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Abstract. The financing of a wind farm directly relates to the preconstruction energy yield assessments which
estimate the annual energy production for the farm. The accuracy and the precision of the preconstruction energy
estimates can dictate the profitability of the wind project. Historically, the wind industry tended to overpredict
the annual energy production of wind farms. Experts have been dedicated to eliminating such prediction errors
in the past decade, and recently the reported average energy prediction bias is declining. Herein, we present a
literature review of the energy yield assessment errors across the global wind energy industry. We identify a long-
term trend of reduction in the overprediction bias, whereas the uncertainty associated with the prediction error
is prominent. We also summarize the recent advancements of the wind resource assessment process that justify
the bias reduction, including improvements in modeling and measurement techniques. Additionally, because
the energy losses and uncertainties substantially influence the prediction error, we document and examine the
estimated and observed loss and uncertainty values from the literature, according to the proposed framework in
the International Electrotechnical Commission 61400-15 wind resource assessment standard. From our findings,
we highlight opportunities for the industry to move forward, such as the validation and reduction of prediction
uncertainty and the prevention of energy losses caused by wake effect and environmental events. Overall, this
study provides a summary of how the wind energy industry has been quantifying and reducing prediction errors,
energy losses, and production uncertainties. Finally, for this work to be as reproducible as possible, we include
all of the data used in the analysis in appendices to the article.

1 Introduction

Determining the range of annual energy production (AEP),
or the energy yield assessment (EYA), has been a key part of
the wind resource assessment (WRA) process. The predicted
median AEP is also known as the P50, i.e., the AEP expected
to be exceeded 50 % of the time. P50 values are often defined
with timescales such as 1, 10, and 20 years. In this study, un-
less stated otherwise, we primarily discuss the 20-year P50,
which is the typical expected lifespan of utility-scale wind
turbines. For years, leaders in the field have been discussing
the difference between predicted P50 and actual AEP, where
the industry often overestimates the energy production of a
wind farm (Hale, 2017; Hendrickson, 2009, 2019; Johnson
et al., 2008). A recent study conducted by the researchers at
the National Renewable Energy Laboratory (NREL) found

an average of 3.5 % to 4.5 % P50 overprediction bias based
on a subset of wind farms in the United States and accounting
for curtailment (Lunacek et al., 2018).

Such P50 overestimation results in marked financial impli-
cations. Healer (2018) stated that if a wind project produces
a certain percentage lower than the P50 on a 2-year rolling
basis, the energy buyer, also known as the offtaker, may have
the option to terminate the contract. For a 20-year contract,
if a wind farm has a 1 % chance of such underproduction
over a 2-year period, the probability of such an event tak-
ing place within the 18 2-year rolling periods is 16.5 %, as
100 %− (100 %− 1 %)18

= 16.5 % (Healer, 2018), assum-
ing each 2-year rolling period is independent. Therefore,
projects with substantial energy-production uncertainty ex-
perience the financial risk from modern energy contracting.
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Figure 1. Mind map of energy-production loss, according to the IEC 61400-15 proposed framework. The blue and black rounded rectangles
represent the categorial and subcategorical losses, respectively. Details of each loss category and subcategory are discussed in Table A1.

Random errors cause observations or model predictions to
deviate from the truth and lead to uncertainty (Clifton et al.,
2016), and uncertainty is quantified via probability (Wilks,
2011). In WRA, the P values surrounding P50 such as P90
and P95 characterize the uncertainty of the predicted AEP
distribution. Such energy-estimate uncertainty depends on
the cumulative certainty of the entire WRA process, from
wind speed measurements to wind flow modeling (Clifton et
al., 2016). When a sample of errors is Gaussian distributed,
the standard deviation around the mean is typically used to
represent the uncertainty of errors. Traditionally, the wind
energy industry uses standard deviation, or σ , to represent
uncertainty.

The WRA process governs the accuracy and precision of
the P50, and a key component in WRA constitutes the esti-
mation of energy-production losses and uncertainties. Wind
energy experts have been using different nomenclature in
WRA, and inconsistent definitions and methodologies exist.
To consolidate and ameliorate the assessment process, the
International Electrotechnical Commission (IEC) 61400-15
working group has proposed a framework to classify vari-
ous types of energy-production losses and uncertainties (Fil-
ippelli et al., 2018, adapted in Appendix A). We illustrate
the categorical and subcategorical losses and uncertainties
in Figs. 1 and 2. Note that the proposed framework is not
an exclusive or exhaustive list of losses and uncertainties
because some institution-specific practices may not fit into
the proposed standard. Moreover, the proposed framework
presented herein does not represent the final IEC standards,
which are pending to be published.

The wind energy industry has been experiencing financial
impacts caused by the challenges and difficulties in predict-
ing energy-production losses and uncertainties over the life-
time of a modern wind project, which can continue to operate
beyond 20 years:

– an AEP prediction error of 1 GWh, e.g., because of
the P50 prediction bias, translates to about EUR 50 000
to 70 000 lost (Papadopoulos, 2019);

– reducing energy uncertainty by 1 % can result in
USD 0.5 to 2 million of economic benefits, depending
on the situation and the financial model (Brower et al.,
2015; Halberg, 2017);

– a change of 1 % in wind speed uncertainty can lead to a
3 % to 5 % change in net present value of a wind farm
(Kline, 2019).

Experts in the industry have presented many studies on
P50 prediction error, energy loss, and uncertainty for years,
and the purpose of this literature review is to assemble previ-
ous findings and deliver a meaningful narrative. This article
is unique and impactful because it is the first comprehensive
survey and analysis of the key parameters in the WRA pro-
cess across the industry. The three main research questions
of this study include the following:

– Is the industry-wide P50 prediction bias changing over
time, and what are the reasons for the changes?

– What are the ranges of different categories of energy-
production losses and uncertainties?

– Given our understanding on losses and uncertainties,
what are the opportunities for improvements in the in-
dustry?

From past research, in addition to the energy-production
uncertainties, we review how the industry has been quan-
tifying various wind speed uncertainties, particularly from
wind measurements, extrapolation methods, and modeling.
We also compile and present the wind speed results herein.
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Figure 2. Mind map of energy-production uncertainty, according to the IEC 61400-15 proposed framework. The purple and black rounded
rectangles represent the categorial and subcategorical uncertainties, respectively. Details of each uncertainty category and subcategory are
discussed in Table A2.

We present this article with the following sections: Sect. 2
documents the data and the methodology of data filtering;
Sect. 3 focuses on P50 prediction bias, including its trend
and various reasons of bias improvement; Sects. 4 and 5, re-
spectively, illustrate the energy-production loss and uncer-
tainty, according to the IEC-proposed framework; Sect. 6 de-
scribes the numerical ranges of various wind speed uncer-
tainties; Sect. 7 discusses the implications and future out-
look based on our findings; Sect. 8 provides conclusions;
Appendix A outlines the energy loss and uncertainty frame-
works proposed by the IEC 61400-15 working group; Ap-
pendix B compiles the data used in this analysis.

2 Data and methodology

We conduct our literature review over a broad spectrum of
global sources. The literature includes the presentations at
academic, industry, and professional conferences, particu-
larly the Wind Resource and Project Energy Assessment
workshops hosted by the American Wind Energy Associa-
tion (AWEA) and WindEurope, as they are the key annual
gatherings for wind resource experts. Additionally, we ex-
amine data from industry technical reports and white pa-
pers; publicly available user manuals of wind energy numeri-
cal models; technical reports from government agencies, na-
tional laboratories, and research and academic institutions;
and peer-reviewed journal articles. Many of the literature
sources originate in North America and Europe. Meanwhile,
many of the regional corporations we cited in this article
have become global businesses after mergers and acquisi-
tions; hence, their presentations and publications can also
represent international practices.

In most cases, we label the data source with the published
year of the study, unless the author highlights a change of
method at a specific time. For example, if an organization
publishes a study in 2012 and reports their improvements
on P50 prediction bias by comparing their “current” method
with their “previous set of methodology before 2012”, the
two P50 biases are recorded as 2012 and 2011, respec-
tively. Moreover, for the same study that documents mul-
tiple P50 prediction errors in the same year, we select the
one closest to zero, because those numbers reflect the state
of the art of P50 validation of that year (Fig. 3). Accord-
ingly, we use the paired P50 errors to indicate the effects from
method adjustments (Fig. 4). To track the bias impact of tech-
nique changes from different organizations, we combine the
closely related, ongoing series of studies from a single orga-
nization, usually by the same authors from the same institu-
tions (each line in Fig. 4).

We also derive the trend of P50 prediction errors using
polynomial regression and investigate the reasons behind
such trend. We use the second-degree polynomial regression
(i.e., quadratic regression) to analyze the trend of the P50 pre-
diction errors over time, and polynomials of higher degrees
only marginally improve the fitting. We choose the polyno-
mial regression over the simple linear regression because the
P50 prediction errors are reducing towards zero with a dimin-
ishing rate, and we use quadratic polynomial over higher-
order polynomials to avoid overfitting. Additionally, in the
regressions presented in this article (Figs. 3, 8, and C1), we
present an estimated 95 % confidence interval, generated via
bootstrapping with replacement using the same sample size
of the data, which is performed through the regplot function
in the seaborn Python library (Waskom et al., 2020). The con-
fidence interval describes the bounds of the regression coef-
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Figure 3. The trend of P50 prediction bias: (a) scatterplot of 63 independent P50 prediction error values, where R2 is the coefficient of
determination and n is the sample size. Negative bias means the predicted AEP is higher than the measured AEP, and vice versa for positive
bias. The solid black line represents the quadratic regression, the dark grey cone displays the 95 % confidence interval of the regression line,
the light grey cone depicts the 95 % prediction interval, and the horizontal dashed black line marks the zero P50 prediction error. (b) As in
panel (a) but only for 56 studies that use more than 10 wind farms in the analyses. The vertical violet bars represent the estimated uncertainty
bounds (presented as 1 standard deviation from the mean) of the mean P50 prediction errors in 15 of the 56 samples. Table B1 summarizes
the bias data illustrated herein. For clarity, the regression uses the year 2002 as the baseline; hence, the resultant regression constant, i.e., the
derived intercept, is comprehensible.

Figure 4. Illustration of P50 bias changes over time after method
modifications in 17 studies. The dot and the cross, respectively, rep-
resent the starting point and the finish point of the P50 prediction
error because of method adjustments. The solid line indicates the
P50 bias reduces after the method change, and the dotted line dis-
plays the opposite. The different colors are solely used to differen-
tiate the lines and represent no meaning. The paired data are pre-
sented in Table B2.

ficients with 95 % confidence. Furthermore, we present the
95 % prediction interval in Fig. 3, which depicts the range of
the predicted values, i.e., the P50 prediction bias, with 95 %
confidence, given the existing data and regression model. The
prediction interval is calculated using standard deviation, as-
suming an underlying Gaussian distribution. In short, the

confidence interval illustrates the uncertainty of the regres-
sion function, whereas the prediction interval represents the
uncertainty of the estimated values of the predictand (Wilks,
2011). In addition, we evaluate the regression analysis with
the coefficient of determination (R2), which represents the
proportion of the variance of the predictand explained by the
regression.

For loss and uncertainty, we have limited data samples
for certain categories because these data are only sparsely
available. When a source does not provide an average value,
we perform a simple arithmetic mean when both the upper
and lower bounds are listed. For instance, when the average
wake loss is between 5 % and 15 %, we project the average of
10 % in Fig. 6, and we present all the original values in Ap-
pendix B. If only the upper bound is found, then we project
the data point as a maximum: the crosses in Fig. 6 are used as
an example. We also use linear regression to explore trends
in loss and uncertainty estimates.

We categorize the data to the best of our knowledge to
synthesize a holistic analysis. On one hand, if the type of
loss and uncertainty from a source uses marginally differ-
ent terminology from the IEC-proposed framework, we first
attempt to classify it within the IEC framework, we gather
other values in the same category or subcategory from the
same data source, and we select the minimum and the max-
imum. As an illustration, if the total electrical losses from
the substation and the transmission line are, respectively, 1 %
and 2 %, we then label the total electrical loss with the range
of 1 % to 2 %. On the other hand, when the type of loss and
uncertainty illustrated in the literature largely differ from the

Wind Energ. Sci., 6, 311–365, 2021 https://doi.org/10.5194/wes-6-311-2021



J. C. Y. Lee and M. J. Fields: An overview of wind-energy-production prediction bias 315

IEC framework, we label them separately (Figs. 7 and 11).
Because a few studies contrast wake loss and nonwake loss,
where nonwake loss represents every other type of energy
loss, we also include nonwake loss in this study (Figs. 6
and 10). When a type of uncertainty is recorded as simply
“extrapolation” (seen in McAloon, 2010 and Walter, 2010),
we label the value as both horizontal and vertical extrapola-
tion uncertainties with a note of “extrapolation” in Tables B6
and B8. We also divide the reported losses and uncertainties
into two groups, the “estimated” and the “observed”, where
the former are based on simulations and modeling studies,
and the latter are quantified via field measurements.

