
Wind Energ. Sci., 6, 61–91, 2021
https://doi.org/10.5194/wes-6-61-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parameterization of wind evolution using lidar

Yiyin Chen1, David Schlipf2, and Po Wen Cheng1

1Stuttgart Wind Energy (SWE), Institute of Aircraft Design, University of Stuttgart, Allmandring 5b,
70569 Stuttgart, Germany

2Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93,
24943 Flensburg, Germany

Correspondence: Yiyin Chen (chen@ifb.uni-stuttgart.de)

Received: 11 February 2020 – Discussion started: 17 March 2020
Revised: 5 October 2020 – Accepted: 28 October 2020 – Published: 12 January 2021

Abstract. Wind evolution, i.e., the evolution of turbulence structures over time, has become an increasingly
interesting topic in recent years, mainly due to the development of lidar-assisted wind turbine control, which
requires accurate prediction of wind evolution to avoid unnecessary or even harmful control actions. Moreover,
4D stochastic wind field simulations can be made possible by integrating wind evolution into standard 3D sim-
ulations to provide a more realistic simulation environment for this control concept. Motivated by these factors,
this research aims to investigate the potential of Gaussian process regression in the parameterization of wind
evolution. Wind evolution is commonly quantified using magnitude-squared coherence of wind speed and is es-
timated with lidar data measured by two nacelle-mounted lidars in this research. A two-parameter wind evolution
model modified from a previous study is used to model the estimated coherence. A statistical analysis is done for
the wind evolution model parameters determined from the estimated coherence to provide some insights into the
characteristics of wind evolution. Gaussian process regression models are trained with the wind evolution model
parameters and different combinations of wind-field-related variables acquired from the lidars and a meteorolog-
ical mast. The automatic relevance determination squared exponential kernel function is applied to select suitable
variables for the models. The performance of the Gaussian process regression models is analyzed with respect to
different variable combinations, and the selected variables are discussed to shed light on the correlation between
wind evolution and these variables.

1 Introduction

Wind evolution refers to the physical phenomenon of turbu-
lence structures (eddies) changing over time and is defined,
in this study, as magnitude-squared coherence dependent on
evolution time. Magnitude-squared coherence (hereafter re-
ferred to as coherence) is a common statistical measure of
turbulence structure properties (see, e.g., Panofsky and Mc-
Cormick, 1954; Davenport, 1961; Panofsky et al., 1974). In
general, coherence describes the correlation between spec-
tral components of two signals or data sets, taking values be-
tween zero, for no correlation, to unity, for perfect correla-
tion. Because turbulent eddies are advected by the mean flow
while evolving, the longitudinal coherence, i.e., coherence of
turbulent velocity at locations separated in the mean direc-

tion of the flow, is used to measure wind evolution in prac-
tice (see, e.g., Schlipf et al., 2015; Simley and Pao, 2015).
And when estimating the coherence, the data measured at
the downstream location should be shifted by the travel time,
corresponding to the evolution time, to match the data mea-
sured at the upstream location. Taylor’s (1938) hypothesis
is a special case that assumes all turbulent motions remain
unchanged, while eddies move with the mean flow. In other
words, it assumes no wind evolution, which means the co-
herence is unity for all frequencies. The validity of Taylor’s
(1938) hypothesis was researched in some studies (see, e.g.,
Willis and Deardorff, 1976; Schlipf et al., 2011), and this hy-
pothesis is widely used in data analysis and wind field mod-
eling for the sake of simplification (see, e.g., Kelberlau and
Mann, 2019; Veers, 1988).
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The research on wind evolution dates back to the 1970s.
Pielke and Panofsky (1970) attempted to generalize some of
the mathematical descriptions for horizontal variation of tur-
bulence characteristics. The final goal at that time was to fig-
ure out an empirical model of the 4D (space–time) structure
of turbulence. In Pielke and Panofsky’s (1970) work, the co-
herence model suggested by Davenport (1961) to describe
the correlation between horizontal wind components at dif-
ferent heights, also known as Davenport’s geometric similar-
ity, was extended into other wind components and separation
directions. Pielke and Panofsky’s (1970) model also followed
Davenport’s idea to approximate the coherence with a sim-
ple exponential function using a single decay parameter. The
decay parameters were assumed to be constants. After that,
Ropelewski et al. (1973) systematically studied the coher-
ence for streamwise and cross-stream wind components with
horizontal separations. Based on their theoretical discussion,
the decay parameter for longitudinal separation is supposed
to be a function of turbulence intensity, which is a function of
roughness length and the Richardson number (a measure of
atmospheric stability) (Lumley and Panofsky, 1964). Extend-
ing the study, Panofsky and Mizuno (1975) found that the
relationships between coherence and other parameters were
rather complicated. A model for the decay parameter was
proposed based on its empirical properties. This decay pa-
rameter model involves turbulence intensity accounting for
the influence of terrain roughness, standard deviation of the
lateral wind component, lateral integral length scale of the
longitudinal wind component (which shows a relationship
with the Richardson number), separation of two observa-
tions, and angle between the wind direction and the measure-
ment line. This model can be regarded as the first parameter-
ization of Pielke and Panofsky’s (1970) model. However, the
model was developed using only very few observations taken
on meteorological towers, and the dependence of coherence
on separation and atmospheric stability was not thoroughly
researched in that study.

