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Abstract. Detailed simulation of wind generation as driven by weather patterns is required to quantify the im-
pact on the electrical grid of the power fluctuations in offshore wind power fleets. This paper focuses on studying
the power fluctuations of high-installation-density offshore fleets since they present a growing challenge to the
operation and planning of power systems in Europe. The Belgian offshore fleet is studied because it has the high-
est density of installation in Europe by 2020, and a new extension is expected to be fully operational by 2028.
Different stages of the future installed capacity, turbine technology, and turbine storm shutdown technologies
are examined and compared. This paper analyzes the distribution of power fluctuations both overall and during
high wind speeds. The simulations presented in this paper use a new Student t-distributed wind speed fluctuation
model that captures the missing spectra from the weather reanalysis simulations. An updated plant storm shut-
down model captures the plant behavior of modern high-wind-speed turbine operation. Detailed wake modeling
is carried out using a calibrated engineering wake model to capture the Belgium offshore fleet and its tight farm-
to-farm spacing. Long generation time series based on 37 years of historical weather data in 5 min resolution
are simulated to quantify the extreme fleet-level power fluctuations. The model validation with respect to the
operational data of the 2018 fleet shows that the methodology presented in this paper can capture the distribution
of wind power and its spatiotemporal characteristics. The results show that the standardized generation ramps
are expected to be reduced towards the 4.4 GW of installations due to the larger distances between plants. The
most extreme power fluctuations occur during high wind speeds, with large ramp-downs occurring in extreme
storm events. Extreme ramp-downs are mitigated using modern turbine storm shutdown technologies, while ex-
treme ramp-ups can be mitigated by the system operator. Extreme ramping events also occur at below-rated wind
speeds, but mitigation of such ramping events remains a challenge for transmission system operators.

1 Introduction

Belgium has adopted the target of a 65 % reduction of green-
house gas emission levels by 2050, a less ambitious target
than the European target of 80 % by 2050. Nevertheless,
Belgium is expected to increase the share of renewable en-
ergy sources, with an expected increase in wind energy share
of between 37 % and 44 % by 2050 (Mikova et al., 2019).
The Belgian offshore wind power fleet will be, by the end
of 2020, one of the areas with the highest installation density
in the North Sea (approximately 10 MW km−2, while the av-
erage is 6.6 MW km−2), with an installed capacity of circa

2.3 GW over a marine area of circa 225 km2 in proximity
to the Netherlands. Furthermore, the planned expansion of
the Belgian offshore fleet will bring the capacity up to be-
tween 4.0 and 4.4 GW by 2028 (Elia, 2017, 2019). Previous
studies of the impact of the Belgian offshore fleet in its en-
ergy system exist: Elia (2018) studies the impact of storm
and ramping events on the system imbalances, while Buijs
et al. (2009) investigate the required investment by the Bel-
gium power system for integrating the 2.3 GW of offshore
wind.
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Geographical smoothing of the fleet-wise offshore wind
production is expected in the 4.4 GW scenario as the new
plants are located further apart from the existing fleet and
due to the decrease in correlation between power productions
from plants further apart. Several studies explore the effects
of the distance among wind power plants in the fleet/portfolio
wind production such as Santos-Alamillos et al. (2017),
Tejeda et al. (2018), Roques et al. (2010), and Koivisto et al.
(2016). Additionally, the expected increase in rotor diameter,
hub height, and general improvements of wind turbine tech-
nology can have a smoothing effect in fleet-wise wind power
production (Koivisto et al., 2019b).

The distribution of the fleet-level power fluctuations is
necessary to understand and model the impact of the fu-
ture expansions of the Belgian offshore fleet into the Belgian
energy system (Huber et al., 2014). Holttinen et al. (2011)
present a detailed analysis of the impacts of large amounts of
wind power on the design and operation of power systems.
Holttinen et al. (2016) show that characteristics of variabil-
ity and uncertainty of wind power are an important input for
wind integration studies, with impacts on system-balancing
and grid-reinforcing needs. A long-term dynamical simula-
tion of the offshore wind power generation is required to
assess the impact of the extreme power fluctuations in the
energy system (Pfenninger, 2017).

The purpose of this paper is to quantify the distribution
of ramp rates as a measure for power fluctuations when ex-
tending the offshore wind capacity in Belgium. This research
proposes a methodology for simulating wind power produc-
tion time series and performing a validation using operational
measurements on the 2018 fleet. This paper concentrates on
the simulations of the time series of offshore wind generation
for several scenarios. The simulated time series can be used
as inputs in power and energy system impact analyses, but
a detailed model of the energy system is not in scope. The
hypothesis of this study is that power fluctuations in the Bel-
gian offshore wind fleet will be reduced by a combination of
increased spatial smoothing (larger distances between new
installations) and the use of turbines with controlled high-
wind-speed operation.

This paper includes several novel methodologies that ad-
dress current gaps in large-scale offshore wind generation
simulation: first, it presents a Student t-distributed wind
speed fluctuation model and its validation. This model is
based on the work by Mehrens et al. (2016) that shows that
wind speed fluctuations are non-Gaussian and by Koivisto
et al. (2016) that models the error terms in a multivariate au-
toregressive model with a marginally Student t-distributed
Gaussian copula. Second, this paper presents an update to
the hysteresis plant storm shutdown model by Litong-Palima
et al. (2016) and its validation. Third, the methodology for
simulating power production takes into account wake losses
including farm-to-farm interactions. Fourth, a detailed vali-
dation of the results in terms of capacity factors (CFs), high-
wind-speed operation, power fluctuations, and spatial corre-

lations for the existing fleet demonstrates the simulation ca-
pability of the model chain used. Additionally, this paper has
practical significance because it illustrates how the proposed
methodology can be used to accurately predict the distribu-
tion of the fleet-level power fluctuations including its most
severe extremes.

