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Abstract. Mountains can modify the weather downstream of the terrain. In particular, when stably stratified air
ascends a mountain barrier, buoyancy perturbations develop. These perturbations can trigger mountain waves
downstream of the mountains that can reach deep into the atmospheric boundary layer where wind turbines
operate. Several such cases of mountain waves occurred during the Second Wind Forecast Improvement Project
(WFIP2) in the Columbia River basin in the lee of the Cascade Range bounding the states of Washington and
Oregon in the Pacific Northwest of the United States. Signals from the mountain waves appear in boundary
layer sodar and lidar observations as well as in nacelle wind speeds and power observations from wind plants.
Weather Research and Forecasting (WRF) model simulations also produce mountain waves and are compared
to satellite, lidar, and sodar observations. Simulated mountain wave wavelengths and wave propagation speeds
(group velocities) are analyzed using the fast Fourier transform. We found that not all mountain waves exhibit
the same speed and conclude that the speed of propagation, magnitudes of wind speeds, or wavelengths are
important parameters for forecasters to recognize the risk for mountain waves and associated large drops or
surges in power. When analyzing wind farm power output and nacelle wind speeds, we found that even small
oscillations in wind speed caused by mountain waves can induce oscillations between full-rated power of a wind
farm and half of the power output, depending on the position of the mountain wave’s crests and troughs. For the
wind plant analyzed in this paper, mountain-wave-induced fluctuations translate to approximately 11 % of the
total wind farm output being influenced by mountain waves. Oscillations in measured wind speeds agree well
with WRF simulations in timing and magnitude. We conclude that mountain waves can impact wind turbine and
wind farm power output and, therefore, should be considered in complex terrain when designing, building, and
forecasting for wind farms.
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Figure 1. Map with the location of the major volcanoes (white
labels) and wind farms (black dots) in the area. Figure by Billy
Roberts, National Renewable Energy Laboratory.

1 Introduction

As wind farm deployment in the United States and world-
wide continues to increase, contributions from renewable
wind energy production to the electrical-generation portfo-
lio are also increasing (AWEA Data Services, 2017; Global
Wind Energy Council, 2018). The U.S. Department of En-
ergy’s (DOE’s) Wind Vision study (U.S. Department of En-
ergy, 2020) mapped out a target scenario for wind energy to
provide 35 % of the United States’ electricity demands by
2050. Wind plants are already and will continue to be de-
ployed in areas of complex terrain to satisfy that portfolio.
Complex terrain, herein defined as terrain with irregular to-
pography (e.g., mountains, valleys, coastlines, and canyons),
can modify the flow within and far downstream of the terrain.

One area of complex terrain where numerous wind farms
are deployed is the Columbia River basin in the northwestern
United States, which is located east of the Cascade Range.
The Cascade Range extends from southern British Columbia
through Washington and Oregon to northern California, for
1100 km (Wikipedia, 2020), with a width of 130 km. Vol-
canic summits in the area reach up to approximately 4000 m
above mean sea level. During westerly flow, the Cascade
Range poses an obstacle that impacts the weather and mod-
ifies the wind flow to the east of the Cascade Range, which
impacts wind farm production of the deployed wind power
plants in the area (Fig. 1).

During westerly winds with stable atmospheric conditions,
air ascends the Cascade Range, and strong buoyancy per-

turbations can develop in the form of mountain waves, or
lee waves, downstream of the Cascade Range. The area is
prone to these conditions primarily during the cold and tran-
sition seasons, mostly during spring. Mountain waves may
be nearly stationary, propagating downwind, vertically prop-
agating, or trapped. Vertically propagating waves are relevant
to wind energy to the extent that they can lead to downs-
lope windstorms. Trapped lee waves are relevant to wind
energy because they occur in the lowest 1–5 km of the tro-
posphere (American Meteorological Society glossary; Dur-
ran, 1990). With their horizontal wavelengths between 5 and
35 km, trapped lee waves have anecdotally been recognized
to impact wind farm production in the area, particularly if
stationary.

The mountains of the Cascade Range can also block at-
mospheric flow and create a wake behind them. Mountain
wakes are usually accompanied by significant drag and de-
celeration of low-level flow (Wells et al., 2008). During west-
erly winds, such mountain wakes are relevant for wind en-
ergy in the Columbia River basin, as they create meander-
ing bands of low wind speeds that can extend hundreds of
kilometers downwind and decrease power output from wind
farms. Their exact timing and location are hard to predict as
they meander.