It is worth mentioning that the longitudinal coherence dif-
fers from the lateral and vertical coherence because the for-
mer is coupled with time-dependent variations in turbulence,
while the latter measures the decay of correlation due to spa-
tial separations in their respective directions. However, in
the above-mentioned studies the longitudinal coherence was
not clearly distinguished. Kristensen (1979) proposed that
the longitudinal coherence should behave differently and de-
duced an alternative expression, for which we refer to Kris-
tensen’s (1979) model. This model assumes that the coher-
ence can be modeled with the probability that an eddy ob-
served at the first point can also be observed at the second
point, given that the eddy has not completely faded out dur-
ing the travel time and the eddy has been taken towards the
second point.

Wind evolution has become interesting again because of
the new concept of lidar-assisted wind turbine control (see,
e.g., Schlipf, 2015; Simley, 2015; Simley et al., 2018). Lidar

– more specifically, Doppler wind lidar – is a remote sens-
ing technology which can be used to measure wind speed in
a certain spatial range (Weitkamp, 2005). The main idea of
lidar-assisted wind turbine control is to enable a feedforward
control of wind turbines by using a nacelle-mounted lidar to
measure the approaching wind field at some distance upwind.
The control system should react only to the changes in the
wind field which can be predicted accurately to avoid harm-
ful and unnecessary control actions. This is made possible by
applying an adaptive filter to remove the uncorrelated part of
the lidar signal. An accurate prediction of the wind evolution
will thus benefit the filter design. Moreover, the application
of Taylor’s (1938) hypothesis in the wind field simulation is
no longer appropriate for modeling the lidar-assisted control
system. To solve this problem, different approaches (see, e.g.,
Bossanyi, 2013; Laks et al., 2013) have been proposed to in-
tegrate the wind evolution model within the wind field simu-
lation method of Veers (1988) to make it possible to simulate
a 4D wind field.

Some attempts were made to further promote the model-
ing of wind evolution. Schlipf et al. (2015) suggested an ap-
proach to determine the decay parameter in Pielke and Panof-
sky’s (1970) model with data measured by a nacelle-mounted
lidar, taking into account the influence of lidar measurement
on coherence. However, the limitation of this study is that
only four 1 h data blocks were examined. Simley and Pao
(2015) attempted to validate the models of Pielke and Panof-
sky (1970) and Kristensen (1979) with data from large-eddy
simulation (LES) wind fields but found that neither model
can always correctly model the coherence as frequency ap-
proaches zero. To improve this issue, Simley and Pao (2015)
tried to apply the coherence model for transverse and ver-
tical separations suggested by Thresher et al. (1981) to the
longitudinal coherence. This model has a form similar to
Pielke and Panofsky’s (1970) model but includes an addi-
tional parameter to allow coherence less than unity at a very
low frequency. Davoust and von Terzi (2016) examined Sim-
ley and Pao’s (2015) model with data from nacelle-mounted
lidars on three sites. To enable a direct comparison with Sim-
ley and Pao’s (2015) work, a correction method was applied
to compensate the influence of lidar measurement on coher-
ence. However, the linear dependence of the decay parameter
on turbulence intensity suggested by Simley and Pao (2015)
was not clearly observed. The relationship between the off-
set parameter and integral length scale shows a good match
with that suggested in Simley and Pao’s (2015) work, but
the agreement decreases after the correction of coherence.
At the same time, de Maré and Mann (2016) developed a
4D model to describe the space–time structure of turbulence
by combining the Mann (1994) spectral velocity tensor and
Kristensen’s (1979) longitudinal-coherence model.

Motivated by the above-mentioned research, this study
aims to achieve parameterization models for a wind evolu-
tion model modified from Simley and Pao’s (2015) model. In
addition, it is desired to gain some insights into the complex
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relationships between wind evolution and wind-field-related
variables such as wind statistics, atmospheric stability, and
relative positions of measurement points. For these purposes,
a previous study (Chen, 2019) was done to explore different
supervised machine learning algorithms on a simple level, in-
cluding stepwise linear regression (see, e.g., Hocking, 1976),
regression tree (see, e.g., Breiman et al., 1984), support vec-
tor regression (see, e.g., Vapnik, 1995), and Gaussian process
regression (see, e.g., Rasmussen and Williams, 2006). It was
found that Gaussian process regression, overall, performs the
best for prediction of wind evolution model parameters, and
thus its potential is further analyzed in this study with more
extensive data.

This research is mainly done using lidar measurement be-
cause lidar can provide large amounts of spatially separated
measuring points simultaneously, which is of great advan-
tage for studying the dependence of wind evolution on sep-
aration in comparison to data from a meteorological tower.
Lidar data from two measurement campaigns undertaken in
different terrain types are available. In one of the measure-
ment campaigns, data taken on a meteorological tower are
also involved in the analysis to provide a comparison.

The present paper is organized as follows: Sect. 2 briefly
explains the theoretical basis of wind evolution and its pre-
diction concept as well as the principles of the methods ap-
plied in this work; Sect. 3 introduces the measurement cam-
paigns and the data processing; Sect. 4 presents the results of
the statistical analysis of the wind evolution model parame-
ters; Sect. 5 illustrates the process of model training and the
evaluation of the parameterization models; and Sect. 6 sum-
marizes the results and gives the conclusions and an outlook.

2 Methodology

This section first explains the mathematical expression of
wind evolution in Sect. 2.1. Then, our concept of wind evolu-
tion prediction and a corresponding workflow are presented
in Sect. 2.2. After that, the wind evolution model applied in
this work is introduced in Sect. 2.3. Finally, the details of the
workflow are introduced and discussed in Sect. 2.4–2.7.

