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Abstract. This paper describes the design and testing of an axial induction controller implemented on a row of
nine turbines on the Sedini wind farm in Sardinia, Italy. This work was performed as part of the EU Horizon 2020
research project CL-Windcon. An engineering wake model, selected for its good fit to historical SCADA data
from the site, was used in the LongSim code to optimise turbine power reduction setpoints for a large matrix
of steady-state wind conditions. The setpoints were incorporated into a dynamic control algorithm capable of
running on-site using available wind condition estimates from the turbines. The complete algorithm was tested
in dynamic time-domain simulations using LongSim, using a time-varying wind field generated from historical
met mast data from the site. The control algorithm was implemented on-site, with the wind farm controller
toggled on and off at 35 min intervals to allow the performance with and without the controller to be compared
in comparable wind conditions. Data were collected between July 2019 and early February 2020. The results
have been analysed and indicate a positive increase in energy production resulting from the induction control,
in line with LongSim model predictions, although a larger volume of valid data would be necessary to provide
statistically robust conclusions. The measurements also provide a validation of the LongSim model, proving its
value for both steady-state setpoint optimisation and time-domain simulation of wind farm performance.

1 Introduction

Wake interactions are well known to reduce wind farm power
output and increase turbine loads. Recent years have seen
much interest in wind farm control concepts aimed at reduc-
ing these wake effects. The control objective is to increase
overall wind farm power production while maintaining or re-
ducing turbine fatigue loads, by manipulating the individual
turbine controllers to minimise wake interaction effects, us-
ing either axial induction control or wake steering. Both con-
trol concepts involve deliberately reducing the power output
of some individual turbines in order to achieve a net increase
in total production from the farm. In the case of axial induc-
tion control, turbine power reduction is achieved by increas-
ing the pitch angle and/or reducing rotor speed in order to
reduce rotor thrust, thus weakening the wake. In wake steer-
ing control, the turbine is deliberately yawed out of the wind
direction at angles typically up to 30◦, as this has the effect of
changing the downstream path of the wake, which can thus
be steered away from downstream turbines.

Axial induction control has been investigated using large
eddy simulation modelling, often without showing any pos-
itive gains in power production – see for example Ge-
braad (2014). It has since been tested in a boundary layer
wind tunnel by Campagnolo et al. (2016a, b) as well as in an
operational wind farm by van der Hoek et al. (2019). Dur-
ing the wind tunnel tests no net gains were obtained, but
an increase in power production has been reported during
the field tests compared to standard operation. As reported
in van Wingerden et al. (2020), a survey among technical
experts of wind farm control highlighted how the need for
increased confidence in modelling the effects of wind farm
control via more validation campaigns was seen as the top
priority.

As part of the EU Horizon 2020 research project
CL-Windcon (http://www.clwindcon.eu/, last access:
15 March 2021) two field test experiments were designed
and carried out at the Sedini wind farm in Sardinia, Italy, in
order to test the two main concepts for active wake control
in wind farms (axial induction and wake steering). This

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.

http://www.clwindcon.eu/


390 E. Bossanyi and R. Ruisi: Axial induction controller field test at Sedini wind farm

Figure 1. Site layout. Induction control field test involves turbines 13 and 31–38, with winds from the south-west. The setpoint optimisation
maximises the total power from these nine turbines. Controlled turbines are in dark green. Turbine 38 is used as the reference from which
wind conditions are calculated. Turbine 13 is affected but not controlled, as its wake does not affect other turbines.

paper specifically reports on the axial induction control
tests. Further details of all the tests can be found in Kern
et al. (2019). The results of the wake steering field tests
during the same measurement campaign are reported in
Doekemeijer et al. (2021).

Section 2 presents an overview of the Sedini wind farm
site and the planning of the induction control experiment.
The initial controller design process is described in Sect. 3.
In Sect. 4, the use of time-domain simulation modelling to
test and refine the controller is described, while the field tests
themselves are described and results are presented in Sect. 5.

2 The Sedini wind farm site

Details of the Sedini onshore wind farm, planned instru-
mentation and test campaigns are provided in Schuler et
al. (2017). The farm consists of 43 GE 1.5 turbines laid out as
in Fig. 1. Most of the turbines are of type GE 1.5s (1.5 MW,
70.5 m rotor diameter, 65 m hub height), but the seven tur-
bines shown in red are the larger GE 1.5sle type (1.5 MW,
77 m rotor diameter, 80 m hub height). The diagonal row
of turbines 13 and 31–38 is involved in the experiment de-
scribed here, and since only wind directions blowing along
this row from a roughly south-westerly direction are relevant
to the experiment, only these nine turbines were modelled
in the controller design phase. Terrain complexity has been
ignored – the site is not completely flat, but the topography
indicates that with south-westerly wind directions, the effect
of the terrain on the wind flow at these nine turbines is likely
to be relatively small. The wind rose in Fig. 1 shows a pre-

ponderance of westerly wind during the field test period, with
relatively little from the south-west.

The original intention was to carry out both induction and
wake steering field tests using this row of turbines. Prelim-
inary design work for both sets of tests is documented in
Knudsen et al. (2019). However, because of instrumentation
issues, only the induction control tests were actually carried
out, and this paper describes the final controller design and
simulation testing and presents results from the field tests
which began in July 2019. A separate test of wake steering
control was carried out by yawing turbines 26 and E5, as de-
scribed in Kern et al. (2019).

Since no load instrumentation was available on the tur-
bines used for the induction control experiment, the induc-
tion control is aimed only at increasing the total power pro-
duction from this row of turbines. The power output of tur-
bines 31–37 can be modified, and the power output of all nine
turbines is monitored. Turbine 38 is used as a reference tur-
bine and wind sensor, and it remains in baseline operation.
Some additional gain might be expected if turbine 38 were
also controlled, but this has been sacrificed to ensure that the
accuracy of the wind estimation is not affected by any control
action. Turbine 13 is not controlled as there are no turbines
in its wake, but clearly its power output will be affected.