2 Literature synthesis

Large-energy-system modeling is required in order to design,
plan, and adapt to the future transition to greener technolo-
gies. Pfenninger et al. (2014) present a literature review on
large-energy-system models and identify the main challenges
of large-energy-system simulations as (a) temporal–spacial
resolution, (b) uncertainty and transparency, (c) growing
complexity of interconnected energy systems with a diverse
mixture of technologies, and (d) integrating the impact of
policy and other human behaviors. Furthermore, Engeland
et al. (2017) present a review of the modeling approaches
for variable renewable energy (VRE, i.e., wind and solar).
This review highlights the different methodologies required
to simulate the generation of a wind power fleet as a time se-
ries. Holttinen et al. (2016) highlight the importance of mod-
eling geographical smoothing when analyzing variability and
uncertainty of wind power in system integration studies. The
most common approaches are (1) stochastic time series sim-
ulations, (2) simulations based on meteorological reanalysis
simulations, and (3) combinations of the two.

Stochastic time series simulation of fleet-level wind power
production has been used in several studies. Ekström et al.
(2017), Koivisto et al. (2016), Klöckl and Papaefthymiou
(2010), and Olauson et al. (2017) are examples of applica-
tions and implementations of extended vector autoregressive
models to simulate VRE generation time series. Sørensen
et al. (2002) introduced the use of a stochastic time series
model for simulating the wind speed fluctuations by com-
bining the Kaimal turbulent spectra (for fluctuations within
10 min resolutions) with a low-frequency spectra designed
to simulate the weather patterns in larger-scale fluctuations.
All these simulation approaches rely on stochastic time se-
ries models to capture the auto- and cross-correlations of
the power time series at multiple locations. Some of these
stochastic models are fitted on measured historical data and
have the limitation of not being able to predict the production
time series on wind power fleets with different characteris-
tics (i.e., installed capacity, locations, turbine types) from the
original data. Direct stochastic power simulations have the
advantage of not requiring the simulation of wind speeds, but
instead they rely on empirical transformations of the data to
correct for the non-stationarity, non-Gaussianity, and correla-
tion structure of power fluctuations. Fertig (2019) introduces
an empirical model to apply stochastic models to different
installed capacity and locations.
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Weather-driven wind power time series generation simu-
lations consist in modeling the wind production as driven
by wind speed time series obtained from (1) meteorological
reanalysis datasets such as ERA-Interim (Dee et al., 2011),
MERRA (Gelaro et al., 2017), or ERA-5 (Hersbach et al.,
2020) and (2) Weather Research and Forecasting (WRF)
model simulations (Skamarock et al., 2008). Example appli-
cations of weather-driven wind generation simulations can
be read in Nuño et al. (2018), Olauson and Bergkvist (2015),
Marinelli et al. (2014), Leahy and Foley (2012), Von Bre-
men (2010), Staffell and Pfenninger (2016), Thomaidis et al.
(2016), and Staffell and Pfenninger (2018). The main advan-
tages of using meso-scale weather-driven generation simu-
lations are as follows. (a) The simulations rely on the pre-
dictions of wind speeds and wind directions, among other
meteorological parameters, and therefore have physical con-
sistency between different locations and times. (b) The sim-
ulations can be performed on any combination of installed
capacity, locations, and wind turbine technologies. (c) The
simulations can be extended to cover larger periods of time,
which will be necessary for reliability or extreme event prob-
ability estimations (Pfenninger, 2017). The disadvantages are
as follows. (a) Low spatiotemporal resolution means that not
all the variability in the wind speed is captured. Hourly reso-
lution is widely used in most studies, but simulations can be
carried out with 10 min resolutions or more but with a sig-
nificant additional computational costs (Liu et al., 2011; Tal-
bot et al., 2012). Spatial resolution of 10 km is widely used
in wind energy (González-Aparicio et al., 2017), but WRF
simulations can be performed in up to 100 m× 100 m areas
(Liu et al., 2011; Talbot et al., 2012), while modern reanaly-
sis datasets have resolutions between 10–75 km, (González-
Aparicio et al., 2017; Olauson, 2018). (b) Simulated time se-
ries are smoother than measurements because the weather
models tend to filter the high-frequency oscillations from
the signals in order to ensure convergence. (c) Due to the
coarse temporal resolution, turbulence spectra are missing,
which are necessary to simulate with higher resolutions than
10 min.

Stochastic models are designed to capture the missing
wind speed fluctuations. Veers (1988) demonstrated that time
series interpolated from a grid of correlated time series pro-
duce a decrease in the apparent spectra, and they proposed a
methodology to add missing fluctuations to compensate for
this effect. Larsén et al. (2012) report the missing spectra in
WRF with respect to measurements and analyses the implica-
tions for extreme wind speed estimation. Larsén and Kruger
(2014) introduce and apply the spectral correction for WRF
in South Africa, while Sørensen et al. (2018) apply it in the
2025 wind power scenario in South Africa. Koivisto et al.
(2020) calibrate the parameters of the stochastic wind speed
fluctuation model based on measurements. Mehrens et al.
(2016) present non-Gaussian distribution of wind speed fluc-
tuations in WRF and in measurements in offshore met mast
sites. Olauson et al. (2016) present an empirical approach to

model the fluctuations by introducing a machine learning re-
gression model for the volatility and optimizing the phase
angles between the different Fourier modes of the fluctua-
tions to capture auto- and cross-correlations. For reference,
Liu et al. (2017), Kiviluoma et al. (2016), and Apt (2007)
present modern experimental spectra of wind power genera-
tion.

The wake behind the turbine is a flow characterized by a
decrease in the mean wind speed and an increase in the turbu-
lence downstream. Porté-Agel et al. (2020) provide a review
of the work on the wake modeling and measuring field. In
summary, the wakes translate into a lower power production
on turbines operating in the wake of other turbines. Wind
turbine wakes recover as a function of the distance from the
turbine, which causes the effect to be most important when
turbines are closely spaced. As turbines in the Belgian fleet
are tightly spaced, significant wake effects are expected.