Unless specifically stated otherwise in Appendix B, we
present a loss value as the percentage of production loss per
year, and we document an uncertainty number as the sin-
gle standard deviation in energy percentage in the long term,
usually for 10 or 20 years. The wind speed uncertainty is
stated as a percentage of wind speed in m s−1, and the un-
certainty of an energy loss is expressed as percent of a loss
percentage.

This article evaluates a compilation of averages, where
each data point represents an independent number. The meta-
data for each study in the literature vary, in which the re-
sultant P50 prediction errors, losses, and uncertainties come
from diverse collections of wind farms with different com-
mercial operation dates in various geographical regions and
terrains. Therefore, readers should not compare a specific
data point with another. In this study, we aim to discuss the
WRA process from a broad perspective. Other caveats of
this analysis include the potentially inaccurate classification
of the data into the proposed IEC framework; the prime fo-
cus on P50 rather than P90, which also has a strong financial
implication; and the tendency in the literature to selectively
report extreme losses and uncertainties caused by extraordi-
nary events, such as availability loss and icing loss, which po-
tentially misrepresents the reality. Our data sources are also
only limited to publicly available data or those accessible at
NREL. We perform a rigorous literature review from over
150 independent sources, and the results presented in this ar-
ticle adequately display the current state of the wind energy
industry.

3 P50 prediction bias

3.1 Bias trend

We identify an improving trend of the mean P50 prediction
bias, where the overprediction of energy production is gradu-
ally decreasing over time (Fig. 3), and the narrow 95 % con-
fidence interval of the regression fit justifies the long-term
trend. Such an improving trend is not strictly statistically
significant (Fig. 3a), even after removing the studies based
on small wind farm sample sizes (Fig. 3b). However, the
R2 of 0.578 in Fig. 3b implies that over half of the variance
in bias can be described by the regression, and less than half

of the variance is caused by the inherent uncertainty between
validation studies that does not change over time. The aver-
age bias magnitude also does not correlate with the size of
the study, neither in wind farm sample size nor wind farm
year length (not shown). Note that in some early studies, the
reported biases measured in wind farm differ from those us-
ing wind farm year from the same source; we select the error
closest to zero for each independent reference because the
bias units are the same (Sect. 2).

The uncertainty of the average P50 prediction error quanti-
fied by the studies remains large, in which the mean standard
deviation is 6.6 % of the 15 data sources’ reported estimated
P50 uncertainty (violet bars in Fig. 3b). The industry started
to disclose the standard deviations of their P50 validation
studies in 2009, and it is becoming more common. With only
15 data points, we cannot identify a temporal trend of the
uncertainty in P50 prediction bias. Even though the industry-
wide mean P50 prediction bias is converging towards zero,
the industry appears to overestimate or underpredict the AEP
for many individual wind projects.

3.2 Reasons for bias changes

To correct for the historical P50 prediction errors, some or-
ganizations publicize the research and the adjustments they
have been conducting for their WRA processes. We summa-
rize the major modifications of the WRA procedure in Ta-
ble 1. Most studies demonstrate mean P50 bias improvement
over time (Fig. 4), and the magnitude of such bias reduction
varies. In two studies, the authors examine the impact of ac-
counting for windiness, which is the quantification of long-
term wind speed variability, in their WRA methodologies.
They acknowledge the difficulty in quantifying interannual
wind speed variability accurately, and their P50 prediction
errors worsen after embedding this uncertainty in their WRA
process (vertical dashed lines in Fig. 4).

4 Energy-production loss

The prediction and observation of production losses are
tightly related to the P50 prediction accuracy; hence, we con-
trast the estimated and measured losses in various categories
and benchmark their magnitude (Figs. 5–7). The total energy
loss is calculated from the difference between the gross en-
ergy estimate and the product of gross energy prediction and
various categorical production efficiencies, where each effi-
ciency is 1 minus a categorical energy loss (Brower, 2012).
Of the total categorical losses, we record the largest number
of data points from availability loss, and wake loss displays
the largest variability among studies (Fig. 5). For availability
loss, the total observed loss varies more than the total es-
timated loss and displays a larger range (Fig. 6a). The tur-
bine availability loss appears to be larger than the balance of
plant and grid availability losses; however, more data points
are needed to validate those estimates (Fig. 6a). Except for

https://doi.org/10.5194/wes-6-311-2021 Wind Energ. Sci., 6, 311–365, 2021



316 J. C. Y. Lee and M. J. Fields: An overview of wind-energy-production prediction bias

Table 1. Categories of method adjustments to improve the wind resource assessment process and the respective data sources.

Method change Source

Account for additional factors in wind resource AWS Truepower (2009), Johnson (2012)
assessment and operation, e.g.,
– windiness or long-term correction of wind
data,
– suboptimal operation,
– external wake effect, and
– degradation of long-term meteorological
masts.

Consider meteorological effects on power production, AWS Truepower (2009), Brower et al.
e.g., (2012), Elkinton (2013), Johnson (2012),
– wind shear, Ostridge (2017)
– turbulence,
– air inflow angle, and
– atmospheric stability.

Improve modeling techniques, e.g., Elkinton (2013), Johnson (2012),
– turbine performance, Ostridge (2017), Papadopoulos (2019)
– wind flow,
– wake,
– flow over complex terrain,
– effects of changes in surface roughness, and
– wind farm roughness.

Improve in measurement and reduce in measurement AWS Truepower (2009), Johnson (2012),
bias, e.g., adjust for dry friction whip of anemometers. Ostridge (2017), Papadopoulos (2019)

Correct for previous methodology shortcomings, e.g., Ostridge (2017), Papadopoulos (2019)
– loss assumptions, and
– shear extrapolation.

one outlier, the turbine performance losses, in both predic-
tions and observations, are about or under 5 % (Fig. 6b).
Large ranges of environment losses exist, particularly for ic-
ing and degradation losses, which can drastically decrease
AEP (Fig. 6c). Note that some of the icing losses indicated
in the literature represent the fractional energy-generation
loss from production stoppages over atypically long periods
in wintertime, rather than a typical energy loss percentage
for a calendar year. Electrical loss has been assured as a
routine energy reduction with high certainty and relatively
low magnitude (Fig. 6d). Of all the categories, wind tur-
bine wake results in a substantial portion of energy loss, and
its estimations demonstrate large variations (Fig. 6e). The
magnitude of estimated wake loss is larger than that of the
predicted nonwake loss, which consists of other categorical
losses (Fig. 6e). The observed total curtailment loss exhibits
lower variability, yet with larger magnitude than its estima-
tion (Fig. 6f). From the eight studies that report total loss, the
predictions range from 9.5 % to 22.5 % (Fig. 6g). We do not
encounter any operational strategies loss under curtailment
loss in the literature, and thus the subcategories in Fig. 6 do
not cover every subcategory in Table A1.

Figure 5. Ranges of total energy-production losses in different cat-
egories, according to the proposed framework of the IEC 61400-15
standard. Each blue dot and orange dot, respectively, represents the
mean estimated loss and mean observed loss documented in each
independent reference. The losses are expressed as percentage of
AEP. The column of numbers on the right denotes the sample size in
each category, where the estimated ones are in blue and the observed
ones are in orange. For clarity, the horizontal grey lines separate
data from each category. Table B3 catalogs the categorical losses
plotted herein.
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Figure 6. Ranges of energy-production losses in different categories and subcategories, according to the proposed framework of the
IEC 61400-15 standard, except for nonwake in panel (e), which is an extra subcategory summarizing other nonwake categories. Each blue
dot and orange dot, respectively, represents the mean estimated loss and mean observed loss documented in each independent study. The blue
and orange crosses, respectively, indicate the maximum of estimated loss and the maximum of observed loss reported, where the minima
are not reported, and thus the averages cannot be calculated. The losses are expressed as percentage of AEP. The column of numbers on the
right denotes the estimated and observed sample sizes in blue and orange, respectively, in each subcategory, and such sample size represents
all the instances in that subcategory that recorded either the mean or the maximum loss values. For clarity, the grey horizontal lines separate
data from each subcategory. Table B3 catalogs the categorical and subcategorical losses plotted herein.

Losses that inhibit wind farm operations can cause con-
siderable monetary impact. For example, blade degradation
can result in a 6.8 % of AEP loss for a single turbine in the
IEC Class II wind regime, where the maximum annual av-
erage wind speed is 8.5 m s−1; this translates to USD 43 000
per year (Wilcox et al., 2017). Generally, the typical turbine
failure rate is about 6 %, where 1 % reduction in turbine fail-
ure rate can lead to around USD 2 billion of global savings
in operation and maintenance (Faubel, 2019). In practice, the
savings may exclude the cost of preventative measures for
turbine failure, such as hydraulic oil changes and turbine in-
spections.

We categorize two types of energy-production losses ad-
ditional to the proposed IEC framework, namely the first few
years of operation and blockage effect (Fig. 7). For the for-
mer loss, a newly constructed wind farm typically does not
produce to its full capacity for the first few months or even for
the first 2 years. The loss from the first few years of operation
captures this time-specific and availability-related production
loss. Regarding the later loss, the blockage effect describes
the wind speed slowdown upwind of a wind farm (Bleeg et

Figure 7. As in Fig. 6 but for the loss categories outside of the
proposed IEC framework, as listed in Table B4.

al., 2018). Wind farm blockage is not a new topic (mentioned
in Johnson et al., 2008) and has been heavily discussed in
recent years (Bleeg et al., 2018; Lee, 2019; Papadopoulos,
2019; Robinson, 2019; Spalding, 2019). Compared to some
of the losses in Fig. 6, the loss magnitude of first few years
of operation and blockage is relatively small, where it con-
tributes to less than 5 % of AEP reduction per year (Fig. 7).

For trend analysis, we linearly regress every subcategori-
cal energy loss (Fig. 6 and Table B3) on time, and we only
find two loss subcategories demonstrate notable and statis-
tically confident trends (Fig. 8). The measured curtailment
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Figure 8. Trend in observed energy-production loss: (a) total cur-
tailment loss and (b) generic power curve adjustment loss. The an-
notations correspond to those in Fig. 3, where the orange solid line
represents simple linear regression, the light orange cone illustrates
the 95 % confidence interval, R2 is the coefficient of determination,
and n is sample size.

loss and the observed generic power curve adjustment loss
steadily decrease over time, and the reductions have reason-
able R2 (Fig. 8). No other reported losses with a reasonable
number of data samples display remarkable trends (Fig. C1).

Past research further documents the uncertainties of AEP
losses. Except for an outlier of measuring 80 % uncertainty
in wake loss, the magnitude of the uncertainty of wake loss is
analogous to that of nonwake loss (Fig. 9). The industry also
tends to reveal the uncertainty of wake loss than nonwake
loss according to the larger number of data sources (Fig. 9).
One data source reported that depending on the location, the
operational variation from month to month can alter AEP
losses for more than 10 % on average (Fig. 9). Note that the
results in Fig. 9 represent the uncertainty of the respective
production loss percentages in Fig. 6 and Table B3, rather
than the AEP uncertainty.

5 Energy-production uncertainty

The individual energy-production uncertainties directly in-
fluence the uncertainty of P50 prediction. Total uncertainty
is the root sum square of the categorical uncertainties; the
assumption of correlation between categories can reduce
the overall uncertainty, and this is a typically consultant-
and method-specific assumption (Brower, 2012). Except for
a few outliers, the magnitude of the individual energy-
production uncertainties across categories and subcategories
is about or below 10 % (Fig. 10). The energy uncertainties
from wind measurements range below 5 %, after omitting
two extreme data points (Fig. 10a). The estimated long-term
period uncertainty varies the most in historical wind resource
(Fig. 10b), which indicates the representativeness of histori-
cal reference data (Table A2). Horizontal extrapolation gen-
erally yields higher energy-production uncertainty than ver-
tical extrapolation (Fig. 10c and d). For plant performance,

Figure 9. Uncertainty of energy-production losses, where the mag-
nitude corresponds to the AEP loss percentages listed in Fig. 6 and
Table B3. Each dark blue dot, turquoise dot, and turquoise cross
represents the estimated uncertainty, the observed uncertainty, and
the maximum observed uncertainty of losses, respectively. The un-
certainties are expressed as percentages of uncertainty in terms of
the energy-production loss percentage. The column of numbers on
the right denotes the estimated and observed sample sizes in dark
blue and turquoise, respectively, in each row, and such sample size
represents all the instances in that row that reported either the mean
or the maximum values. For clarity, the grey horizontal lines sepa-
rate data from each uncertainty. Table B5 records the uncertainties
displayed herein.

each subcategorical uncertainty corresponds to the respec-
tive AEP loss (Fig. 6 and Table A1). The range of the pre-
dicted energy uncertainty caused by wake effect is about 6 %
(Fig. 10e). The estimated uncertainty of turbine performance
loss and total project evaluation period match with those ob-
served (Fig. 10e and f). Overall, the average estimated total
uncertainty varies by about 10 %, whereas the observed total
uncertainty appears to record a narrower bound, after exclud-
ing an outlier (Fig. 10g).

In the literature, we cannot identify all the uncertainty
types listed in the proposed IEC framework; hence, the fol-
lowing AEP uncertainty subcategories in Table A2 are omit-
ted in Fig. 10: wind direction measurement in measurement;
on-site data synthesis in historical wind resource; model in-
puts and model appropriateness in horizontal extrapolation;
model components and model stress in vertical extrapolation;
and environmental loss in plant performance.

