H1
· ζ 1

+
βCTB(x,y)

H1
U′ · ζ 1−

D′

H2

·ζ 2−H1

[
F−1(8̂)(−x,−t)

∗∇51]] · δu1dxdt. (A13)

Note that the minus sign in the argument of F−1(8̂)(−x,−t)
does not come from classical integration by parts. In fact,
given three functions f , g, h ∈ L1(�), it can be shown that∫
�

[f (x)∗g(x)]h(x)dx

=

∫
�

∫
�′

[f (x− x′)g(x′)dx′]h(x)dx

=

∫
�′

∫
�

f (−(x′− x))h(x)dxg(x′)dx′

=

∫
�

[f (−x)∗h(x)]g(x)dx, (A14)

where in the second passage we have changed the order of in-
tegration (Fubini’s theorem). This property allows us to write

−H1

T∫
0

∫∫
�

[
F−1(8̂)∗δu1

]
· ∇51dxdt

=−H1

T∫
0

∫∫
�

[
F−1(8̂)(−x,−t)∗∇51

]
· δu1dxdt. (A15)

Similarly, for the velocity perturbations in the upper layer,
we have that

([
∂N
∂u2

]∗
ψ∗,δu2

)
=

T∫
0

∫∫
�

[
−

D′

H1
· ζ 1−

∂ζ 2

∂t

−U2 · ∇ζ 2+ fcJ · ζ 2

−νt,2∇
2ζ 2+

D′

H2
· ζ 2

+−H2

[
F−1(8̂)(−x,−t)

∗∇52]] · δu2dxdt. (A16)

Following the same procedure for the pressure perturba-
tions p1 and p2, we obtain

([
∂N
∂p1

]∗
ψ∗,δp1

)
=

T∫
0

∫∫
�

[
−

1
ρ0
∇ · ζ 1−

1
ρ0
∇

·ζ 2−
1
ρ0

∂51

∂t
−

1
ρ0
U1 · ∇51

]
δp1dxdt (A17)

and

([
∂N
∂p2

]∗
ψ∗,δp2

)
=

T∫
0

∫∫
�

[
−

1
ρ0
∇ · ζ 1−

1
ρ0
∇

·ζ 2−
1
ρ0

∂52

∂t
−

1
ρ0
U2 · ∇52

]
δp2dxdt. (A18)

Using Eq. (A10), the resulting adjoint equations corre-
spond to
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−
∂ζ 1

∂t
−U1 · ∇ζ 1+ fcJ · ζ 1− νt,1∇

2ζ 1+
D′

H1

·ζ 1+
C′

H1
· ζ 1−

D′

H2
· ζ 2−H1[

F−1(8̂)(−x,−t)∗∇51

]
+
βCTB(x,y)

H1
U′

·ζ 1 =−
∂K
∂u1

in �× (0,T ],

−
∂ζ 2

∂t
−U2 · ∇ζ 2+ fcJ · ζ 2− νt,2∇

2ζ 2+
D′

H2

·ζ 2−
D′

H1
· ζ 1−H2

[
F−1(8̂)(−x,−t)∗∇52

]
=−

∂K
∂u2

in �× (0,T ],

−
∂51

∂t
−U1 · ∇51−∇ · ζ 1−∇ · ζ 2

=−ρ0
∂K
∂p1

in �× (0,T ],

−
∂52

∂t
−U2 · ∇52−∇ · ζ 1−∇ · ζ 2

=−ρ0
∂K
∂p2

in �× (0,T ]. (A19)

The adjoint momentum equations of the upper layer are
homogeneous since the adjoint wind-farm drag force is
felt only indirectly in this layer (∂K/∂u2 = 0). Moreover,
∂K/∂p1 = ∂K/∂p2 = 0. On the other hand, the adjoint mo-
mentum equations of the wind-farm layer are driven by the
cost function. Using Eq. (A3), we obtain

∂K
∂u1
=−3βCpB(x,y) ‖ U1 ‖ U1. (A20)

Figure A1 illustrates a planform view of the forward and
adjoint solutions in subcritical flow conditions (Fr = 0.9).
Both solutions are derived assuming a steady-state formula-
tion of the optimization problem. The numerical setup, wind-
farm layout and atmospheric state are the ones listed in Ta-
ble 1. Due to integration by parts, the convective term is nega-
tive in the backward equations, causing the flow to propagate
upstream (i.e. from right to left of our domain) as displayed
in Fig. A1 (bottom row). Moreover, the wind farm acts as a
source term, and it speeds up the adjoint solution instead of
decelerating it, causing an acceleration within the wind-farm
area and in the wake region.

