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Abstract. Machine learning is quickly becoming a commonly used technique for wind speed and power fore-
casting. Many machine learning methods utilize exogenous variables as input features, but there remains the
question of which atmospheric variables are most beneficial for forecasting, especially in handling non-linearities
that lead to forecasting error. This question is addressed via creation of a hybrid model that utilizes an autoregres-
sive integrated moving-average (ARIMA) model to make an initial wind speed forecast followed by a random
forest model that attempts to predict the ARIMA forecasting error using knowledge of exogenous atmospheric
variables. Variables conveying information about atmospheric stability and turbulence as well as inertial forcing
are found to be useful in dealing with non-linear error prediction. Streamwise wind speed, time of day, turbulence
intensity, turbulent heat flux, vertical velocity, and wind direction are found to be particularly useful when used
in unison for hourly and 3 h timescales. The prediction accuracy of the developed ARIMA–random forest hybrid
model is compared to that of the persistence and bias-corrected ARIMA models. The ARIMA–random forest
model is shown to improve upon the latter commonly employed modeling methods, reducing hourly forecasting
error by up to 5 % below that of the bias-corrected ARIMA model and achieving an R2 value of 0.84 with true
wind speed.

1 Introduction

Global wind power capacity reached almost 600 GW at the
end of 2018 (GWEC, 2019), making wind energy a vi-
tal component of international electricity markets. Unfortu-
nately, integrating wind power into an existing electrical grid
is difficult because of wind resource intermittency and fore-
casting complexity. For utility companies employing wind
power, it is important to estimate the aggregated load over
a period of time to better balance grid resources, includ-
ing long-term (1+ days ahead), short-term (1–3 h ahead),
and very-short-term (15 min ahead) forecasts (Soman et al.,
2010; Wu et al., 2012). Forecasting accuracy depends on
site conditions, surrounding terrain, and local meteorology.
Many wind farms are built in locations which are known
to amplify winds due to surrounding terrain (such as Lake

Turkana in Kenya, Tehachapi Pass in California, etc.), re-
quiring bespoke forecasts for accurate predictions. Numer-
ical weather prediction models (NWPs) fail at such complex
sites due to a lack of appropriate parameterization schemes
suitable for local conditions (Akish et al., 2019; Bianco et al.,
2019; Olson et al., 2019; Stiperski et al., 2019; Bodini et al.,
2020). Therefore, statistical models and computational learn-
ing systems (such as an artificial neural network or random
forest) are likely better suited to provide accurate power fore-
casts. Since wind power production is heavily reliant upon
environmental conditions, improvements in wind speed fore-
casting would allow for more reliable wind power forecasts.

If we simplify our wind speed prediction process down to
its core (which has no true relation to atmospheric motions),
we can imagine a system of atmospheric flow without exter-
nal forcing. This would result in a constant streamwise wind
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speed U (i.e., Uτ = Uτ−1; U is streamwise wind speed, τ a
time step; this assumes discrete time steps for simplicity).
In this case, a persistence or autoregressive forecast would
have zero forecasting error and uncertainty. However, uncer-
tainty increases once we add an external force that we may
represent by some variable x1. Now future wind speed may
be seen to be Uτ = f (Uτ−1, x1,τ−1). Assuming the external
force is notable in strength and coupled with the inertia as-
sociated with winds, the previous autoregressive model will
now struggle to predict Uτ because it does not take into ac-
count our external forcing x1,τ−1, resulting in an error ε (ετ is
abbreviated to ε for simplicity). We can then break down our
future wind speed into two parts: Uτ = Ûτ + ε, where Ûτ is
our autoregressive forecast that is only dependent on Uτ−1
(i.e., Ûτ = f (Uτ−1)). The prediction error is thus skewed to
represent the effects of the external force x1,τ−1 upon Uτ−1.

If we continue to add external forces (x1, x2, . . . xn;
n is the number of external-forcing variables), our atmo-
spheric system becomes much more complex and non-linear
due to interactions between forcing mechanisms. We can
again obtain our forecasting error as ε = f (Uτ−1, x1,τ−1,
x2,τ−1, . . . xn,τ−1), which we can discretize as ε = µε + ε′

(µε is the error bias, ε′ the error fluctuations about µε) given
that we have a statistically significant sample size, and the
process is stationary. Squaring this equation and taking the
average gives us the discretized equation for the mean square
error ε2 = µ2

ε + ε
′2, with ε′2 representing the error variance

and overlines denoting the average over all samples (Lange,
2005); µ2

ε represents the bias and may be removed via a sim-
ple bias correction. The true concern is the error fluctuation
term (ε′) which constitutes the error variance. Assuming the
external-forcing variables (x’s) are normally distributed, we
can break down ε′2 into two constituents (Ku, 1966):

ε′2 = σ 2
xj

(
∂ε

∂xj

)2

+ 2
[
σxj ,xk

∂ε

∂xj

∂ε

∂xk

]
, (1)

where j 6= k, σ 2
xj

is the variance of xj , and σxj ,xk is the co-
variance between xj and xk (subscript τ removed for sim-
plicity). Unless external forcing (or its coupling with Uτ−1)
is minimal, the error is likely highly non-linear and chaotic
(i.e., large ε′2). Therefore, it behooves us to discover which
forcing mechanisms and atmospheric variables are the best
predictors of individual fluctuations ε′, which we will call
“exogenous error”.

