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Abstract. The outlined analysis validates the dynamic wake meandering (DWM) model based on loads and
power production measured at an onshore wind farm with small turbine distances. Special focus is given to the
performance of a version of the DWM model that was previously recalibrated at the site. The recalibration is
based on measurements from a turbine nacelle-mounted lidar system. The different versions of the DWM model
are compared to the commonly used Frandsen wake-added turbulence model. The results of the recalibrated
wake model agree very well with the measurements, whereas the Frandsen model overestimates the loads dras-
tically for short turbine distances. Furthermore, lidar measurements of the wind speed deficit as well as the wake
meandering are incorporated in the DWM model definition in order to decrease the uncertainties.

1 Introduction

Wake models are a key aspect in every site-specific load cal-
culation procedure. The used wake model has significant im-
pact on predicted loads and the power output of the whole
wind farm; hence, an accurate wake model is of major impor-
tance for a wind farm design optimization process. Planning
a new wind farm is a highly iterative process, where time-
consuming calculations are avoided as much as possible, so
the complexity and the accuracy of the model need to be well
balanced.

Simple analytical wake models can be divided into models
estimating either the mean wind speed reduction in the wake
or the wake-induced turbulence. While the former serves as
a basis for power calculations, the latter is necessary to com-
pute loads. One of the main simple analytical models for cal-
culating the wake-induced turbulence in a wind farm is the
so-called Frandsen model (see, e.g., Frandsen, 2007). Rein-
wardt et al. (2018) and Gerke et al. (2018) have shown that

this model delivers conservative results, especially for short
turbine distances, a limitation that is critical for onshore wind
farms in densely populated areas, where a high energy output
per utilized area is crucial. Another simple, but less common,
analytical model to calculate the wake-induced turbulence is
introduced in Quarton and Ainslie (1989). Jensen (1983) pro-
vides an analytical model to predict the wind speed reduction
in the wake. More recently developed wind speed reduction
models can be found in Larsen (2009) and Bastankhah and
Porté-Agel (2014). The latter is based on a Gaussian distri-
bution for the velocity deficit in the wake. A more sophisti-
cated model for calculating the wind speed deficit expansion
in the wake is explained in Ainslie (1988), where the author
suggests to solve the thin shear layer approximation of the
Navier—Stokes equations with an eddy viscosity closure ap-
proach.

The dynamic wake meandering (DWM) model investi-
gated here is strongly influenced by the work of Ainslie
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(1988). It describes the physical behavior of the wake more
precisely, while it is still less time consuming and complex
than a complete computational fluid dynamic (CFD) simula-
tion. Moreover, it is capable of estimating the wake-induced
turbulence as well as the wind speed deficit. The model
assumes that the wake behaves like a passive tracer; i.e.,
the wake itself moves in vertical and horizontal directions
(Larsen et al., 2008b). The meandering motion in combina-
tion with the shape of the wind speed deficit in the meander-
ing frame of reference (MFR) lead to increased turbulence at
the wake-affected turbine and thus play an eminent role for
the loads of the downstream turbine. As of late, the DWM
model is included in the new edition of the International
Electrotechnical Commission (IEC) guideline (IEC 61400-
1 Ed.4, 2019). It was validated and calibrated with actua-
tor disk and actuator line simulations as outlined in Madsen
et al. (2010), whereas a validation of the model with mea-
sured loads and power production was carried out in Larsen
et al. (2013). Keck (2015) presents a power deficit validation
of a slightly different version and extension of the model to-
wards a stand-alone implementation.

The DWM model has proven to be more accurate in load
prediction than the commonly used Frandsen wake-added
turbulence model (Reinwardt et al., 2018). Furthermore,
Reinwardt et al. (2020) present a recalibrated version of the
model, which provides a very precise description of the wind
speed deficit in the MFR. The authors investigate the impact
of the ambient turbulence intensity (TI) on the eddy viscos-
ity definition in the description of the wind speed deficit in
the MFR based on lidar measurements from a wind farm to
determine an improved correlation function. The same wind
farm is used in the present study. In the following analysis,
the recently calibrated version of the DWM model is vali-
dated with respect to loads and power production and com-
pared to the original model definition. A further analysis of
the recalibrated model beyond the wake wind deficit is neces-
sary to investigate the influence of the recalibration on loads
and power production.