2.1 Wind evolution

As mentioned in the Introduction, wind evolution is math-
ematically defined as the magnitude-squared coherence be-
tween two wind speed signals i and j measured at two points
separated in the longitudinal direction, with i for the sig-
nal measured at the upstream point and j at the downstream
point:

γ 2
ij (f )=

|Sij (f )|2

Sii(f )Sjj (f )
, (1)

where Sii(f ) and Sjj (f ) represent the power spectral densi-
ties (PSDs) of signals i and j , respectively, and Sij (f ) rep-
resents the cross-spectral density between i and j . It must be

emphasized that the coherence corresponds to a lagged cor-
relation, which means the signal j should be shifted by the
travel time1t after which the signal i is expected to arrive at
the downstream point for calculation of the coherence.

2.2 Concept and workflow

A supervised learning algorithm aims to find the mapping
function from predictors (i.e., input variables) to a target
(i.e output variable) through known data about the predic-
tors and the target without relying on a predefined equation
as a model. The key to using supervised learning is to iden-
tify suitable predictors and targets, which is in fact a process
of abstracting and condensing information.

In this study, we aim to develop a predictive model for
wind evolution of the longitudinal wind component. It is
worth noting the different meanings of wind evolution and
wind evolution model. Wind evolution, i.e., the coherence
estimated from measured data in practice, is not predictable
because the estimated coherence consists of approximately
infinite data points. Therefore, a model with a limited num-
ber of parameters is needed to approximate the estimated co-
herence; this is a wind evolution model. From the perspective
of machine learning, using a wind evolution model is essen-
tially condensing the information in the estimated coherence
into several model parameters which are predictable. These
model parameters are targets of predictive models, and thus
the predictive model is deemed a parameterization model in
this study.

Wind-field-related variables such as wind statistics, at-
mospheric stability, and relative positions of measurement
points are considered as potential predictors, based on the
theoretical and experimental studies mentioned in the Intro-
duction. A discussion about the potential predictors is pro-
vided in Sect. 2.5. Further analysis needs to be done to de-
termine which of the potential predictors should be selected
for model training, i.e., feature selection. The principle of
feature selection is to figure out which variables provide the
best predictive power (accounting for most of the variation in
the target values), and, ideally, these variables should be in-
dependent of each other to prevent overfitting in model train-
ing. To investigate the necessary predictors under different
data availability, different combinations of predictors are dis-
cussed in Sect. 5.

Figure 1 illustrates our concept and workflow of wind evo-
lution prediction. For model training, the essential steps are
the determination of observed values of predictors and targets
from measured data and training parameterization models us-
ing a machine learning algorithm, more specifically: (1) to
estimate the coherence using lidar data; (2) to determine the
observed target values, i.e., the wind evolution model param-
eters, by fitting the estimated coherence to a wind evolution
model; (3) to calculate observed predictor values from mea-
sured data (mainly lidar data; sonic data could be used if
available); and (4) to train parameterization models using a
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machine learning algorithm. The prediction process goes in
the opposite direction: firstly, the wind evolution model pa-
rameters are predicted by the trained parameterization mod-
els using new predictor values calculated from new measured
data, and then, the predicted coherence is reconstructed by
the wind evolution model using the predicted model param-
eters.

To demonstrate our concept and workflow: Sect. 2.3 ex-
plains the wind evolution model used in this study; Sect. 2.4
discusses special issues regarding coherence estimation us-
ing lidar data; Sect. 2.5 discusses the potential predictors of
the parameterization models; Sect. 2.6 and Sect. 2.7 briefly
introduce the principle of Gaussian process regression (the
machine learning algorithm applied in this study) and the
method of model validation, respectively; Sect. 3.2 shows
the fitting process of the estimated coherence in detail; and
Sect. 5 demonstrates the training of parameterization mod-
els, predictor selection, and model validation in the respec-
tive subsections.

2.3 Wind evolution model

Following the theoretical considerations by Ropelewski et al.
(1973), the coherence decreases exponentially with increas-
ing evolution time 1t of the signal with respect to “eddy
turnover time” τ

γ 2
model(f )= exp

(
−C ·

1t

τ

)
. (2)

The term C represents the decay behavior of the coherence
depending on the time ratio. C could be a constant, a linear
function, or a more complicated term. τ is a timescale asso-
ciated with the characteristic eddy size λ and characteristic
velocity of turbulence, which is approximated by the stan-
dard deviation of wind speed σ as follows:

τ ∼
λ

σ
. (3)

This expression implies that eddies are supposed to decay
faster under strong turbulence. Given the same degree of tur-
bulence, large eddies are supposed to take a longer time to de-
cay. The eddy size λ is linked to the frequency of horizontal-
wind-velocity fluctuations f and the flow mean wind speed
U with the relation

λ∼
U

f
. (4)

Combining Eqs. (2)–(4), the coherence model becomes

γ 2
model(f )= exp

(
−C ·

σ

U
· f ·1t

)
. (5)

This equation is essentially the same as the model proposed
by Pielke and Panofsky (1970), except that, in their model,
1t is approximated by d/U (d is separation) (Taylor, 1938;
Willis and Deardorff, 1976), indicated as 1tT.