Many studies that use machine learning (ML) techniques
for wind speed or power forecasting utilize a handful of
unadulterated atmospheric variables such as wind speed,
pressure, and temperature as input features (Mohandes et al.,
2004; Ramasamy et al., 2015; Lazarevska, 2018; Chen et al.,
2019). Recently, a handful of investigations have begun to
determine which variables may be most useful for these mod-
els. Vassallo et al. (2020) showed that invoking turbulence in-
tensity (TI) can vastly improve vertical wind speed extrapo-

lation accuracy. Similarly, Li et al. (2019) showed that TI im-
proves wind speed forecasting on multiple timescales, while
Optis and Perr-Sauer (2019) showed that both atmospheric
stability and turbulence levels are important indicators for
wind power forecasting. Markedly, it has been shown by Ca-
denas et al. (2016) that multivariate statistical models con-
sistently outperform univariate models for wind speed fore-
casting. However, to the authors’ knowledge, the question
of which atmospheric variables are most useful in predicting
exogenous error has not been addressed in the literature.

This investigation aims to determine if exogenous error
may be, at least in part, predicted via a list of common me-
teorological measurements by following a methodology sim-
ilar to that performed by Cadenas and Rivera (2010). The
autoregressive integrated moving-average (ARIMA) model
first obtains an autoregressive forecast, and the forecasting
error is extracted and bias-corrected. A random forest model
is then utilized to discover patterns in the exogenous vari-
ables (and their relations to the endogenous variable U ) that
are predictive of exogenous error. The ARIMA–random for-
est hybrid model so constructed is referred to as the ARIMA–
RF model.

This study is not intended to provide a catch-all list of in-
put features that should or should not be used for every future
study. Rather, it aims to inform future researchers and indus-
try professionals as to what types of meteorological infor-
mation must be used as ML inputs to predict the non-linear
interactions between various atmospheric forces. Section 2
describes the Perdigão field campaign (the data source for
the work), site characteristics, and instrumentation used for
data collection. Section 3 provides an overview of the models
utilized, testing process, and feature extraction and selection
methodology. Section 4 provides testing results and includes
a discussion of the obtained results. Finally, conclusions can
be found in Sect. 5.

2 Site, data, and instrumentation

Data for this study were taken from the Perdigão campaign,
a multinational project located in central Portugal that took
place in the spring of 2017 (Fernando et al., 2019). The
project site is characterized by two parallel ridges, both about
5 km in length with a 1.5 km wide valley between them.
These ridges, which are represented by the elevated contours
in Fig. 1, run northwest to southeast and rise about 250 m
above the surrounding topography, making the site highly
complex and increasing forecasting difficulty. The ridges will
be referred to as the northern and southern ridge.

A variety of remote and in situ sensors were positioned in
and around the valley to provide an accurate and thorough
description of the surrounding flow field. Foremost among
these sensors was a grid of meteorological towers which ran
both parallel and normal to the ridges. One 100 m tower lo-
cated on top of the northern ridge (white star in Fig. 1) is uti-
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Figure 1. Contour plot of the campaign topography
in m a.m.s.l. (meters above mean sea level). The white star
represents the 100 m tower location on the northern ridge.

lized in this study. This tower had sonic anemometers (20 Hz
native measurement resolution) at 10, 20, 30, 40, 60, 80, and
100 m a.g.l. (above ground level) as well as temperature sen-
sors at 2, 10, 20, 40, 60, 80, and 100 m a.g.l. Information
about tower data quality control, including corrections for
boom orientation and tilt, may be found in NCAR/UCAR
(2019). One of the towers in Perdigão was instrumented
with sonic anemometers on both ends of the boom, allowing
for an investigation into the effects of tower shadow. Mini-
mal tower shadow effects were observed from the northwest
(∼ 310–340◦), with a maximum of only 7 % flow deceler-
ation. Wake effects were much smaller than those reported
in previous studies (Moses and Daubek, 1961; Cermak and
Horn, 1968; Orlando et al., 2011; McCaffrey et al., 2017; Lu-
bitz and Michalak, 2018), which generally exceed 30 %. We
have therefore left the data unaltered. The tower data in the
Perdigão database have been averaged into 5 min increments
by data managers at the National Center for Atmospheric Re-
search (NCAR).

Sensors at 20 and 100 m a.g.l. were chosen because of the
high percentage (> 99 % for all variables except tempera-
ture at 100 m a.g.l., which was available for ∼ 95 % of the
periods) of clean data at these elevations. The utilized data
spans 3 months, running from 10 March–16 June 2017. Data
at 100 m were correlated with those at 20 m, and missing
data were filled using the variance ratio measure–correlate–
predict method (Rogers et al., 2005). Any periods unavail-
able at both heights were filled using linear interpolation with
Gaussian noise. All periods are required for proper function-
ality and assessment of the ARIMA model, and manually
filled periods are not expected to make a noticeable differ-
ence in the findings.

The quality-controlled data were averaged over 10 min,
hourly, and 3 h segments at a 5 min moving average in or-
der to create three robust datasets, each consisting of over
28 000 samples. These three datasets were split via strati-
fied 10-fold cross-validation (Diamantidis et al., 2000). The
target streamwise wind speed, or that to be forecasted, is

located at 100 m a.g.l. Squared buoyancy frequency (N2),
Richardson numbers (fluxRif and gradientRig), and temper-
ature gradient ( ∂T

∂z
) were calculated between 20–100 m a.g.l.