Besides the validation of the recalibrated model according
to power output and loads, in the present study, lidar wake
measurements are integrated into the load simulation to sup-
port the calculation and decrease the uncertainties. The mea-
sured wind speed deficit in the MFR and the time series of
the meandering are introduced successively. Related studies
with a different approach of integrating the lidar measure-
ments are Dimitrov et al. (2019) for wake-free inflow condi-
tions and Conti et al. (2020) for wake conditions. In compar-
ison to the outlined methods, the approach investigated here
does not need any high-frequency or raw data from the li-
dar system. It is purely based on the measured line-of-sight
(LOS) wind speed. Furthermore, the outlined analysis fo-
cuses on the measured wind speed deficit and the meandering
of the wake, which is successively introduced in the DWM
model definition, whereas in Conti et al. (2020) special fo-
cus is given to the estimation of turbulence in the wake. The
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Figure 1. Wind farm layout with measurement equipment (Rein-
wardt et al., 2020).

wake turbulence is only indirectly captured here by the inves-
tigated wake meandering and the wind speed deficit gradient
in the MFR. The wake meandering together with the wind
speed deficit gradient have a very high impact on the loads
of the downstream turbine, so a more accurate description in
the DWM model with the help of the lidar measurements has
high potential to decrease the uncertainties in load simula-
tions and thus is worth being investigated.

Hereafter, in Sect. 2, a detailed description of the examined
wind farm as well as the installed measurement equipment is
presented. The filtering and processing of the measured data
are explained in Sect. 3. Section 4 introduces the load simu-
lation software. A specification of the used models as well as
the procedure of incorporating the lidar measurements into
the model are given in Sects. 5 and 6. The document will be
completed with the discussion of the results in Sect. 7 and a
brief summary in Sect. 8.

2 Wind farm and measurement equipment

The analyzed wind farm is located southeast of Hamburg,
Germany. The terrain is mostly flat, and no further wind
farms are located in the immediate vicinity. Only at a dis-
tance of more than 1 km the terrain becomes slightly hilly
(approximately 40 m difference in altitude). The distance to
the next wind farm is approximately 3 km. The wind farm
layout is depicted in Fig. 1. It includes five closely spaced
Nordex turbines (1x N117 3MW and 4x N117 2.4 MW).
All turbines have a hub height of 120 m. An IEC-compliant
120 m met mast (IEC 61400-12-1, 2017) is placed in main
wind direction ahead of the wind farm. It is equipped with
11 anemometers, two of which are ultrasonic devices, three
wind vanes, two temperature sensors, two thermohygrome-
ters and two barometers. The sensors are distributed along
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Table 1. Considered wind direction sectors for wake-free inflow
and analyzed wake sectors.

Lower limit ~ Upper limit
[°] [°]
Wake-free inflow at met mast and WTG 2 140 260
Wake at WTG 2 generated by WTG 1 259 335
Wake at WTG 5 generated by WTG 2 193 237
Wake at WTG 5 generated by WTG 1 228 268

the whole met mast as depicted in Fig. 2. Furthermore, the
turbine nacelles of wind turbine generator (WTG) 1 and
WTG 2 are each equipped with a pulsed scanning lidar sys-
tem (Galion G4000) with a pulse repetition rate of 15kHz
and a ray update rate of 1 Hz (depending on the atmospheric
conditions), so that an average value of approximately 15 000
pulses is used per sample. The laser frequency is at 100 MHz.
Considering the speed of light, this delivers a pulse length of
1.5 m. Hence, with a range gate length of 30 m, 20 points are
used per range gate. Both lidar systems face downwind as
depicted in Fig. 2. The device on WTG 2 is installed on top
of the nacelle, whereas the device on WTG 1 is installed in-
side the nacelle, measuring through a hole in the rear wall.
The unusual location derives from the fact that a heat ex-
changer on top of the nacelle occupies the essential mount-
ing area. Additionally, nacelle-mounted differential GPS sys-
tems help tracking the nacelle’s precise position with a cen-
timeter range accuracy so that yaw movements can be calcu-
lated.

Lastly, at three turbines, load measurement equipment is
installed. The tower top and bottom as well as blade flapwise
and edgewise bending moments are measured with strain
gauges at WTG 2 and WTG 5. WTG 3 is only equipped with
strain gauges at the tower. The strain gauges at the tower top
are installed 3.4 m below the nacelle and the strain gauges at
the tower bottom are placed 1.5 m above the floor panel. The
edgewise and flapwise moments are measured at a distance
of 1.5m from the blade root. Besides the installed measure-
ment equipment, the turbine’s supervisory control and data
acquisition (SCADA) system is used to determine the opera-
tional conditions of the turbines.