Similar to energy losses, other types of AEP uncertainties
not in the proposed IEC framework emerge. The magnitude
of the uncertainties in Fig. 11 is comparable to the uncertain-
ties in Fig. 10. The power curve measurement uncertainty in
Fig. 11, specifically mentioned in the data sources, could be
interpreted as the uncertainty from the turbine performance
loss.

The energy-production uncertainty from air density and
vertical extrapolation depends on the geography of the site.
For instance, the elevation differences between sea level and
the site altitude, as well as the elevation differences between
the mast height and turbine hub height, affect the AEP un-
certainty (Nielsen et al., 2010). For simple terrain, the ver-
tical extrapolation uncertainty can be estimated to increase
linearly with elevation (Nielsen et al., 2010). A common in-
dustry practice is to assign 1 % of energy uncertainty for each
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Figure 10. Ranges of energy-production uncertainties in different categories and subcategories, according to the proposed framework of the
IEC 61400-15 standard. The annotations correspond to those in Fig. 6, where each purple dot, green dot, and purple cross represents the
mean estimated uncertainty, the mean observed uncertainty, and the maximum of estimated uncertainty from each independent reference,
respectively. The uncertainties are expressed as percentages in AEP. The column of numbers on the right denotes the estimated and observed
sample sizes in purple and green, respectively, in each subcategory, and such sample size represents all the instances in that subcategory
that reported either the mean or the maximum uncertainty values. For clarity, the grey horizontal lines separate data from each subcategory.
Table B6 numerates the production uncertainties.

Figure 11. As in Fig. 10 but for the uncertainty categories outside
of the proposed IEC framework, as listed in Table B7.

10 m of vertical extrapolation, which could overestimate the
uncertainty, except for forested locations (Langreder, 2017).

6 Wind speed uncertainty

Energy production of a wind turbine is a function of wind
speed to its third power. Considering wind speed, either mea-
sured, derived, or simulated, is a critical input to an energy

estimation model, the uncertainty of wind speed plays an im-
portant role in the WRA process. We present various groups
of wind speed uncertainties in the literature herein (Fig. 12).
The bulk of the wind speed uncertainties are roughly 10 %
or less of the wind speed. Many studies report estimated un-
certainty from wind speed measurement; however, its mag-
nitude and discrepancy among the sources are not as large
as those from wind speed modeling or interannual variabil-
ity (Fig. 12). Notice that some of the wind speed categories
coincide with the IEC-proposed framework of energy uncer-
tainty, and others do not. The absence of standardized classi-
fication of wind speed uncertainties increases the ambiguity
in the findings from the literature and poses challenges to the
interpretation of the results in Fig. 12. We also lack sufficient
samples of measured wind speed uncertainties to validate the
estimates.

Wind speed uncertainty greatly impacts AEP uncertainty,
and the methods of translating wind speed uncertainty into
AEP uncertainty also differ between organizations. For ex-
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Figure 12. Ranges of wind speed uncertainties in different cate-
gories. The annotations correspond to those in Fig. 10, where each
dark purple dot, dark green dot, and dark purple cross represents the
mean estimated wind speed uncertainty, the mean observed wind
speed uncertainty, and the maximum of estimated wind speed uncer-
tainty from each independent study, respectively. The uncertainties
are expressed as percentages of wind speed. The column of num-
bers on the right denotes the estimated and observed sample sizes
in dark purple and dark green, respectively, in each category, and
such sample size represents all the instances in that category that
reported either the mean or the maximum uncertainty values. For
clarity, the grey horizontal lines separate data from each category.
Table B8 documents the wind speed uncertainties displayed.

ample, 1 % increase of wind speed uncertainty can lead to
either a 1.6 % (AWS Truepower, 2014) or 1.8 % increase in
energy-production uncertainty (Holtslag, 2013; Johnson et
al., 2008; White, 2008a, b). Local wind regimes can also af-
fect this ratio. For low wind locations, AEP uncertainty can
be 3 times the wind speed uncertainty, while such a ratio
drops to 1.5 at high wind sites (Nielsen et al., 2010).

Decreasing wind speed uncertainty benefits the wind en-
ergy industry. Reduction in wind speed measurement of
0.28 % could reduce project-production uncertainty by about
0.15 % (Medley and Smith, 2019). Using a computational
fluid dynamics model to simulate airflow around meteorolog-
ical masts can reduce wind speed measurement uncertainty
from 2.68 % to 2.23 %, which translates to GBP 1.2 mil-
lion of equity savings for a 1 GW offshore wind farm in the
United Kingdom (Crease, 2019).

7 Opportunities for improvements

Although the industry is reducing the mean P50 overpredic-
tion bias, the remarkable uncertainties inherent in the WRA
process overshadow such achievement. Different organiza-
tions have been improving their techniques over time to elim-
inate the P50 bias (Table 1), and as a whole we celebrate the
technological advancements; nevertheless, challenges still
exist for validation and reduction of the AEP losses and un-
certainties. Even though the average P50 prediction bias is re-
ducing and approaches zero, the associated mean P50 uncer-
tainty remains at over 6 %, even for the studies reported af-
ter 2016 (Fig. 3b). For a validation study that involves a col-
lection of wind farms, such an uncertainty bound implies that
sizable P50 predication errors for particular wind projects
can emerge. In other words, statistically, the AEP prediction
is becoming more accurate and yet is imprecise. Moreover,
from an industry-wide perspective that aggregates different
analyses, the variability on the mean P50 bias estimates is no-
table, which obscures the overall bias-reducing trend (R2 be-
low 0.5 in Fig. 3). Specifically, the magnitude of the 95 %
prediction interval at over 10 % average P50 estimation error
(Fig. 3b) suggests a considerable range of possible mean bi-
ases in future validation studies. Additionally, the uncertain-
ties are still substantial in specific AEP losses (Fig. 9), AEP
itself (Figs. 10 and 11), and wind speed (Fig. 12). Therefore,
the quantification, validation, and reduction of uncertainties
require the attention of the industry collectively.

To reduce the overall AEP uncertainty, the industry should
continue to assess the energy impacts of plant performance
losses, especially those from wake effect and environmental
events. On one hand, wake effect, as part of a grand chal-
lenge in wind energy meteorology (Veers et al., 2019), has
been estimated as one of the largest energy losses (Fig. 6e).
The AEP loss caused by wake effect also varies, estimated
between 15 % and 40 % (Fig. 9), and the unpredictability of
wakes contributes to the AEP uncertainty on plant perfor-
mance (Fig. 10e) and the wind speed uncertainty (Fig. 12).
Although the industry has been simulating and measuring
energy loss caused by wake effect, its site-specific impact on
AEP for the whole wind farm as well as its time-varying pro-
duction impact on downwind turbines remains largely uncer-
tain. From a macro point of view, compared to internal wake
effect, external wake effect from neighboring wind farms is
a bigger known unknown because of the lack of data and
research. On the other hand, environmental losses display
broad range of values, particularly from icing events and tur-
bine degradation (Fig. 6c). In general, the icing problem halts
energy production in the short run, and blade degradation un-
dermines turbine performance in the long run. Diagnosing
and mitigating such substantial environmental losses would
reduce both loss and uncertainty on AEP. Overall, the predic-
tion and prevention of environmental events are critical, and
the production downtime during high electricity demand can
lead to consequential financial losses.
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Additionally, the industry recognizes the role of remote-
sensing instruments in reducing the uncertainty of energy
production and wind speed from extrapolation, such as pro-
filing lidars, scanning lidars, and airborne drones (Faghani et
al., 2008; Holtslag, 2013; Peyre, 2019; Rogers, 2010). The
latter can also be used to inspect turbine blades (Shihavuddin
et al., 2019) to reduce unexpected blade degradation loss over
time. Industry-wide collaborations such as the International
Energy Agency Wind Task 32 and the Consortium For Ad-
vancement of Remote Sensing, have been promoting remote-
sensing implementation in WRA.

Leaders in the field have been introducing contemporary
perspectives and innovative techniques to improve the WRA
process, including time-varying and correlating losses and
uncertainties. Instead of treating energy loss and uncertainty
as a static property, innovators have studied time-varying
AEP losses and uncertainties (Brower et al., 2012), espe-
cially when wind plants produce less energy with greater
uncertainty in later operational years (Istchenko, 2015). Fur-
thermore, different types of energy-production losses or un-
certainties interact and correlate with each other, and depen-
dent data sources can emerge in the WRA process. The re-
sultant compound effect from two correlating sources of un-
certainty can change the total uncertainty derived using a lin-
ear (Brower, 2011) or root-sum-square approach (Istchenko,
2015). For example, an icing event can block site access and
decrease turbine availability and even lead to longer-term
maintenance problems (Istchenko, 2015).

More observations and publicly available data are neces-
sary to validate the estimates listed in this article. In this ar-
ticle, the ratios between the measured and predicted values
are 1 to 1.9, 2.3, and 7.3, for energy loss, energy uncertainty,
and wind speed uncertainty, respectively. The small num-
ber of references on measured uncertainties indicate that we
need more evidence to further evaluate our uncertainty esti-
mates. Besides, challenges exist in interpreting and harmo-
nizing results from disparate reporting of energy-production
losses and uncertainties. Documentation aligned with ubiqui-
tous reference frameworks will greatly strengthen the accu-
racy and repeatability of future literature reviews. Therefore,
data and method transparency and standardization will con-
tinually improve insight into the WRA process, increase the
AEP estimation accuracy, and drive future innovation.

8 Conclusions

In this study, we compile and present the ranges and the
trends of predicted P50 (i.e., median annual energy produc-
tion) errors, as well as the estimated and observed energy
losses, energy uncertainties, and wind speed uncertainties
embedded in the wind resource assessment process. We con-
duct this literature review using over 150 credible sources
from conference presentations to peer-reviewed journal arti-
cles.

Although the mean P50 bias demonstrates a decreasing
trend over time because of continuous methodology adjust-
ments, the notable uncertainty of the mean prediction error
reveals the imprecise prediction of annual energy produc-
tion. The dominant effect of prediction uncertainty over the
bias magnitude calls for further improvements on the pre-
diction methodologies. To reduce the mean bias, industry
experts have made method adjustments in recent years that
minimize the energy-production prediction bias, such as the
applications of remote-sensing devices and the modeling ad-
vancements of meteorological phenomena.

We present the wind-energy-production losses and uncer-
tainties in this literature review according to the proposed
framework by the IEC 61400-15 working group. Wake effect
and environmental events undermine wind plant performance
and constitute the largest loss in energy production, and val-
idating the wake and environmental loss predictions requires
more field measurements and detailed research. Moreover,
the variability of observed total availability loss is larger than
its estimates. Meanwhile, the decreasing trends of measured
curtailment loss and observed generic power curve adjust-
ment loss indicate the continuing industry effort to optimize
wind energy production. Additionally, different categorical
energy uncertainties and wind speed uncertainties demon-
strate similar magnitude, with a majority of the data below
10 %. More observations are the solution to better understand
and further lower these uncertainties.

In our findings, we highlight the potential future progress,
including the importance of accurately predicting and vali-
dating energy-production uncertainty, the impact of wake ef-
fect, and innovative approaches in the wind resource assess-
ment process. This work also includes a summary of the data
collected and used in this analysis. As the industry evolves
with improved data sharing, method transparency, and rig-
orous research, we will increasingly be able to maximize
energy production and reduce its uncertainty for all project
stakeholders.
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Appendix A

Table A1. Consensus energy-production loss framework for wind resource assessment proposed by the International Electrotechnical Com-
mission (IEC) 61400-15 working group (Filippelli et al., 2018). Note that this table does not represent the final standards.

Loss category Loss subcategory Notes

Wake effect

Internal wake effects Wake effects internal to the wind plant

External wake effects Wake effects generated externally to the wind plant

Future wake effects
Wake effects that will impact future energy projections based on
either confirmed or predicted new project development or
decommissioning

Availability

Turbine availability Including warranted availability, non-contractual availability,
restart after grid outage, site access, downtime (or speed) to energy
ratio, first-year or plant start-up availability

Balance-of-plant Availability of substation and collection system, other non-turbine
availability availability, warranted availability, site access, first-year or plant

start-up availability

Grid availability
Grid being outside the grid connection agreement operational
parameters, actual grid downtime, delays in restart after grid
outages

Electrical
Electrical efficiency

Electrical losses between low- or medium-voltage side of the
transformer of wind turbine and the energy measurement point

Facility parasitic Turbine extreme weather packages, other turbine and/or plant
consumption parasitic electrical losses (while operating or not operating)

Turbine performance

Suboptimal performance
Performance deviations from the optimal wind plant performance
caused by software, instrumentation, and control setting issue

Generic power curve Expected deviation between advertised power curve and actual
adjustment power performance in standard conditions (“inner range”)

Site-specific power curve Accommodating for inclined flow, turbulence intensity, density,
adjustment shear, and other site- or project-specific adjustments (“outer range”)

High wind hysteresis
Energy lost in hysteresis loop between high-wind-speed cut out and
recut in

Environmental

Icing Performance degradation and shutdown caused by icing

Degradation
Blade fouling, efficiency losses, and other environmentally driven
performance degradation

Environmental loss
High- or low-temperature shutdown or derate, lightning, hail, and
other environmental shutdowns

Exposure Tree growth or logging, other building development

Load curtailment Speed and/or direction curtailments to mitigate loads

Grid curtailment
Power purchase agreement or offtaker curtailments, grid

Curtailments (or limitations

operational strategies) Environmental or permit Birds, bats, marine mammals, flicker, noise (when not captured in
curtailment the power curve)

Operational strategies
Any periodic uprating, downrating, optimization, or shutdown not
captured in the power curve or availability carve-outs
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Table A2. Consensus energy-production uncertainty framework for wind resource assessment proposed by the IEC 61400-15 working group
(Filippelli et al., 2018). Note that this table does not represent the final standards.