A3 Derivation of the gradient

The adjoint gradient of the cost function is derived using
Eq. (A11). To compute the adjoint of the operator ∂N /∂CT,
we need to evaluate the following inner product:

(
ψ∗,

∂N
∂CT

δCT

)
=

T∫
0

∫∫
�

[
−

1
H1

∂f (0)

∂CT

∣∣∣∣
δCT

−
1
H1

∂f (1)

∂CT

∣∣∣∣
δCT

]
· ζ 1dxdt

=

T∫
0

∫∫
�

[
βB(x,y)
H1

δCT‖U1‖U1

+
βB(x,y)
H1

δCTU′ ·u1

]
· ζ 1dxdt, (A21)

which is easily rewritten as

([
∂N
∂CT

]∗
ψ∗,δCT

)
=

T∫
0

∫∫
�

[
βB(x,y)
H1

(‖U1‖U1

·ζ 1+u
>

1 ·U
′
· ζ 1

)]
δCTdxdt. (A22)

Moreover, we derive the first term on the right-hand side of
Eq. (A11) using Eq. (A3), which results in

∂K
∂CT
=−βB(x,y) ‖ U1 ‖

dCp

dCT

(
‖U1‖

2
+ 3U1 ·u1

)
.

(A23)

Finally, we obtain the gradient expression by substituting
Eqs. (A22) and (A23) in Eq. (A11), which gives

∇J̃ =
βB(x,y)
H1

[
‖U1‖U1 · ζ 1−H1‖U1‖

dCp

dCT(
‖U1‖

2
+ 3U1 ·u1

)
+u>1 ·U

′
· ζ 1

]
. (A24)

A4 Verification of the adjoint gradient

The aim of this paragraph is to assess the quality of the gra-
dient through comparison with a finite-difference approxi-
mation. The comparison is done using a grid resolution of
500 m. All other parameters correspond to the ones listed in
Table 1, with Fr = 0.9.

We define with

∇J̃ADJ =
(
∇J̃ ,δCT

)
(A25)

the directional derivative of ∇J̃ along δCT, where ∇J̃ is the
gradient computed with Eq. (A24) and δCT is a perturbation
of the baseline control CT. Using finite difference, the same
directional derivative can be approximated as

∇J̃FD =
J̃ (CT+αδCT)− J̃ (CT)

α
+O(α). (A26)

The truncation error of Eq. (A26) is proportional to the or-
der of magnitude of the step length α. Therefore, α should
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be as small as possible to limit the discretization error. How-
ever, small values of α induce round-off errors due to finite-
precision floating-point arithmetic. In other words, relation
Eq. (A26) provides accurate gradient information only for a
lower- and upper-bounded range of step length values.

Next, we define

R =
∇J̃ADJ

∇J̃FD
, (A27)

E =
∣∣∣∣∇J̃ADJ−∇J̃FD

∇J̃FD

∣∣∣∣, (A28)

where R and E represent the ratio and the relative error be-
tween gradient information computed with the adjoint and
finite-difference method. If the continuous adjoint method
provides correct gradient information, we expect R ' 1 and
E to be sufficiently small.

The following generic baseline control is chosen:

CB
T (x,y)= CBetz

T

[
1
2
+

1
5

cos(kxx+π )

+
1
5

sin
(
kyy+π/5

)]
, (A29)

where CBetz
T = 8/9, kx = 2π/Lx and ky = 2π/Ly . Ideally,

we should validate the adjoint-based gradient against the
finite-difference one for all possible perturbations δCT. How-
ever, such validation would require us to solve the governing
equations (forward and backward) 2.4× 103 times since the
control space has such DOF using this numerical setup. This
computation is too expensive; therefore we select a limited
class of perturbations given by

δCT(x,y)= cos(akxx+π )+ sin
(
bkyy+π/5

)
(A30)

for different values of a and b.
Results of the comparison are shown in Fig. A2. We can

appreciate that for 10−11
≤ α ≤ 10−4 the ratio R is very

close to unity, and the relative error E is on the order of 10−4,
showing the typical U-shaped curve (Nita et al., 2016). How-
ever, for smaller step length values the relative error in-
creases due to the decreasing arithmetic accuracy of the
finite-difference-based gradient. The relative error also in-
creases for α > 10−4 due to discretization errors. We can ap-
preciate that Fig. A2b displays a first-order truncation error
in accordance with relation Eq. (A26).
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Figure A1. Planform view of (a) pressure perturbation, (b) velocity perturbation in the wind-farm layer, (c) velocity perturbation in the
upper layer, (d) adjoint pressure 5=51+52, (e) adjoint velocity field in the wind-farm layer and (f) adjoint velocity field in the upper
layer in subcritical (Fr = 0.9) flow conditions. The black rectangle indicates the wind-farm region.