Farm wake is the aggregated effect of the wakes from all
the turbines in a farm on the turbines in a nearby farm. Such
effects have been reported to retain wind speed deficits of up
to 2 % at downstream distances between 20–60 km (Volker
et al., 2017). This distance of expected influence of farm
wakes depends on the plant size, number of turbines, and at-
mospheric boundary layer stability (Porté-Agel et al., 2020).
Farm effects are important in this study because of the prox-
imity between the offshore wind plants in the Belgian waters.

Agora Energiewende et al. (2020) and Volker et al. (2017)
report an expected capacity factor of around 30 %–50 % for
areas with high power density (10 MW km−2) spreading over
areas between 1–10 km2, depending on the wind resource in
the region. Note that these capacity factors include the intra-
farm (wakes of turbines in the same farm) and farm-to-farm
wake losses.

3 Methods

3.1 Future wind turbine technology and installed
capacity scenarios

To build representative scenarios for 2025–2028, the trends
in offshore turbine technology are analyzed in terms of tur-
bine capacity, specific power (ratio between rated power and
rotor area), and hub height; see Fig. 1. The trends com-
bine the current turbines installed or planned in Belgium and
the Netherlands, the technology projections (Danish Energy
Agency, 2020), and the commercial wind turbine prototype
information available on the main wind turbine manufac-
turer’s websites. Figure 1 shows that there is a linear trend in
increasing hub height and turbine capacity, while the specific
power tends to follow a cyclic trend with a linear increase
followed by a drop in specific power. Two turbine technology
scenarios are propose in this paper (Tech A and Tech B); both
scenarios assume the same rated power but different specific
power. The Tech A turbine has a high specific power, while
Tech B has low specific power. The range of difference in
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rated power from different manufacturers is expected not to
have significant impact on the results presented in this paper.

The power curves from the two turbine technologies are
approximated based on the specific power, using the power
and thrust coefficient curves of large rotors in DTU Wind En-
ergy’s database. Modern wind turbines are offered with high
wind speed operation, which consists in extending the cut-off
wind speed and implementing different control strategies to
reduce the aeroelastic loads on the turbine components and
hence reduce the power production. In this study a generic
high-wind-speed operation technology (HWS Deep) is com-
pared with respect to the traditional cut-off wind speed at
25 m s−1; see Fig. 2. The HWS Deep type represents modern
turbines designed to continue operation at high wind speeds
and mitigate the ramping due to storm shutdowns. High-
wind-speed operation technology is commercially available,
but every manufacturer uses a different control strategy,
which results in differences in the power curves at high
wind speeds. The HWS power curve presented in Fig. 2 is
proposed to have a manufacturer agnostic HWS technology
model. In this paper there are four turbine-curtailment tech-
nology scenarios: Tech A with 25 direct cut-off, Tech A with
HWS Deep, Tech B with 25 direct cut-off, and Tech B with
HWS Deep.

Future installation development is split into three scenar-
ios or stages: BE2018 with 0.9 GW represents the validation
dataset in which 4 years of operational data are available, and
BE 2.3 GW consists of the plants in BE2018 and the plants to
be commissioned by 2020, BE 4.4 GW consists of the plants
in BE 2.3 GW and future extension; see Fig. 3 and Table 1.
The turbine and layout used in the plants in the BE 2.3 GW
scenario are known (Sørensen et al., 2020). The BE 4.4 GW
scenario is studied by varying the turbine and shutdown tech-
nology for the additional 2.1 GW of installations. The plant
layout in BE 4.4 GW is generated by maximizing the spac-
ing between the turbines needed to reach the full installed
capacity. Furthermore, the offshore fleet in the Netherlands
(1.5 GW to start operating by 2020) is also modeled in the
BE 2.3 GW and 4.4 GW scenarios because of its proximity.

3.2 Modeling

This section describes all the methodology used to produce
the power time series simulations, including wake model-
ing, wind speed time series generation, and wind plant storm
shutdown modeling implemented in CorRES (Correlations in
Renewable Energy Sources) (Koivisto et al., 2019a, 2020).
CorRES uses meso-scale weather-driven renewable energy
generation and has three sub-models: (1) meso-scale weather
data and interpolation, (2) a wind speed fluctuation model,
and (3) a wind-to-power model which includes wake model-
ing and a dynamic storm shutdown model.

3.2.1 Wind speed time series simulation

Wind speed time series for multiple locations are simulated
by combining a pre-computed database of meteorological re-
analysis simulations (uWRF) and a stochastic model to com-
pensate for the missing fluctuations (δu), see Eq. (1), where
xj is the location of plant j at a given time, t . The following
methodology is based on Sørensen et al. (2008) and Koivisto
et al. (2020).

u
(
xj , t

)
= uWRF

(
xj , t

)
+ δu

(
xj , t

)
(1)

CorRES meteorological reanalysis data are obtained by
running WRF (Skamarock et al., 2008) to downscale
the ERA-Interim reanalysis data (Dee et al., 2011) at a
10 km× 10 km× 1 h resolution. Nuño et al. (2018) give a
detailed description of the WRF simulations used in this pa-
per. The model results are stored at multiple heights above
ground (50, 80, 100, 120, 150 m). Linear interpolation in
horizontal coordinates and piecewise power-law interpola-
tion are used to obtain the time series on a given farm center
position.

The stochastic model used to compensate for the missing
high-frequency spectra and the turbulence contribution to the
inter-time-step variability in the wind speed signals is char-
acterized by its power spectral density (PSD), Sjj (f ); see
Eq. (2). In this equation the coefficient a1 is a parameter
of the spectra, while f0 controls the lower frequency from
which variability will be added. Koivisto et al. (2020) report
the calibration of a1 and f0 to wind speed measurements in
Høsøre, Risø, and Cabauw. The fluctuation spectra are de-
signed to capture the full-range spectra as reported by Larsén
et al. (2016) with the addition of the f0 parameter, used to
minimize the low-frequency modification of the WRF time
series.