Uncertainty Uncertainty Notes
category subcategory

Long-term period
What is the statistical representativeness of the chosen historical and/or site
data period? In other words, the interannual variability (coefficient of
variation) of the historical reference data period in years

Reference data
How accurate or reliable is the chosen reference data source? In other
words, historical data consistency (e.g., are there possible underlying trends
in the data?)

Historical wind

Long-term adjustment

What is the uncertainty associated with the prediction process? Statistical
resource or empirical uncertainty in establishing a correlation or carrying out a

prediction, which may be conditioned upon the correlation method and span
or the quantity of concurrent data period

Wind speed and direction Mean wind speed aside, how representative is the measured or predicted
distribution distribution and wind rose or energy rose shape of the long term?

On-site data synthesis
Uncertainty associated with gap-filling missing data periods. Usually done
using directional correlations or the measure–correlate–predict process, and
hence long-term and reference data categories may apply

Modeled operational The statistical uncertainty associated with how closely the wind resource
period over the modeled operational period (i.e., 1 or 10 years) may match the long-term

Project site average

evaluation
Climate change

When an impact of climate change can be assessed, then this may be
period considered as an uncertainty

variability
Plant performance

The statistical uncertainty associated with how closely the plant
performance over the modeled operational period (i.e., 1 or 10 years) may
match the long-term site average

Measurement

Wind speed Including effects for wind speed sensor characteristics (cup or sonic), wind
measurement speed sensor mounting or deployment (cup or sonic), wind speed sensor

data handling and processing characteristics (e.g., tower shadow, icing, and
degradation), system motion, consistency and exposure, data acquisition,
and data handling. Additionally, the reduction in uncertainty caused by
sensor combination is considered

Data integrity and
Documentation, verification, and traceability of the data

documentation

Wind direction Sensor type or quality, operational characteristics, mounting effects,
measurement alignment, acquisition, long-term representativeness

Further atmospheric Air temperature, pressure, relative humidity, and other atmospheric
parameters parameters

Model inputs
Terrain surface characterization, wind data measurement heights, wind

Vertical statistics or shear, measurement uncertainty

extrapolation Model components Representativeness per height or terrain, profile fit

Model stress
Large extrapolation distance, complex terrain (measurement height relative
to terrain complexity)
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Table A2. Continued.

Uncertainty Uncertainty Notes
category subcategory

Model inputs
Fidelity and appropriateness, given sensitivity of model to terrain data,
roughness, forestry information, atmospheric conditions

Model stress
Representativeness of initiation points relative to turbine locations in terms
of complicating factors (e.g., forestry, stability, steep slopes, distance,

Horizontal elevation, veer); the intensity of and sensitivity to complicating factors

extrapolation

Model appropriateness

Physical scientific plausibility of model to capture complicating factors;
validation of implementation of model: published validation of specific
implementation and relevance to complicating factors present on site; on-
site model verification: site to site (untuned, blind); consider the quality of
any shear verification

Wake effect

Refer to Table A1

Availability
Plant Electrical
performance Turbine performance

Environmental
Curtailments or
operational strategies
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Appendix B

For the P50 prediction error, Figs. 3 and 4 use the data from
Table B1 and Table B2, respectively. For the various cate-
gories and subcategories of losses, Figs. 5, 6, 8, and C1 por-
tray the values in Table B3. Figure 7 illustrates the losses
outside of the IEC-proposed framework listed in Table B4.
Figure 9 summarizes the uncertainty of production loss per-
centages in Table B5. Figures 10 and 11 represent the AEP
uncertainty data included in Tables B6 and B7, respectively.
Figure 12 displays the wind speed uncertainty data in Ta-
ble B8.
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Table B1. List of P50 biases in the literature, which is necessary to generate Fig. 3. The “Wind farm” column denotes the number of wind
farms reported in the reference, and the “Wind farm year” column indicates the total number of operation years among the wind farms in
that study. The “Bias (%)” column represents the average P50 bias, where a negative number indicates an overestimation of actual energy
production. All the values in the “Uncertainty (%)” column illustrate 1 standard deviation from the mean.

Year Wind Wind Bias Uncertainty Notes Source
farm farm (%) (%)

year

2002 12 −16 Mönnich et al. (2016)
2003 10 −11 Mönnich et al. (2016)
2004 19 −12 Mönnich et al. (2016)
2005 37 −8 Mönnich et al. (2016)
2006 −13 Johnson et al. (2008)
2006 21 −10 Mönnich et al. (2016)
2007 23 −5 Mönnich et al. (2016)
2008 59 243 −11 Johnson et al. (2008), Jones (2008)
2008 41 113 −4 Johnson et al. (2008)
2008 56 112 −10 White (2009)
2008 36 62 −2.1 Johnson (2012)
2008 −10 Industry average White (2009)
2008 17 −10 Mönnich et al. (2016)
2009 255 −1 Horn (2009)
2009 −9 Hendrickson (2009)
2009 43 −3 Hendrickson (2009)
2009 1 0.5 6.4 Comparison of four analysts Derrick (2009)
2009 11 45 −2.2 7.3 White (2009)
2009 18 −3 Mönnich et al. (2016)
2010 −1 8.1 From 1806 wind turbines Nielsen et al. (2010)
2010 11 −10 Mönnich et al. (2016)
2011 1 2.4 Comparison of 15 analysts Hendrickson (2011)
2011 89 −6 Industry average from 2000 to 2011 Drunsic (2012)
2011 −2 Drunsic (2012)
2011 18 −7 Mönnich et al. (2016)
2011 −6.7 0.8 Lunacek et al. (2018)
2012 −5 Industry average from 2005 to 2011 Drunsic (2012)
2012 −1 Drunsic (2012)
2012 −1 Brower et al. (2012)
2012 125 382 0 Johnson (2012)
2012 −2.4 Bernadett et al. (2012)
2012 11 −7 Mönnich et al. (2016)
2012 6 −4.9 Pullinger et al. (2019)
2013 14 −1 Mönnich et al. (2016)
2014 24 106 −1 8.8 Brower (2014)
2014 31 101 −1.4 Istchenko (2014)
2014 −0.6 Geer (2014)
2014 9 −15 Redouane (2014)
2014 4 −2 Mönnich et al. (2016)
2015 −1.9 Istchenko (2015)
2015 10 0 4 Sieg (2015)
2015 1 −4 3 Comparison of 20 analysts Mortensen et al. (2015a, b)
2015 1 1 Mönnich et al. (2016)
2015 25 91 −8 Cox (2015)
2015 30 127 −2.2 Stoelinga and Hendrickson (2015)
2015 18 58 −1.6 Hendrickson (2019)
2015 23 −4.7 7.7 Hatlee (2015)
2016 30 127 0.1 8.8 Baughman (2016)
2017 140 −2 Projects from 2011 to 2016 Elkinton (2017), Hale (2017)
2017 61 −1.6 7.6 Most projects from 2008 to 2012 Brower (2017), Hale (2017)
2017 −2.5 Hale (2017)
2017 30 127 0.7 8.8 Perry (2017)
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Table B1. Continued.

Year Wind Wind Bias Uncertainty Notes Source
farm farm (%) (%)

year

2018 56 294 −5.5 1.3 Lunacek et al. (2018)
2018 50 0 Hendrickson (2019)
2018 −1.5 7.6 Hendrickson (2019)
2018 6 −1.4 Pullinger et al. (2019)
2019 31 212 −1.2 4.7 Crescenti et al. (2019)
2019 30 144 0 11.37 Hendrickson (2019)
2019 30 111 −0.1 4.5 Hendrickson (2019)
2019 0 7.3 Hendrickson (2019)
2019 87 570 −3.1 Papadopoulos (2019)
2019 25 146 −5 Papadopoulos (2019)
2019 11 59 −0.4 Papadopoulos (2019)
2019 11 24 −3.9 Papadopoulos (2019)
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Table B2. List of P50 bias groups for Fig. 4, expanding from Ta-
ble B1. Different groups (the “Group” column) are represented by
different line colors in Fig. 4.

Group Year Wind Wind Bias Uncertainty Notes Source
farm farm (%) (%)

year

1 2006 −13 Johnson et al. (2008), Jones (2008)
1 2008 59 243 −11 Johnson et al. (2008), Jones (2008)
2 2008 41 113 −10 Johnson et al. (2008)
2 2008 41 113 −4 Adjust for windiness and availability Johnson et al. (2008)
2 2009 43 −3 Hendrickson (2009)
3 2008 −10 Industry average White (2009)
3 2011 476 −9 Industry average Drunsic (2012)
3 2011 89 −6 Industry average from 2000 to 2011 Drunsic (2012)
3 2012 −5 Industry average from 2005 to 2011 Drunsic (2012)
4 2009 −10 Hendrickson (2009)
4 2009 −9 Exclude Texas projects Hendrickson (2009)
5 2009 11 45 −2.2 7.3 White (2009)
5 2009 11 45 −3.5 7 Accounting for windiness White (2009)
6 2010 −8 Projects from 2000 to 2010 Ostridge (2017)
6 2017 50 −3 Projects from 2011 to 2016 Elkinton (2017), Hale (2017)
6 2017 140 −2 Adjusted for curtailment and windiness, and so on. Elkinton (2017), Hale (2017)
6 2018 50 0 Hendrickson (2019)
7 2010 294 −9.9 Projects before 2011 Lunacek et al. (2018)
7 2010 56 −9.2 Projects before 2011 Lunacek et al. (2018)
7 2010 −6.7 0.8 Projects before 2011, long-term correction, R2 filtered Lunacek et al. (2018)
8 2011 −2 Projects from 2000 to 2011 Drunsic (2012)
8 2012 −1 Projects from 2005 to 2011 Drunsic (2012)
9 2012 125 382 −9 Johnson (2012)
9 2012 125 382 0 Johnson (2012)
10 2012 24 106 −3.6 1.4 Bernadett et al. (2012)
10 2012 −2.4 Bernadett et al. (2012)
11 2014 31 101 −2.8 1 year Istchenko (2014)
11 2014 31 101 −1.4 10 years Istchenko (2014)
12 2014 24 106 −1.1 7.5 Brower (2014)
12 2014 24 106 −1 8.8 Correct for windiness Brower (2014)
13 2015 25 91 −8 Cox (2015)
13 2015 25 91 −9 Correct for windiness Cox (2015)
14 2015 30 127 −2.2 Adjust for windiness and availability Stoelinga and Hendrickson (2015)
14 2016 30 127 0.1 8.8 Baughman (2016)
15 2015 18 58 −1.6 4.4 Hendrickson (2019)
15 2019 30 111 −0.1 4.5 Hendrickson (2019)
16 2018 65 −6.6 Projects after 2011 Lunacek et al. (2018)
16 2018 23 −6.4 Projects after 2011 Lunacek et al. (2018)
16 2018 −5.5 1.28 Long-term correction, R2 filtered Lunacek et al. (2018)
17 2018 −1.5 7.6 Hendrickson (2019)
17 2019 0 7.3 Hendrickson (2019)
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Table B3. List of energy losses, corresponding to Figs. 6 and 8. The “e” and “o” in the “Est/obs” column represent estimated and observed
values, respectively. The energy loss categories and subcategories align with those in Table A1. “Avg (%),” “Min (%),” and “Max (%) indicate
the average, minimum, and maximum energy loss percentages, respectively. The same column-name abbreviations apply to the following
tables in Appendix B.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2010 e Availability Balance of 1 2 Clive (2010)
plant

2013 e Availability Balance of 1 Typical northwest Mortensen (2013)
plant European onshore

2014 e Availability Balance of 0.2 0.2 0.4 Typical North AWS Truepower
plant American onshore, (2014)

collection, and
substation

2016 e Availability Balance of 0.5 Substation Clifton et al. (2016)
plant

2017 e Availability Balance of 0.3 0.5 Onshore: 0.5; Papadopoulos (2019)
plant Offshore: 0.3

2011 o Availability Balance of 0.2 Johnson (2011)
plant

2010 e Availability Grid 2 1 3 WindPro 2.7 Nielsen et al. (2010)

2013 e Availability Grid 1 Typical northwest Mortensen (2013)
European onshore

2014 e Availability Grid 0.3 0.3 0.6 Typical North AWS Truepower
American onshore, (2014)
utility grid

2016 e Availability Grid 1 Transmission Clifton et al. (2016)