During the field tests, the wake control is switched on and
off at regular intervals (determined as in Sect. 3.5) so that
the performance with and without control can be compared
in similar wind conditions.
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Figure 2. Typical wind speed contour plot from a LongSim dy-
namic simulation. Rotor planes of nine turbines, nos. 13 and 31 to
38, of the Sedini wind farm are represented as thick green lines,
with blue lines pointing along the local wind direction with length
proportional to the local wind speed magnitude.

3 Controller design

The design work was carried out using the LongSim code.
This has been developed by DNV, and more details can
be found in Bossanyi et al. (2018). It is used for the ini-
tial steady-state setpoint optimisation, described in Sect. 3.2,
and also for the dynamic time-domain simulation testing de-
scribed in Sect. 4. For illustration, a typical wind speed con-
tour plot at one point in time during a dynamic simulation is
shown in Fig. 2.

3.1 Wake modelling

To allow rapid calculations and design iterations, LongSim
does not use high-fidelity flow modelling but makes use
of fast engineering wake models embedded in an ambient
flow field. A choice of different engineering models is avail-
able, and for the preliminary design reported in Knudsen et
al. (2019), several different wake models were used to inves-
tigate the sensitivity of the wake control performance to the
wake model details, and it was clear that the wake model can
make a big difference to the results. In this section, historical
SCADA data from Sedini are used to help in the selection of
a single wake model to be used in the final controller design.

SCADA data recorded from 1 May 2018 to 5 March 2019
were processed to extract the 10 min average power output
for each of the nine turbines, and the ratio of power at tur-
bine nos. 13 and 31–37 to the power of the reference tur-
bine no. 38 was plotted as a function of wind direction. The
power ratio for any turbine showed a clear dip for any wind
directions where the turbine was affected by a wake. For each

turbine, as shown in Fig. 5, the power ratios were binned in
5◦ bins and the mean and median ratio in each bin was cal-
culated. The median was found to be more useful than the
mean, as it avoids big spikes caused by outliers in the data
(see first plot of Fig. 5 for example). Each candidate wake
model was used to calculate a predicted power ratio for the
direction corresponding to the middle of each bin (blue lines
in Fig. 5), and the RMSEs between the median and the pre-
dicted values were summed over the direction bins and then
over all of the turbine nos. 13 and 31–37 to give a measure
of the goodness of fit for this wake model. The RMSEs for
the different candidate wake models are shown in Fig. 4. All
the wake models are implemented within the LongSim code,
which was used to generate the results presented here.

The candidate wake models included the EPFL model of
Bastankhah and Porté-Agel (2016) and several variants of the
model of Ainslie (1988). The EPFL model includes a num-
ber of parameters which many researchers have subsequently
used as tuning parameters, adjusted to fit particular datasets,
as has also been done within the CL-Windcon project (for
example, the model was calibrated against wind tunnel mea-
surements in Raach et al., 2018). Here, only the original
parameters specified in Bastankhah and Porté-Agel (2016)
were used and no attempt was made to tune them. It is likely
in any case that different parameters would work best for dif-
ferent conditions of, for example, atmospheric stability, so it
is more useful if a general model can be found which does
not rely on such tuning. The Ainslie model is treated as such
a general model, in that the parameters defining the wake
deficit profile and its downstream expansion are considered
fixed, but a number of variations are still possible. In partic-
ular, the following variations in the basic Ainslie model were
investigated here:

a. choice of wake-added turbulence model – either the
Crespo-Hernández model (CH) as assumed in the EPFL
model or the Quarton–Ainslie model (QA) as used, for
example, by WindFarmer (DNV GL, 2014);

b. choice of wake superposition models – the dominant
wake model (DW) in combination with “large wind
farm” corrections as in WindFarmer (DNV GL, 2014),
or the sum-of-absolute-deficits model (SD) as in Ruisi
and Bossanyi (2019);

c. accounting explicitly for hub height in the modelling of
the eddy viscosity parameter (the original model only
uses the rotor diameter);

d. more precise calculation of centreline deficit, using mo-
mentum conservation to avoid having to integrate over
a radially discretised flow (Anderson, 2019);

e. wake smearing to account for the effect of wake me-
andering over the averaging time as in Bossanyi et
al. (2018);
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Figure 3. Diurnal distribution of atmospheric stability conditions,
classified into three categories based on the bulk Richardson num-
ber estimated from the site mast at the Sedini wind farm site.

f. modification of the eddy viscosity term to account for
atmospheric stability as in Ruisi and Bossanyi (2019).

In respect to the last point, met mast data from the site were
analysed to identify diurnal variations in the wind conditions,
driven by predominant unstable and stable conditions dur-
ing the daytime and night-time hours respectively, and esti-
mate bulk Richardson numbers and correspondent Obukhov
lengths (these two parameters are defined and discussed in
Ruisi and Bossanyi, 2019) to classify atmospheric stabil-
ity conditions occurring at the site. A summary of the at-
mospheric stability conditions by time of day at the site is
shown in Fig. 3. Given this information, the recently devel-
oped stability-dependent eddy viscosity model of Ruisi and
Bossanyi (2019) was used, allowing the effect of atmospheric
stability to be directly accounted for. The SCADA data were
split into three different classes based on the time of day:
daytime (07:00–17:00 LT), night-time (18:00–06:00 LT) and
overall. In the daytime the atmosphere is generally unsta-
ble, with an average historical Obukhov length of −255 m
(the negative value signifying unstable conditions), while the
night-time period is generally stable, with an average histor-
ical Obukhov length of 237 m. The overall average Obukhov
length was 850 m.