3 Data filtering and processing

Measurement results from April 2019 to May 2020 have been
used in the analysis. The data are filtered and sorted in ac-
cordance with the ambient conditions (e.g., ambient wind
speed, turbulence intensity and wind direction) determined
by the met mast and the operational states of the turbine
tracked by the SCADA system so that all filtering is based
on 10 min statistics from the met mast or the SCADA sys-
tem. Only measurement results where the turbines operate
under normal power production are included in the analysis.
In the night, the turbines work in a reduced mode for noise-
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reduction purposes, so no data could be gathered during the
night. The wind direction sectors for free inflow and wake
conditions are summarized in Table 1. The filtering proce-
dure leads to a large decrease of available data sets, so that,
for example, at a turbulence intensity of 6 % and an ambient
wind speed of 6m s~!, only about 100 10 min data sets could
be collected when WTG 2 is placed in the wake of WTG 1.
Considerably more data sets could be collected for wake-
free inflow conditions. In total, around 370 samples could
be collected at a turbulence intensity of 12 % in the analysis
in Sect. 7.1.

The measured lidar data are filtered by the power inten-
sity from the returned laser beam, which is closely related
to the signal-to-noise ratio (SNR) of the measurements. Fur-
thermore, the scan time is observed, so only results with a
sufficient scan time to track the wake meandering are con-
sidered. Lidar systems measure the LOS velocity. The wind
speed in the downstream direction is calculated from the li-
dar’s LOS velocity and the geometric dependency of the po-
sition of the laser beam relative to the main flow direction
as outlined in Machefaux et al. (2012). Thus, the horizontal
wind speed is defined as

1

U(t)=ULos - cos(@) - cos(¢p)’

ey
where 6 is the azimuth angle and ¢ the elevation angle
of the lidar scan head. This approach is suitable for small
scan opening angles of the scan head like in the measure-
ment campaign presented here. The lidar system is capable
of scanning a two-dimensional wind field in different down-
stream distances simultaneously. Here, the purpose of the li-
dar system is to capture the meandering and to estimate the
wind speed deficit in the MFR. To ensure that the meandering
as well as the wind speed deficit in the horizontal meander-
ing frame of reference (HMFR) can be covered, a horizontal
line is scanned instead of a full two-dimensional wind field.
The one-dimensional scan consists of only 11 scan points
scanned in a horizontal line from 6 = —20 to 20° in 4° steps.
Measurements were collected up to a downstream distance
of 750 m in 30 m steps. The duration of the horizontal line
scan is usually about 16 s depending on the visibility condi-
tions during the scan. At poorer conditions, the scan can take
up to 25s.

4 Load simulation

The loads are simulated with the commercial software
alaska/Wind (Zierath et al., 2016), which is based on a flex-
ible multibody system. It is an extension of the classical
multibody approach, where the system consists of rigid bod-
ies connected by joints and force elements. The system is ex-
tended by flexible bodies with small deformations. The rigid
body motions are vectorially superimposed with the defor-
mation of the flexible body. The equations of motion are a
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Figure 2. Met mast (MM) measurement equipment and lidar positions (Reinwardt et al., 2020).

set of ordinary differential equations. The model consists of
submodels for blades, controller, nacelle, pitch system, gear-
box, main shaft, high-speed shaft, generator, hub, yaw drive
and foundation. Blades and tower are reduced by a modal
superposition of the first four eigenmodes. Both submodels
are based on finite-element models consisting of Timoshenko
beams.

The multibody model is connected to an aerodynamic
code, which includes the blade element momentum (BEM)
theory (Burton, 2011) and delivers aerodynamic forces and
moments at the individual blade sections based on the posi-
tion and velocity of the blade elements provided by the multi-
body simulation. The classical BEM theory is extended to
include dynamic inflow and dynamic stall effects.

Furthermore, the multibody model is connected to a con-
troller, which uses the generator speed and the pitch an-
gle from the multibody simulation to calculate the generator
torque and the pitch speed and returns them to the multibody
model. The pitch velocity refers to the rotational speed of
the pitch blade angular velocity about the pitch axis during
a pitching motion. The controller used for the simulations
is the actual controller implemented in the turbines of the
analyzed wind farm. Hence, a reliable comparison with the
measured loads can be achieved.