2019 e Availability Grid 1 3.3 Hill et al. (2019)
availability

2008 o Availability Grid 0.7 2.5 Spengemann and
Borget (2008)

2008 e Availability Total 3 Outside North Graves et al. (2008)
availability America

2008 e Availability Total 3 5 Include first-year Johnson et al.
availability operation, also (2008), White (2008a)

stated in Table B4

2009 e Availability Total 3 2 3 Randall (2009)
availability

2009 e Availability Total 3 5 United States: Horn (2009)
availability southern states: 3;

northern states: 5

2011 e Availability Total 5 Analyst Hendrickson (2011)
availability comparison

2012 e Availability Total 3 Drunsic (2012)
availability

2012 e Availability Total 6 2 10 Brower (2012)
availability
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2013 e Availability Total 3.2 Onshore, analyst Mortensen and
availability comparison Ejsing Jørgensen

(2013)

2014 e Availability Total 6.2 Typical North AWS Truepower
availability American onshore (2014)

2016 e Availability Total 2 5 For plants built in Clifton et al. (2016)
availability 2010 to 2015

2016 e Availability Total 4.2 Beaucage et al.
availability (2016)

2016 e Availability Total 2 4 Bernadett et al.
availability (2016)

2018 e Availability Total 2 Onshore Stehly et al. (2018)
availability

2007 o Availability Total 7.4 Johnson (2011)
availability

2008 o Availability Total 4.5 North America Graves et al. (2008)
availability

2008 o Availability Total 5 Johnson et al.
availability (2008), White (2008a)

2008 o Availability Total 7 Johnson et al.
availability (2008), Jones (2008)

2008 o Availability Total 6.7 Johnson (2011)
availability

2008 o Availability Total 6 Lackner et al. (2008)
availability

2009 o Availability Total availability 5 6 Hendrickson (2009)

2009 o Availability Total availability 6.5 Randall (2009)

2009 o Availability Total 8.2 Most available in Cushman (2009)
availability summer and fall,

least in winter

2009 o Availability Total 6.9 Johnson (2011)
availability

2010 o Availability Total 3.5 Johnson (2011)
availability

2010 o Availability Total 1.1 1 11 WindPro 2.7 Nielsen et al. (2010)
availability

2011 o Availability Total 11 Conroy et al. (2011)
availability

2011 o Availability Total 2.6 Johnson (2011)
availability

2012 o Availability Total 6 Drunsic (2012)
availability

2012 o Availability Total 6.4 Higher availability Winslow (2012)
availability loss for higher

wind speeds
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2015 o Availability Total 5 Operational issues Cox (2015)
availability (e.g., cables,

connection,
turbine)

2016 o Availability Total 4.5 Beaucage et al.
availability (2016)

2016 o Availability Total 3.2 Bernadett et al.
availability (2016)

2019 o Availability Total 4 Pedersen and
availability Langreder (2019)

2010 e Availability Turbine 2 5 Clive (2010)

2010 e Availability Turbine 2 5 WindPro 2.7 Nielsen et al. (2010)

2013 e Availability Turbine 3 Typical northwest Mortensen (2013)
European onshore

2014 e Availability Turbine 5.9 3 10.1 Typical North AWS Truepower
American onshore, (2014)
combined from
contractual turbine,
non-contractual
turbine, correlation,
restart, site access

2011 o Availability Turbine 2.3 Johnson (2011)

2019 o Availability Turbine 1.67 Combine scheduled Pedersen and
and unscheduled Langreder (2019)
maintenance

2014 e Curtailment Grid 0 3.5 Typical North AWS Truepower
American onshore, (2014)
including power
purchase
agreement

2016 e Curtailment Grid 1 Clifton et al. (2016)

2019 e Curtailment Grid 3.8 Ireland estimate, Papadopoulos
based on (2019)
operational data

2016 o Curtailment Grid 0.5 1 Interconnection cap Ostridge and
Rodney (2016)

2014 e Curtailment Load 0 3.5 Typical North AWS Truepower
American onshore, (2014)
directional

2019 o Curtailment Load 1.02 Load shutdown Pedersen and
Langreder (2019)

2014 e Curtailment Permit 0 3.5 Typical North AWS Truepower
American onshore (2014)

2016 e Curtailment Permit 1 Clifton et al. (2016)

2018 e Curtailment Permit 0.05 0.2 Shadow flicker Mibus (2018)
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2016 o Curtailment Permit 0.4 2.4 Bat Ostridge and
Rodney (2016)

2019 o Curtailment Permit 0.67 0.71 Bat and shadow Pedersen and
flicker Langreder (2019)

2011 e Curtailment Total 0 Analyst Hendrickson (2011)
curtailment comparison

2012 e Curtailment Total 0 0 5 Brower (2012)
curtailment

2014 e Curtailment Total 0 Typical North AWS Truepower
curtailment American onshore (2014)

2016 e Curtailment Total 1 4 Clifton et al. (2016)
curtailment

2011 o Curtailment Total 4 Johnson (2011)
curtailment

2012 o Curtailment Total 2.97 Wiser et al. (2019)
curtailment

2013 o Curtailment Total 2.86 Wiser et al. (2019)
curtailment

2014 o Curtailment Total 1 4 Varies Bird et al. (2014)
curtailment geographically

2014 o Curtailment Total 2.31 Wiser et al. (2019)
curtailment

2015 o Curtailment Total 2.15 Wiser et al. (2019)
curtailment

2016 o Curtailment Total 2.1 Wiser et al. (2019)
curtailment

2017 o Curtailment Total 2.54 Wiser et al. (2019)
curtailment

2018 o Curtailment Total 2.18 Wiser et al. (2019)
curtailment

2014 e Electrical Electrical 2 1 3 Typical North AWS Truepower
efficiency American onshore (2014)

2016 e Electrical Electrical 1 2 Collector system Clifton et al. (2016)
efficiency

2014 e Electrical Facility 0.1 0 0.1 Typical North AWS Truepower
parasitic American onshore, (2014)
consumption weather package

2010 e Electrical Total 2 3 Clive (2010)
electrical

2011 e Electrical Total 3 Analyst Hendrickson (2011)
electrical comparison

2012 e Electrical Total 2.1 2 3 Brower (2012)
electrical
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2013 e Electrical Total 1.2 Typical northwest Mortensen (2013)
electrical European onshore

2013 e Electrical Total 1 2 Typical northwest Mortensen (2013)
electrical European onshore

2014 e Electrical Total 0.7 2 Colmenar-Santos
electrical et al. (2014)

2014 e Electrical Total 2.1 Typical North AWS Truepower
electrical American onshore (2014)

2016 e Electrical Total 2 3.5 Clifton et al. (2016)
electrical

2008 o Electrical Total 3 Spengemann and
electrical Borget (2008)

2006 e Environmental Degradation 13 Spruce and Turner
(2006)

2009 e Environmental Degradation 0.2 0.1 0.4 10 years Randall (2009)

2009 e Environmental Degradation 1.2 0.5 1.9 20 years Randall (2009)

2010 e Environmental Degradation 5 10 Standish et al.
(2010)

2011 e Environmental Degradation 0.3 Bernadett et al.
(2012)

2012 e Environmental Degradation 0.6 Bernadett et al.
(2012)

2014 e Environmental Degradation 5 25 Wind tunnel study Sareen et al. (2014)

2014 e Environmental Degradation 1 0.6 1.3 Typical North AWS Truepower
American onshore (2014)

2014 e Environmental Degradation 5 20 Extreme cases Redouane (2014)

2015 e Environmental Degradation 5 Langel et al. (2015)

2016 e Environmental Degradation 1 2 Industry standard; Clifton et al. (2016)
soiling and erosion

2016 e Environmental Degradation 5 Maniaci et al.
(2016)

2017 e Environmental Degradation 0.4 2.3 Ehrmann et al.
(2017)

2017 e Environmental Degradation 8 Schramm et al.
(2017)

2017 e Environmental Degradation 4.9 6.8 Wilcox et al. (2017)

2019 e Environmental Degradation 3.6 Normal operation Hasager et al.
(2019)

2019 e Environmental Degradation 2.6 Erosion safe mode Hasager et al.
operation (2019)

2014 o Environmental Degradation 1.4 1.8 United Kingdom Staffell and Green
(2014)
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2016 o Environmental Degradation 1.5 2 Before blade repair Murphy (2016)

2017 o Environmental Degradation 0.3 Sweden Olauson et al.
(2017)

2018 o Environmental Degradation 0.44 Wiser et al. (2019)

2019 o Environmental Degradation 0.6 Germany Germer and
Kleidon (2019)

2019 o Environmental Degradation 9.5 Lead edge erosion Latoufis et al.
(2019)

2020 o Environmental Degradation 0.17 1.23 United States Hamilton et al.
(2020)

2014 e Environmental Environmental 0.6 0 3.9 Typical North AWS Truepower
American onshore, (2014)
combining
temperature
shutdown and
lightning

2016 e Environmental Environmental 1 Temperature Clifton et al. (2016)
shutdown

2019 o Environmental Environmental 0.35 Temperature Pedersen and
shutdown Langreder (2019)

2016 e Environmental Exposure 0 3 Exposure over time Clifton et al. (2016)

2014 e Environmental Icing 1 0 4.5 Typical North AWS Truepower
American onshore (2014)

2016 e Environmental Icing 1 5 Clifton et al. (2016)

2016 e Environmental Icing 5.6 Beaucage et al.
(2016)

2019 e Environmental Icing 30 Abascal et al. (2019)

2008 o Environmental Icing 26 Average of two Gillenwater et al.
wind farms for (2008)
4 years

2010 o Environmental Icing 24 Four winters, 10 % Rindeskär (2010)
of the year

2015 o Environmental Icing 10 Seven wind farms, Byrkjedal et al.
111 turbines, (2015)
272 MW in Sweden

2016 o Environmental Icing 5 15 Three consultants Trudel (2016)
underestimate 1.5
to 4 times lower
than this

2016 o Environmental Icing 4.9 Beaucage et al.
(2016)

2019 o Environmental Icing 0.87 Pedersen and
Langreder (2019)

2019 o Environmental Icing 33 35 Abascal et al. (2019)
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2011 e Environmental Total 2 Analyst Hendrickson (2011)
environmental comparison

2012 e Environmental Total 2.6 1 6 Brower (2012)
environmental

2013 e Environmental Total 1 2 Typical, used in Mortensen (2013)
environmental Wind Atlas

Analysis and
Application
Program (WAsP),
include blade
degradation, icing,
temp shutdown

2013 e Environmental Total 1 2 Typical northwest Mortensen (2013)
environmental European onshore,

include blade
degradation and
icing

2014 e Environmental Total 2.7 Typical North AWS Truepower
environmental American onshore (2014)

2016 e Environmental Total 1 7 Clifton et al. (2016)
environmental

2011 o Environmental Total 0.4 Johnson (2011)
environmental

2010 e Total Total 6 13 Clive (2010)

2011 e Total Total 18 Analyst Hendrickson (2011)
comparison

2012 e Total Total 18.5 7.8 37 Brower (2012)

2012 e Total Total 14.8 Analyst Mortensen et al.
comparison (2012)

2013 e Total Total 22.5 Offshore, analyst Mortensen and
comparison Ejsing Jørgensen

(2013)

2013 e Total Total 17.4 Onshore, analyst Mortensen and
comparison Ejsing Jørgensen

(2013)

2014 e Total Total 19.7 8.5 32.2 Typical North AWS Truepower
American onshore (2014)

2018 e Total Total 15 Onshore Stehly et al. (2018)

2008 o Total Total 2 5 Johnson et al.
(2008)

2008 e Turbine Generic 1 Johnson et al.
performance power curve (2008)

adjustment

2009 e Turbine Generic 0.3 Turbulence- AWS Truepower
performance power curve intensity-dependent (2009)

adjustment power curves
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2012 e Turbine Generic 2.4 1 4 Brower et al. (2012)
performance power curve

adjustment

2014 e Turbine Generic 2.4 0 2.4 Typical North AWS Truepower
performance power curve American onshore (2014)

adjustment

2016 e Turbine Generic 2.4 Bernadett et al.
performance power curve (2016)

adjustment

2019 e Turbine Generic 1 Lee (2019)
performance power curve

adjustment

2008 o Turbine Generic 2 4 Johnson et al.
performance power curve (2008), Jones (2008)

adjustment

2012 o Turbine Generic 2.2 3.2 Drees and Weiss
performance power curve (2012)

adjustment

2012 o Turbine Generic 2.5 Johnson (2012)
performance power curve

adjustment

2013 o Turbine Generic 1.8 Without yaw error Osler (2013)
performance power curve correction

adjustment

2014 o Turbine Generic 2 Staffell and Green
performance power curve (2014)

adjustment

2014 o Turbine Generic 1.6 1 3 Ostridge (2014)
performance power curve

adjustment

2015 o Turbine Generic 2 0 4 Geer (2015)
performance power curve

adjustment

2015 o Turbine Generic 1.5 Ostridge (2015)
performance power curve

adjustment

2015 o Turbine Generic 1.1 Kassebaum (2015)
performance power curve

adjustment

2018 o Turbine Generic 0.2 Pram (2018)
performance power curve

adjustment

2010 e Turbine High wind 0.3 WindPro 2.7 Nielsen et al. (2010)
performance hysteresis