Sjj (f )=
a1

f
5/3
0 + f 5/3

(2)

Since the simulations represent several locations, the coher-
ence between the wind speed fluctuations (on a given fre-
quency) between two locations is specified by the coherence
function, γjk(f ), in Eq. (3), where Ajk is the decay coeffi-
cient, djk is the distance between the locations, and ujk is
the mean wind speed at the locations.

γjk(f )= e−Ajkdjkf/ujk (3)

The decay coefficient is defined as a function of the stream-
wise (As) and transversal (At) components in Eq. (4), by pro-
jecting them along the direction of location alignment, αjk is
the direction of alignment, and θjk is the mean wind direc-
tion at the locations. Sørensen et al. (2008) report calibrated
values of At = 4 and As = ujk/2 based on multiple location
measurements in Høsøre.

Ajk =√(
As cos

(
θjk − 270−αjk

))2
+
(
At sin

(
θjk − 270−αjk

))2 (4)
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Figure 1. Trends in specific power, hub height, and turbine capacity for offshore turbines.

Figure 2. Power curves and technical parameters for assumed technology and storm shutdown scenarios.

The spectral matrix, S, is computed using the cross-spectra
and coherence functions on a discretized frequency bin (with
center frequency fm), for every pair of location j and k; see
Eq. (5).

Sjk (fm)= γjk (fm)
√
Sjj (fm)Skk (fm) (5)

The time series generation methodology presented in Veers
(1988) is used. The spectral matrix is approximated by
a real, lower triangular matrix H, such that S(fm)=
H(fm)H∗T (fm). This matrix is computed in an iterative man-
ner following Eq. (6).

Hjk (fm)=
(

Sjk (fm)−
k−1∑
l=1

Hj l (fm)Hkl (fm)

)1/2

if j = k(
Sjk (fm)−

∑k−1
l=1 Hj l (fm)Hkl (fm)

)
/Hjk (fm) if j < k

(6)

Finally, the complex Fourier coefficients of the wind speed
fluctuations, Vj (fm), are computed as a linear combination
of the weights given by H(fm) and a series of independent,
unit-magnitude, white noise signals with random phases φkm
uniformly distributed in the interval (0, 2π ); see Eq. (7). The
Gaussian-process time series, Vj (t), are obtained by applying
an inverse Fourier transformation.

Vj (fm)=
j∑
k=1

Hjk (fm)eiφkm (7)

In the present work the wind speed fluctuations are trans-
formed using an iso-probability transformation to a trun-
cated Student t marginally distributed Gaussian copula; see
Eq. (8). This transformation consists in transforming the
Gaussian-distributed fluctuations to the uniform space, using
their cumulative density function, FN,j , and then applying
the inverse cumulative density function of the truncated t-
distributed Gaussian copula, F−1

t,υ,τ,j . The degree of freedom
of the Student t marginals, υ, and the degree of truncation,
τ , are unique and the same for all plants and are calibrated
based on the measured wind speed fluctuations. Truncation
of the Student t distribution is applied in order to match the
extreme fluctuations seen in the wind speed measurements.

δu,j (t)= F−1
t,υ,τ,j

(
FN,j

(
Vj (t)

))
(8)

A simplified model for correcting the extreme wind speed
events, u= g(u)× u, is described in Eq. (9). This correction
does not affect wind speeds lower than 20 m s−1, while it ap-
plies a linearly growing factor for wind speeds above, with
a maximum factor of 1.08 for wind speeds above 26 m s−1.
This correction is based on the validation study of extreme
wind speeds by Bastine et al. (2018) and the measured wind
speeds from existing offshore wind power plants in Belgium.
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Figure 3. Plant and turbine locations for the different stages of offshore wind installations.

Table 1. Plant and turbine characteristics for the different stages of offshore wind installations. Characteristics are given for the added
turbines with respect to the previous stage of installation except for total capacity. The Dutch plants are taken into account when modeling
external wake impacts on the Belgian fleet. Note that the actual turbines and plant layouts for the BE2018, BE 2.3 GW, and Netherlands
scenarios were used.

Scenario Total Turbine Rotor Specific Hub Cut-off
capacity capacity diameter power height tech

(GW) (MW) (m) (W m−2) (m)

BE2018 0.9 3 to 6.15 90 to 126 305 to 493 72 to 95 Direct 25 or 30 m s−1

BE 2.3 GW 2.3 7.25 to 9.5 154 to 164 395 to 450 105 to 109 HWS Deep

Netherlands 1.5 8 to 9.5 154 to 164 430 to 450 105 to 106 HWS Deep

BE 4.4 GW Tech A 4.4 12 184 450 118 Direct 25 m s−1

25 direct cut-off

BE 4.4 GW Tech A 4.4 12 184 450 118 HWS Deep
HWS Deep

BE 4.4 GW Tech B 4.4 12 220 318 150 Direct 25 m s−1

25 direct cut-off

BE 4.4 GW Tech B 4.4 12 220 318 150 HWS Deep
HWS Deep

g(u)=

 1 if u <= 20
0.08(u− 20)/6+ 1 if 20< u < 26
1.08 if u>=26

(9)

3.2.2 Wake modeling

Wake effects are modeled using the engineering wake model
proposed in Bastankhah and Porté-Agel (2014). This wake
model consists of self-similar Gaussian wind speed deficits
in Eq. (10), a linear wake expansion in Eq. (11), and energy
deficit superposition in Eq. (12). In these equations 1u is
the wind speed deficit downstream, u∞ is the undisturbed

wind speed, CT is the thrust coefficient, σ is the wake width,
k is the wake expansion coefficient, D is the rotor diameter,
(x, r) is the location where the deficit is to be evaluated in
wake coordinates, and N is the number of wind turbines in
the farm.

1u

u∞
=

(
1−

√
1−

CT

8(σ/D)2

)
exp

(
−
r2

2σ 2

)
(10)

σ

D
= k

x

D
+ 0.2

(
1+
√

1−CT

2
√

1−CT

)
(11)
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u= u∞−

√√√√ N∑
m=1

1u2
m (12)

This model is used because of its simplicity and because it
has been formulated to hold mass and momentum conserva-
tion equations in the wake flow behind a turbine; see Porté-
Agel et al. (2020).