Friction velocity (u∗) was found at 20 m, just above surface
roughness height (Fernando et al., 2019). All other input vari-
ables utilized were from 100 m a.g.l.

3 Methodology

This investigation utilizes two modeling methods,
ARIMA and random forest regression, to create a hy-
brid model (ARIMA–RF) wherein the ARIMA model is
first used to get a linear, univariate wind speed forecast.
The ARIMA forecast is bias-corrected, and the exogenous
error ε′ is then extracted and used as the target variable for
the random forest. The random forest’s goal (and the goal
of the study) is to predict ε′ (predictions denoted as ε̂′) and
determine which atmospheric variables and forcing cate-
gories are useful for the predictive process. After the most
important variables have been established, combinations
of these input features are tested in an effort to determine
whether specific groupings of input features may provide
similar (or improved) forecasts compared to tests which
incorporate all inputs. Finally, the ARIMA–RF results are
compared with those of the persistence and bias-corrected
ARIMA (hereafter referred to as the BCA) models. Sec-
tion 3.1 details the ARIMA model, while Sect. 3.2 describes
random forest regression. Section 3.3 and 3.4 provide more
detail on the feature extraction and selection methodology
as well as the testing procedure.

3.1 ARIMA

ARIMA (Box et al., 2015) is a univariate statistical model
used for time series forecasting. It is predicated on the combi-
nation of three functions: an autoregressive function that uses
lagged values as inputs, a moving-average function that uses
past forecasting errors as inputs, and a differencing function
used to make a time series stationary. In its simplest form,
the next term in a time series sequence, yτ , is given by

yτ =

p∑
i=1

φiyτ−i +

q∑
j=1

2jετ−j + ετ , (2)

where p and q are the orders of the autoregressive and
moving-average functions, respectively; φi and 2j the
ith autoregressive and j th moving-average parameters, re-
spectively; yτ−i the ith lagged value; ετ−j the j th past pre-
diction error; and ετ the error term at time τ . The order of
differencing is given by the parameter d and does not show
up directly in Eq. (2).

The dataset was tested for long-term statistical stationarity
via the Augmented Dickey Fuller Test (Dickey and Fuller,
1979) using the statsmodels Python module (Seabold and
Perktold, 2010). The test, to a statistically significant degree,
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proved that the wind speed data contain no embedded trends
or drift (e.g., changes in the mean or variance of the wind
speed due to long-term variability). Therefore, the differenc-
ing parameter d was set to 0 (this turns the ARIMA model
into an ARMA model, but we stick with the term ARIMA for
uniformity). The autoregressive and moving-average param-
eters used, p = 2 and q = 1, were determined via minimiza-
tion of the Akaike information criterion (Shibata, 1976) and
empirical testing. Increasing parameters beyond this point
did not lead to improved ARIMA accuracy.

3.2 Random forest regression

Random forest regression (Breiman, 2001) is an ensemble
method that is made up of a population of decision trees.
Bootstrap aggregation (bagging) is used so that each tree can
randomly sample from the dataset with replacement, while
only a random subset of the total feature set is given to each
individual tree. The trees can be pruned (truncated) to add
further diversification. After construction, the population’s
individual predictions are averaged to give a final prediction
of the target variable. Ideally, this process results in a diver-
sified and decorrelated set of trees whose predictive errors
cancel out, producing a more robust final prediction.

An advantage of random forests is their ability to deter-
mine the importance of all input features for the predictive
process. This is done by calculating the mean decrease im-
purity or the decrease in variance that is achieved during a
given split in each decision tree. The decrease in impurity
for each input feature can be averaged over the entire forest,
providing an approximation of the feature’s importance for
the prediction (feature importance estimates sum to 100 %
to ease interpretability). To assist the random forest in repre-
senting the dynamic nature of atmospheric processes, input
variables are taken from the previous two time steps (i.e., in-
put feature U comprises Uτ−1 and Uτ−2).

The constructed random forest model contains 1000 trees
for tests of individual variables and 1500 trees for tests of
variable combinations. To ease concerns of overfitting, each
internal node was required to have at least 100 samples in
order to split (this truncation is a form of regularization). The
random forest model was built using the scikit-learn Python
library (Pedregosa et al., 2011).

3.3 Feature extraction and selection

In an effort to ensure that the findings are applicable to real-
world campaigns, we limit our sources of information to
those which may be measured by a typical meteorological
mast containing sonic anemometers alongside temperature
sensors. Using this information, we can write our future wind
speedUτ as a function of the following variables, which were
broken down into their mean and fluctuating values:

Uτ = f
(
Ui,θi,Wi,Ti, ti,u

′

i,θ
′

i ,w
′

i,T
′

i

)
, (3)

where Ui and θi are the mean streamwise wind speed and di-
rection, respectively;Wi the mean vertical wind speed; Ti the
mean temperature; ti the time of day; u′i the fluctuating hor-
izontal velocity; θ ′i the fluctuating wind direction; w′i the
fluctuating vertical velocity; and T ′i the fluctuating temper-
ature at each previous time step i. Unfortunately, θ ′ was not
available within the dataset utilized (which had already been
5 min averaged) and is therefore ignored for this study. Pre-
vious analysis, however, has shown that θ ′ varies inversely
with U in complex terrain (Papadopoulos et al., 1992), and
we may therefore assume its influence is largely captured
by U .