Simley and Pao (2015) noted a limitation of this one-
parameter model form: the intercept (coherence for 0 fre-
quency) of the modeled coherence is forced to be unity,
which is not always realistic. To overcome this issue, Sim-
ley and Pao (2015) introduced a second parameter in the co-
herence model, taking a model form similar to the coherence
model for transverse and vertical separations suggested by
Thresher et al. (1981):

γ 2
model(f,d)= exp

−a′
√(

f d

U

)2

+ (b′d)2

 , (6)

where a′ and b′ are tuning parameters. A comparison be-
tween the fitting quality of a one-parameter model and a two-
parameter model is given in Sect. 3.2 to confirm the necessity
of using a two-parameter wind evolution model.

We have made two modifications to Simley and Pao’s
(2015) model. Firstly, d/U is restored to the travel time1t to
avoid coupling the approximation of 1t = d/U in the wind
evolution model, considering the effect of the wind turbine’s
induction zone. In fitting the estimated coherence to the wind
evolution model, 1t is determined by the time lag of the
peak of the cross-correlation between two wind speed sig-
nals, indicated as 1tM. Secondly, a′b′d is replaced with b.
The reasons for that are the following. (1) With the original
form a′b′d , a′b′ is essentially the fitted term (given that d
is known) in the curve fitting. Thus, b′ shows a strong de-
pendence on a′, which is generally undesirable for machine
learning algorithms. (2) The form a′b′d implies that this term
is proportional to d, but we found that d is still an important
predictor for b′, indicating that the assumption of a linear
relationship might be not proper. Therefore, we decided to
directly use b to represent the intercept and take d as a pre-
dictor instead (see Sect. 2.5).

The modified wind evolution model is

γ 2
model(f )= exp

(
−

√
a2 · (f ·1t)2+ b2

)
, (7)

where the decay parameter a represents the decay effect of
coherence and the offset parameter b is used to adjust the
intercept (coherence for 0 frequency) of the modeled coher-
ence curve. The intercept equals exp(−|b|). Both parameters
are dimensionless. The term f ·1t is dimensionless and thus
is defined as dimensionless frequency fdless. In the end, our
wind evolution model is defined as

γ 2
model(fdless)= exp

(
−

√
a2 · f 2

dless+ b
2
)
. (8)

In some studies (see, e.g., Schlipf et al., 2015), the wind
evolution model is defined as a function of wavenumber k,
with k = 2πf/U . The relationship between k and fdless is
k = 2πfdless/d , applying the approximation of 1t = d/U .
To give an intuitive impression of the wind evolution model,
Fig. 2 shows the theoretical curves calculated with different
values of a and b as examples.
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Figure 1. Concept and workflow of wind evolution prediction. The workflow of model training is the following. (1) Estimation of coherence
using lidar data. (2) Determination of wind evolution model parameters by fitting the estimated coherence to a wind evolution model.
(3) Calculation of potential predictors from measured data (mainly lidar data; sonic data could be involved if available). (4) Training of
parameterization models using a machine learning algorithm.

Figure 2. Impact of the model parameters a and b on the wind evolution model. (a) b = 0. (b) a = 3.

2.4 Estimating coherence using lidar data

In this work, the coherence is estimated with lidar data be-
cause lidar can provide more data with respect to differ-
ent spatial separations. This is not easy to obtain when us-
ing meteorological towers because multiple towers would be
needed, and only when the wind direction is aligned with the
tower locations would the data be usable. Further, the predic-
tion of the coherence is mainly expected to be applied when
coupled with the deployment of a lidar, e.g., in lidar-assisted
wind turbine control.

A Doppler wind lidar is a remote sensing device that mea-
sures wind speed based on the optical Doppler effect. Lidar
emits laser pulses and detects the Doppler shift in backscat-
tered light from aerosol particles in the atmosphere that are
entrained with the wind. The Doppler shift is proportional to
the line-of-sight wind speed, i.e., the wind speed projected

onto the laser beam and thus can be used to estimate the line-
of-sight wind speed. The measurement principle of Doppler
wind lidar is explained in many publications (e.g., Weitkamp,
2005; Peña et al., 2013; Liu et al., 2019) and thus is not in-
troduced here in detail.

However, it must be emphasized that the coherence es-
timated with lidar data deviates from that estimated with
data taken from ultrasonic anemometers. The reasons for
that are the following. (1) The sampling rate of lidars is
generally much lower than that of ultrasonic anemometers,
and thus lidars cannot measure high-frequency fluctuations
in wind speed. (2) The measuring volume of lidars is gen-
erally much longer than that of ultrasonic anemometers be-
cause of its measurement principle, and thus for lidars, the
spatial-averaging effect within the measuring volume needs
to be considered. (3) Lidars can only measure the wind speed
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projected onto the emitted laser beams, i.e., the line-of-sight
wind speed. The influence of these three aspects is discussed
in the following, specifically considering lidar in the staring
mode.

Low sampling rate of lidar. According to the Nyquist–
Shannon sampling theorem (Shannon, 1949), the upper fre-
quency limit of a signal transformed from the time domain
into the frequency domain is half of the sampling frequency.
As long as the lidar sampling rate is sufficiently high to ac-
quire a complete coherence curve covering the range from
the highest coherence (e.g., 0.9–1.0) to the lowest coherence
(e.g., 0–0.1), it would probably not have a large impact on
studying the coherence. To obtain as high a sampling rate as
possible, it is decided to select staring-mode data to calculate
the coherence. Use of the staring mode generally means that
the lidar measures the wind speed with a single laser beam
pointing in a fixed direction. Specifically in this work, the
laser beam points horizontally upstream of the wind turbine.