Mountain waves and wakes can and commonly do occur
concurrently within the Columbia River basin (Wilczak et al.,
2019; Pichugina et al., 2020). In this region, mountain wakes
mostly occur downstream from Mt. Hood and Mt. Adams
(Fig. 1), as seen from satellite observations and model simu-
lations (examples are shown in Figs. 4 and 7). Both mountain
waves and wakes impact wind plants and their power out-
put. Because these phenomena can occur simultaneously and
under the same conditions, distinguishing their relative im-
pacts can be challenging. Taking advantage of the rich dataset
of the Second Wind Forecast Improvement Project (WFIP2;
Shaw et al., 2019; Wilczak et al., 2019) and mesoscale sim-
ulations from the Weather Research and Forecasting (WRF)
model, this paper focuses on one phenomenon only – the im-
pact of mountain waves on wind farms. Many studies have
analyzed mountain wakes over the last decades (e.g., Lind-
say, 1962; Bourgeault et al., 2001; Klemp and Lilly, 1978;
Doyle and Durran, 2002; Durran, 2003; Smith, 2004; Smith
and Broad, 2003; Grubišić and Billings, 2007; Smith et al.,
2007; Mahalov et al., 2011; Nappo, 2012; Vosper et al., 2012;
Miglietta et al., 2013; Durran, 2015; Fritts, 2015). However,
even though one article (Rasheed et al., 2014) mentions that
mountain waves result in horizontal and vertical wind shear,
which can significantly impact wind power production, none
quantified that impact. Therefore, it is our goal to document
for the wind energy community, in particular for forecasters
and the wind energy industry, the importance of considering
mountain waves in operations and wind plant deployment.
A second goal of this paper is to analyze to what degree
the mesoscale WRF model is able to capture mountain wave
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characteristics in the complex terrain of the Columbia River
basin, a key region for wind energy production.

This paper is structured as follows: in the next section, we
describe the measurements and model simulations used. We
then identify and quantify mountain waves in Sect. 3 from a
meteorological perspective and as simulated by WRF, before
we analyze the impact of mountain waves on wind farm out-
put using nacelle winds and supervisory control and data ac-
quisition (SCADA) data. In Sect. 4, we provide a discussion
relating our findings to practical aspects of mountain waves
in forecasting and operations then conclude in Sect. 5 with
recommendations for actions during mountain wave events.

2 Data and methods

Our analysis is based on the extensive measurement net-
work from WFIP2 (Shaw et al., 2019; Wilczak et al., 2019).
WFIP2 is a program funded by the DOE and National
Oceanic and Atmospheric Administration (NOAA) aimed
at improving the accuracy of numerical-weather-prediction
(NWP) model forecasts of wind speed in complex terrain
for wind energy applications (Wilczak et al., 2019; Banta et
al., 2020; Bianco et al., 2019; Olson et al., 2019; Pichugina
et al., 2019, 2020). Measurements were collected during an
18-month field campaign between October 2015 and March
2017 in the Columbia River Gorge and the Columbia River
basin (Fig. 1). For this paper, measurements from remote
sensing instruments are used (Sect. 2.1) to identify mountain
waves through time series analysis, spectra, and statistics.
Satellite images (Sect. 2.2) further help identify mountain
waves, and WRF model simulations (Sect. 2.3) support our
analysis. Nacelle wind speeds and power output from a wind
farm in the area portray the influence of mountain waves on
wind plants.

2.1 WFIP2 observations

To analyze wind flow variability during mountain wave
events, we use profile measurements from lidars and sodars
(Sect. 2.1.1 and 2.1.2) that were deployed in the WFIP2 re-
search area. These instruments continuously operated during
the 18-month experiment, providing real-time data. These
quality-controlled data are openly available to the public
through the Data Archive and Portal (DAP; https://a2e.
energy.gov/data, last access: 5 January 2021). Proprietary na-
celle wind speeds from a wind farm in the area, as well as its
power output (Sect. 2.1.3), quantify the impact of mountain
waves on wind farms.

2.1.1 Lidar data

Several profiling and scanning lidars were deployed as part
of the WFIP2 field campaign. This study uses measurements
from the scanning Doppler lidar and the wind profiling li-
dar at the Wasco site (Fig. 2). The WindCube profiling li-

Figure 2. WRF modeling domains. The rectangle denotes the area
of the 750 m domain. US state boundaries are indicated. The black
x denotes the location of Troutdale; the cross denotes Prineville;
the square denotes Wasco and Van Gilder Road; the circle denotes
the location of the wind farm in the area; and the red x denotes the
location in the WRF domain where profiles are plotted in Fig. 5.
The Columbia River cuts through the Cascade Range at the border
between the state of Oregon to the south and Washington to the
north.

dars sample line-of-sight velocities sequentially in four car-
dinal directions along a nominally 28◦ azimuth vertically
and a nominal temporal resolution of 1 Hz (Aitken et al.,
2012; Rhodes and Lundquist, 2013), simultaneously sam-
pling 10 range gates centered at 40, 60, 80, 100, 120, 140,
160, 180, 200, and 220 m a.g.l. These lidars provide esti-
mates of wind speed, wind direction, and vertical velocity
within the surface layer and boundary layer up to 250 m a.g.l.
(Bodini et al., 2019) that were also used for the selection of
mountain wave cases. Basic quality control, requiring that an
individual line-of-sight (LOS) velocity be measured with a
carrier-to-noise ratio (CNR) greater than −22 dB, has been
applied to these data. The 2 min averages are based only on
the 1 Hz LOS with CNR exceeding −22 dB. Lidars require a
sufficient number of scatterers for a return signal so that clean
air conditions have lower availability (Aitken et al., 2012).
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2.1.2 Sodar data