The inflow wind conditions can be divided into deter-
ministic and stochastic contributions. Deterministic contri-
butions, like the mean wind speed and the shear effects, are
imposed on the turbulent wind field. The stochastic contri-
butions are simulated based on a Kaimal spectrum and a co-
herence function (e.g., Veers, 1988). The DWM model is a
stand-alone in-house tool written in Python and is uncou-
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Figure 3. Components of the DWM model (adapted from Rein-
wardt et al., 2018).

pled from the alaska/Wind software. The script generates bi-
nary wind files with wake effects, which can be included in
alaska/Wind similar to conventional stochastic wind fields.

The following analysis covers simulated power, blade root
flapwise and edgewise bending moments as well as tower
bottom bending moments. To compare the measured loads
with simulations, sensors at the precise position of the strain
gauges are added to the turbine model in alaska/Wind. The
locations of the strain gauges are given in Sect. 2.

https://doi.org/10.5194/wes-6-441-2021



I. Reinwardt et al.: Dynamic wake meandering model validation with respect to loads and power production 445

5 Dynamic wake meandering model

The measured loads under wake conditions are compared to
the simulated loads, which incorporate the DWM model to
simulate the inflow at the wake-affected turbine. As men-
tioned before, the DWM model is based on the assumption
that the wake behaves like a passive tracer in the turbulent
wind field. Consequently, the movement of the passive struc-
ture, i.e., the wake deficit, is driven by large turbulence scales
(Larsen et al., 2007, 2008b). The main components of the
model are summarized in Fig. 3.

One part of the model is the quasi-steady wake deficit,
or rather the wind speed deficit in the MFR, which con-
sists of a definition of the initial deficit emitted by the wake-
generating turbine and the degradation of the deficit down-
stream (Larsen et al., 2008a). The expansion in downstream
direction is calculated with the thin shear layer approxima-
tion of the Navier—Stokes equations in their axisymmetric
form and thus is strongly related to the work of Ainslie
(1988). The method in the DWM model is outlined in Larsen
et al. (2007). Using a finite-difference method combined with
an eddy viscosity (vr) closure approach, the thin shear layer
equations are solved directly starting at the rotor plane. The
emitted initial deficit serves as a boundary condition when
solving the equations. It is based on the axial induction fac-
tor derived from the BEM theory. Three calculation methods
of the quasi-steady wake deficit, which differ only in the de-
scription of the initial deficit and the eddy viscosity, will be
compared in the course of this study:

— “DWM-Egmond” based on the definitions in Madsen
et al. (2010) and Larsen et al. (2013),

— “DWM-Keck” adopted from Keck (2013) and

- “DWM-Keck-c”, a recalibrated version of the “DWM-
Keck” model based on lidar measurements from the
wind farm underlying here (Reinwardt et al., 2020).

A detailed description of the individual models can be found
in Reinwardt et al. (2020).

Another aspect of the model is the description of the wake
meandering. In this work, it is calculated based on the large
turbulence scales of the ambient turbulent wind field, which
is generated by a Kaimal spectrum and a coherence function
(e.g., Veers, 1988) and subsequently ideally low-pass filtered.
Afterwards, the vertical and horizontal movements are deter-
mined based on the filtered wind field. The cut-off frequency
of the low-pass filter is specified by the ambient wind speed
and the rotor diameter (Larsen et al., 2013).

The third part of the DWM model is the definition of the
small-scale turbulence generated by the wake shear itself as
well as by blade tip and root vortices. This small-scale tur-
bulence is calculated with a scaled homogeneous turbulent
wind field, which is also generated by a Kaimal spectrum.
The scaling is implemented in accordance with IEC 61400-1
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Figure 4. Incorporation of lidar measurements into the DWM
model; yys is the horizontal and z,; the vertical meandering com-
ponent.

Ed.4 (2019). The scaling factor is based on the calculation of
the initial deficit, which itself builds on the BEM theory and
the aerodynamics of the turbine. A more detailed descrip-
tion of the implementation of the complete model can also
be found in Reinwardt et al. (2020).