Although these unadulterated features give us an idea as
to how the system is working at the moment, they may not
explicitly represent the relevant atmospheric forcing mech-
anisms. Our list of measurements allows us to break down
our system into two principal forcing components: buoyancy
and inertial forcing (which indirectly includes pressure gra-
dient forces). Each of these forces can be further discretized
into large and small scales (also called mean and fluctuating
values, typically separated by at least 1 order of magnitude).

Figure 2 shows an illustrative breakdown of the two main
forcing mechanisms alongside a list of extracted descrip-
tor variables. The definitions and formulations of all non-
obvious extracted variables used in this study can be found
in Appendix A. From this figure, it is clear that the variables
in Eq. (3), when manipulated, are able to describe both the
inertial and buoyant forces at multiple scales. Large-scale
inertial forcing can be described by the local mean wind
speed (U ) and direction (θ ; broken down into north–south
and east–west components in an attempt to eliminate any dis-
continuities) or vertical velocityW , while small-scale inertial
forcing can be described by variables such as the fluctuating
(standard deviation of) velocity σu, friction velocity u∗, and
the turbulence kinetic energy (TKE). Likewise, large-scale
buoyancy forcing can be described by the squared buoyancy
frequency N2, the temperature gradient ∂T /∂z, or proxy val-
ues such as the time of day t (broken down into sine and co-
sine components, one of which relates to 00:00–12:00 LT (lo-
cal time) and the other to 06:00–18:00 LT) or temperature T
(which, on average, is higher during the day and lower at
night; stability parameters based on Monin–Obukhov simi-
larity theory have been considered ill-suited for complex ter-
rain flows because of the breakdown of underlying assump-
tions (Fernando et al., 2015) and hence were not used in
this study). Small-scale buoyancy effects can be described
by the turbulent heat fluxw′T ′. The correspondence between
forces and internal parameters can also be described by non-
dimensional variables such as the gradient Richardson num-
berRig, flux Richardson numberRif, turbulence intensity TI,
and normalized friction velocity u∗/U . These derived non-
dimensional variables, or extracted features, are typically ig-
nored by current ML models in lieu of raw features such as
those listed in Eq. (3).
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Figure 2. Illustrative breakdown of the scales and variables related
to inertial and buoyant forcing; θ ′ is not shown as it is not utilized
in the analysis.

Extracted variables like those in Fig. 2 may not provide
any more information than the raw variables in Eq. (3). How-
ever, they may ease the burden on the model by discretiz-
ing (or directly relating) informational categories, therefore
reducing informational overlap and noise, providing more
periodic patterns, and more accurately describing the un-
derlying system. Further, such well-conceived meteorolog-
ical variables have been shown to be useful for atmospheric
prediction (Kronebach, 1964; Li et al., 2019; Bodini et al.,
2020). In theory, given enough data, the model should be
able to decipher and interpret these extracted features on its
own. Unfortunately there often is not enough collected data
for this to happen organically. Instead, by providing better
information we can create a simpler, cheaper, more robust
model that requires less training data and construction time.
Selected features will ideally represent the underlying system
as accurately as possible without providing noisy or redun-
dant information.

3.4 Testing

Initial tests utilize a full feature set (i.e., all input variables are
included). Feature importance estimates are then extracted
from the random forest model, and various user-selected
combinations of the most important input features are tested.
It must be noted that only select input feature sets were tested
in this investigation due to the sheer multitude of potential
feature sets.

In order to relieve any timescale bias, forecasts are made
across multiple timescales. Typically, wind power utility op-
erators require single-step short-range power forecasts run
hour by hour for a few days to reduce unit commitment
costs. The forecast skill of observation-based methods gen-
erally reduces with forecast lead time within 1 h, and numer-
ical models have higher skill in forecasting larger lead times
(> 3 h; Haupt et al., 2014). Statistical learning methods have
proved to be particularly effective from about 30 min to ap-
proximately 3 h ahead (Mellit, 2008; Wang et al., 2012; Yang

et al., 2012; Morf, 2014), and roughly this time frame is thus
the focus for this study. The shortest forecast predicts wind
speeds 10 min ahead, roughly within the turbulent spectral
band (Van der Hoven, 1957). Forecasts are also made 1 and
3 h ahead, which are within the spectral gap between the
turbulent and synoptic spectra and approach the 6 h period
wherein NWP models become particularly useful (Dupré
et al., 2019). These are all single-step forecasts, which is to
say that the averaging timescale increases with the forecast-
ing timescale (e.g., a 10 min forecast predicts 10 min aver-
aged wind speed, whereas a 3 h forecast predicts 3 h aver-
aged wind speed). Each dataset is split via stratified k-fold
cross-validation (Diamantidis et al., 2000), a technique that
splits the dataset into k sections (in this case, we set k = 10)
and uses each section as a separate test set (i.e., tests consist
of 10 runs, each of which utilizes a unique test set). This
technique splits data nearly chronologically, ensuring that
the model does not overfit the dataset. Forecasting metrics
for each test are obtained by averaging the ensemble of all
10 runs.