In this paper we use sodar measurements from the Wasco
and Van Gilder Road sites. At Wasco, the ART (Atmospheric
Research & Technology) VT-1 sodar model was deployed,
which is a monostatic phased-array Doppler sonic detection
and ranging (sodar) system. It provides a “virtual tower” for
obtaining remote measurements of the wind profile up to
a height of approximately 300 m at a vertical resolution of
10 m. The system includes a 48-element acoustical array. At
Van Gilder Road, which is close to Wasco, a triton wind pro-
filer is used. This profiler measures wind speed, direction,
and turbulence intensity at heights from 30 to 200 m above
ground every 10 min. The quality-controlled sodar data are
stored on the DAP. Information about setup and filtering
for the Wasco and Van Gilder Road sodars can be found in
Atmosphere to Electrons (2017a) and Atmosphere to Elec-
trons (2017b), respectively.

2.1.3 Nacelle winds and turbine power output

We use data from approximately 100 wind turbines from
a wind farm in the WFIP2 region to assess how mountain
waves influence observed wind speed and power output. The
wind farm is located north of the Columbia River Gorge and
experienced mountain wave events during the WFIP2 field
campaign. From the turbine nacelles, we use 80 m, 10 min
averaged wind speed data and 10 min averaged power out-
put. Data from a single turbine, as well as spatially aggre-
gated winds across an entire wind plant, are compared with
outputs from corresponding WRF simulations (see Sect. 3.2).

2.2 Satellite images

The mountain waves are detected using visible clouds fea-
tures from the satellite observations. We utilized both polar-
orbiting and geostationary satellite observations to locate the
mountain waves downwind of mountain peaks. The cloud
features are retrieved from the Geostationary Operational En-
vironmental Satellite (GOES-14) routine observation over
the continental United States. To have the best cloud con-
trast and spatial separation, we used 1 km resolution pixels
from band 1 (approximately 630 nm) of the GOES-14 satel-
lite. The GOES-retrieved mountain wave features in the form
of clouds are compared with Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite observations for better
understanding. The comparison in both satellites looks rea-
sonable, though the MODIS observations show finer cloud
features due to higher spatial resolution (0.25 km). Since
MODIS observations have higher spatial resolution but lim-
ited temporal resolution (only one MODIS satellite per day
passes over the Columbia River basin), considering the tem-
poral evaluation of waves, we decided to use the GOES-14
observations at a temporal resolution of 30 min.

2.3 WRF simulations

Model simulations at 5 min resolution produced with the
WRF model version 3.7.1 augment the observational anal-
ysis. We use model output from an inner domain with a
750 m grid spacing that was nested within a larger domain at
3 km grid spacing (Fig. 2). ERA-Interim reanalysis data (Dee
et al., 2011) provide initial and boundary conditions. We
used the Mellor–Yamada–Nakanishi–Niino level 2.5 bound-
ary layer and surface layer schemes (Nakanishi and Niino,
2009), as they were improved upon within WFIP2; the Mor-
rison double-moment microphysics scheme; the Rapid Ra-
diative Transfer Model for Global Circulation Models; sim-
ple diffusion; and vertical velocity damping (Skamarock et
al., 2008). This model setup has been successfully used in
DOE’s Mesoscale to Microscale Coupling project and was
constructed with input from modeling experts in the project
(e.g., Haupt et al., 2017).

Computations were carried out using 88 vertical levels, up
to 10 000 hPa, which were spaced approximately 5 m apart
in the lowest 20 m, with the grid spacing increasing con-
tinuously beyond that. This allows for a vertical resolution
of 8–10 m within the turbine rotor layer (approximately 20–
150 m a.g.l.).

3 Results

Each week throughout the WFIP2 field program, scientists
and wind energy forecasters reviewed the daily weather in
the region and wrote a brief synopsis in an event log (Wilzcak
et al., 2019) assessing the significance of the key phenomena
(Pichugina et al., 2020) that impacted wind power genera-
tion. Key phenomena were categorized by having a “high”,
“medium”, and “low” importance (%) for wind energy (WE),
which was estimated by analyzing all available observations,
Bonneville Power Administration (BPA) power generation
and schedule errors, power ramps, and the performance of
NOAA’s High-Resolution Rapid Refresh model (Fig. 3a).
From this event log, we found 95 d during the 18 months
(548 d) where mountain wave activity was indicated by a me-
teorologist so that mountain waves were present at least 17 %
of the time. Each of the key phenomena were categorized
further by three levels of significance (potential, interesting
or relevant, or not currently of interest). The significance of
mountain wave cases for each level of importance relative to
all phenomena is shown in Fig. 3a.