6 Lidar-assisted load simulation

In the previous section, a recalibrated version of the DWM
model has been introduced. The lidar systems have been used
to recalibrate the DWM model to decrease the uncertainties
of load simulations in wake conditions. In a next step, the li-
dar measurements will be successively incorporated into the
wake simulation. A schematic illustration of the process is
illustrated in Fig. 4. Firstly, the lidar-measured mean wind
speed deficit is used to replace the quasi-steady deficit in the
DWM model definition (see also Fig. 3). Since only a hor-
izontal line is scanned, no vertical meandering can be cap-
tured (see Sect. 3). To clarify that only the horizontal mean-
dering can be measured and that the transformed wind speed
deficit in the MFR is still affected by vertical meandering, be-
cause due to the scanning pattern vertical meandering cannot
be captured, the phrasing “horizontal meandering frame of
reference” (HMFR) is introduced in Fig. 4. In a second step,
the measured horizontal meandering is included in the DWM
model and the vertical meandering is neglected. The vertical
meandering has only a marginal influence on the shape of the
deficit in the MFR as explained in Reinwardt et al. (2020).
The lidar system measures in the induction zone of the
downstream turbine, where the wind speed is decreased due
to the upstream effect of the subsequent turbine. However,
its influence must be excluded from the measurement results
to use the measured wind speed deficit in the wake model.
The simple induction model defined in Troldborg and Meyer
Forsting (2017) is applied to account for this effect. The two-
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dimensional model defines the wind speed in the induction
zone as follows:

U=Uo[l—a0 (1— u

2 i
2
ng)(exp(wenexp(ﬁe)) ] @

where x,, is the positive upwind distance normalized by the
rotor radius, ag is the induction factor at the rotor center area
defined as ap = 0.5(1 — /T—yc(), € =F/\/An+X2), F is
the radial distance from the hub normalized by the rotor ra-
dius, ¢ is the thrust coefficient, y = 1.1, 8 = «/5, o =8/9,
A =0.587, and n = 1.32. The model has already been used
to correct lidar measurements in the induction zone by Dim-
itrov et al. (2019) and Conti et al. (2020).

The time series of the meandering and the horizontal dis-
placement of the wake are determined with the help of a
Gaussian fit in accordance with Trujillo et al. (2011), who as-
sume that the probability of the wake position in vertical and
horizontal directions is completely uncorrelated. The Gaus-
sian function has been fitted to the wind speed deficit so that
the center of the wake could be determined in accordance
with the fitting parameters. Since the vertical meandering is
neglected in the present case, the measurement results are fit-
ted to a one-dimensional Gaussian curve:

Alp 1 (y; _My)2
— ex = "7 , 3
f1p P, ; P( ) y2 3)

where Ajp is a scaling parameter, o, describes the wind
speed deficit width, and py is the horizontal displacement.
Determining the measured mean wind speed deficit in the
HMEFR can be summarized as follows:

1. correction of the measured wind speed by the induction
zone model;

2. fitting of a Gaussian curve to the wind speed distribution
along the horizontal direction determined by a measured
horizontal line scan and determination of the horizontal
displacement of the wake;

3. transfer of the measured wind speed deficit to the
HMEFR by shifting the scan points according to the de-
termined displacement;

4. interpolation of the scanned wind speed deficit in the
HMFEFR to a regular grid,;

5. repetition of steps 1 to 4 until a certain number of scans
is reached (e.g., approximately 37 for a 10 min time se-
ries);

6. calculation of the mean wind speed deficit in the HMFR
from all scans; and

7. fitting of the measured mean wind speed deficit to the
Bastankhah wake model described in Bastankhah and
Porté-Agel (2014).

Wind Energ. Sci., 6, 441-460, 2021

It should be pointed out that always the closest available mea-
sured range gate, which is still outside the rotor area of the
downstream turbine, is used to determine the inflow wind
speed deficit. Furthermore, the fourth step of interpolating
the wind speed deficit to a regular grid is mandatory due
to the fact that the horizontal displacement differs at each
instant in time, and thereupon the measurement points are
transmitted to a different location in the HMFR, so the sixth
step of calculating a mean wind speed deficit over all scans
is only possible after interpolating all scans to the same regu-
lar grid. A more detailed explanation of calculating the wind
speed deficit in the HMFR can be found in Reinwardt et al.
(2020).