The root mean square error (RMSE) and mean absolute
error (MAE) of the BCA are found for each timescale, giv-
ing two metrics of the true exogenous error ε′. The random
forest model is then trained to predict ε′, combined with the
ARIMA model, and the newly constructed ARIMA–RF is
used to forecast wind speeds. The reduction in RMSE and
MAE (which come exclusively from the random forest’s pre-
diction of exogenous error ε̂′) is then found for the test set.
Equations (4) and (5) describe both metrics, wherein Um is
the target wind speed, Ûm the predicted wind speed, m each
individual sample, and M the sample size.

RMSE=

√√√√ 1
M

M∑
m=1

(
Um− Ûm

)2
(4)

MAE=
1
M

M∑
m=1

∣∣∣Um− Ûm

∣∣∣ (5)

4 Results and discussion

The ARIMA–RF model utilizing the full feature set obtained
lower RMSE than the BCA for all timescales. Figure 3 shows
a comparison between the RMSE obtained by the ARIMA–
RF model and that obtained by the persistence and BCA
models. The BCA’s RMSE amounted to 0.726, 1.132, and
1.575 m s−1 for the 10 min, hourly, and 3 h forecasts, respec-
tively. The ARIMA–RF, utilizing all input features, reduced
these RMSE values (as well as the MAE values) by ∼ 2 %,
4 %, and 11 %, respectively (RMSE and MAE values given in
Table 1). The random forest is clearly able to ascertain more
prudent physical patterns at larger timescales (up to 3 h) as
large-scale atmospheric dynamics provide a more predictable
signal for the prediction of exogenous error.
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Table 1. RMSE and MAE (m s−1) obtained by the persistence, BCA, and ARIMA–RF models when utilizing select input feature combina-
tions. The final two rows show the testing results when utilizing the full input feature set and the full feature set except T . Underlined values
show the best performance from each column.

10 min Hourly 3 h

RMSE MAE RMSE MAE RMSE MAE

Model

Persistence 0.737 0.531 1.165 0.884 1.676 1.315
BCA 0.726 0.528 1.132 0.863 1.575 1.240

Input features

U , θ , t 0.733 0.533 1.109 0.834 1.533 1.194
U , θ , t , T 0.752 0.549 1.164 0.876 1.597 1.231
U , θ , t , W 0.729 0.531 1.095 0.825 1.518 1.185
U , θ , t , TI 0.730 0.531 1.072 0.812 1.533 1.191
U , θ , t , w′T ′ 0.731 0.532 1.095 0.825 1.521 1.189
U , θ , t , W , TI, w′T ′ 0.728 0.530 1.073 0.812 1.521 1.180
U , θ , t , W , TI, w′T ′, T 0.738 0.539 1.115 0.842 1.565 1.215
Full input feature set 0.714 0.520 1.092 0.830 1.395 1.100
All features except T 0.712 0.518 1.071 0.813 1.379 1.083

Figure 3. Comparison of RMSE obtained by the persistence, BCA,
and ARIMA–RF with the full input feature set for all forecasting
timescales.

All feature importance values were extracted from the ran-
dom forest and are shown in Fig. 4. The variables are bro-
ken down into three distinct categories: inertial (large-scale
dimensional variables signifying inertial forces in Fig. 2),
stability (blue and purple regions in Fig. 2 which are akin
to atmospheric stability), and turbulence variables (small-
scale and non-dimensional inertial variables in Fig. 2); θ is
the most important variable for the prediction of ε′ at all
timescales, achieving up to 20 % importance at the 3 h
timescale. Figure 5a shows the partial dependence on the
east–west component of θ (i.e., the random forest model’s
average predictions, ε̂′, across the range of a given vari-
able, in this case the east–west component of θ ) alongside
the variable’s distribution. The model is clearly able to dis-
cern an east–west directional pattern in the training data. The
climatology above the Perdigão ridges displays a procliv-
ity for northeasterly and southwesterly flows, the former of
which exhibit comparatively high velocities (Fernando et al.,

2019). The BCA tends to underpredict flow from the north-
east (i.e., the random forest’s average target variable ε′ is pos-
itive; Fig. B1, Appendix B). Accordingly, the random forest
predicts positive ε′ values, correcting for the BCA’s under-
prediction. Figure 6c, which displays both the ARIMA–RF
(solid lines) and BCA (dashed lines) RMSE values by di-
rectional sector, shows that the ARIMA–RF successfully im-
proves hourly and 3 h forecasting accuracy when winds are
northeasterly.