As noted in the introduction, topographic wakes often oc-
cur simultaneously with mountain waves. During WFIP2, to-
pographic wakes were recorded in the event log 15 % of the
time, based on analysis of wind speed observations, compar-
isons of observations in waked versus nonwaked areas, and
their appearance in satellite images and horizontal slices of
simulated wind speeds. Distributions of mountain waves and
topographic wakes (Fig. 3b) show a high frequency of both
events during spring months.
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Figure 3. (a) Distribution of days during WFIP2 that exhibited observed phenomena that were ranked as of high, medium, and low im-
portance to wind energy according to the event log. The frequency of cases per level of importance that are considered a potential (1) or
interesting or relevant (2) case for wind energy is given in each bar. (b) Distribution of mountain waves and topographic wakes observed
during WFIP2 according to the event log.

Scanning this event log as well as lidar and sodar ob-
servations, we identified 2 d where mountain waves had a
strong presence over the area and impacted wind farms in the
Columbia River basin. The first day (11 November 2016) is
documented in Wilczak et al. (2019). In this paper, we focus
on the second day (24 September 2016) because of the avail-
ability of measurements and SCADA data and the presence
of typical characteristics of mountain waves.

3.1 Analysis of model simulations on
24 September 2016

Reichmann (1978) and Mastaler and Renno (2005) state that
the best conditions for mountain waves are (i) the presence
of a stable air mass, (ii) wind speeds aloft necessarily being
greater than about 8 m s−1 at ridge level, (iii) the wind direc-
tion being nearly constant throughout the stable layer, (iv) the
wind speed being constant or increasing with altitude, and (v)
the wind direction being within 30◦ of normal to the perturb-
ing ridge. From these conditions it is deduced that the Scorer
parameter (Scorer, 1949), an indicator for mountain wave de-
velopment, should decrease with altitude. On 24 September
2016, all the above conditions were met in the model simu-
lations, as will be discussed in this section.

On 24 September 2016, stationary mountain waves east of
the Cascade Range were caused by flow from northwesterly
directions. That flow, in turn, was forced by a low-pressure
system over the western half of the continental United States
(see Appendix). The area of the Columbia River basin was
covered by clouds at 00:00 UTC, which completely dissolved
by 07:30 UTC (not shown).

Mountain waves can be seen in the simulated horizontal
wind field at 100 m a.g.l. (Fig. 4a) as relatively thin and sim-
ilarly spaced oscillating strips of high and low wind speeds
oriented approximately perpendicular to the wind direction.
They are triggered by the flow over the Cascade Range al-
ready around 23 September 2016, at 16:00 UTC, and be-
tween 20:00 and 22:00 UTC they take over the whole area,

impacting Prineville and a wind farm in the WFIP2 region.
An elongated wake extending downstream from Mt. Hood
(large triangle in Fig. 4a) is narrowed to a meandering band
when the wakes cover the area. Wakes are also discernible
downstream from Mt. Jefferson, the Three Sisters, and Bro-
ken Top.

A cross section of the simulated horizontal wind field, po-
tential temperature, and the PBL (planetary boundary layer)
top from west to east on 24 September 2016, at 04:00 UTC,
centered over a wind farm (Fig. 4b), further shows the ap-
pearance of mountain waves in the simulations, up to approx-
imately 4.5 km above sea level, as do oscillating patterns in
the vertical wind speeds (Fig. 4c).

The stratification of the atmosphere during the occurrence
of mountain waves is shown for Troutdale, a location west
(and therefore upstream) of the Cascade Range, and for a
location in the center of the area where waves occur (Figs. 2
and 5). The atmosphere is stably stratified, except from 00:00
to 03:00 UTC, where a well-mixed layer exists below the ap-
proximately 1500 m crest height up to approximately 1 km.
The simulated wind speed profiles show winds between ap-
proximately 6 and 10 m s−1 up to approximately 2.5 km, de-
creasing, with a high wind shear, above 2 km. In the center
of the domain, during the time where mountain waves are
present, the wind speeds are higher than at Troutdale but ex-
hibit a similar wind shear above approximately 3 km. The
stable stratification, wind speed magnitudes (satisfying the
constraint from Mastaler and Renno (2005) that wind speeds
aloft must be greater than about 8 m s−1 at ridge level), con-
stant wind speeds below 2 km, and increased wind speeds
above that are favorable conditions for the development of
mountain waves.

Mountain waves are possible when the nondimensional
mountain height is in the order of 1 (Mastaler and Renno,
2005). Therefore, we calculated the nondimensional moun-
tain height and the Scorer parameter (Fig. 6) from the
WRF simulations at Troutdale. The nondimensional moun-
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Figure 4. (a) Simulated wind field at 100 m a.g.l. The big triangle, diamond, cross, square, and circle denote the locations of Mt. Hood,
Mt. Jefferson, Prineville, the Wasco instrument site, and the wind farm, respectively. The Three Sisters and Broken Top located in lower-left
corner are shown by smaller triangles and a star, respectively. Contours show terrain elevation every 300 m. The red dashed line indicates
the transect along which cross sections in (b) and (c) are taken. Note that the cross sections in (b) and (c) extend beyond the bounds of
this plot. (b) Cross section of horizontal wind speed from west to east through the wind farm. Wind speeds are color-shaded; lines denote
potential temperature [K]; the boundary layer top is dashed. (c) Cross section of vertical wind speeds through the wind farm at 04:00 UTC
on 24 September 2016.