An example of the measured and simulated time series of
the meandering as well as the power spectrum is shown in
Fig. 5. It depicts the measured time series of the meandering
as well as the one simulated with the Keck-c model and a
random turbulence seed. To incorporate the time series of the
meandering in the wake and load simulations, the time series
has been cubically interpolated so that a smooth meandering
could be included in the wake model and the turbine loads
are not increased by an immediate change of the position of
the wind speed deficit. The interpolated time series of the
meandering is denoted as DWM-meas. The comparison of
simulations and measurements shows that the amplitude of
the measured time series is slightly more pronounced. Fur-
thermore, at the low-frequency part, the energy content from
the measurements is higher. A reason could be that the mean-
dering is modeled based on the ambient wind speed although
the wind speed in the wake is reduced. Applying a reduced
mean wake wind speed in the meandering calculation proce-
dure would lead to a higher deflection of the wake. It should
also be pointed out that the measurement frequency is very
low due to the data filtering in the beginning, so it might be
the case that some parts of the meandering could not be cap-
tured by the measurements.

An example of a measured wind speed deficit over the ra-
dial distance from the hub center in the HMFR in compari-
son to the simulated one with the recalibrated DWM model
is illustrated in Fig. 6. The ambient conditions (ambient wind
speed Uy, ambient turbulence intensity Iy, wind shear o and
wind direction 6) are defined in the title of the figure. The
edges of the measured deficit are coarser than the area close
to the center of the deficit. The explanation for this observa-
tion is as follows. The distribution generated by the mean-
dering process provides many scan points around the center
of the wind speed deficit and only a few at the tails, so the
influence of turbulence at the tails is much higher. Thus, the
measured wind speed deficit shows a coarse distribution at
the boundaries of the deficit. Using this coarse curve and re-
placing the wind speed deficit description in the DWM model
directly by the measured one leads to increased loads in the
simulation, which are not feasible; wherefore, the measured
wind speed deficit has to be fitted to a smooth curve before
applying it in load simulations. Furthermore, the lidar sys-
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Figure 5. Time series (a) and power spectrum (b) of the meandering, measured and simulated with the calibrated DWM-Keck-c model as

well as the interpolated time series (DWM-meas).
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Figure 6. Wind speed deficit in the HMFR, measured and simu-
lated with the calibrated DWM-Keck-c model as well as fitted to a
Gaussian-shaped wake model (DWM-meas).

tem only measures an opening angle of —20 to 20°. Hence,
particularly for short distances, the deficit is not captured ex-
haustively. Even the ambient wind speed is not reached at
the edges of the curve; thus, it is necessary to extrapolate the
wind speed to smoothly meet the ambient wind speed. As a
result of these issues, the measured deficit has been fitted to
a simple Gaussian-shaped wake model (Bastankhah model)
outlined in Bastankhah and Porté-Agel (2014). According to
the model, the wind speed deficit can be defined as

Ct

1- [1- >
8(2k*x +0.2./B)

a(E-z? +y2)) L@

I
P <_ 2(2k% +0.2B)’

with k* being the wake growth rate, x the downstream dis-
tance normalized by the rotor radius, Zj the normalized hub
height, y and z the normalized horizontal and vertical dis-
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tance and

I+l =«
N 2 A/ 1-— Ct .
The wake growth rate k* has been adjusted to fit the model

to the measured deficit in the HMFR. The fitted model is
labeled “DWM-meas” in Fig. 6.

B ®)

7 Results

7.1 Comparison of measured and simulated loads and

power under wake-free inflow

In order to validate the aerodynamic load simulations, the
following section contains a comparison of measured and
simulated loads under wake-free inflow conditions. The sec-
tion shows results from WTG 2 under normal operating con-
ditions. The met mast as well as WTG 2 are exposed to wake-
free inflow conditions. Thus, the met mast is suitable to deter-
mine all ambient conditions. The mean value of the measured
and simulated normalized power curve is depicted in Fig. 7a
for a turbulence intensity of 12 %.

The power curve is normalized by the measured power in
the smallest wind speed bin. The error bars in the curves il-
lustrate the standard deviation in each wind speed bin. All
data sets are divided into wind speed bins with a width of
1 ms~!. The mean values of wind speed, turbulence inten-
sity, wind shear and air density of each wind speed bin de-
termine the input parameters for the load simulations. Each
simulation is conducted six times with different seeds, so the
simulation results are likewise shown as mean values with
standard deviations. In summary, the simulated power agrees
very well with the measured power; solely close to the rated
wind speed of 11 ms~!, some discrepancies between mea-
surements and simulations occur. In this area, only a few
measurement points can be extracted due to the chosen fil-
tering criteria. As a result, the measurements show an ex-

Wind Energ. Sci., 6, 441-460, 2021




448

Power

40

30

normal