Spatial-averaging effect of lidar. Consider a pulsed lidar
(only pulsed lidars are involved in this work). The spatial-
averaging effect can be modeled with a moving average
weighted by a Gaussian-like shape function (see, e.g., Cari-
ous, 2013) or a triangular function (see, e.g., Sathe and Mann,
2012) centered at a measurement point. Following Carious
(2013), the weighting function w(x) is an even function cen-
tered at every measurement point along the laser beam. The
lidar-measured wind speed at the measurement point x0 for
any instant can be modeled with

ul(x0)=

∞∫
−∞

w(x0− x)up(x)dx = (w ∗ up)(x0), (9)

where up(x) is a wind speed function of spatial points on the
x axis aligned with the lidar’s laser beam. According to the
convolution theorem (Oppenheim et al., 1997), the following
relationship is valid for the Fourier transformation between
space and the wavenumber domain

F{ul} = F{w ∗ up} = F{w} ·F{up}, (10)

where F{ } is the Fourier transform operator.
Following Eq. (1), the coherence estimated with lidar data,

indicated with the subscript “l’’, is

γ 2
ij,l(f )=

|Sij,l(f )|2

Sii,l(f ) · Sjj,l(f )
, (11)

where Sii,l(f ) and Sjj,l(f ) are the auto-spectrum at the point
i and j , respectively; Sij,l(f ) is the cross-spectrum between
i and j ; and f is the frequency in Hz. They are all estimated
from lidar data. The auto-spectrum is

Sii,l(f )= F{ui,l(t)} ·F∗{ui,l(t)}, (12)

where ui,l(t) is the time series of the wind speed at i, and the
symbol ∗ means conjugate. And the cross-spectrum is

Sij,l(f )= F{ui,l(t)} ·F∗{uj,l(t)}. (13)

Assume that the laser beam is aligned with the wind di-
rection and Taylor’s (1938) hypothesis applies within the
measurement volume and that Eq. (10) is also valid for the
Fourier transformation between the time and frequency do-
mains. Taylor’s (1938) hypothesis is considered valid within
the measurement volume because, in principle, wind evolu-
tion depends on the evolution time of turbulence (see Eq. 2),
and the measurement volume corresponds to a temporal
length on the order of magnitude of 10−7 s (typical length
of a laser pulse). Now, Eq. (11) can be written as (with t and
f omitted for clarity)

γ 2
ij,l =

|F{ui,l} ·F∗{uj,l}|2

F{ui,l} ·F∗{ui,l} ·F{uj,l} ·F∗{uj,l}

=

|F{w} ·F{ui,p} ·F∗{w} ·F∗{uj,p}|2

F{w} ·F{ui,p} ·F∗{w} ·F∗{ui,p} ·F{w} ·F{uj,p} ·F∗{w} ·F∗{uj,p}
. (14)

Because the function w(x) is real and even, according to the
conjugate symmetry of the Fourier transformation (Oppen-
heim et al., 1997), F{w} = F∗{w} and F{w} is real and even
as well. As a result, all instances of F{w} in the denomina-
tor and the numerator are canceled out. And thus Eq. (14)
becomes:

γ 2
ij,l =

|F{ui,p} ·F∗{uj,p}|2

F{ui,p} ·F∗{ui,p} ·F{uj,p} ·F∗{uj,p}
= γ 2

ij,p. (15)

This means that the spatial-averaging effect does not influ-
ence the coherence under the above-mentioned ideal assump-
tions.

Misalignment of wind direction and lidar measurement.
The above derivation is based on an important assumption
that the laser beam is aligned with the wind direction. This
will not always be fulfilled in reality, even for a nacelle-
mounted lidar operating in the staring mode. Figure 3 shows
a misalignment between wind direction and lidar measure-
ment direction, at an angle α. The coherence of the line-of-
sight wind speed is γ 2

12, which is no longer the longitudinal
coherence but the horizontal coherence as defined by Panof-
sky and Mizuno (1975). γ 2

13 and γ 2
23 are the longitudinal and

lateral coherence, respectively.
Schlipf et al. (2015) suggested a model for the horizontal

coherence (magnitude coherence) based on the assumption
of point measurement for simplification

γij,losP =
cos2(α)γij,uxγij,uySii,u

cos2(α)Sii,u+ sin2(α)Sii,v
, (16)

where γij,losP is the horizontal coherence of line-of-sight
wind speed point measurements, γij,ux and γij,uy are the lon-
gitudinal and lateral coherence of the longitudinal wind com-
ponent, and Sii,u and Sii,v are the auto-spectra of the longi-
tudinal and lateral wind components. Based on this equation,
determining the longitudinal coherence γij,ux is possible only
given a specific turbulence model (knowing Sii,u, Sii,v, and
γij,uy) and knowing the misalignment angle α. Moreover, the
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Figure 3. Misalignment of wind direction and lidar measurement.
α is the misalignment angle. γ 2

12 is the coherence of the line-of-sight
wind speed. γ 2

13 and γ 2
23 are the longitudinal and lateral coherence,

respectively.

above-discussed spatial-averaging effect must be coupled to
the horizontal coherence, considering that the lateral coher-
ence for the point at x depends on the lateral separation 1y
associated with its distance from the center point of the range
gate x0, i.e.,1y = cos(α)(|x−x0|). Therefore, the longitudi-
nal coherence is implicitly included in the integration of hor-
izontal coherence weighted by the range-weighting function
of lidars.