Even larger improvement is seen for westerly winds which
pass over the southern ridge prior to reaching the measure-
ment location (Fig. 6c). Westerly winds are common between
13:00–21:00 LT (Fernando et al., 2019), and Fig. 6b shows
that the ARIMA–RF is able to improve upon the BCA fore-
cast during these hours. The BCA tends to overpredict wind
speeds around 12:00 LT (i.e., negative ε′ in Fig. B2, Ap-
pendix B), as wind speeds reach a relative nadir (Fernando
et al., 2019). The model’s overprediction is captured and par-
tially corrected by the random forest, which predicts negative
ε′ values around noon (t ≈−1 in Fig. 5c). Wind speeds then
pick up throughout the afternoon as the atmosphere becomes
more convective. Increased convection leads to high TKE
and TI values, which peak in the mid-afternoon (not shown).
As wind speeds rise and the atmosphere becomes more con-
vective, the BCA begins to underpredict wind speeds. The
underprediction is once again captured by the random forest,
and the artifacts can be seen in Fig. 5b and c. The random for-
est identifies periods more than 5 h from noon (t ≥−0.25 in
Fig. 5c) and those with high TI as periods wherein the BCA
will likely underpredict wind speeds, and it corrects the BCA
forecast accordingly by predicting positive ε′ values.
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Figure 4. Feature importance for the prediction of exogenous error when all input features are given to the random forest model. Panel
(a) shows importance for the 10 min prediction, panel (b) shows importance for the hourly prediction, and panel (c) shows importance
for the 3 h prediction. Blue bars denote inertial variables, orange bars denote stability variables, and gray bars denote turbulence variables.
Importance values for each test sum to 100 %.

Figure 5. Lines show dependence between the random forest prediction ε̂′ and (a) the east–west component of θ , (b) TI, (c) the noon–
midnight component of t , and (d) T . Blue shading shows variable distribution. Arrows in (a) and (c) correspond to direction (on the x axis)
of the normalized oscillatory component.

A comparison of both the BCA and ARIMA–RF mod-
els’ RMSE values in stable and unstable conditions (Table 2)
shows that the BCA performs better under unstable condi-
tions for both the hourly and 3 h forecasts, but the opposite
is true for the 10 min timescale. Increased turbulence dur-
ing the daytime clearly hampers the BCA when forecasting
10 min and, to a lesser extent, 1 h ahead (dashed gray and
yellow lines, respectively, in Fig. 6d). Notably, the random

forest is only able to make minimal forecasting improve-
ments (∼ 1.5 %) on the 10 min and hourly timescales during
unstable conditions but is able to improve the 3 h forecast
by almost 15 % during such conditions. Wind speeds can be
highly chaotic during convective conditions, leading to large
fluctuations as high-energy eddies pass through the measure-
ment location. Typically the large-eddy turnover timescale
for the lower atmosphere is 10–20 min (specifically during
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Figure 6. RMSE obtained by the ARIMA–RF (with the full feature set; solid lines with points) and BCA (dashed lines) partitioned by (a) U ,
(b) hour of the day (local time), (c) θ , and (d) TKE.

Table 2. RMSE (m s−1) obtained by the BCA and ARIMA–RF
(with the full input feature set) based on stability (as defined byN2)
of the forecasted time period.

Stable Unstable

Timescale BCA ARIMA–RF BCA ARIMA–RF

10 min 0.711 0.700 0.770 0.758
1 h 1.166 1.118 1.017 1.003
3 h 1.590 1.418 1.526 1.299

daytime), and averaging timescales approaching or less than
this timescale exclude information on more stable and de-
terministic large eddies, thus making predictions more prone
to random errors. The lack of large-eddy influence results
in a wind speed signal that is replete with random fluctua-
tions originating in the inertial subrange, adding substantial
noise to the prediction. These fluctuations may overwhelm
the ML model’s pattern recognition capabilities, even up to
the hourly timescale, reducing the random forest prediction
to a noisy guess. Such ML models will always make predic-
tions based on patterns in the training data, even when those
patterns are erroneous and do not hold for the testing dataset.
This results in error predictions that are only minimally cor-
related with the true exogenous error.

The highest RMSE values produced by the hourly and 3 h
BCA occur during the evening transition period (Fig. 6b;
sunset typically between 20:00–21:00 LT). There is a drastic
reduction in both wind speed and atmospheric TKE during

this period (Fernando et al., 2019) as the atmosphere transi-
tions from a convective to a stable regime. Wind ramps (de-
fined as wind speed changes of 20 % and 50 % for hourly and
3 h forecasts, respectively) are particularly prevalent between
19:00–23:00 LT (not shown). Such ramp events are difficult
for a simple statistical model such as ARIMA to predict as
they are not only highly situational but also statistical out-
liers. The random forest is able to partially discern such tran-
sitional events occurring between 19:00–23:00 LT, reducing
RMSE by an average of 1 %, 6 %, and 16 % for the 10 min,
hourly, and 3 h timescales, respectively.

The seven most important features for the hourly and 3 h
predictions, namely θ ,U , TI, t , T ,W , andw′T ′, are identical
(although scrambled; Fig. 4) and were therefore used to test
discriminant feature set combinations. All tests with multiple
input features contained U , θ , and t . There are two reasons
for prioritizing these three variables: they prove to be some
of the most important input features for all timescales, and
they can all be captured by a simple cup anemometer and
wind vane rather than a more expensive sonic anemometer.
These three features, when used in conjunction, were able to
achieve about 58 % of the error reduction obtained by the
test incorporating all features at the hourly timescale (Ta-
ble 1). Although T appears to be one of the most important
input features (Fig. 4), it clearly hinders the model’s predic-
tive capabilities and decreases prediction accuracy across all
timescales. The case with an input set of U , θ , t , and T con-
sistently performs the worst of all cases shown in Table 1.
Simply adding T to the base input feature set (U , θ , and t)
decreases forecasting accuracy by up to 5 %, whereas remov-
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ing T from the full input feature case improves prediction
accuracy at all timescales. T is highly seasonal, and, because
stratified k-fold cross-validation splits the training and test-
ing sets nearly chronologically (the distribution of the target
variable ε′ is kept constant between training and testing sets),
the discrepancy between mean T values can be as high as
10 ◦C between the training and testing set. The disparity be-
tween the training and testing distributions clearly hampers
the random forest’s predictive capabilities by providing train-
ing information that is nugatory or deleterious for prediction
on the testing set. As can be seen in Fig. 5d, the random
forest appears to be somewhat dependent upon T , particu-
larly on the 3 h timescale, as low T leads to positive ε̂′, and
high T leads to negative ε̂′. T is a clear example of the in-
herent risks associated with utilizing dimensional or seasonal
inputs within an ML forecasting model, although such issues
may be negated for a dataset spanning several years.