The wake model is used to generate a plant power curve
by simulating the power outcome of the plant as a function of
the undisturbed mean wind speed and mean wind direction,
P (u,θ ). The wake model is evaluated including all turbines
from neighboring farms; therefore it includes both intra-farm
and farm-to-farm wakes. The resolution of the wake mod-
eling is 1◦ in wind direction and 0.5 m s−1 in wind speeds.
The plant power curve is interpolated on each time stamp of
the wind speed and wind direction time series, ensuring the
360◦ periodicity on the wind direction. A simplified wake
model calibration is performed to determine the wake expan-
sion parameter that better fits the measured capacity factors
in the BE2018 fleet.

3.2.3 Wind turbine/plant storm shutdown

Wind turbine storm shutdown operation consists in four dif-
ferent wind speed set points that specify the mean wind speed
shutdown limits for 10 min, 30 s, and 1 s windows (u600, u30,
and u1). The turbine goes into shutdown if the wind speed
moving average on a period is larger than its limit, for periods
of 600, 30, and 1 s. The turbine only goes back into operation
when the 10 min moving-average wind speed is lower than
the restart wind speed. In the present work modern-turbine
high-wind-speed operation (HWS Deep) is modeled with a
linear decrease in power and different shutdown wind speed
set points. Figure 4 shows the single-turbine storm shutdown
for the 25 m s−1 direct cut-off and the HWS Deep technolo-
gies.

Wind farm storm shutdown behavior is different from the
individual turbine shutdown: in a wind farm not all the tur-
bines will shutdown at exactly the same time because the
wind speed fluctuations in each turbine are different, which
means that each turbine has a different wind speed time
series that reaches shutdown at different times. Macdonald
et al. (2014) study the high-wind-speed shutdown behav-
ior of two wind farms in Great Britain. Plant shutdown is
characterized by discrete levels of reduced-capacity opera-
tion, with each level representing the power curve for the
plant when a number of turbines are off. The wind farm
storm shutdown hysteresis model presented in Litong-Palima
et al. (2016) is extended to model the plant-level operation of
turbines with modern high-wind-speed operation. The hys-
teresis model consists of a simple algorithm that forces the
power to move proportionally along the power curve unless
the wind speed reaches the restart or shutdown curves; see
Fig. 4. The turbine-level storm shutdown is thus first trans-

formed to plant-level behavior based on simulating a set of
storm cases in high resolution at a turbine-level generic plant.

CorRES allows the modeling of a wind power plant with
both multiple turbines and at the plant level. However, the
large-scale simulations of the entire fleet are computation-
ally feasible only at the plant level. Plant simulations with in-
dividual turbine storm shutdown simulations are carried out
for 15 historical high-wind-speed days (in which max wind
speed is larger than 20 m s−1 in the WRF data) at 1 s reso-
lution. These simulations are used to define the plant power
curve, the restart line, and the shutdown line; see Fig. 5. In
Fig. 5 it can be observed that the high-wind-speed operation
part of the plant power curve differs from the piecewise linear
behavior of the individual turbine, which is a consequence of
the difference between the wind speed fluctuations for each
turbine.

3.3 Measured data for model validation and calibration

A total of 4 years of measured generation at 15 min resolution
from 2015 to 2018 from the plants in BE2018 are used for
model validation; see Fig. 3. Measured generation at 1 min
resolution for 2018 is aggregated to 5 min resolution to val-
idate the simulated 5 min ramps. The measured values with
wind speed between 5 and 15 m s−1 and no power generation
are classified as not available. Such data points were consid-
ered to be either measurement errors or an indication that the
whole fleet is unavailable.

Wind speed nacelle anemometer measurements are avail-
able for the plants in BE2018 at 10 min resolutions from
four turbines in the corners of each plant. For comparison to
CorRES simulations, the mean of the four turbines is taken
to represent the effective wind speed of the plant, and a fleet-
level wind speed is defined by taking the weighted mean by
installed capacity.

The wake model wake expansion parameter is calibrated
in order to minimize the errors in predicting the capacity fac-
tors in the plants of BE2018 during the 2015–2018 period.
The wake model calibration produces generation time series
with consistent wake/blockage losses as observed in the mea-
surements, but the model applies a constant wake expansion
over the whole time series.

Model validation consists in comparing the temporal
structure of the wind speed and power time series. A detailed
comparison is done in terms of wind speed and power pro-
duction distributions, wind speed and power fluctuation dis-
tributions, and spatial correlation of power and power fluctu-
ations.

4 Results for BE2018

Figure 6 illustrates the wind speed fluctuation in 10 min
measured and modeled with different approaches. This fig-
ure illustrates the need for adding fluctuations to the WRF
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Figure 4. Single-turbine storm shutdown for the three high-wind-speed operation technologies.

Figure 5. Plant vs. single-turbine storm shutdown for (a) 25 m s−1 direct cut-off (b) HWS Deep. Multiple turbine simulations are aggregated
in 5 min. The shutdown hysteresis curve (in red) is an example case where restart occurs before the entire plant has shutdown.

Table 2. Extreme (fleet-level mean) wind speed validation by com-
paring high percentiles (Prct) and maximum.

Wind speed Prct 99.9 Prct 99.99 Max

WRF 22.8 25.4 26.2
CorRES 23.9 27.9 30.0
Measured 25.2 28.2 31.3

datasets, and in particular, the need for non-Gaussian-
distributed fluctuations.

Figure 7 presents the Q–Q plot for the 10 min wind speed
fluctuation at each of the plants in BE2018. It can be seen
that the introduction of t-distributed fluctuations better repre-
sents the measured wind speed fluctuations. Table 2 presents
the validation of extreme values of wind speed. It can be seen
that WRF without fluctuations and without extreme correc-
tion factor (see Eq. 9) underpredicts the extreme wind speeds.
The extreme values are better captured by CorRES, but due
to the stochastic nature of the fluctuation model, many real-
izations of the time series will need to be sampled to capture
the maxima.