In this study, we decide to develop a parameterization
model based on horizontal coherence for the following rea-
sons. Firstly, consider the case for a nacelle-mounted lidar.
The misalignment of the lidar measurement means that the
wind turbine is misaligned as well. In this case, it makes
sense to predict the corresponding horizontal coherence. Sec-
ondly, a standalone parameterization model, independent of
any turbulence model, is desired for more flexibility in ap-
plication. Thirdly, determining the parameters in an implicit
wind evolution model is complicated when using measured
data. And it is necessary to acquire the misalignment angle α,
which is not always possible in application, especially when
lidar is the only data source, though deployment of lidars
with multiple beams might help in this case. Moreover, the
requirement for the accuracy of α is very high because α is
included in the most basic step – fitting the estimated co-
herence to the wind evolution model. The uncertainties con-
tained in α will propagate through the whole model and af-
fect the further analysis radically. Since the prediction con-
cept needs to be applicable under different data availabilities,
it is not desired to make the fitting process depend so crit-
ically on a variable whose availability and accuracy are not
always guaranteed. It is thus helpful to consider α as a predic-
tor (see Sect. 2.5) to account for variations in the horizontal
coherence caused by the direction misalignment. The benefit
of doing so is to make α more standalone and to prevent its
errors from affecting everything else, while reasonably tak-
ing its influences into account. In addition, Gaussian process

regression inherently assumes imperfect training data (con-
taining noisy terms; see Sect. 2.6), so it is better to keep un-
certainties in predictors.

Certainly, if the direction misalignment is available and
sufficiently accurate in a given application scenario, the pre-
diction concept can be easily adjusted by changing the wind
evolution model to which the estimated coherence is sup-
posed to fit.

2.5 Potential predictors

In the literature reviewed in the Introduction, the variables
considered relevant to wind evolution are as listed below:

– Ropelewski et al. (1973): turbulence intensity (a func-
tion of roughness length and the Richardson number;
Lumley and Panofsky, 1964);

– Panofsky and Mizuno (1975): mean wind speed, turbu-
lence intensity, standard deviation of the lateral wind
component, lateral integral length scale of the longitu-
dinal wind component, longitudinal separation, and the
angle between the wind direction and the measurement
line (if misalignment exists);

– Kristensen (1979): turbulence intensity, longitudinal in-
tegral length scale of the longitudinal wind component,
and longitudinal separation;

– Simley and Pao (2015): turbulence intensity, longitudi-
nal integral length scale of the longitudinal wind com-
ponent, and longitudinal separation.

The above-mentioned variables can be categorized into
three groups: wind statistics, atmospheric stability, and rela-
tive positions of measurement points. We follow this train of
thought to discuss potential predictors of the parameteriza-
tion models. It is worth mentioning, in advance, that not all
of these predictors will be used in the final models. Useful
features will be selected using the automatic relevance de-
termination squared exponential kernel function (Duvenaud,
2014). The goal of this initial step is to collect all possible
predictors, even though some of them will turn out to be re-
dundant and can be converted to each other.

Wind statistics. Following prior research, turbulence inten-
sity IT is considered as a predictor. The turbulence intensity
is defined as

IT =
σ

U
. (17)

In addition, mean wind speed U and its standard deviation σ
are also included because they are the fundamental variables
of turbulence intensity. Apparently, IT and σ are equivalent
(given U ), so only one of them will be selected according to
the result of feature selection.

Moreover, integral length scale L is considered as a pre-
dictor and approximated with (Pope, 2000; Simley and Pao,
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2015)

L= U ·

∞∫
0

ρ(s)ds = U · T , (18)

where ρ(s) is the autocorrelation function. Indeed, integrat-
ing the autocorrelation gives the integral timescale T . The
approximation of L is essentially based on assuming the tur-
bulent eddies advected by the mean flow at U . Please note
that this is not necessarily equivalent to assuming “frozen”
turbulence. Turbulent eddies can evolve when preserving the
same mean wind speed and statistical properties (including
autocorrelation). The multiplication of U can be understood
as translating the integration domain from time lag s to spa-
tial separation by approximating the spatial separation with
U ·s. This approximation might contain uncertainties, but we
have no alternatives for calculation of L from measured data.
The integration of autocorrelation is computed up to the first
zero-crossing location instead of infinity in practice (Simley
and Pao, 2015). Considering the correlation between L and
T shown in Eq. (18), T is also considered as a predictor, and
thus L and T constitute another pair of redundant predictors
from which only one will be selected.

Besides the variables already considered in prior studies,
it is interesting to explore whether high-order wind statistics
such as skewness and kurtosis of wind speed could play a
role in wind evolution prediction. Skewness (i.e., the third
standardized central moment) and kurtosis (i.e., the fourth
standardized central moment) are measures of the asymme-
try and flatness of the wind speed distribution, respectively.
The sample skewness G1, with bias correction, is defined as
(Joanes and Gill, 1998)

G1 =

√
n(n− 1)
n− 2

·

1
n

∑n
i=1u

3
i(

1
n

∑n
i=1u

2
i

)3/2 , (19)

and the sample kurtosisG2 (not subtracting 3), with bias cor-
rection, is defined as (Joanes and Gill, 1998)

G2 =
n− 1

(n− 2)(n− 3)

·

(n+ 1) ·
1
n

∑n
i=1u

4
i(

1
n

∑n
i=1u

2
i

)2 − 3(n− 1)

+ 3, (20)

where ui is wind speed fluctuations and n is the number of
data points. According to Lenschow et al. (1994), statistical
moments estimated using time series data with limited length
show a systematic deviation from the true moments and also
contain random errors. Both are decreasing functions of the
averaging time. Compared to the sample standard deviation,
the sample skewness and kurtosis would probably contain
larger uncertainties. Nevertheless, we still want to test, on

a simple level, whether these two high-order wind statistics
could be useful for prediction.