The Ainslie model variations as detailed in (a) to (f) above
correspond to the labels in Fig. 4 as follows:

(a) (b) (c) (d) (e) (f)
AinslieStandard QA DW
AinslieMOL CH SD

√ √

AinslieMOL_QA QA SD
√ √

AinslieSP4 QA ∗

AinslieSumOfDefs QA SD
Ainslie_H_SoD QA SD

√

Ainslie_H_SoD_Exact QA SD
√ √

AinslieMOL_QA_Exact QA SD
√ √ √

AinslieMOL_QA_WS_Exact QA SD
√ √ √ √

∗ An experimental superposition model, since abandoned.
The comparison of wake models in terms of overall RMSE
is shown in Fig. 4. The model selected for the final design is
the one labelled “AinslieMOL_QA_Exact”, which has the
lowest overall error for both daytime and night-time periods
and nearly the lowest overall. This is the stability-dependent
variant of the Ainslie model (Ruisi and Bossanyi, 2019),
together with Quarton–Ainslie added turbulence, sum-of-
absolute-deficits superposition, explicit hub height and the
more precise centreline deficit calculation (these options
are described above). Other variants of the Ainslie model
are available, differing from one another in subtle points of
detail. Using the selected model with the Obukhov length
for averaged neutral conditions, the fit against the SCADA
data is shown in Fig. 5 for each of the turbines.

3.2 Steady-state setpoint optimisation

Since the selected wake model includes a dependence on at-
mospheric stability, it would be possible to calculate optimal
setpoints for different Obukhov lengths and to use a mea-
surement of the Obukhov length to modify the setpoints in
real time, in the same way as for wind speed, direction and
turbulence intensity. However, for the purposes of the Se-
dini experiment this would not be possible to arrange, and
so the setpoints were calculated using the average Obukhov
length of 850 m derived from the historical data, representing
near-neutral conditions. A further improvement to the results
would have been likely if it had been possible to use mea-
sured stability as a lookup table input.

Using this wake model, the steady-state optimiser in
LongSim was then used to generate tables of optimised
power setpoints for each controlled turbine, i.e. nos. 31 to
37. The merit function for optimisation was the total power
from all nine turbines, i.e. also including nos. 38 and 13. Set-
points were calculated for wind speeds from 6 to 15 m s−1 in
1 m s−1 steps; directions from 200 to 270◦ in 2◦ steps; and
turbulence intensities of 9 %, 13 % and 17 %. The speed and
direction ranges in the tables were extended to 3–18 m s−1

and 180–270◦ by padding with null setpoints (i.e. no power
reduction). The final lookup table (LUT) consists of setpoints
as a function of wind speed, direction, turbulence intensity
and turbine number.

The effect on turbine loads is also important, and in gen-
eral the merit function could include terms related to loads.
However, this has not been done since there was no possi-
bility within the project to measure loads on these turbines
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Figure 4. Overall comparison of different wake models.

at Sedini. In general, most loads are generally expected to
decrease anyway with axial induction control, both on con-
trolled and on downstream turbines, although the pitch ac-
tuator duty cycle would increase because of the below-rated
pitch action.

The following sections describe how the resulting LUT
was converted into a practically realisable control algorithm.

3.3 Measurement of the wind condition

For practical application, the controller needs to have an esti-
mate of wind speed, wind direction and turbulence intensity
at each time step so that it can obtain the appropriate set-
points from the LUT. Since the setpoints are optimised on
the assumption that the (undisturbed) wind condition is the
same throughout the wind farm, wind condition estimates
should be representative of the whole farm. In general, a met
mast could be used if one is available, but more than one
mast would be needed to cover different wind directions, so
it would usually be better to use estimates from the turbine
controllers. Each turbine controller can provide a direction
estimate by filtering its nacelle position signal plus the wind
vane misalignment, as long as suitably calibrated measure-
ments are available. The turbine controller can usually pro-
vide a wind speed estimate, and if a separate turbulence in-
tensity estimate is not available, it can be obtained from the
wind speed estimate standard deviation with appropriate cal-
ibration factors. The wind farm controller could then use the
average or the median of the wind condition estimates from
all turbines which are currently unwaked and use this to rep-
resent the whole farm. A low-pass filter can be applied with
a variable time constant of the order of the time taken for a
wind condition measured at the upstream edge of the farm
to propagate to the middle of the farm. This introduces an
appropriate delay as well as some smoothing.

For the specific row of turbines used at Sedini, the fol-
lowing approach was used. The upstream turbine, no. 38, is
always unwaked in wind directions of interest and is used to
estimate the wind speed and turbulence intensity, which is
then used for the LUT as if it represents the whole row of
turbines. The wind direction for the LUT is taken as the me-
dian of the individual wind direction estimates provided by
all nine turbines in the row. This assumes that wake effects
do not change the local wind direction, which is more likely
to be true for induction control than for wake steering cases.

The inflow wind speed is an estimate of the rotor-averaged
wind speed based on 1 Hz operational data of turbine no. 38.
The individual wind direction estimates are derived from the
nacelle position sensor and the nacelle vane signals. Prior
to starting the test, the nacelle position sensor signals had
been calibrated using the preceding 3 months of SCADA
data. The calibration process was designed such that the re-
sulting wind direction estimates comply with the assumption
that the time-averaged wake velocity deficits propagate with
the mean wind direction. An online algorithm ensures that
the calibration of the nacelle position sensors is maintained
over time in case irregularities occur.

The turbulence intensity is derived from the standard de-
viation of the estimated wind speed, with a correction factor
applied which has been derived by comparing the standard
deviation calculated in the same way at a turbine close to the
met mast against the standard deviation actually measured at
the mast.

The estimated wind speed and direction signals are 60 s
averages, while the turbulence intensities are instantaneous
values from a running 10 min estimation.