2014 e Turbine High wind 0.6 0 3 Typical North AWS Truepower
performance hysteresis American onshore (2014)
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2009 e Turbine Site-specific 0.6 Adjust for tower AWS Truepower
performance power curve turbulence intensity (2009)

adjustment to correct NRG
Systems Max 40
anemometer
overspeeding

2014 e Turbine Site-specific 0 0 1 Typical North AWS Truepower
performance power curve American onshore, (2014)

adjustment including inclined
flow

2016 e Turbine Site-specific 0.5 Papadopoulos
performance power curve (2019)

adjustment

2014 o Turbine Site-specific 2 5 Staffell and Green
performance power curve (2014)

adjustment

2008 e Turbine Suboptimal 1 Johnson et al.
performance performance (2008), White (2008a)

2009 e Turbine Suboptimal 1 2 White (2009)
performance performance

2009 e Turbine Suboptimal 1 AWS Truepower
performance performance (2009)

2013 e Turbine Suboptimal 0.5 Papadopoulos
performance performance (2019)

2014 e Turbine Suboptimal 1 0 1 Typical North AWS Truepower
performance performance American onshore (2014)

2019 e Turbine Suboptimal 1.1 2.2 10◦ of yaw error Liew et al. (2019)
performance performance

2019 e Turbine Suboptimal 3 Yaw misalignment Slinger et al.
performance performance (2019b)

2012 o Turbine Suboptimal 0 3.6 Johnson (2012)
performance performance

2019 o Turbine Suboptimal 0.41 Pedersen and
performance performance Langreder (2019)

2019 o Turbine Suboptimal 0.21 Yaw Pedersen and
performance performance Langreder (2019)

2010 e Turbine Total turbine 1 3 Clive (2010)
performance performance

2010 e Turbine Total turbine 10 19 Clive (2010)
performance performance

2011 e Turbine Total turbine 2 Analyst Hendrickson (2011)
performance performance comparison

2012 e Turbine Total turbine 2.5 0 5 Brower (2012)
performance performance

2013 e Turbine Total turbine 1 2 Typical northwest Mortensen (2013)
performance performance European onshore
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2014 e Turbine Total turbine 4 Typical North AWS Truepower
performance performance American onshore (2014)

2016 e Turbine Total turbine 1 3 Clifton et al. (2016)
performance performance

2019 o Turbine Total turbine 2 6.5 Rotor aerodynamic Rezzoug (2019)
performance performance imbalance, yaw

static misalignment

2013 e Wake effect External wake 2.3 Offshore, analyst Mortensen and
effects comparison, Ejsing Jørgensen

including (2013)
neighboring wind
farm wake

2014 e Wake effect External wake 0 Typical North AWS Truepower
effects American onshore (2014)

2014 e Wake effect Internal wake 6.4 0 2 Typical North AWS Truepower
effects American onshore (2014)

2018 e Wake effect Internal wake 2 0 4 Turbine interaction Bleeg (2018)
effects

2011 e Wake effect Nonwake 3 4 Comstock (2011)

2011 e Wake effect Nonwake 11 6 15 Analyst Hendrickson (2011)
comparison

2012 e Wake effect Nonwake 9.2 5 20 Analyst Mortensen et al.
comparison (2012)

2013 e Wake effect Nonwake 9.6 7.5 13 Offshore, analyst Mortensen and
comparison Ejsing Jørgensen

(2013)

2013 e Wake effect Nonwake 8 4.4 20 Onshore, analyst Mortensen and
comparison Ejsing Jørgensen

(2013)

2013 e Wake effect Nonwake 5 10 Typical northwest Mortensen (2013)
European onshore

2015 e Wake effect Nonwake 8 9.6 Mortensen et al.
(2015a)

2008 e Wake effect Total wake 10 20 Barthelmie et al.
effect (2008)

2009 e Wake effect Total wake 20 After 20 rows of White (2009)
effect turbines

2009 e Wake effect Total wake 40 After 70 rows of Tindal (2009)
effect offshore turbines

2009 e Wake effect Total wake 15 20 After 15 rows of Tindal (2009)
effect offshore turbines

2009 e Wake effect Total wake 10 Nielsen et al. (2010)
effect

2010 e Wake effect Total wake 18 Wolfe (2010)
effect
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Table B3. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2010 e Wake effect Total wake 5 15 WindPro 2.7 Nielsen et al. (2010)
effect

2010 e Wake effect Total wake 11.5 Account for deep- Nielsen et al. (2010)
effect array loss and

turbulence intensity

2011 e Wake effect Total wake 1 3 Comstock (2011)
effect

2011 e Wake effect Total wake 8 6 10 Analyst Hendrickson (2011)
effect comparison

2012 e Wake effect Total wake 6.7 3 15 Brower (2012)
effect

2012 e Wake effect Total wake 6.1 4.5 8.1 Analyst Mortensen et al.
effect comparison (2012)

2013 e Wake effect Total wake 14 6.9 37 Offshore, analyst Mortensen and
effect comparison Ejsing Jørgensen

(2013)

2013 e Wake effect Total wake 10 3.9 17 Onshore, analyst Mortensen and
effect comparison Ejsing Jørgensen

(2013)

2014 e Wake effect Total wake 6.4 1.1 18.1 Typical North AWS Truepower
effect American onshore (2014)

2015 e Wake effect Total wake 6.1 14.3 Onshore analyst Mortensen et al.
effect comparison (2015b)

2016 e Wake effect Total wake 0 10 Onshore analyst Clifton et al. (2016)
effect comparison

2018 e Wake effect Total wake 4.5 7.7 Walls (2018)
effect

2019 e Wake effect Total wake 15 Slinger et al.
effect (2019a)

2019 e Wake effect Total wake 3 14 Stoelinga (2019)
effect

2010 o Wake effect Total wake 13 By the fifth row Wolfe (2010)
effect

2014 o Wake effect Total wake 5 15 Onshore, small Staffell and Green
effect (20-turbine) wind (2014)

farms

2016 o Wake effect Total wake 8.4 15.3 Up to fourth row Kline (2016)
effect downwind

2019 o Wake effect Total wake 4 16 Stoelinga (2019)
effect
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Table B4. List of other categorical losses outside the IEC-proposed framework (Table A1), which are used to generate Fig. 7.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2008 e Availability First few 3 5 Include first-year Johnson et al.
years of operation; also stated (2008), White (2008a)
operation in Table B3

2014 e Availability First few 4 2 6 Typical North AWS Truepower
years of American onshore, (2014)
operation first year

2010 o Availability First few 4 5 First year of Johnson (2011)
years of operation
operation

2011 o Availability First few 2 3 First year of Johnson (2011)
years of operation
operation

2019 o Availability First few 2.2 First 2 years of Pullinger et al. (2019)
years of operation
operation

2018 e Turbine Blockage 1 Bleeg (2018)
performance

2019 e Turbine Blockage 0.3 1.5 Spalding (2019)
performance

2019 e Turbine Blockage 1.75 Robinson (2019)
performance

2019 e Turbine Blockage 1.9 0 6 Lee (2019)
performance

2019 e Turbine Blockage 2 1 5 Papadopoulos (2019)
performance
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Table B5. List of uncertainties of energy losses, as projected in Fig. 9. Note that a value herein represents the percent of energy percentage
loss.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2014 o Interannual 3.3 Istchenko (2014)
variability of loss

2014 o Intermonthly 10 14 Istchenko (2014)
variability of loss

2012 e Nonwake loss 32 Analyst comparison Mortensen et al. (2012)

2013 e Nonwake loss 7.8 Offshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2013 e Nonwake loss 34 Onshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2012 e Wake loss 13 Analyst comparison Mortensen et al. (2012)

2013 e Wake loss 10 20 Caused by different models Brower and Robinson
and terrains (2013)

2013 e Wake loss 20 30 In WindFarmer Elkinton (2013)

2013 e Wake loss 25 McCaa (2013)

2013 e Wake loss 15 20 Kline (2013)

2013 e Wake loss 30 Halberg and Breakey (2013)

2013 e Wake loss 37 Offshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2013 e Wake loss 18 Onshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2014 e Wake loss 20 AWS Truepower (2014)

2015 e Wake loss 13 22 Mortensen et al. (2015b)

2016 e Wake loss 13 35 Clifton et al. (2016)

2019 e Wake loss 18 Stoelinga (2019)

2009 o Wake loss 80 By second row of an Dahlberg (2009)
offshore wind farm
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Table B6. List of energy uncertainties, according to the categories and subcategories in Table A2. These values correspond to Fig. 10.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2004 e Historical Long-term 5 WindPro 2.4; EMD International
wind adjustment methods and measure– A/S (2004)
resource correlate–predict

2008 e Historical Long-term 5 10 Measure–correlate– Anderson (2008)
wind adjustment predict process
resource

2010 e Historical Long-term 3 10 WindPro 2.7; long- Nielsen et al. (2010)
wind adjustment term correction
resource

2013 e Historical Long-term 4 0 11 Onshore, analyst Mortensen and Ejsing
wind adjustment comparison Jørgensen (2013)
resource

1991 e Historical Long-term 10 Simon (1991)
wind period
resource

2004 e Historical Long-term 5 WindPro 2.4; wind EMD International
wind period statistics A/S (2004)
resource

2008 e Historical Long-term 5 Climate variation: Johnson et al. (2008),
wind period 1997–2007 White (2008a)
resource

2010 e Historical Long-term 5 WindPro 2.7; long- Nielsen et al. (2010)
wind period term wind variability
resource

2012 e Historical Long-term 5.9 Long-term wind Tchou (2012)
wind period speed
resource

2013 e Historical Long-term 3.5 0 12 Onshore, analyst Mortensen and Ejsing
wind period comparison Jørgensen (2013)
resource

2014 e Historical Long-term 2 11 Long-term wind Geer (2014)
wind period speed and its
resource interannual variability

2014 e Historical Long-term 3.2 2.1 4.8 AWS Truepower
wind period (2014)
resource

2015 e Historical Long-term 5.5 9.5 Breakey (2019)
wind period
resource

2019 e Historical Long-term 28.4 1-year uncertainty Dutrieux (2019)
wind period
resource

2010 o Historical Long-term 2 Rogers (2010)
wind period
resource

2012 o Historical Long-term 8.2 Long-term wind Tchou (2012)
wind period speed
resource
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2012 o Historical Long-term 4.3 Long-term wind Tchou (2012)
wind period speed
resource

2013 e Historical Reference 16 Holtslag (2013)
wind data
resource

2009 e Historical Total 3.98 20-year Breakey (2019)
wind historical uncertainty,
resource wind resource 10 projects

2011 e Historical Total 4.2 2.5 7 Comstock (2011)
wind historical
resource wind resource

2011 e Historical Total 5 Hendrickson (2011)
wind historical
resource wind resource

2016 e Historical Total 1 6 Clifton et al. (2016)
wind historical
resource wind resource

2017 e Historical Total 2 5 10-year uncertainties Halberg (2017)
wind historical from three examples
resource wind resource

2019 e Historical Total 2.68 20-year Breakey (2019)
wind historical uncertainty,
resource wind resource 10 projects

2012 o Historical Total 3 5 Comstock (2012)
wind historical
resource wind resource

2014 o Historical Total 3.2 1.7 5.3 Brower (2014)
wind historical
resource wind resource

2014 o Historical Total 2 2 5 Istchenko (2014)
wind historical
resource wind resource

2014 e Historical Wind speed 1.5 2.5 Interannual variability Geer (2014)
wind and direction of frequency
resource distribution distribution

2014 e Historical Wind speed 1 0.6 1.5 Wind speed AWS Truepower
wind and direction distribution (2014)
resource distribution

2004 e Horizontal Model stress 5 WindPro 2.4; terrain EMD International
extrapolation description A/S (2004)

2014 e Horizontal Model stress 3 6 Complex terrain Redouane (2014)
extrapolation

2016 e Horizontal Model stress 1 10 For simple and Clifton et al. (2016)
extrapolation complex terrain
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2010 o Horizontal Model stress 2.7 75 North American Rogers (2010)
extrapolation projects; caused by

topography

2009 e Horizontal Total 1 3 Non-ideal flow Hendrickson (2009)
extrapolation horizontal

extrapolation

2009 e Horizontal Total 5.24 20-year Breakey (2019)
extrapolation horizontal uncertainty,

extrapolation 10 projects

2011 e Horizontal Total 4.1 1.5 7 Comstock (2011)
extrapolation horizontal

extrapolation

2011 e Horizontal Total 4.3 Flow model Hendrickson (2011)
extrapolation horizontal

extrapolation

2013 e Horizontal Total 3.5 0 9 Onshore, analyst Mortensen and Ejsing
extrapolation horizontal comparison Jørgensen (2013)

extrapolation

2014 e Horizontal Total 2 4 Geer (2014)
extrapolation horizontal

extrapolation

2014 e Horizontal Total 4 2.4 8 Flow model AWS Truepower
extrapolation horizontal (2014)

extrapolation

2014 e Horizontal Total 0 14.8 Redouane (2014)
extrapolation horizontal

extrapolation

2015 e Horizontal Total 0 8.7 Mortensen et al. (2015a)
extrapolation horizontal

extrapolation

2016 e Horizontal Total 1 10 Clifton et al. (2016)
extrapolation horizontal

extrapolation

2017 e Horizontal Total 2.6 4.7 10-year uncertainties Halberg (2017)
extrapolation horizontal from three examples

extrapolation

2018 e Horizontal Total 2.3 6.5 Flow model Walls (2018)
extrapolation horizontal

extrapolation

2019 e Horizontal Total 3.54 20-year Breakey (2019)
extrapolation horizontal uncertainty,

extrapolation 10 projects

2010 o Horizontal Total 2.3 3.3 Analyst comparison; Walter (2010)
extrapolation horizontal “extrapolation”

extrapolation

2010 o Horizontal Total 2 Analyst comparison; McAloon (2010)
extrapolation horizontal “extrapolation”

extrapolation
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2014 o Horizontal Total 4.3 1.7 8.5 Flow model Brower (2014)
extrapolation horizontal

extrapolation

2014 o Horizontal Total 4 1 8 Istchenko (2014)
extrapolation horizontal

extrapolation

2014 e Measurement Data integrity 0.5 0.2 1 AWS Truepower
and (2014)
documentation