Figure A2. (a) Ratio and (b) relative error between adjoint and finite-difference-based gradients.
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Appendix B: Optimal uniform thrust set-point
distribution

In the current section, we use the optimization framework
derived in Sect. 2.2 to find an optimal uniform and steady
thrust-coefficient distribution that minimizes the gravity-
wave-induced blockage effects. To avoid confusion, we will
denote with CO

T and CO,u
T the optimal non-uniform and uni-

form distributions, respectively. The wind-farm layout and
the atmospheric state are the ones detailed in Sect. 3.

Figure B1a and b display the optimal spatially invari-
ant CO,u

T together with the streamwise profile of CO
T through

the centre of the farm and its averaged value over the wind-
farm area 〈CO

T 〉 for the sub- and supercritical cases, respec-
tively. Moreover, CR

T denotes the thrust distribution used
in the reference model. Interestingly, CO,u

T corresponds to
the average of the non-uniform distribution in both cases.
Since CO

T is sensitive to the atmospheric conditions, we ex-
pect CO,u

T to also depend on the atmospheric state (in fact,
we observe a different value of CO,u

T in sub- and supercritical
conditions).

In the current example, the power gain G (see Eq. 21) over
the reference model configuration obtained with the non-
uniform distributions CO

T is 5.3 % and 7 % for the sub- and
supercritical cases, respectively. For the optimal uniform dis-
tributions, we obtain a power gain of 5 % and 6.6 %.

Figure B1. Reference thrust set point (CR
T ), optimal non-uniform thrust set point (CO

T ) and its averaged value over the wind-farm area (〈CO
T 〉)

and optimal uniform thrust-coefficient distribution (CO,u
T ) in (a) subcritical and (b) supercritical flow conditions. The CO

T profiles are taken
through the centre of the farm (y = 0).

Wind Energ. Sci., 6, 247–271, 2021 https://doi.org/10.5194/wes-6-247-2021



L. Lanzilao and J. Meyers: Set-point optimization in wind farms to mitigate effects of flow blockage 269

Appendix C: Grid sensitivity

A grid sensitivity analysis is performed to determine the de-
pendence of the optimization results on the grid cell size.
To this end, we fix the size of the numerical domain to
1000H × 400H , and we vary the grid resolution spanning
from 5H toH/3, or equivalently from 1.6×104 to 3.6×106

DOF per layer. The results obtained are compared with the
ones derived on a finer grid with resolution equal to H/4.

Figure C1a and b display the cost function and power gain
relative error, respectively, which are computed as

EP =
∣∣∣∣PF
−P
P

∣∣∣∣, (C1)

EG =
∣∣∣∣GF
−G
G

∣∣∣∣, (C2)

where PF
= J̃ F/T and GF are the cost function (scaled with

the time horizon T ) and power gain obtained with aH/4 grid
resolution while P = J̃ /T and G are the ones obtained with
coarser grids. Note that the optimal distributions are steady
state; therefore EP is not dependent on the choice of the time
horizon T . The cost function is evaluated using the reference
case setup. The power gain is obtained using the optimization
model described in Sect. 2. The model setup is reported in
Table 1.

Spectral methods are known to have exponential conver-
gence when used for discretizing smooth functions (i.e. f ∈
C∞). However, algebraic convergence is attained for func-
tions f ∈ Cp with p ≥ 0. Figure C1 illustrates that we obtain
a first-order convergence. This is due to the two-dimensional
Heaviside function B(x, y) used for representing the wind-
farm footprint, which is discontinuous with discontinuous
derivatives. Figure C1 also confirms that the results of the op-
timization model are grid independent. In fact, the cost func-
tion and power gain values change about 1 % and 4 % when
the number of grid cells is increased by 2 orders of magni-
tude (from 104 to 106). This justifies the use of a coarser grid
in the sensitivity study performed in Sect. 4.2.

Figure C1. (a) Cost function and (b) power gain relative error between a grid with resolutionH/4 and coarser grids in sub- and supercritical
flow conditions.
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