Figure 5. Simulated WRF wind speed (a, b) and potential-temperature profiles (c, d) at Troutdale (a, c) and a location in the center of the
modeling domain, east of the Cascade Range, (b, d) during mountain wave activities. Please note that the date format in this figure is month
day (mm-dd).
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Figure 6. (a) Nondimensional mountain height as a function of
time of day (UTC). (b) Scorer parameter at 01:00 UTC (dashed red)
and at 04:00 UTC (solid) from model simulations.

tain height was calculated using the bulk method by Reinecke
and Durran (2008), using an average free-stream velocity be-
tween 1500 and 7000 m, a mountain height of 1500 m, and
a Brunt–Väisälä frequency between 0 and 7000 m. Moun-
tain waves are possible because the nondimensional moun-
tain height was high during the entire day (Fig. 6). In fact,
the horizontal wind field shows waves until approximately
15:00 UTC.

The Scorer parameter (Eq. 1) is a further measure to deter-
mine whether mountain waves develop:

l2
=

N2

U2 −
1
U

d2U

dz2 , (1)

where U (z) is the speed of the basic-state flow and N (z) is
the Brunt–Väisälä frequency, with z being the vertical coor-
dinate (Durran, 2003). According to Scorer (1949), waves are
possible if atmospheric stability decreases or wind speed in-
creases with height (Lindsay, 1962). In our case, wind speeds
increase with height (Fig. 5). Moreover, when the Scorer
parameter is nearly constant with height, conditions are fa-
vorable for vertically propagating mountain waves. Trapped
lee waves can be expected when the Scorer parameter l de-
creases with height. Figure 6b shows that the Scorer param-
eter from model output at Troutdale at 01:00 UTC increases
with height up to ∼ 200 m and is mostly constant above that.
At 04:00 UTC, it also increases with height up to ∼ 200 m,
exhibits multiple maxima until about 1100 m, and is nearly
constant with height above that. Multiple maxima indicate
that multiple wave systems may occur simultaneously. The
slight change of the profile in time indicates that the simu-
lated mountain waves may change their propagation charac-
teristics slightly over time.

Figure 7. (a) GOES-14 satellite image on 23 September 2016, at
22:00 UTC. The red dots represent the same locations as in Fig. 4.
(b) The dots denote cloud reflectance in arbitrary units (counts or
normalized data) covering latitude 44.4 to 46.6◦ N at 22:00 UTC.

3.2 Comparison of model simulations with observations
on 24 September 2016

We will now compare the model simulations with observa-
tions to see how well the model captures mountain waves.
We will look at satellite images and lidar and sodar obser-
vations at Wasco (Fig. 2). Note that lidar and sodar observa-
tions represent data collected at a single point in space; there-
fore, signals in these data will indicate nonstationary moun-
tain waves.

3.2.1 GOES satellite imagery

GOES visible reflectances at 1000 m resolution and 630 nm
wavelengths (Fig. 7a) show a wavy cloud pattern similar
to the simulated wind field in Fig. 4a on 23 September
2016, from 19:30 UTC until sunset (shown for 22:00 UTC
on 23 September 2016). After sunset, visible satellite im-
ages cannot reveal any signals. The appearance of mountain
waves during that time matches with the model simulations
in which mountain waves appeared starting on 23 September
2016, around 16:00 UTC. From the clouds, a wavelength of
approximately 8 km was deduced (Fig. 7a and b). The wave-
length is calculated by averaging the cloud reflectance from
44.4 to 46.6◦ N along 121 to 121.3◦W, shown by the merid-
ional distribution in Fig. 7b. Note the spatial heterogeneity in
the cloud field (Fig. 7a), which indicates similar variability
in the manifestation of mountain waves.

3.2.2 Lidar and sodar observations

Observations at fixed locations (such as from lidar or sodar)
can reveal the presence of trapped lee waves through tem-
poral fluctuations in the lee-wave pattern (Bougeault et al.,
2001; Wilczak et al., 2019). Periods of alternating high and
low wind speeds were observed at Wasco from all collocated
remote sensing instruments as well as in the simulated hori-
zontal wind field (Fig. 8). Good agreement is found between
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Figure 8. Observed wind speeds up to 200 m above ground as a
function of time from the (a) scanning Doppler lidar (200S), (b) the
profiling lidar (Wind Cube, V1), (c) the sodar (ART VT1), and
(d) simulated wind speeds at Wasco on 24 September 2016. Two
horizontal white lines in each panel indicate the 50–150 m layer
where turbines operate.

data from all instruments (Fig. 8a–c), as waves manifest in all
instruments starting near 02:00 UTC, increasing in amplitude
until a maximum near 10:00 UTC, then decreasing. Clear
patterns of waves are discernible in both measured and sim-
ulated wind speeds. However, during the high-wind-speed
periods, WRF overpredicted the wind speed from 06:00 to
09:00 UTC. Further, the phase of the waves in WRF did not
always match that of the observations. In general, the waves
are well captured in time and magnitude.