If turbine no. 38 is not running, the test continues using
wind estimates from no. 37. If neither of those turbines is
working, no. 36 is used. If all three turbines are not running,
no wind farm control is applied. However, it should be noted
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Figure 5. Selected model (blue) compared to SCADA data (black, with bin means shown by dashed red lines and medians by solid red
lines). The vertical blue line shows the direction of the turbine just upstream.

that the optimal setpoints are only valid if all nine turbines
are working. Cases with some turbines not working were not
tested in simulation, and in the analysis of the field test re-
sults, data were discarded if not all turbines were working.

3.4 Accounting for wind condition uncertainty

The power reduction setpoints are optimised using steady-
state calculations for specific ambient wind conditions which
are assumed to apply over the whole wind farm. In the practi-
cal application, the wind conditions used for the LUT to cal-
culate setpoints at any specific time are not precisely known,
partly because of uncertainties in measurements used and
partly because the wind conditions at any time are not uni-
form across the wind farm. The setpoint optimisation can al-

ready take account of such uncertainties by assuming prob-
ability distributions rather than fixed values for the wind
speed, direction and turbulence intensity used for each op-
timisation, as described in Rott et al. (2018) and Simley et
al. (2020) for the case of robust active wake control optimi-
sation. This results in lookup tables which are smoothed out
by those probability distributions, but the time needed for the
optimisations greatly increases. Here an alternative approach
is used, in which the LUT calculated for precise wind condi-
tions is smoothed out subsequently, with each value replaced
by a weighted average of nearby values, the weightings being
determined by those assumed probability distributions. This
has the advantage of faster optimisation but also means that
in principle the smoothing can be changed in real time ac-
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cording to the perceived uncertainties in wind conditions at
the time.

For the field tests, this post hoc smoothing was carried
out using fixed assumptions about the uncertainties, namely
that the wind speed and direction have Gaussian distributions
with standard deviations of 1 m s−1 and 5◦ respectively. Be-
cause of the smaller dependence of the setpoints on turbu-
lence intensity, no smoothing was applied for turbulence in-
tensity. Prior to field testing, the smoothing assumptions were
tested in simulation as described below.

3.5 Final control algorithm design

The final control algorithm updates the setpoints at a time
step of 60 s. At every time step, the wind condition, esti-
mated as described in Sect. 3.3, is used to generate a set-
point for each turbine using the setpoint LUT which has been
smoothed as described in Sect. 3.4. The power reduction set-
points are then sent directly to the turbine controllers.

For the purposes of the field test, the controller is tog-
gled on and off every 35 min. This toggle frequency was se-
lected on the basis that the wind advection time along the
row from no. 38 to no. 13 will be of the order of 2–5 min
in the wind speed range of interest, a further 30 min before
switching should be enough time to get a representative re-
sult, and the toggling should be frequent enough to obtain
periods with similar wind conditions in both toggle states.
Choosing 35 min also ensures that switching does not occur
at exactly the same time every day, which could introduce a
bias due to interaction with diurnal changes in wind condi-
tions. Data from the field tests were recorded at 1 min inter-
vals.

The final algorithm was tested in dynamic time-domain
simulations as described in Sect. 4, before being imple-
mented in the field. Section 5 describes the field test and
presents an analysis of the results.

4 Simulation testing

Before the wind farm control was implemented in the field,
dynamic simulations were run with LongSim to try to mimic
the behaviour of the wind farm as closely as possible in re-
alistic time-varying wind conditions and to assess the likely
performance of the wind farm control.

The simulations used a correlated stochastic wind field
covering the turbines, generated by LongSim starting from
historical data measured at the Sedini met mast, thus ensur-
ing that at least the lower-frequency wind variations are ap-
propriate for the site. The simulation results provided time
histories of wind conditions, setpoints and power outputs at
each of the turbines. Simulations were run with and without
wind farm control and also with the control toggling on and
off every 35 min as would be done in the field.

4.1 Wind field

The technique for generating the correlated ambient wind
field has been described in Bossanyi et al. (2018). The 10 min
average historical met mast data were inspected, and a pe-
riod was selected where the wind speeds and directions were
varying over a range suitable for exercising the wind farm
control. This time history was assumed to apply at a point in
the middle of the row of turbines, and higher-frequency syn-
thetic turbulence was added at that point and also at a grid
of points covering all the turbines, using assumed coherence
properties, so that variations across the wind farm are real-
istically correlated, spatially and in time. LongSim’s default
settings were used for the spectral and coherence properties
of the wind.

The wind field was modified by wind shear appropriate for
the site, modelled with a shear exponent of 0.143, and the air
density was taken as 1.177 kg m−3.

4.2 Turbine model

Although a detailed model of the turbine was not provided,
LongSim has the option to model the turbine using power
and thrust curves as a function of wind speed, which is suf-
ficient for a basic evaluation. Power and thrust curves were
provided covering the allowed range of power reduction set-
points. LongSim also models supervisory control, and in this
case the yaw control algorithm provided by GE was imple-
mented, to ensure a realistic response to changing wind direc-
tions. Figure 6 illustrates the resulting yaw response during a
short example simulation.

The turbine was modelled with a 10 s first-order lag for
implementation of the power reduction setpoint. This is an
approximation to the actual behaviour; details of this were
not provided, save that in lower winds the thrust reduction
relies on a change in rotor speed, which might take a few
seconds, but in higher winds only a change in blade pitch is
needed, which is faster. Simulation results confirmed that a
lag of this order has only a very small effect on the induction
control performance. The actual setpoint is a dimensional in-
dex number upon which the turbine controller acts to reduce
both power and thrust, to an extent which varies with wind
speed; details were not provided by the manufacturer for rea-
sons of confidentiality, but the maximum reduction does not
exceed 20 % of rated power.

4.3 Wake model

The wake model selected as described in Sect. 3.1 was used
for the simulations. As these are dynamic simulations, as-
sumptions also need to be made concerning the dynamic
wake response. LongSim’s default assumptions were used
for the wake advection speed, namely that the advection
speed is the average of the ambient speed and the speed in-
tegrated over the wake. Wake meandering was driven by the
low-frequency lateral and vertical components of the wind
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Figure 6. Typical simulated yaw control response.

field up to a wavenumber corresponding to two turbine di-
ameters. The resulting wakes are simply embedded into the
ambient wind field, which is assumed not to be otherwise af-
fected by the presence of the turbines.