A comparison of the measured and modeled fleet-level
(weighed average of individual plants by installed capacity)
wind speed and power distributions of the BE2018 is de-
picted in Fig. 8. Note that the measured wind speeds include
wake deficits (below 14 m s−1), while CorRES wind speed

simulations are given without wake losses. CorRES consid-
ers the wakes in the plant power curve used to transform
wind speed and wind direction to power. Despite this differ-
ence, it can be seen that the fleet power production including
the storm shutdown is accurately captured. The distribution
of power production for measurements and CorRES differs
around rated power, because wind turbine availability is not
modeled in CorRES.

The validation of the spatial correlation of power produc-
tion and power fluctuations is presented in Fig. 9. Note that
CorRES is able to capture the spatial correlation trends: a
decrease in correlation between the power of plants as a
function of the distance between them. Similarly, the spa-
tial correlation trend for the power ramps (fluctuations) is
well reproduced by the simulations. This capability of sim-
ulating the spatial and temporal correlation between plants
ensures accurate simulations of future-installed-capacity sce-
narios with different geographical installation distributions.

Model validation results in terms of capacity factors (CFs),
standard deviation of standardized production (SD), and
standard deviation of different power fluctuation in differ-
ent time windows (5 min: DP5, 15 min: DP15, 1 h: DP60)
are presented in Table 3. The measured fleet CF is slightly
overpredicted, which becomes 1.13 % when a standard loss
factor from un-availability (0.97) is applied. In this paper,
availability is not applied as a factor to the full time series in
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Figure 6. Wind speed fluctuations in 10 min: measured, WRF, WRF with Gaussian fluctuations (CorRES(Gaussian)), and WRF with Student
t Gaussian copula fluctuations (CorRES(t)).

Figure 7. The qq-plot of simulated vs. measured wind speed fluctuation in 10 min.

order to be conservative in the number of full-range power
fluctuations.

The distributions of different power fluctuation in different
time windows (5 min, 15 min, 1 h) are presented in Fig. 10.
Overall, the distribution of the different power ramps is well
captured by the model, besides the small differences on the
tails. The difference in the tails is a combination of the lack of
an availability model in CorRES, the stochastic nature of the
wind speed fluctuation models, and the fact that only 3 years
of measurements are available.

5 Results for future fleet

Simulation results for 37 years of wind speed time series
for the different scenarios (installed capacity, turbine tech-
nology, and shutdown technology) in terms of CF, SD, and
standard deviation of power ramps (SD DP) are shown in Ta-
ble 4. The capacity factor of the Belgian offshore wind fleet
is expected to increase sequentially from BE2018 to 2.3 GW
to the 4.4 GW fleet, due to the use of modern turbines with
higher hub heights. A larger capacity factor is obtained when
the Tech B is used in the 4.4 GW fleet, while the deep storm
shutdown technology only increases the CF marginally.

The standard deviation of the power shows an increase
from the BE2018 to BE 2.3 GW scenarios due to the in-
creased capacity factor, installed capacity, hub heights, and
larger wake losses. In the 4.4 GW scenario, Tech B shows
a slightly larger SD than Tech A due to the steeper power
curve and larger hub heights; Tech A does not increase SD
with respect to the 2.3 GW scenario.

The standard deviation of power ramps decreases from
BE2018 to 2.3 GW to 4.4 GW, due to the effect of geograph-
ical smoothing. There is no significant difference between
the standard deviation of the power ramps among turbine or
storm shutdown technologies.

Figure 11 presents the comparison of the power fluc-
tuations during low wind speeds (fleet-level weighted-
mean wind speed below 15 m s−1) over the different in-
stallation/technology scenarios. The 4.4 GW scenarios show
the lowest variability of power fluctuations, followed by
BE 2.3 GW and BE2018. These fluctuations are mainly
caused by wind speed fluctuations and depend on the steep-
ness of the power curve. The distribution of low-wind-speed
ramps is symmetric because the power curve behaves almost
linearly in this wind speed range.

Similarly, Fig. 12 shows the comparison of the power fluc-
tuations during high wind speeds (fleet-level weighted-mean
wind speed larger than 15 m s−1). The geographical smooth-
ing and the high-wind-speed operation significantly reduce
the tails (i.e., extreme events) of the power fluctuation dis-
tributions. The 2.3 GW scenario shows a large reduction in
the extreme power ramping with respect to BE2018 because
of the use of HWS storm protection technologies. Further-
more, all scenarios show non-symmetric distributions with
larger extreme positive ramps. Extreme negative ramps (at
high wind speed) occur when the fleet shuts down during a
storm, while large positive ramps occur when the turbines
restart after a shutdown during high wind speeds. In the
4.4 GW scenario, the 25 m s−1 direct cut-off shutdown shows
the largest extreme power fluctuations for positive and nega-
tive ramps at high wind speed with a frequency of mid-range
ramp events above the BE 2018 scenario, while BE 4.4 GW
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Figure 8. Measured and CorRES simulations of power vs. wind speed, with their histograms for BE2018.

Figure 9. (a) Correlation of power production vs. distance between two plants. (b) Correlation of power ramps vs. distance between two
plants for 15 min (1 lag) and 60 min (4 lag).

Figure 10. Distributions of standardized power fluctuations in different windows: (a) 5 min (DP_5), (b) 15 min (DP_15), and (c) 1 h (DP_60).

HWS Deep shows the least extreme power fluctuations of all
scenarios. The extreme positive ramps at high wind speeds
for BE 4.4 GW HWS Deep and BE 2.3 GW are larger than
the extreme negative ramps; these extreme positive ramps are
a consequence of the turbine restart operation.