3.2.3 Wavelengths and speed of wave propagation
observed on 24 September 2016

From an operational-forecasting perspective, knowing when
mountain waves will influence wind power and for which pe-
riod of time can be valuable for forecasting for power trad-
ing and forecasting the balancing requirements in the power
system – from both a regulatory and economic perspective.
Nearly stationary mountain waves lend to less short-term
volatility in energy production but potentially a still large de-

viation from scheduled production, and they therefore create
large balancing requirements for the duration of the event.
Such stationary events can lead to large and costly imbal-
ances for power producers. Large wavelengths (>18 km) can
exacerbate the imbalance for both grid operators and power
producers by reducing (or enhancing) production over multi-
ple wind farms at once, whereas shorter wavelengths (where
several wavelengths occur within one wind production re-
gion) will tend to have some areas of enhanced production
and other areas of reduced production, resulting in a ben-
eficial netting effect. Quickly propagating mountain waves
produce the netting effect on a temporal scale so that while
short-term imbalances can be large and require costly bal-
ancing reserves, longer-term imbalances may be small. Bal-
ancing costs at all described timescales are important to grid
operators and energy producers, but they require different
planning. We therefore investigate whether our model sim-
ulations are able to forecast the speed of the mountain wave
propagation, as well as their wavelengths.

From the spatial pattern of mountain waves in the 100 m
wind speeds, we extract wind speeds along a latitude of
45.6◦ N and calculate the power spectrum using the fast
Fourier transform (FFT) (Fig. 9). The spatial pattern of the
waves at 50 and 200 m is similar (not shown). At this lati-
tude, most of the WFIP2 sodar sites are located. Evidently,
most of the power variances are explained by low-frequency
waves and large wave patterns (Fig. 9b). For wavelengths
shorter than 8 km the associated power variance is negligi-
ble. From the analysis in Sect. 3.2, we identified that moun-
tain wave wavelengths range from 8 to 18 km. In that range,
the bulk of the power variance occurs between 23 September,
at 22:00 UTC, and 24 September, at 04:00 UTC. Therefore,
we reconstruct the wind field by filtering it with respect to
wavelengths between 8 and 18 km.

To confirm our choice of wavelength range, we show Hov-
möller diagrams of the original and reconstructed hub-height
wind speed (Fig. 10) at the targeted latitude. There is a
mountain wave event particularly distinguishable between 23
September, at 22:00 UTC, and 24 September, at 04:00 UTC
(Fig. 10a and power variance in Fig. 9b), which is well cap-
tured by the reconstructed wave pattern (Fig. 10b). To deter-
mine the wave period, Fig. 10c shows the power spectrum of
the reconstructed (8–18 km wavelength) and observed hub-
height wind speed. We have removed the low-frequency
wave signals (24 and 12 h) from both the observed and simu-
lated time series to focus on high-frequency waves. We chose
the wave periods to be between 1 and 4 h because that is
within the time range of our interest (22:00 to 04:00 UTC)
and it explains the majority of the power variance by the sim-
ulated mountain waves (Fig. 9b).

Finally, we reconstruct the simulated wind field at each
time step using band-pass filtering (FFT), wavelength, and
wave period constraints (Xia et al., 2020) and compare that
with the observations (Fig. 11). Because the mountain wave
event that we are interested in is particularly visible in the
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Figure 9. (a) Simulated horizontal wind speeds [m s−1] at 100 m on 24 September 2016, at 02:00 UTC; the dashed line at 45.6◦ N indicates
where the FFT was taken. The dotted point represents the location of the sodar site at Van Gilder Road close to Wasco. (b) Hovmöller
diagram of power variance with respect to wavelength at the targeted latitude. Please note that the date format in this figure is year month
day (yyyy-mm-dd).

Figure 10. (a) Hovmöller diagram of simulated hub-height wind speeds at the targeted latitude. (b) Same as (a) but showing the filtered
wind speeds with wavelengths from 8 to 18 km. (c) Observed (green) and reconstructed (blue) power spectrum on the time domain for
24 September 2016. The simulated FFT was reconstructed with wavelengths from 8 to 18 km. The dashed lines indicate the wave period of
interest from 1 to 4 h. Please note that the date format in this figure is year month day (yyyy-mm-dd).
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Figure 11. Observed (green) and reconstructed (blue) simu-
lated 100 m wind speed time series from 23 September 2016, at
12:00 UTC, until 24 September 2016, at 12:00 UTC. The simulated
wind speeds were reconstructed with wavelengths from 8 to 18 km,
and periods were from 1 to 4 h, while the observed winds were re-
constructed with periods from 1 to 4 h. The simulated mountain
waves were plotted from 22:00 to 04:00 UTC because the moun-
tain wave event that we are interested in is particularly visible at
that time. The dashed time series indicates the simulated mountain
waves that were shifted by 1 h.

simulations between 22:00 and 04:00 UTC the next day, we
only plot that period for comparison. The reconstructed wind
speed time series shows a 1 h shift compared to the observa-
tions. In addition, we can deduce a wave period of 2.5 h; with
a wavelength of 8–18 km, we estimate the wave speed to be
1.5 m s−1. The results seem to be sensitive to the chosen grid
point and the period of interest (not shown). For instance,
we performed a similar analysis using a grid point that is
about 7 km (10 grid points) away from the original one. The
simulated wind field looks similar to that of Fig. 11, but the
resemblance with the observations is weaker.