The discriminant input set incorporating only U , θ , t , W ,
TI, andw′T ′ produces an hourly forecast that is nearly equiv-
alent to that incorporating all features except T (Table 1).W ,
TI, and w′T ′ all improve forecast accuracy, particularly at
the hourly timescale. The 10 min and 3 h models, however,
appear to derive a majority of their forecasting skill from
the entire array of input features rather than the discrimi-
nant list tested. Notably, many of the most important input
features (U , θ , t , and W ) are directly measurable and need
not be extracted (although W cannot be captured by a cup
anemometer). The most important variables that require ex-
traction (i.e., values that are not direct measurements), TI and
w′T ′, both contain small-scale (fluctuating) forcing compo-
nents, indicating that small-scale processes may be more eas-
ily captured by ML models after domain-specific interpreta-
tion. These small-scale variables provide significant forecast-
ing improvements, even at a multi-hour timescale. The test-
ing results from the study show that, in order to achieve an
optimal forecast of exogenous error, information about these
small scales must be included as inputs for the predictive
model.

The results of the discriminant tests, which may be found
in Table 1, show a stark distinction between the 10 min and
the hourly and 3 h forecasts. None of the 10 min tests except
that with the full input feature set (and all features except T )
were able to improve upon the BCA forecast. In contrast, all
hourly and 3 h tests except those utilizingU , θ , t , and T were
able to improve upon the BCA forecast. The disparity in
the findings likely reflects the inherent challenges associated
with forecasting wind speeds within the turbulent peak of the
wind speed spectrum (Van der Hoven, 1957); 10 min fore-
casts are more prone to turbulent fluctuations induced by ed-
dies in the inertial subrange. Hourly and 3 h forecasts, how-
ever, incorporate information from more stable large-scale
eddies, allowing for a more predictable meteorological pat-
tern.

A majority (if not all) of the random forest’s predic-
tive capability derives from the utilization of multiple atmo-

spheric variables within the input feature set. Table B1 in
Appendix B shows that t is the only input feature that, when
used individually, leads to a decrease in RMSE below that of
the BCA. Individual atmospheric variables effectively rep-
resent the magnitude of the first term on the right side of
Eq. (1), σ 2

xj
( ∂ε
∂xj

)2. The random forest model is more pow-
erful when utilizing multiple atmospheric variables within
the input feature set because the model can incorporate the
second term on the right side of Eq. (1) (2[σxj ,xk

∂ε
∂xj

∂ε
∂xk
]),

an indication of how the exogenous error changes depend-
ing on the input features’ co-variance. This is especially true
for the testing case incorporating all input features except T ,
which typically provides the most accurate predictions of
exogenous error. The ARIMA–RF’s improvement over the
BCA forecast increases with increasing timescales, provid-
ing more than 11 % improvement at the 3 h timescale. The
ARIMA–RF hourly forecast (with the full input feature set)
obtains an R2 value of 0.84 with true wind speed, akin to that
of numerical models in complex terrain (Yang et al., 2013).
This study shows that the forecasting improvement, which
comes from prediction of non-linear exogenous error ε′, can
be directly attributed to prudent feature engineering.

5 Conclusions

Exogenous error (ε′) arises from atmospheric forcing that is
ignored or misrepresented in the modeling process. It has
been shown that this error, or a portion thereof, can be pre-
dicted by an ML model given relevant atmospheric infor-
mation. U , θ , t , W , TI, and w′T ′ were the most impor-
tant input features, whereas T provided information that was
particularly deleterious. Domain-specific feature extraction
was found to be particularly useful for input features relat-
ing small-scale forcing, and these turbulence variables were
found to reduce forecasting error even for multi-hour fore-
casts. Predictions of ε′ were shown to be particularly depen-
dent upon TI, but feature dependence patterns tend to be rel-
atively uniform across timescales. Atmospheric stability and
turbulence appear to play a large role in the model’s ability
to predict ε′ as the site’s specific climatology is shown to
produce many of the patterns captured by the random forest.
Finally, it is shown that utilizing multiple atmospheric vari-
ables which relate various forcing mechanisms and scales is
necessary in order to forecast ε′.

While the exact results of this investigation are site-
specific, the findings are expected to be generally applicable
to numerous wind projects, especially those located in com-
plex terrain. Prudent implementation of atmospheric forcing
information, particularly that which is non-linear or derived
via coupling of multiple forces, is crucial for the prediction
of exogenous error and must be addressed to obtain optimal
forecasting results. This study supports the supposition that a
hybrid model using ML techniques to correct a simpler sta-
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tistical predictor (such as an ARIMA model) can be effective
for wind speed forecasting.