4.4 Induction control algorithm

The wind farm control algorithm used the same LUT as was
subsequently implemented on-site. Simulations were run first
with the raw LUT and then with the LUT corrected for wind
condition uncertainties as described in Sect. 3.4, firstly just
with a 5◦ direction uncertainty and then with a further uncer-
tainty of 1 m s−1 in wind speed.

The wind conditions for the LUT were calculated as in the
site implementation, i.e. using turbine no. 38 for wind speed
and turbulence intensity and all nine turbines for direction
but ignoring any inaccuracy in the estimations, that is to say,
taking the actual simulated rotor-average wind speed and di-
rection and turbulence intensity as if they were the measured
values. The values were low-pass-filtered using a first-order
filter with a time constant of 60 s to represent approximately
the way in which these signals would be derived in the field.
Further filtering could be done, for example to help represent
advection of the wind conditions along the line of turbines,
but a systematic study was not conducted as this option was
not available in the farm control software implemented in the
field.

4.5 Simulation results with setpoint smoothing

Site met mast data with suitable wind conditions for a period
of just over 5 h were selected and used to generate a wind
field covering the nine-turbine row. The simulation wind con-
ditions are illustrated in Fig. 7.

Using this wind field, four simulations were carried out:

– base case, without induction control;

– induction control, using the raw optimised setpoints;

– induction control, with the setpoint table smoothed to
account for a 5◦ uncertainty in wind direction;

Table 1. Mean power values from Fig. 9.

Case Power Increase
[MW] [%]

Base case 3.7058 0
Raw LUT 3.7613 1.50 %
Direction smoothing (5◦) 3.7641 1.57 %
Final smoothing (5◦, 1 m s−1) 3.7645 1.58 %

– induction control, with the setpoint table smoothed to
account for uncertainties of 5◦ in wind direction and
1 m s−1 in wind speed.

Figure 8 shows how the setpoint variation becomes much
smoother, using the first controlled turbine (no. 37) as an ex-
ample. The effect on the total power production from the nine
turbines, shown in Fig. 9, is difficult to discern in the plot, so
the mean values are given in Table 1.

As well as giving smoother control action, this shows that
smoothing to account for wind uncertainties, especially wind
direction, increases the power gain achieved by induction
control. This smoothing was therefore adopted for the LUT
used in the field tests. More simulations could be run to op-
timise the amount of smoothing, but this was not considered
worthwhile at this stage.

4.6 Simulation of controller toggling

As a final test prior to the start of field testing, a longer sim-
ulation was run using a different sample of met mast data to
generate the wind field, this time 22.5 h in length, shown in
Fig. 10.

Three simulations were run using this wind field:

– base case, without induction control;

– induction control with the final smoothed LUT;

– induction control toggling on and off every 35 min, as
for the field tests.

Figure 11 shows the power reduction setpoint at the first con-
trolled turbine (no. 37), demonstrating the toggling effect in
the third simulation.
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Figure 7. Wind conditions for the initial simulations. The black line represents the smoothed 10 min mast data and is assumed to apply at a
point halfway down the row of turbines. The red line shows conditions from the simulated wind field at the turbine no. 38 rotor.

Figure 8. Effect of LUT smoothing on induction control setpoints (turbine no. 37 illustrated). For the base case, the setpoint is zero.
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Figure 9. Effect of LUT smoothing on total power output (note the plots are almost indistinguishable).

Figure 10. Wind conditions for the toggling simulations. The red line represents the smoothed 10 min mast data and is assumed to apply at
a point halfway down the row of turbines. The black line shows conditions from the simulated wind field at the turbine no. 38 rotor.

The total power for the nine turbines is shown in Fig. 12
for all three simulations. The difference is difficult to discern
in the plot, so the mean values are given in Table 2. For this
period, the induction control increases the power output by
1.3 %, and if toggling on and off, this increase is halved, as
would be expected.

5 Field testing

The induction control test was initiated on-site, and data
recording started on 11 July 2019. The following day, an off-

set applied to the wind direction used for the LUT, obtained
empirically by matching measured directions to the direc-
tions where maximum wake deficits were observed, was cor-
rected, so valid SCADA data were available from 10:50 LT
on 12 July onwards. The SCADA data were recorded with a
1 min sampling frequency and provided in a MATLAB data
file. The file was updated periodically to include the latest
data, which were analysed as described below. Some ap-
parent inconsistencies were checked by running simulations
with LongSim using wind fields created from the actual tur-
bine no. 38 SCADA data and with setpoints toggled accord-
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Figure 11. Induction control setpoints showing controller toggling (turbine no. 37 illustrated).

Figure 12. Total power output for the toggle test simulations.

Figure 13. Measured and simulated power at turbine nos. 34 and 33.

ing to a flag recorded in the SCADA data, to try to mimic
as closely as possible what was happening in the field. Com-
parison of simulated and measured results for all the turbines
proved extremely useful and revealed some interesting in-
consistencies. For example, Fig. 13 compares the simulated
and measured power at turbine nos. 34 and 33 during a 17 h
period. The power is very well predicted for no. 34 and simi-
larly for all the other turbines except for no. 33: it is clear that
this turbine was running in a curtailed mode. Unfortunately,
the status flags in the recorded SCADA data did not include
any indicator of curtailment.

These simulations also proved to be a valuable tool for
verifying the correct implementation of the setpoint changes
in the field, as the simulated and measured setpoints for
any turbine should match fairly closely through the period
of the simulation. Figure 14, for example, shows an excel-
lent match, and any significant discrepancies could be easily
identified.