The extreme ramping events during low wind speeds are
lower than the ramps at high wind speed for BE2028 and

BE 4.4 GW with a 25 m s−1 direct cut-off. Meanwhile, the
2.3 GW and 4.4 GW with HWS Deep scenarios show similar
negative extreme power ramp values for low and high wind
speeds.

The extreme power ramps in different time windows for
all scenarios (at all wind speeds) are summarized in Table 5.
There is a reduction in extreme ramps between the BE2018
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Table 3. BE2018 residuals (prediction error) in capacity factor (CF), standard deviation of standardized power (SD), and standard deviation
of 5, 15, and 60 min power fluctuations (DP5, DP15, DP60).

Measured CorRES Residual Measured CorRES Residual

CF 0.399 0.416 4.3 % SD_DP5 0.013 0.015 15.4 %
CF with availability 0.399 0.404 1.1 % SD_DP15 0.033 0.032 −3.0 %
SD 0.350 0.351 0.3 % SD_DP60 0.087 0.089 2.3 %

Prct 1 DP5 −0.040 −0.043 7.5 % Prct 99 DP5 0.040 0.044 10.0 %
Prct 1 DP15 −0.099 −0.091 −8.1 % Prct 99 DP15 0.101 0.091 −9.9 %
Prct 1 DP60 −0.255 −0.249 −2.4 % Prct 99 DP60 0.270 0.257 −4.8 %

Prct 0.1 DP5 −0.089 −0.078 −1.2 % Prct 99.9 DP5 0.081 0.076 −6.2 %
Prct 0.1 DP15 −0.226 −0.151 −33.2 % Prct 99.9 DP15 0.205 0.156 −23.9 %
Prct 0.1 DP60 −0.495 −0.432 −12.7 % Prct 99.9 DP60 0.511 0.429 −16.0 %

Table 4. Capacity factors (CFs), standard deviation of standardized power (SD), and standard deviations of power ramps in 5, 15, and 60 min
(SD DP5, SD DP15, SD DP60) and their relative ratios with respect to BE2018. All statistics are computed over the 37 years of simulations.

CF Ratio SD Ratio SD DP5 Ratio SD DP15 Ratio SD DP60 Ratio
CF SD SD DP5 SD DP15 SD DP60

BE 2018 (877 MW) 0.420 100 % 0.346 100 % 0.015 100 % 0.035 100 % 0.092 100 %
2.3 GW 0.430 103 % 0.354 102 % 0.013 81 % 0.031 88 % 0.088 96 %

4.4 GW
Tech A

25 m s−1 0.449 107 % 0.354 102 % 0.011 69 % 0.026 74 % 0.079 86 %
Deep 0.450 107 % 0.355 102 % 0.010 67 % 0.026 74 % 0.078 85\%˙

Tech B
25 m s−1 0.485 116 % 0.357 103 % 0.011 70 % 0.027 76 % 0.080 87 %
Deep 0.488 116 % 0.358 103 % 0.010 68 % 0.026 74 % 0.078 85 %

and 2.3 GW scenarios. In the 4.4 GW scenario, the HWS
Deep mitigates the extreme ramp events with respect to both
BE2018 and 2.3 GW scenarios, while the reference direct
cut-off shows an increase in extreme events. From Table 4
it can be concluded that geographical distribution of instal-
lations has a major impact on the general level of variability
(standard deviation of power ramps), while Tables 4 and 5
show that the storm shutdown type only impacts the tails of
the ramp distribution, especially for DP5 and DP15.

6 Discussions

The increase in CF in the 4.4 GW scenario with wind turbine
Tech B is due to the larger rotor size and taller hub heights,
but financial analysis may result in selections of turbines with
less expensive rotors. Similarly, the 2.3 GW scenario showed
a larger CF than BE2018 because of the overall trend in in-
creasing rotor sizes and taller tower; see Table 1. This occurs
even though there is an increase in wake losses due to the
farm-to-farm interaction in BE 2.3 GW; see Fig. 3.

In general, the power fluctuation decreases in the 4.4 GW
scenario. This is caused by the larger distances between
plants, which cause a geographical smoothing due to lower
correlation between the individual plant power time series.
These results are consistent with the literature (Holttinen
et al., 2016; Koivisto et al., 2016, 2019b, 2020).

There is a trend that shows the most extreme power fluctu-
ations occurring during high wind, such that it is possible to
lose 75 % of the installed capacity in 1 h during an extreme
storm event. But the use of modern high-wind-speed oper-
ation technologies mitigates the impact of extreme ramp-
downs to the point that similar extreme ramp-down events
are seen at low and high wind speeds. Extreme ramp-ups
are more likely to occur than similarly sized ramp-downs,
because the wind turbine storm shutdown technologies only
mitigate the shutdowns and not the restart part of the power
curve. Mitigation of such ramp-up events (during and after
storms) should be addressed as they represent some of the
largest power fluctuation events.

The extreme ramping events at low wind speeds become
equally important as the high-wind-speed extreme ramps
when turbines with modern high-wind-speed operation are
installed. This means that mitigation approaches that oper-
ate at both high and low wind speeds are needed to further
reduce power fluctuations. Geographical location of installa-
tions has a major impact on the standard deviation of power
ramps, and therefore it can be used for further mitigation of
power fluctuations.

Even though the t-distribution wind speed fluctuations
were deemed necessary to accurately capture the power
fluctuations, a more theoretically sound modeling approach
could consist in a stochastic model with non-stationary Gaus-
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Figure 11. Distributions of standardized power fluctuations during low wind speeds in all the scenarios in different time windows:
(a) 5 min (DP_5), (b) 15 min (DP_15), and (c) 1 h (DP_60). The curves for the BE 4.4 GW Tech B scenarios are on top of each other,
with only a small difference in the left figure at around DP_5= 0.2. Tech A is omitted for clarity because it behaves very similar to Tech B.

Figure 12. Distributions of standardized power fluctuations during high wind speeds in all the scenarios in different time windows:
(a) 5 min (DP_5), (b) 15 min (DP_15), and (c) 1 h (DP_60).

sian wind speed fluctuations, in which the variance is a
function of the stability and turbulence intensity time se-
ries. These additional variables are available in some of the
weather models.