Atmospheric stability. The atmospheric stability represents
a global effect of the surface layer in the boundary layer on
a wind field. It is believed to affect wind evolution, being
an influence factor on turbulence stability (Ropelewski et al.,
1973; Lumley and Panofsky, 1964). A dimensionless height
ζ , built with Obukhov length LMO (Obukhov, 1971), is con-
sidered as a predictor (Businger et al., 1971)

ζ =
z

LMO
=−

κgw′θ ′vz

θu3
∗

, (21)

where κ is the von Kármán constant, g is gravitational accel-
eration, z is the measurement height, θ is the mean potential
temperature, u∗ is the friction velocity, and w′θ ′v is the co-
variance of vertical velocity perturbations and virtual poten-
tial temperature.

Relative positions of measurement points. Based on
our modifications to Simley and Pao’s (2015) model (see
Sect. 2.3), measurement separation d has been removed from
the wind evolution model and is now considered as a predic-
tor. As discussed in Sect. 2.4, the misalignment angle α is not
involved in fitting the wind evolution model but is considered
as a predictor to account for the influence of the lateral co-
herence on the horizontal coherence. In fact, d is associated
with two different effects. On the one hand, d corresponds to
travel time or, rather, to evolution time 1t , which is believed
to play an important role in wind evolution. On the other
hand, d together with α account for the decay of the lateral
coherence. The travel time determined with the maximum
cross-correlation 1tM is a more accurate variable. However,
considering that calculating 1tM might not always be feasi-
ble due to its computational complexity, the travel time ap-
proximated using Taylor’s (1938) translation hypothesis 1tT
is included as well.

The notations of the above-mentioned potential predictors
are summarized in Table 1. These variables are derived from
both lidar data and data measured with ultrasonic anemome-
ters (hereafter referred to as sonic data) according to their
availability in each measurement campaign. The measure-
ment instrument is indicated with a subscript: “l” for lidar
and “s” for sonic (i.e., ultrasonic anemometer). For exam-
ple, Ul represents the mean wind speed calculated from lidar
data. Regarding sonic data, it is more reasonable for the anal-
ysis of wind evolution to use a wind coordinate system with
the x axis aligned to the mean wind direction instead of the
meteorological coordinate system. The mean wind direction
is determined with the mean wind direction for each data
block. The high-resolution longitudinal (indicated with the
subscript “x”) and lateral (indicated with the subscript “y”)
wind speeds are obtained by projecting the high-resolution
wind components measured with ultrasonic anemometers on
the wind coordinate system. Then, the above-mentioned vari-
ables are derived from the data based on the wind coordinate
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system. For example, Ux,s represents the mean wind speed
calculated from the longitudinal wind component measured
with ultrasonic anemometers.

2.6 Gaussian process regression

This section briefly introduces the principle of the Gaussian
process regression (GPR) and the hyperparameters that mod-
ify the behavior of a GPR model. The model training is done
using the MATLAB Statistics and Machine Learning Tool-
box1.

The principle of GPR. Consider making a regression
model from some data. A very intuitive approach is to fit
certain functions, e.g., linear or polynominal. However, this
requires an initial guess about the functional relationship(s)
behind the data, which is very difficult in this case because
the wind evolution model parameters do not indicate any
clear dependence on the potential predictors. The reasons
for that could be multiple: (1) the data could be noisy; and
(2) the dependence could exist in multidimensional space
not observable in a single dimension, etc. Under this cir-
cumstance, GPR turns out to be a good choice because it is
non-parametric probabilistic model, which means the model
is not a specific function, but a probability distribution over
functions. The principle underlying GPR is Bayesian infer-
ence. The prior distribution over functions, which can be un-
derstood as a guess about what kinds of function could be
present without knowing the data, is specified by a particular
Gaussian process (GP) which favors smooth functions. In the
training process, as adding the data, the probabilities associ-
ated with the functions which do not agree with the observa-
tions will be decreased, which gives the posterior distribution
over the functions (Rasmussen and Williams, 2006).

Hyperparameters of GPR. The behavior of a GPR model
is defined by its hyperparameters. To introduce the hyperpa-
rameters, a basic explanation is given following Rasmussen
and Williams (2006). Please note that the complete deduction
is not displayed here because it is beyond the scope of this pa-
per. For further details, please refer to chap. 2 of Rasmussen
and Williams’ (Rasmussen and Williams, 2006) book.