5.1 Analysis of field test data

The final dataset consisted of more than 6 months of
SCADA data for the nine turbines at a 1 min resolution
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Figure 14. Measured and simulated setpoints at turbine no. 34.

(298 066 records). This was run through an analysis program
which carried out the following steps:

1. The data were filtered to include only those records
which were both relevant and correct. Firstly, some
43 % of the records were rejected because of missing
values of any of the variables of interest, namely the
time stamp, the power at each turbine, the wind condi-
tions (speed, direction and turbulence intensity) used for
the setpoint table lookup, the operational state of each
turbine and the controller toggle state. Any records from
periods when there were known technical issues affect-
ing the control states were also discarded. The valid
records were then filtered to include only the relevant
wind conditions for which the control is active, namely
wind speed in the range of 6–15 m s−1 and direction
in the range of 180–270◦, as no setpoints were applied
outside of this range. This left 21 965 relevant records.
Records with high or low turbulence intensity were not
filtered out, because the setpoints continued to be ap-
plied even if the turbulence was out of the range for
which they were designed. Finally, records where one
or more turbines were not in normal operation were also
discarded, leaving 12 498 records, or just over 4 % of the
original data. For the sake of the subsequent processing
steps, rather than actually discarding any records, the fil-
tering was performed by assigning a logical flag to each
of the 1 min records to say whether or not that record
was accepted.

2. The data are parsed to find the moments at which the
toggle flag changes. The 5 min following the toggle
change is discarded as “settling time”, and following
this, 10 min chunks are collected up to the next tog-
gle change. Since the toggle interval is 35 min, there
should be three such 10 min chunks in each toggle pe-
riod. However, the realities of real life mean that this
is not always exactly true, so a 10 min chunk is kept as

long as its apparent length defined by the recorded start
and end time is within 30 s of 10 min.

3. For each 10 min chunk, the mean value of the filter flag
is calculated, and the chunk is accepted if this is greater
than 0.9 (i.e. at least 90 % of the points within it are ac-
cepted). For each such chunk, the mean power (summed
over turbines) is calculated, as well as the mean lookup
table wind speed, wind direction and turbulence inten-
sity and also the mean toggle state (control “ON” or
“OFF”). The mean normalised power is also calculated,
defined as the total power from the nine turbines divided
by the power at the reference turbine no. 38. Each chunk
is classified as having control ON if the mean toggle
state is greater than 0.9 or OFF if it is less than 0.1 (these
criteria are only needed to cope with occasional irregu-
larities in the data).

4. The 10 min ON and OFF chunks are then binned ac-
cording to wind conditions.

5.2 Field test results

The top left graph in Fig. 15 shows the mean ON and OFF
power in each wind speed bin. The crosses show the standard
deviations of the points in the bin, and the bar chart below
shows the number of ON and OFF points in each bin. There
appears to be a consistent increase over the wind speed range
of interest, apart from the 6–7 m s−1 bin, although it should
be noted that the increase is generally smaller than the stan-
dard deviation of the points. The highest wind speed bin does
not have enough points to be meaningful. Note also that at
the lowest wind speeds, some heavily waked turbines may
not be producing any power, and in that situation, the thrust
coefficient depends on the supervisory control – a turbine
generating no power might continue to rotate at minimum
operating speed, or it might slow down to an idling speed,
probably depending on how long the power remains low. No
information was provided about this, so the setpoint optimi-
sations assumed an intermediate thrust coefficient of 0.3 for
any turbine producing zero power. This represents a source
of uncertainty at the lowest wind speeds. The “unweighted
increase” figure simply represents the increase in the sum of
the mean powers in all bins containing at least two ON and
two OFF points, i.e. excluding the highest bin in this case.
The lower plot shows the average turbulence intensities in
each bin. These are all higher than the maximum 17 % tur-
bulence for which the controller was designed, and according
to the modelling, the control performance decreases at higher
turbulence. In many bins, the average turbulence intensity of
ON points happens to be slightly higher than for OFF points,
so it is possible that higher wake dissipation rather than the
control action might account for some of the power increase.
It is unclear how much of the unweighted increase of 2.3 %
is due to higher turbulence intensity and how much is due to
the control.
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Figure 15. Field test results binned on wind speed and direction.

The right hand side of Fig. 15 shows the points binned
against wind direction. Since the points in any bin might
all have significantly different wind speeds, it makes sense
to plot the mean normalised power as defined above, rather
than the mean absolute power. Again, as there are not very
many points per bin, the increase is smaller than the standard
deviations, but the increase seems consistent. However, the
largest increases are in the first few bins, where wake interac-
tions (and hence the benefits of the control) should be small,
but these points are unreliable because there are very few
ON points, with particularly high turbulence intensities. For
the bins above 220◦, there are reasonable numbers of points
and the ON and OFF turbulence intensities are very similar
(though still well above 17 %), so the power increase starts
to be credible. The unweighted increase is calculated as be-
fore – in this case all bins have enough points to be included,
but the figure is clearly skewed by the unreliable increases
in the first few bins. One would expect the two unweighted
increase figures to converge once all the speed and direction
bins are fully populated, since they represent the same set of
data points.

To better understand these results and how they relate to
the model predictions, the points would need to be binned
in three dimensions against wind speed, wind direction and
turbulence intensity. There are clearly not enough points for
this, but some insights can still be gained by two-dimensional
binning on speed and direction. Figure 16 shows the ratio of
mean ON and OFF power in each speed and direction bin
containing at least one ON and one OFF point. The ratios
are mostly greater than 1, peaking at 1.71 in just one bin,
i.e. an increase of 71 %. This extreme value is clearly not
credible but must be seen in the context of the actual numbers

Figure 16. Power ratio binned on wind speed and direction.

of points in each bin, shown in Fig. 17, and the turbulence
intensities shown in Fig. 18. The bin with the 71 % increase
contains just four ON points and seven OFF points, and the
average turbulence for the ON points is significantly higher.
Most bins contain even fewer points, and in some bins the
power ratio is less than 1. Many of the points (even more OFF
points) are concentrated at low wind speeds with directions
above 260◦, which is right at the edge of the region where
induction control is expected to be useful. The mean increase
over all bins containing at least one ON and one OFF point
is shown in Fig. 16 as 2.42 % over 47 bins. If we only accept
bins with at least two ON and two OFF points, the mean
increase is 4.66 % over 33 bins, and if we require at least
three points, it is 4.97 % over 21 bins (note that this includes
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Figure 17. Numbers of points in each bin.