3.3 Impact of mountain waves on power output

The impact of mountain waves on wind power plant output
in the Pacific Northwest has been anecdotally recognized by
wind energy meteorologists for about a decade, and opera-
tional meteorologists know to expect additional power gen-
eration volatility when mountain waves are present. The first
time this impact was documented in a peer-reviewed journal
was in Wilczak et al. (2019). Wilczak et al. (2019) confirmed
signals in wind plant power output through spectra by show-
ing that the frequency range of dominant energy is consistent
with the period of mountain waves identified via satellite and
wind speed observations. In this paper, we provide additional
proof of the impact of mountain waves on power output by
analyzing wind farm power output from another wind farm
in the area on a different day. We use nacelle wind speeds
and model wind speeds as well as individual turbine and to-
tal farm power output.

First, power output from a wind plant in the study area is
compared to measured wind speeds at the turbines and WRF
output. Figure 12 shows the direct influence that mountain
waves can have on power output of a single turbine. The
number of wave crests (approximately six) agrees well with

the lidar and sodar observations in Fig. 8. During the time
when mountain waves were present (00:00–12:00 UTC), the
winds were fairly strong (approximately 10 m s−1). Oscil-
lations in measured wind speeds were around 5 m s−1 and
agree well with WRF simulations in timing and magnitude.
These oscillations in wind speed correspond with oscillations
in observed turbine power. During this particular event, these
oscillations are at such a critical point (region 2) in the power
curve that small oscillations about the overall mean flow can
make all the difference between full-rated power (approxi-
mately 2.3 MW) or 1 MW of power at any given time.

Mountain waves can influence the total wind farm power
output as well. The time series in Fig. 13 shows oscillations
in total power output from the entire wind farm (green) and
total power output from two other wind farms in the area (or-
ange and blue). Oscillations of approximately 25 MW exist
in averaged power at the wind plant (shown in Fig. 15 as
percentage) and did not get canceled out by alternating wave
influences at different locations in the wind farm. Averaged
wind speeds for that wind farm indicate similar oscillations
(not shown). Oscillations in power output are also visible at
the other two wind farms (although those oscillations are not
as regular) because mountain wake effects might play a role
at those farms as well.

4 Discussion

The previous sections discussed a mountain wave event in the
Columbia River basin through simulations and observations.
The signature of these waves was apparent in nacelle wind
speeds and power observations of a wind farm in the area.
In this section, we relate our findings to practical aspects in
forecasting and operations.

During the event of 24 September 2016, oscillations in
power caused by mountain waves are at such a critical point
in the power curve (region 2, or the “steep part”) that small
oscillations about the overall mean flow can make all the dif-
ference between full-rated power or approximately 1 MW of
power at any given time. In this particular case, the oscil-
lations of a few meters per second caused by the mountain
waves have dramatic effects on power production. Even af-
ter aggregating the power output from all turbines, the power
still fluctuates approximately 25 MW from mountain waves
at the wind farm. For this wind plant, this is equivalent to
production from approximately 10 turbines being added or
lost during the presence of the wave’s crests and troughs (as-
suming all turbines are on), given that one turbine could pro-
duce approximately 2.3 MW. About 11 % of the total wind
farm output is being influenced by the presence of mountain
waves, which is considered significant according to the em-
pirical threshold used in the industry that more than 10 % in
fluctuations (or 20 MW) is significant.

Discerning signals from mountain waves from signals
caused by other phenomena in the atmosphere can be chal-
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Figure 12. Time series of simulated 80 m wind speed from WRF (dashed line), observed power output from one turbine near the middle of
the wind farm (red), and wind speed measurements from that turbine (black solid line).

Figure 13. Time series of total power output of the wind farm used in this study (green) and two other wind farms in the area (orange and
blue). The values on the x axis show time at 3 h intervals.

lenging. For example, mountain waves and wakes often oc-
cur concurrently, and the signals in time series of wind speed
when analyzing observations at a single site or wind turbines
can be difficult to distinguish. Mountain wakes impacting
wind turbines in the Columbia River basin are mostly cre-
ated by Mt. Hood. To the north of a Mt. Hood wake are
the Columbia River Gorge gap-flow westerlies, and to the
south are geostrophic southwesterlies that can sometimes
mix down to the southernmost and highest-elevation turbines
in the area. The instability of the mountain wake edge leads
to much volatility, and it is common for entire wind power
plants to go back and forth between being in the lull and be-
ing at full power. Concurrently occurring mountain wakes
and waves can lead to high-volatility periods where forecasts
range from zero to full power. Power data might also include
various aspects, such as curtailments and turbine wakes. Dur-
ing our case study, the wind farm was not curtailed. Addition-
ally, analyses of the simulated spatial wind field, as well as
cloud cover by GOES satellite data (not shown), indicate that
the mountain waves appeared to shift around without sys-

tematic upstream or downstream propagation on 24 Septem-
ber 2016. This points to nonlinear interactions between dif-
ferent waves and that the dominant dynamics are nonlinear
(Nance and Durran, 1997, 1998, Part II). Nonetheless, moun-
tain waves showed up in periodic signals in wind speed and
power (Figs. 9–12).