Improved wake modeling could also be implemented in
the presented approach. The use of computational fluid
dynamics Reynolds-averaged Navier–Stokes (RANS) wake
models such as van der Laan et al. (2015) has been proven
to be more accurate to predict not only wake losses but also
losses due to blockage effects (Bleeg et al., 2018) and there-
fore produce more accurate generation time series. Due to the
large size of the Belgian–Dutch fleet, such simulations were
not possible in the present study. Another possible improve-
ment of the wake modeling is to consider stability-dependent
plant power curves, which means that the power time series
will be interpolated using the wind speed, wind direction,
and stability time series. Additional improvements in the in-
clusion of wind turbine dynamics could create the possibil-
ity of making simulations at higher time resolution, but such
models were considered out of the scope of this study.

To further reduce the conservatism of the present analy-
sis, a stochastic availability model should be developed. This
will remove the discrepancy between the distribution of fleet-
level wind power production seen around rated power. Never-
theless, the proposed methodology successfully represented
the fleet-level ramp distributions compared with the mea-
sured data.

7 Conclusions

The model validation shows that the methodology presented
in this paper is able to capture the distribution of fleet-level
wind speed and power production, while at the same time
capturing the main spatiotemporal characteristics of the time
series. The Student t and extreme wind speed corrections
improved the accuracy of simulated extreme events in the
wind speed and power fluctuation distributions. The hystere-
sis plant storm shutdown model is able to capture the mod-
ern high-wind-speed operation technologies offered by the
main turbine manufacturers. The use of a long time series
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Table 5. Extreme power ramps in 5, 15, and 60 min and their relative ratios with respect to BE2018.

Prct. 0.01 Ratio Prct. 0.1 Ratio Prct. 99.9 Ratio Prct. 99.99 Ratio
Prct. 0.01 Prct. 0.1 Prct. 99.9 Prct. 99.99

DP5

BE2018 (877 MW) −0.130 100.0 % −0.078 100.0 % 0.078 100.0 % 0.136 100.0 %
2.3 GW −0.097 74.6 % −0.061 78.2 % 0.063 80.8 % 0.097 71.3 %

4.4 GW
Tech A

25 m s−1
−0.102 78.5 % −0.050 64.1 % 0.052 66.7 % 0.098 72.1 %

Deep −0.072 55.4 % −0.048 61.5 % 0.050 64.1 % 0.075 55.1 %

Tech B
25 m s−1

−0.110 84.6 % −0.054 69.2 % 0.054 69.2 % 0.107 78.7 %
Deep −0.076 58.5 % −0.050 64.1 % 0.050 64.1 % 0.079 58.1 %

DP15

BE2018 (877 MW) −0.268 100.0 % −0.171 100.0 % 0.178 100.0 % 0.291 100.0 %
2.3 GW −0.224 83.6 % −0.147 86.0 % 0.156 87.6 % 0.237 81.4 %

4.4 GW
Tech A

25 m s−1
−0.224 83.6 % −0.125 73.1 % 0.131 73.6 % 0.230 79.0 %

Deep −0.170 63.4 % −0.117 68.4 % 0.124 69.7 % 0.187 64.3 %

Tech B
25 m s−1

−0.236 88.1 % −0.131 76.6 % 0.134 75.3 % 0.245 84.2 %
Deep −0.179 66.8 % −0.121 70.8 % 0.124 69.7 % 0.191 65.6 %

DP60

BE2018 (877 MW) −0.604 100.0 % −0.425 100.0 % 0.463 100.0 % 0.732 100.0 %
2.3 GW −0.561 92.9 % −0.395 92.9 % 0.434 93.7 % 0.629 85.9 %

4.4 GW
Tech A

25 m s−1
−0.541 89.6 % −0.366 86.1 % 0.393 84.9 % 0.600 82.0 %

Deep −0.489 81.0 % −0.343 80.7 % 0.375 81.0 % 0.544 74.3 %

Tech B
25 m s−1

−0.537 88.9 % −0.380 89.4 % 0.397 85.7 % 0.588 80.3 %
Deep −0.503 83.3 % −0.354 83.3 % 0.374 80.8 % 0.553 75.5 %

(37 years) of generation is fundamental in order to quantify
the likelihood of the extreme fleet-level power fluctuations.

The future 4.4 GW fleet has an increased capacity fac-
tor while at the same time showing a reduction in the stan-
dardized power fluctuations with respect to the 2.3 GW fleet.
However, for the high-wind-speed events, a reduction of the
extreme power ramps is only achievable with the use of mod-
ern high-wind-speed operation. Turbines with high-wind-
speed operation affect the business case of a project by a
marginal increase in the CF and a reduction of the imbalance
costs, while at the same time this type of extended range op-
eration makes the turbines more expensive. This means that
the imbalance prices should be set to give a financial incen-
tive to the developers to select such technologies. On the en-
ergy system level, these technologies are crucial for extreme
ramp event mitigation in cases where there is a tightly packed
wind power fleet. The most extreme power fluctuations occur
in the ramp-up, i.e., in the restart after shutdown, which can
be mitigated by controlling the restart. This could be imple-
mented at the turbine level by implementing a gradual restart
curve or at the system level by forcing the plants to come
back to power in a gradual manner.

The extreme ramping events at low wind speeds become
equally important as at high wind speeds when modern high-

wind-speed operation is installed in the fleet. This means that
approaches that operate at both high and low wind speeds are
needed to achieve further reductions of power fluctuations.
Geographical distribution of installations has a major impact
on reducing the standard deviation of power ramps; therefore
plant-to-plant distance should be considered to further miti-
gate power fluctuations.

The methodology and analysis presented in this paper are
relevant for the future offshore installations in the North Sea.
It is expected that countries like Germany and the United
Kingdom will reach density of offshore installation similar to
that currently in Belgium (Agora Energiewende et al., 2020).
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