Figure 18. Mean turbulence intensities in each bin.

some valid bins which do not show up in the contour plots
because they are isolated from neighbouring bins).

Also, from Fig. 18, which shows the mean turbulence in-
tensity for the ON and OFF points in each of the bins, it is
clear that higher turbulence intensities were experienced dur-
ing most of the measurement period than the 17 % maximum
that the induction control was designed for. The induction
control is expected to be less effective in higher turbulence
intensities, due to faster wake dissipation.

There are not enough data to bin in three dimensions, but
to try to better understand the effect of turbulence intensity,
the same data can be binned on direction and turbulence
intensity, this time binning the ON / OFF ratio of the nor-
malised power (using the power of turbine no. 38 as refer-
ence) to remove the effect of different wind speeds within
each bin. The results are shown in Fig. 19, together with the
corresponding plots showing the number of points per bin
and, now, the mean wind speed per bin.

Now we can see that in many of the populated bins, there
is a generally positive increase, which exceeds 20 % in five
bins and averages 1.7 % overall. The full statistics of the pop-

ulated bins in Fig. 19 are listed in Table 3, including the
mean wind speed and turbulence intensity of the ON and
OFF points. The number of points in each bin is not large,
as expected. The turbulence intensities are necessarily quite
similar within each turbulence bin; the mean wind speeds dif-
fer significantly across the analysed bins, but any potential
bias due to wind speed variation is mitigated by the use of
normalised power. Overall, there is no clear evidence for any
bias arising from chance variations with this small number of
points.

5.3 Model validation using field test results

Finally, the field test results have been used to validate the
LongSim model, by running the model in conditions matched
to the field test conditions as closely as possible, both in the
steady state and in dynamic simulations.
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Figure 19. Normalised power ratio binned on turbulence intensity and direction.

Table 2. Mean power values from Fig. 12.

Case Power Increase
[MW] [%]

Base case 3.496 0
Induction control 3.541 1.29 %
Induction control toggled on and off 3.519 0.65 %

5.3.1 Steady-state model validation

The model was run in a steady state, both with and without
induction control, for each of the bins containing at least one
ON and one OFF point, corresponding to Fig. 16. For each
bin, the mean wind conditions (speed, direction and turbu-
lence intensity) for the ON points were used as input to the
model with induction control on, and the mean conditions
for the OFF points were likewise used for the model runs
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Table 3. Statistics of populated bins in Fig. 19 (ordered by the normalised power ratio).

Power Direction Turbulence Points in bin Mean wind speed Mean turbulence

ratio bin [◦] bin [–] ON OFF ON OFF ON OFF

1.37 245 0.18 5 14 8.77 8.31 0.1833 0.1856
1.30 225 0.22 3 4 10.39 9.79 0.2056 0.2191
1.28 225 0.18 10 10 9.96 8.85 0.1879 0.1756
1.23 235 0.14 4 7 9.10 9.29 0.1559 0.1380
1.21 255 0.14 8 9 8.42 7.68 0.1527 0.1462
1.19 205 0.10 2 6 7.17 9.03 0.1190 0.1151
1.17 215 0.26 3 2 10.18 9.88 0.2612 0.2483
1.13 185 0.14 1 8 9.59 7.09 0.1491 0.1422
1.11 185 0.18 2 12 12.66 7.62 0.1721 0.1812
1.11 215 0.18 6 9 10.34 11.33 0.1839 0.1829
1.10 255 0.22 9 16 8.89 8.47 0.2128 0.2163
1.07 245 0.26 6 8 8.65 8.38 0.2530 0.2516
1.07 235 0.22 10 10 9.45 8.49 0.2206 0.2189
1.06 255 0.18 30 30 9.15 8.41 0.1790 0.1752
1.03 245 0.14 4 3 7.95 6.97 0.1404 0.1462
1.02 265 0.14 14 32 8.29 7.43 0.1464 0.1415
1.01 195 0.22 4 9 10.14 9.41 0.2205 0.2167
0.99 205 0.22 6 3 10.13 8.40 0.2159 0.2320
0.99 245 0.22 6 9 8.17 8.80 0.2232 0.2147
0.97 265 0.18 45 58 8.63 8.36 0.1766 0.1785
0.96 185 0.22 4 6 9.55 9.07 0.2270 0.2130
0.96 205 0.18 3 3 11.07 10.51 0.1903 0.1925
0.95 235 0.18 5 7 8.33 7.94 0.1806 0.1852
0.90 265 0.22 6 6 8.80 8.26 0.2090 0.2080
0.89 215 0.22 9 4 10.65 10.29 0.2183 0.2223
0.89 235 0.26 4 4 8.52 9.45 0.2515 0.2577
0.84 225 0.14 3 4 7.74 7.43 0.1480 0.1508
0.81 255 0.26 1 1 8.07 8.72 0.2490 0.2489
0.77 225 0.26 1 2 9.46 9.83 0.2410 0.2480
0.75 205 0.14 3 5 9.19 8.05 0.1469 0.1343
0.71 265 0.10 2 2 6.73 6.47 0.1166 0.1102
0.69 195 0.18 1 10 7.36 8.62 0.1944 0.1891

with no induction control. The results are shown in Fig. 20,
which should be compared against Fig. 16. The predicted
overall increase, 2.38 %, is very similar to the field test result
of 2.42 %. However there are differences in individual bins.
There is a very similar peak increase of 68 % at 8.5 m s−1 but
in a different direction: 225◦ compared to 245◦. In the mea-
sured data, the 8.5 m s−1 225◦ bin showed a 29 % increase,
but it contained only three ON and two OFF points. For the
8.5 m s−1 245◦ bin, the model predicts a 17 % increase rather
than the measured 71 %. The model also predicted a large
80 % increase in the 6.5 % 235◦ bin, but in this situation there
would be some waked turbines generating zero power, and
the assumed thrust coefficient may not be correct, as men-
tioned above.