We analyzed the wavelengths of the mountain waves; they
ranged from 8 to 10 km in the two case studies (24 September
and 11 November 2016; Wilczak et al., 2019) and were well
captured by the numerical simulations. Future studies will
include further quantification of wavelengths and whether
both shorter and longer wavelengths appear simultaneously
in a wind farm region. During periods with shorter wave-
lengths, only parts of a wind plant will experience low wind
speeds, while other parts will be exposed to stronger winds,
which can result in canceling effects so that power output
is minimally affected. During these cases, accurate moun-
tain wave and wavelength forecasts are important for wind
plant operators to save on balancing costs. On the contrary,
if wavelengths are long, entire regions can oscillate between
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near-full and near-zero power, and, in particular situations,
a lull over an entire region can occur, encompassing multi-
ple wind farms. Similarly, problems arise if wind farms are
spaced apart such that two wind plants happen to be in lulls
while high wind speeds occur between them. Knowing when
to trust model wavelength forecasts will be the subject of
future studies. In terms of speed of wave propagation, our
research has shown that not all mountain waves exhibit the
same speed. In the case of 24 September 2016, the simu-
lated waves move with a speed of approximately 1.5 m s−1

(Sect. 3.2.3); in the case of 11 November 2016 (Wilczak et
al., 2019), the simulated waves move at 2 m s−1 (computed
the same way as in Sect. 3.2.3). This seems to contradict our
findings from analyzing GOES satellite data, which showed
no systematic propagation. Both extended wavelength and
wave speed analyses are the subjects of future work.

From an operational perspective, using high-resolution
forecasts that can resolve mountain waves is crucial to pre-
dict power output at a particular wind farm. The grid spacing
of the simulations should be fine enough for a forecaster to
recognize mountain waves. For example, even though waves
are reflected in a wind field simulated on a 3 km grid, they
might not be recognized as such because the waves are too
wide or missing clear distinctions between high and low wind
speeds that are the result of wave crests and troughs. Sharp
gradients between near-zero and near-full power need to be
recognizable when a forecaster looks at model simulations.
Even though it is impossible to nail down the exact location
of the wave crests and troughs, speed of propagation, mag-
nitudes of wind speeds, or wavelength, the forecaster can
recognize the risk for mountain waves and associated large
drops or surges in power. Additionally, if high-resolution
forecasts are misinterpreted (i.e., the position of wave crests
and troughs are overly trusted), they have the potential to de-
grade a forecast. For a forecaster, it is key to be informed
about the occurrence of mountain waves in order to act (e.g.,
assign more balancing reserves for volatility to make sure a
wide range of possible production is covered). At forecasts
near full power, a mountain wave event can be indicative of
reductions of power. In any event, mountain wave forecasts
should not be used as deterministic solutions.

5 Summary and conclusions

We have shown that mountain waves can occur frequently in
areas of complex terrain and can be modeled with mesoscale
models as was confirmed by observations. Mountain waves
can impact wind turbine and wind farm power output and,
therefore, should be considered in complex terrain when de-
signing, building, and forecasting for wind farms. Mountain
waves impact the quantity of the wind resource and the qual-
ity by impacting temporal and spatial variability.

We suggest that forecasters be informed when mountain
waves occur and, therefore, be informed about wind variabil-

ity in order to act accordingly (e.g., when setting day-ahead
positions for balancing reserves and schedules). Even though
the nuances of wavelength, wave propagation, or exact loca-
tion are not easy to identify or simulate (because they de-
pend on the upstream wind speed and direction as well as the
vertical stability profile), being aware when mountain waves
are forecast is key in operational wind energy forecasting in
complex terrain. Information about the occurrence of moun-
tain waves adds value by communicating the risk and prob-
ability of variability in power output, which helps planning
for possible extreme situations. Depending on the mountain
wave event and the size and shape of wind plants, effects
tend to cancel out over large areas. For this to be true, wind
farms should be laid out such that the windward and leeward
portions are equally exposed to the mountain wave pattern.
Determining the best size and orientation of wind plants to
minimize mountain wave effects would be a recommenda-
tion for future studies.

Future studies should also include analyses of aggregates
over larger regions to see wave patterns through wind plants
as well as interactions with mountain wakes. Often, particu-
lar regions have their own peculiarities, which might also be
a function of turbine age and kind, location, or elevation.
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Appendix A

Figure A1. Pressure at 500 hPa (black lines), temperature (dashed red), wind barbs (blue), temperature (red numbers), and dew point (green
numbers). Source: National Weather Service.
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