2016 e Measurement Data integrity 0.5 Clifton et al. (2016)
and
documentation

2010 o Measurement Data integrity 1.4 Data recovery and Rogers (2010)
and validation
documentation

2013 e Measurement Further 0.5 0 5 Onshore, analyst Mortensen and Ejsing
atmospheric comparison; air Jørgensen (2013)
parameters density

2009 e Measurement Total 3.45 20-year Breakey (2019)
measurement uncertainty,

10 projects

2011 e Measurement Total 3.8 2.5 6 Comstock (2011)
measurement

2011 e Measurement Total 4.9 Hendrickson (2011)
measurement

2014 e Measurement Total 1.5 2.5 Geer (2014)
measurement

2014 e Measurement Total 2.4 1.6 4.8 AWS Truepower
measurement (2014)

2016 e Measurement Total 1 5 For plants built from Clifton et al. (2016)
measurement 2010 to 2015 with

anemometer-based
campaign, before
extrapolations

2017 e Measurement Total 2.3 4.5 10-year uncertainties Halberg (2017)
measurement from three examples

2019 e Measurement Total 2.36 20-year Breakey (2019)
measurement uncertainty,

10 projects

2002 o Measurement Total 8 12 Friis Pedersen et al.
measurement (2002)

2010 o Measurement Total 1.9 Analyst comparison; Balfrey (2010)
measurement caused by tower

shadow filter and data
recovery

2012 o Measurement Total 2 3 Comstock (2012)
measurement
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2014 o Measurement Total 4.2 1.7 7.5 Brower (2014)
measurement

2014 o Measurement Total 2 2 4 Istchenko (2014)
measurement

2012 e Measurement Wind speed 3.4 Anemometer Tchou (2012)
measurement

2013 e Measurement Wind speed 9 Holtslag (2013)
measurement

2013 e Measurement Wind speed 4 1.5 10 Onshore, analyst Mortensen and Ejsing
measurement comparison Jørgensen (2013)

2015 e Measurement Wind speed 3 4 Anemometer and Geer (2015)
measurement calibration

2016 e Measurement Wind speed 1 2 Clifton et al. (2016)
measurement

2010 o Measurement Wind speed 1.5 1 1.5 Tower effects on Rogers (2010)
measurement anemometer

2012 e Plant Availability 0.3 Substation metering Tchou (2012)
performance

2014 e Plant Availability 2 4 Interannual variability Geer (2014)
performance of availability

2009 o Plant Availability 6.2 Cushman (2009)
performance

2011 o Plant Availability 1 Johnson (2011)
performance

2012 o Plant Availability 1.7 Tchou (2012)
performance

2016 e Plant Curtailments 1 4 Clifton et al. (2016)
performance or operational

strategies

2013 e Plant Electrical 0.5 0 4 Onshore, analyst Mortensen and Ejsing
performance comparison; metering Jørgensen (2013)

2013 e Plant Electrical 0 2 Metering Mortensen (2013)
performance

2016 e Plant Electrical 1 2 Clifton et al. (2016)
performance

2012 e Plant Nonwake 2.9 Analyst comparison Mortensen et al. (2012)
performance

2013 e Plant Nonwake 0.7 Offshore, analyst Mortensen and Ejsing
performance comparison Jørgensen (2013)

2013 e Plant Nonwake 2.7 Onshore, analyst Mortensen and Ejsing
performance comparison Jørgensen (2013)

2013 e Plant Nonwake 1 0 10 Onshore, analyst Mortensen and Ejsing
performance comparison Jørgensen (2013)
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2014 o Plant Nonwake 3.7 3.2 4.5 Brower (2014)
performance

2009 e Plant Total plant 3.56 20-year Breakey (2019)
performance performance uncertainty,

10 projects

2011 e Plant Total plant 3.2 1 5 Comstock (2011)
performance performance

2011 e Plant Total plant 3.8 Hendrickson (2011)
performance performance

2013 e Plant Total plant 3 Holtslag (2013)
performance performance

2014 e Plant Total plant 2 5 Geer (2014)
performance performance

2014 e Plant Total plant 3.5 3.2 4.8 AWS Truepower
performance performance (2014)

2016 e Plant Total plant 0 15 Clifton et al. (2016)
performance performance

2017 e Plant Total plant 3 4.4 10-year uncertainties Halberg (2017)
performance performance from three examples

2019 e Plant Total plant 4.53 20-year Breakey (2019)
performance performance 10 projects; includes

uncertainty,
interannual variability
of turbine
performance

2010 o Plant Total plant 2 Rogers (2010)
performance performance

2012 o Plant Total plant 2 3 Comstock (2012)
performance performance

2014 o Plant Total plant 4 3 5 Istchenko (2014)
performance performance

2004 e Plant Turbine 5 WindPro 2.4; power EMD International
performance performance curve A/S (2004)

2012 e Plant Turbine 1.5 Tchou (2012)
performance performance

2013 e Plant Turbine 4 0 10 Onshore, analyst Mortensen and Ejsing
performance performance comparison; power Jørgensen (2013)

curve

2013 e Plant Turbine 5 10 Power curve Mortensen (2013)
performance performance

2014 e Plant Turbine 4 10.4 Power curve Redouane (2014)
performance performance

2016 e Plant Turbine 0 4 Clifton et al. (2016)
performance performance

2019 e Plant Turbine 8.6 18.8 Power curve from Kim and Shin (2019)
performance performance 10 kW turbine
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2002 o Plant Turbine 2 3 Power curve Friis Pedersen et al.
performance performance (2002)

2012 o Plant Turbine 0.8 Power curve Brower et al. (2012)
performance performance

2012 o Plant Turbine 1 Tchou (2012)
performance performance

2012 o Plant Turbine 6.1 Power curve Drees and Weiss
performance performance (2012)

2012 o Plant Turbine 15 From air density of Winslow (2012)
performance performance power curve

2012 o Plant Turbine 4 8 Power curve Jaynes (2012)
performance performance

2013 o Plant Turbine 0.5 6.5 Power curve Kassebaum (2013)
performance performance

2014 o Plant Turbine 6 Power curve Ostridge (2014)
performance performance

2015 o Plant Turbine 6 Power curve Ostridge (2015)
performance performance

2015 o Plant Turbine 2.1 Power curve Kassebaum (2015)
performance performance

2017 o Plant Turbine 3.1 4 Power curve Filippelli et al. (2017)
performance performance

2018 o Plant Turbine 2.5 Power curve Pram (2018)
performance performance

2012 e Plant Wake effect 7 Tchou (2012)
performance

2012 e Plant Wake effect 0.8 Analyst comparison Mortensen et al. (2012)
performance

2013 e Plant Wake effect 5.3 Offshore, analyst Mortensen and Ejsing
performance comparison Jørgensen (2013)

2013 e Plant Wake effect 1.8 0 13 Onshore, analyst Mortensen and Ejsing
performance comparison Jørgensen (2013)

2013 e Plant Wake effect 0 5 Mortensen (2013)
performance

2014 e Plant Wake effect 0 10 Redouane (2014)
performance

2014 o Plant Wake effect 1.7 0.7 3.1 Brower (2014)
performance
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2019 e Project Climate 4 Wilkinson et al. (2019)
evaluation change
period
variability

2014 o Project Climate 2.1 1.4 2.8 Future climate Brower (2014)
evaluation change
period
variability

2008 e Project Modeled 1 Short-term Johnson et al. (2008),
evaluation operational climatology White (2008a)
period period
variability

2014 e Project Modeled 1.9 AWS Truepower
evaluation operational (2014)
period period
variability

2019 e Project Modeled 8 10-year uncertainty Dutrieux (2019)
evaluation operational
period period
variability

2019 e Project Modeled 4.8 20-year Dutrieux (2019)
evaluation operational uncertainty
period period
variability

2019 e Project Modeled 1.6 30-year Dutrieux (2019)
evaluation operational uncertainty
period period
variability

2010 o Project Modeled 1 Changes in long-term Rogers (2010)
evaluation operational wind speed
period period
variability

2015 e Project Plant 7 12 With 1–10 met Brower et al. (2015)
evaluation performance masts
period
variability

2009 e Project Total project 2.26 20-year future Breakey (2019)
evaluation evaluation variability
period period
variability variability

2011 e Project Total project 6 10.5 Comstock (2011)
evaluation evaluation
period period
variability variability

2011 e Project Total project 7 Hendrickson (2011)
evaluation evaluation
period period
variability variability
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2012 e Project Total project 3.1 9.7 Range of 1- and 10-year Tchou (2012)
evaluation evaluation uncertainties
period period
variability variability

2016 e Project Total project 1 10 Clifton et al. (2016)
evaluation evaluation
period period
variability variability

2017 e Project Total project 2.8 3.5 10-year uncertainties Halberg (2017)
evaluation evaluation from three examples
period period
variability variability

2019 e Project Total project 0.94 20-year future Breakey (2019)
evaluation evaluation variability
period period
variability variability

2010 o Project Total project 1 Rogers (2010)
evaluation evaluation
period period
variability variability

2012 o Project Total project 2 3 Comstock (2012)
evaluation evaluation
period period
variability variability

2012 o Project Total project 3.1 9.7 Range of 1- and 10-year Tchou (2012)
evaluation evaluation uncertainties
period period
variability variability

2014 o Project Total project 6 4 9 1-year Istchenko (2014)
evaluation evaluation uncertainties
period period
variability variability

2014 o Project Total project 2 2 3 10-year Istchenko (2014)
evaluation evaluation uncertainties
period period
variability variability

2000 e Total Total 3 6 For flat and complex Albers et al. (2000)
terrains

2004 e Total Total 10 WindPro 2.4 EMD International
A/S (2004)

2007 e Total Total 9.6 20-year Breakey (2019)
uncertainty,
10 projects

2008 e Total Total 9.9 12.7 Range of 1-year and AWS Truepower
lifetime uncertainties (2009)

2009 e Total Total 7.9 10.5 Range of 1-year and AWS Truepower
lifetime uncertainties (2009)

2010 e Total Total 8 10 WindPro 2.7 Nielsen et al. (2010)
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2011 e Total Total 13 10 18 Hendrickson (2011)

2011 e Total Total 7.2 Bernadett et al.
(2012)

2012 e Total Total 7 11 Comstock (2012)

2012 e Total Total 10.4 13.9 Range of 1- and 10-year Tchou (2012)
uncertainties

2012 e Total Total 7.7 Bernadett et al.
(2012)

2012 e Total Total 11 6 21 Analyst comparison Mortensen et al. (2012)

2013 e Total Total 17 Holtslag (2013)

2013 e Total Total 10.8 Holtslag (2013)

2013 e Total Total 10 6.2 21 Offshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2013 e Total Total 8 3.6 12 Onshore, analyst Mortensen and Ejsing
comparison Jørgensen (2013)

2013 e Total Total 10 15 Mortensen (2013)

2014 e Total Total 7.9 10.8 Range of 1- and 10-year Istchenko (2014)
uncertainties

2014 e Total Total 7.5 5.2 13.5 AWS Truepower
(2014)

2014 e Total Total 11.1 16.7 Nine wind farms, Redouane (2014)
1-year uncertainties

2014 e Total Total 8.4 14.5 Nine wind farms, Redouane (2014)
10-year uncertainties

2015 e Total Total 10 15 Apple (2015)

2015 e Total Total 7.2 Istchenko (2015)

2015 e Total Total 5 9 “Minimum” 5 % to 9 % Mortensen et al. (2015b)
of yield assessment
uncertainty

2015 e Total Total 8 11 Mortensen et al.
(2015a)

2015 e Total Total 10.6 1-year uncertainty Stoelinga and
Hendrickson (2015)

2017 e Total Total 6.2 10.7 10-year uncertainties Halberg (2017)
from three examples

2017 e Total Total 7.9 9.1 1-year Perry (2017)
uncertainties

2017 e Total Total 4.1 6.2 20-year Perry (2017)
uncertainties

2017 e Total Total 11 Post-2011 projects, Ostridge (2017)
1-year standard
deviation
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2019 e Total Total 6.8 20-year Breakey (2019)
uncertainty,
10 projects