Apart from these differences in specific bins and bearing
in mind the small numbers of measured points in most bins,
the general pattern of results over most of the bins indicates

Figure 20. Ratio of model predictions of power in each bin (com-
pare Fig. 16).

Wind Energ. Sci., 6, 389–408, 2021 https://doi.org/10.5194/wes-6-389-2021



E. Bossanyi and R. Ruisi: Axial induction controller field test at Sedini wind farm 405

Figure 21. SCADA wind speed, direction and turbulence intensity used for simulation.

Figure 22. Measured and predicted power at turbine nos. 38, 37, 36 and 13 and the total of the nine turbines.
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Figure 23. Measured and predicted setpoints at turbine nos. 37, 36, 35 and 34.

a quite encouraging comparison between modelled and mea-
sured results.

5.3.2 Dynamic model validation

For the dynamic model validation, a period of just under
20 h (6 December 2019 13:25:00 LT to 7 December 2019
09:14:00 LT) was selected for which the wind conditions
were appropriate for a reasonable amount of induction con-
trol activity to take place. A wind field was generated from
the SCADA wind conditions as explained in Sect. 4 and used
as input to a LongSim simulation, which used the SCADA
toggle flag to switch the control on and off. The simulated
turbine power and setpoint time histories were then com-
pared against the measured SCADA data. The wind condi-
tions are shown in Fig. 21. These conditions are applied at
a point close to the middle of the turbine row. For all other
points, a wind field is generated stochastically by LongSim
using a random number generator with assumed spectrum
and coherence functions, so while the simulated results are
expected to match the measured data at low frequencies, the
higher-frequency “noise” should only have similar statistical

characteristics rather than matching exactly second by sec-
ond.

Figure 22 shows the power production at the first three tur-
bines and also the last turbine. The power at turbine no. 38
is very well predicted. At turbine no. 37, it appears that the
turbine must have been switched off for about the first 3.5 h,
but the agreement after that is very good. At the next tur-
bine, no. 36, the measured power is higher than predicted by
LongSim for the first 3.5 h, presumably due to the fact that
while no. 37 was not generating it was not waking no. 36,
whereas the simulation was not aware of the curtailment. Af-
ter no. 37 started generating, the agreement is again very
good. There is good agreement for the other turbines too,
suggesting that wake effects are well predicted all along the
row. Even for turbine 13, the agreement is quite good al-
though it is a long way from where the wind speed used for
the simulation was measured. Terrain effects on wind speed
have not been modelled, and discrepancies at the higher fre-
quencies are expected because the higher frequencies in the
simulated wind field are synthesised statistically.

Figure 23 shows the toggling power reduction setpoints at
the first four controlled turbines. With the usual exception of
the first 3.5 h for turbine no. 37 when it was curtailed, the

Wind Energ. Sci., 6, 389–408, 2021 https://doi.org/10.5194/wes-6-389-2021



E. Bossanyi and R. Ruisi: Axial induction controller field test at Sedini wind farm 407

agreement is again very good. This is equally true for the
three other controlled turbines, not shown.

6 Conclusions

As part of the EU Horizon 2020 research project CL-
Windcon, a field test of an axial induction controller for a row
of nine turbines at Sedini wind farm in Sardinia, Italy, was
carried out. The aim of the controller was to reduce individ-
ual turbine setpoints as a function of wind conditions, so as
to reduce wake losses and increase the overall power output
from the whole row. Historical data from the site were first
used to confirm a choice of wake model, and the optimiser
of the LongSim model was then used to generate turbine set-
point lookup tables as a function of wind speed, direction
and turbulence intensity which would maximise the power
output from the row. The tables were then incorporated into
a practically realisable control algorithm, which makes use
of available measurements to estimate the wind conditions
and takes account of wind speed and direction uncertainties.
Using wind inputs derived from historical site data, dynamic
time-domain simulations were performed in LongSim to ver-
ify the design choices and predict the likely dynamic perfor-
mance.

The algorithm was then implemented in the field, and data
were collected for over 6 months, with the control action
toggling on and off at 35 min intervals so that the effect of
the controller could be assessed. Because of the low occur-
rence of the appropriate wind conditions and after filtering
out any invalid records, there was eventually about 200 h of
useful data, from which about 570 periods of a 10 min du-
ration could be extracted, covering a range of wind condi-
tions. This number of data points was too small to be able to
quantify the improvement precisely in a statistically mean-
ingful way and much too small to allow the data to be binned
against all three of the most relevant variables (wind speed,
wind direction and turbulence intensity). Alternative ways to
bin the data against one or two variables at a time were there-
fore used to help identify possible biases, such as those that
might be caused by differences in turbulence intensity within
a bin, and normalising the power by the power of the lead-
ing turbine was useful to compensate for differences in wind
speed. Alternative binning methods resulted in estimates in
the range of 1.7 % to 2.4 % for the average power increase
over the relevant range of wind conditions, although it re-
mains uncertain how much of this might still be attributable
to other factors such as turbulence intensity. In our view, at
least a few months of valid data would be required to achieve
a reasonable level of confidence.

Furthermore, the measured data were also used for valida-
tion of the LongSim software, demonstrating excellent agree-
ment and confirming the suitability of LongSim as a valuable
tool for designing and testing wind farm controllers.
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