Further improvements are still required to more accurately
represent atmospheric forcing. Gridded meso- or synoptic-
scale information would allow the model to predict transi-
tional periods including weather fronts and drastic wind ramp
events. Multiple scales of forcing should also be incorporated
to improve the pattern recognition capabilities of ML tech-
niques. Additional information about microscale, mesoscale,
and synoptic events would better depict atmospheric forc-
ing and momentum, and the effects of seasonality must be
accounted for when possible. Hopefully, this study will be
a forerunner for the improved incorporation of atmospheric
physics within ML modeling.
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Appendix A: Input features

Atmospheric variables were measured using sonic anemome-
ters and temperature sensors along a single 100 m tower.
When possible, missing data from the 100 m sensors were
filled via correlation with the 20 m sensors using the vari-
ance ratio measure–correlate–predict method (Rogers et al.,
2005). There were no periods with functional 100 m sen-
sors and nonfunctional 20 m sensors. All periods without any
measurements from both sets of sensors (15 5 min periods)
were filled using linear regression with Gaussian white noise.
Many of the input features used in the study required deriva-
tion. A description of necessary derivations is given below.

Friction velocity is defined as u∗ = (u′w′
2
+ v′w′

2
)

1
4 and

was measured at 20 m a.g.l., just above canopy height (Fer-
nando et al., 2019). Turbulence kinetic energy is defined as

TKE= u′2+v′2+w′2

2 and was measured at 100 m a.g.l. Buoy-
ancy frequency squared (see Kaimal and Finnigan, 1994, for
details of all parameters that appear below) is typically de-
fined as

N2
=
g

ρ0

∂ρ

∂z
=

g

Tpv0

∂Tpv

∂z
, (A1)

where g is the gravitational force, ρ is the air density, z is the
height above ground level, Tpv is the virtual potential tem-
perature, and subscript 0 indicates reference variables in us-
ing the Boussinesq approximation. The gradient Richardson
number is defined as

Rig =
N2(

∂u
∂z

)2
+

(
∂v
∂z

)2 , (A2)

where u and v are the two horizontal wind speed compo-
nents. The flux Richardson number is defined as

Rif =

g
Tv
w′T ′

u′w′
(
∂u
∂z

)
+ v′w′

(
∂v
∂z

) , (A3)

where Tv is the virtual temperature, while u′w′ and v′w′
(both measured at 100 m a.g.l. alongsidew′T ′ and Tv) are the
Reynolds stresses that indicate the flow’s vertical momen-
tum flux. Rif is typically used in conjunction with a stably
stratified atmosphere (Lozovatsky and Fernando, 2013). It is
used here in the general sense as it is a measure of the ra-
tio between buoyant energy production and mechanical en-
ergy production (associated with inertial forces) related to
Fig. 2. Negative N2 values, corresponding to convective at-
mospheric conditions, are set to 0. Rig and Rif are limited
to a maximum of 5 and minimum values of 0 and −5, re-
spectively, to remove extremes in both variables. Turbulence
intensity is the ratio of fluctuating to mean wind speed, or
TI= σu

U
. Both hour of the day and wind direction were bro-

ken into two oscillating components in order to eliminate any
temporal or directional discontinuity.
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Appendix B: Testing results and analysis

Figures B1 and B2 show the average exogenous error ε′ pro-
duced by the bias-corrected ARIMA (BCA) as partitioned by
direction and hour, respectively. Table B1 presents the RMSE
and MAE obtained by the BCA (total exogenous error) and
the ARIMA–RF using individual input features.

Figure B1. Average exogenous error (ε′) produced by the BCA partitioned by direction.

Figure B2. Average exogenous error (ε′) produced by the BCA partitioned by hour of the day.
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Table B1. The top row shows RMSE and MAE (both in m s−1) obtained by the BCA. Below are the resulting RMSE and MAE val-
ues from ARIMA–RF predictions utilizing individual inputs for all forecasting timescales. Input features are separated into inertial (top),
stability (middle), and turbulence (bottom) variables, as described in Sect. 4.

10 min Hourly 3 h

Model or input RMSE MAE RMSE MAE RMSE MAE

BCA 0.726 0.528 1.132 0.863 1.575 1.240

U 0.731 0.534 1.148 0.877 1.605 1.270
θ 0.731 0.535 1.143 0.871 1.641 1.295
W 0.730 0.534 1.145 0.876 1.627 1.278

t 0.729 0.533 1.127 0.864 1.559 1.233
N2 0.731 0.535 1.147 0.875 1.627 1.282
∂T
∂z

0.732 0.536 1.155 0.880 1.622 1.277
T 0.742 0.546 1.170 0.897 1.824 1.412
w′T ′ 0.730 0.533 1.149 0.877 1.631 1.298
Rif 0.729 0.532 1.145 0.874 1.620 1.278
Rig 0.728 0.531 1.135 0.868 1.590 1.251

σu 0.731 0.533 1.140 0.869 1.628 1.297
u∗ 0.730 0.534 1.149 0.881 1.611 1.277
TKE 0.730 0.532 1.144 0.871 1.626 1.296
TI 0.730 0.534 1.131 0.868 1.603 1.263
u∗

U
0.730 0.534 1.151 0.871 1.598 1.258
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