2009 o Total Total 9.7 9.7 Derrick (2009)

2009 o Total Total 33 One offshore wind Dahlberg (2009)
farm

2012 o Total Total 5 8 Comstock (2012)

2012 o Total Total 9.1 12.9 Range of 1- and 10-year Tchou (2012)
uncertainties

2012 o Total Total 6.2 11.1 Range of 1- and 10-year Tchou (2012)
uncertainties

2014 o Total Total 8.4 6.3 11.5 Brower (2014)

2014 o Total Total 5.4 9.4 Range of 1- and 10-year Istchenko (2014)
uncertainties

2014 o Total Total 4 8 Nine wind farms Redouane (2014)

2015 o Total Total 6 12 Apple (2015)

2015 o Total Total 6.2 Istchenko (2015)

2015 o Total Total 3.1 7 Mortensen et al.
(2015a)

2017 o Total Total 8 Post-2011 projects, Ostridge (2017)
1-year standard
deviation

2014 e Vertical Model inputs 2.6 0 6.4 Wind shear AWS Truepower
extrapolation (2014)

2010 o Vertical Model inputs 1.9 Wind shear Rogers (2010)
extrapolation

2009 e Vertical Total vertical 3.49 20-year Breakey (2019)
extrapolation extrapolation uncertainty,

10 projects

2011 e Vertical Total vertical 3.2 1.5 5 Comstock (2011)
extrapolation extrapolation

2011 e Vertical Total vertical 3.1 Hendrickson (2011)
extrapolation extrapolation

2013 e Vertical Total vertical 1 0 13 Onshore, analyst Mortensen and Ejsing
extrapolation extrapolation comparison Jørgensen (2013)

2014 e Vertical Total vertical 1 2 Geer (2014)
extrapolation extrapolation

2014 e Vertical Total vertical 0 5 Redouane (2014)
extrapolation extrapolation

2016 e Vertical Total vertical 0 6 Clifton et al. (2016)
extrapolation extrapolation

2017 e Vertical Total vertical 2.1 3.9 10-year uncertainties Halberg (2017)
extrapolation extrapolation from three examples
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Table B6. Continued.

Year Est/ Category Subcategory Avg Min Max Notes Source
obs (%) (%) (%)

2019 e Vertical Total vertical 5 Žagar (2019)
extrapolation extrapolation

2019 e Vertical Total vertical 2.21 20-year Breakey (2019)
extrapolation extrapolation uncertainty,

10 projects

2010 o Vertical Total vertical 2.3 3.3 Analyst comparison; Walter (2010)
extrapolation extrapolation “extrapolation”

2010 o Vertical Total vertical 2 Analyst comparison; McAloon (2010)
extrapolation extrapolation “extrapolation”

2014 o Vertical Total vertical 3 0 5 Istchenko (2014)
extrapolation extrapolation

Table B7. List of other energy uncertainties outside of the IEC-proposed framework (Table A2), and the values herein are necessary to
generate Fig. 11.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2013 e External wake 1.6 Offshore, analyst comparison Mortensen and Ejsing
Jørgensen (2013)

2013 e Methodology 5 Energy calculation Holtslag (2013)

2018 e Methodology 1 3 Analyst uncertainty Craig et al. (2018)

2014 e Power curve 4 10 Redouane (2014)
measurement

2002 o Power curve 6 8 Friis Pedersen et al.
measurement (2002)

2013 o Power curve 3.5 Power curve test Kassebaum (2013)
measurement

2015 o Power curve 4.5 Kassebaum (2015)
measurement
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Table B8. List of wind speed uncertainties which are used for Fig. 12. Different from other tables in Appendix B, this table records values
in percentage of wind speed.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2018 e Blockage 1.9 3.4 Bleeg et al. (2018)

2011 e Distortion 0 2 Non-ideal flow; includes Hatlee (2011)
tower, boom, other
equipment

2014 e Distortion 1.1 3.6 Include distortion of terrain Redouane (2014)
and mounting

2010 e Future variability 1 3 Future climate; WindPro 2.7 Nielsen et al. (2010)

2011 e Future variability 4 6 Comstock (2011)

2012 e Future variability 1.4 2.2 Future wind resource Brower (2012)

2011 e Horizontal 1 4 Comstock (2011)
extrapolation

2013 e Horizontal 5 Reference data Holtslag (2013)
extrapolation

2013 e Horizontal 1 Lidar Holtslag (2013)
extrapolation

2013 e Horizontal 0 5 Mortensen (2013)
extrapolation

2015 e Horizontal 0 2.2 Long-term extrapolation Mortensen et al. (2015a)
extrapolation

2010 o Horizontal 1.9 Analyst comparison; “extrapolation” Walter (2010)
extrapolation

1991 e Interannual 6.1 Simon (1991)
variability

2006 e Interannual 8 12 Northern Europe Pryor et al. (2006)
variability

2008 e Interannual 2 7 Windiness Johnson et al. (2008)
variability

2009 e Interannual 6 Recommend in Garrad Hassan and Partners
variability WindFarmer Ltd (2009)

2010 e Interannual 3.5 Hendrickson (2010)
variability

2010 e Interannual 6 1-year uncertainty; Nielsen et al. (2010)
variability WindPro 2.7

2010 e Interannual 1.3 20-year uncertainty; Nielsen et al. (2010)
variability WindPro 2.7

2011 e Interannual 4 6 United States Rogers (2011)
variability

2013 e Interannual 2 6 Variability Mortensen (2013)
variability

2014 e Interannual 2 4 Brower (2014)
variability

2014 e Interannual 3.5 6 Geer (2014)
variability
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Table B8. Continued.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2017 e Interannual 5 Perry (2017)
variability

2018 e Interannual 2.1 37 years in contiguous Lee et al. (2018)
variability United States

2019 e Interannual 1.4 5.4 Gkarakis and Orfanaki
variability (2019)

2014 o Interannual 5.7 8.8 Istchenko (2014)
variability

2018 e Intermonthly 10.2 37 years in contiguous Lee et al. (2018)
variability United States

2014 o Intermonthly 19 24 Istchenko (2014)
variability

2010 e Long-term wind 3 2 4 Clive (2010)
speed

2011 e Long-term wind 3.7 4.8 Combine nearby weather Rogers (2011)
speed station, airport, modeled

data

2011 e Long-term wind 1.5 4 Comstock (2011)
speed

2012 e Long-term wind 1 2 Brown (2012)
speed

2012 e Long-term wind 1.6 4 Brower (2012)
speed

2013 e Long-term wind 2 Reference data; long-term Holtslag (2013)
speed representation

2014 e Long-term wind 0 11 Uncertainty is smaller with Hamel (2014)
speed longer years

2014 e Long-term wind 15 Hendrickson (2014)
speed

2014 e Long-term wind 1.1 6.1 From data analysis and Redouane (2014)
speed measure–correlate–predict

2006 o Long-term wind 3.5 20 1000 h of data Rogers et al. (2006)
speed

2006 o Long-term wind 3 6 9000 h of data at Rogers (2011)
speed offshore wind farms

2006 o Long-term wind 2 8 9000 h of data at Rogers (2011)
speed offshore wind farms

2010 e Measure–correlate– 1 3 WindPro 2.7 Nielsen et al. (2010)
predict

2012 e Measure–correlate– 2.5 1 3 Long-term wind speed and Mortensen et al. (2012)
predict correction

2013 e Measure–correlate– 4 Lidar; long-term Holtslag (2013)
predict representation and

correlation

2014 e Measure–correlate– 0.7 6.4 Redouane (2014)
predict
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Table B8. Continued.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2010 e Plant performance 3 1 4 Energy loss model Clive (2010)

2010 e Terrain data and 3 4 Clive (2010)
resolution

2012 e Terrain data and 1.5 Brown (2012)
resolution

2010 e Total wind speed 7 3 10 Clive (2010)

2012 e Total wind speed 3 13 Brower (2012)

2013 e Total wind speed 8.9 Reference data Holtslag (2013)

2013 e Total wind speed 5.1 Lidar Holtslag (2013)

2015 e Total wind speed 3 10 Brower et al. (2015)

2014 o Total wind speed 9 16 Nine locations Redouane (2014)

2011 e Vertical 1 3 Comstock (2011)
extrapolation

2011 e Vertical 0 4 Faghani (2011)
extrapolation

2012 e Vertical 0 6.3 Brower (2012)
extrapolation

2013 e Vertical 5 Reference data Holtslag (2013)
extrapolation

2013 e Vertical 0 Lidar Holtslag (2013)
extrapolation

2013 e Vertical 0 5 Mortensen (2013)
extrapolation

2014 e Vertical 0 2 Redouane (2014)
extrapolation

2015 e Vertical 0.7 3.6 Mortensen et al. (2015a)
extrapolation

2016 e Vertical 2 6 Non-forested Kelly (2016)
extrapolation

2017 e Vertical 1 Industry accepted; Langreder (2017)
extrapolation 1 % per 10 m

2019 e Vertical 0 7 Depends on shear and Kelly et al. (2019)
extrapolation terrain

2010 o Vertical 1.9 Analyst comparison; Walter (2010)
extrapolation “extrapolation”

2019 o Vertical 0 4 Depends on shear and Kelly et al. (2019)
extrapolation terrain

2012 e Wake effect 2 Brown (2012)

2014 e Wake effect 16 Actuator disk and Abiven et al. (2014)
computational fluid
dynamics models

2014 e Wake effect 0 Park and Ainslie models Abiven et al. (2014)
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Table B8. Continued.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2007 e Wind speed 2.4 Breakey (2019)
measurement

2010 e Wind speed 3 1 4 Clive (2010)
measurement

2010 e Wind speed 2 WindPro 2.7 Nielsen et al. (2010)
measurement

2011 e Wind speed 1 2.5 Ideal flow; calibration Hatlee (2011)
measurement

2011 e Wind speed 1.5 5 Non-ideal flow; total Hatlee (2011)
measurement measurement

2011 e Wind speed 3.1 Rogers (2011)
measurement

2011 e Wind speed 1.5 3.5 Comstock (2011)
measurement

2011 e Wind speed 2 3 Faghani (2011)
measurement

2012 e Wind speed 0.5 1.5 Brown (2012)
measurement

2012 e Wind speed 1 2.5 Single anemometer Brower (2012)
measurement

2013 e Wind speed 5 Reference data; wind Holtslag (2013)
measurement statistics

2013 e Wind speed 3 Lidar; wind statistics Holtslag (2013)
measurement

2013 e Wind speed 2 5 Wind measurement Mortensen (2013)
measurement

2014 e Wind speed 0 5 Measurement campaign Redouane (2014)
measurement

2015 e Wind speed 2 Anemometer and Geer (2015)
measurement calibration

2015 e Wind speed 2 Two met masts Brower et al. (2015)
measurement

2016 e Wind speed 2 Kelly (2016)
measurement

2017 e Wind speed 0.8 Breakey (2019)
measurement

2019 e Wind speed 1.58 1.54 1.86 Range of standard, Medley and Smith (2019)
measurement recommended, and lidar

methods

2019 e Wind speed 4 Lidar calibration Slater (2019)
measurement

2019 e Wind speed 2.23 2.68 Range from using Crease (2019)
measurement computational fluid

dynamics models or not
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Table B8. Continued.

Year Est/ Category Avg Min Max Notes Source
obs (%) (%) (%)

2019 e Wind speed 6 8 Keck et al. (2019)
measurement

2013 o Wind speed 2 3 Lidar on flat terrain Albers et al. (2013)
measurement

2015 o Wind speed 1.1 2.2 Anemometer Clark (2015)
measurement

2016 o Wind speed 1 2 Anemometer; Smith et al. (2016)
measurement industry accepted

2009 e Wind speed 7 VanLuvanee et al. (2009)
modeling

2010 e Wind speed 4 2 6 Flow model accuracy Clive (2010)
modeling

2010 e Wind speed 3 10 Brower et al. (2010)
modeling

2011 e Wind speed 2 5 Faghani (2011)
modeling

2012 e Wind speed 1 5.5 Brown (2012)
modeling

2012 e Wind speed 2 10 Flow model Brower (2012)
modeling

2013 e Wind speed 1.7 6.9 Abiven et al. (2013)
modeling

2015 e Wind speed 10 12 Brower et al. (2015)
modeling

2017 e Wind speed 3 5 WAsP Jog (2017)
modeling

2017 e Wind speed 0.9 2 Ensemble model Jog (2017)
modeling

2017 e Wind speed 2.9 1.4 7.6 Poulos (2017)
modeling

2019 e Wind speed 2.5 2.5 % per km of Zhang et al. (2019)
modeling extrapolation distance in

WAsP; industry-
recommended assumption

2015 o Wind speed 4 10 Brower et al. (2015)
modeling

2016 o Wind speed 1.2 4.3 Weighted absolute total Neubert (2016)
modeling error in WindFarmer
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Appendix C

Figure C1. As in Fig. 8, the trend in energy-production loss: (a) estimated total curtailment loss, (b) observed total availability loss, and
(c) estimated total wake loss. Note that the ranges of the horizontal and vertical axes differ in each panel.
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