GPR is based on Bayesian inference. First, consider a sin-
gle observation. The Bayesian linear regression model with
Gaussian noise is defined as

f (x)= φ(x)>w, y = f (x)+ ε, (22)

where x is an input vector containing D different predic-
tors of a single observation, φ(x) is the function which maps
the input vector onto a higher dimensional space where the
Bayesian linear model is applicable, w is a vector of weights
of the linear model, f (x) is the function value, y is the
observed target value, and ε is independent identically dis-

1https://de.mathworks.com/products/statistics.html, last access:
18 June 2020

tributed Gaussian noise with zero mean and variance σ 2
n

ε ∼N (0,σ 2
n ). (23)

The Bayesian linear model is a GP given that the prior distri-
bution of w is normally distributed with zero mean. Since
a GP is fully specified by its mean and covariance, the
Bayesian linear model is written as

f (X)∼ GP(0,cov(f (X))), (24)

where X is the aggregation of all input vectors of n observa-
tions. This is the prior distribution over functions. The pres-
ence of ε shows another advantage of GPR, viz. that it is able
to inherently assume noisy observations and take this effect
into account in the model. σn is one of the hyperparameters.

It is common, but not necessary, to assume GPs with a zero
mean function. The mean function can be modeled with a set
of basis functions h(x) and a corresponding coefficient vec-
tor β. So, GPs with a non-zero mean function can be assumed
as

g(x)= f (x)+h(x)>β. (25)

The basis function is one of the hyperparameters. MATLAB
provides four types of basis function: zero (assuming no ba-
sis function), constant, linear, and pure quadratic. The coeffi-
cient vector β can also be understood as the weight vector of
h(x). But we have defined w as a weight vector in Eq. (22),
we want to avoid using the same word here in case reader
might confuse these two different processes. β is estimated
from training data.

The covariance of the function values is not specified ex-
plicitly but estimated using a kernel function

cov(f (X))= K(X,X), (26)

which is the so-called kernel trick. There are two types of
kernel functions: one is kernel functions with the same char-
acteristic length scale for all predictors; the other has separate
characteristic length scales. The latter are called automatic
relevance determination kernel functions and can be used to
select predictors. The kernel function and its characteristic
length scale(s) are hyperparameters of the GPR model.

In this work, automatic relevance determination squared
exponential kernel function (ARD-SE kernel) (Duvenaud,
2014) is applied. The ARD-SE kernel function is basically a
squared exponential kernel function (SE kernel) with a sep-
arate characteristic length scale σm for each predictor m (m
is the index of predictors). For any pairs of observations i,j ,
the ARD-SE kernel function is defined as

K(xi,xj )= σ 2
f exp

[
−

1
2

D∑
m=1

(xim− xjm)2

σ 2
m

]
, (27)

where σ 2
f denotes the signal variance, which determines the

variation of function values from their mean. In the context of
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Table 1. Notations of potential predictors.

Notation Variable Unit

U Mean wind speed [ms−1]
σ Standard deviation of wind speed [ms−1]
G1 Skewness of wind speed [–]
G2 Kurtosis of wind speed [–]
IT Turbulence intensity [–]
T Integral timescale [s]
L Integral length scale [m]
ζ Dimensionless Obukhov length [–]
d Measurement separation [m]
α Angle between wind direction and lidar measurement [◦]
1tM Travel time determined by the maximum cross-correlation [s]
1tT Travel time approximated by d/U [s]

machine learning, the characteristic length scale σm is not a
“length” in the physical sense; it is a characteristic magnitude
for the predictor m which implies the sensitivity of the func-
tion being modeled to the predictor m. A relatively large σm
indicates a relatively small variation along the corresponding
dimensions in the function, which means these predictors are
less relevant than the others (Duvenaud, 2014).

In the end, the key predictive equation for GPR can be
derived by conditioning the joint Gaussian prior distribution
on the observations, and it is normally distributed.

f ∗|X,y,X∗ ∼N (f ∗,cov(f ∗)), (28)

where X∗ denotes new input data used in the prediction. f ∗

represents f (X∗ ) for convenience, which is the predicted
function value.

To summarize, the hyperparameters defining a GPR model
are the basis function h(x), the noise standard deviation
of the Gaussian process model σn, the kernel function
K(xi,xj ), the standard deviation of the function values σf,
and the characteristic length scale in the kernel function σm.
These hyperparameters can be tuned in the training process
to achieve a better model.

2.7 Model validation

The trained model is evaluated with a k-fold cross-validation
in which the data are divided into k disjoint, equally sized
subsets. The model validation is done with one subset (also
called in-fold observations), and the training is done with the
remaining (k− 1) subsets (also called out-of-fold observa-
tions). This procedure is repeated k times, each time with
a different subset for validation. The predicted target values
and the goodness-of-fit measures of the regression models
are computed for in-fold observations using a model trained
on out-of-fold observations.

Theoretically, k can be any integer between 2 and the num-
ber of observations (a special case called “leave-one-out”
cross-validation). When k is very small, the sample size of

training data ( k−1
k

of the total observations) could be insuffi-
ciently large. However, considering that the training process
must be repeated k times, it would take a very long time when
k is very large. As a compromise between these two factors,
k is commonly set to 5–10 in machine learning. In this study,
5-fold cross-validation is applied.

The model performance is evaluated with two goodness-
of-fit measures: root mean square error (RMSE),

RMSE=

√√√√ 1
N

N∑
i

(yi − ypred,i)2, (29)

and the coefficient of determination (R2),

R2
= 1−

∑N
i (yi − ypred,i)2∑

i(yi − y)2 , (30)

where y and ypred denote the observed and predicted target
values, respectively; y denotes the average of the observed
target values; and N denotes the number of observations. It
is worth mentioning that, according to this definition, R2 can
be understood as taking the prediction with the mean value
of the observations as a reference by which to evaluate the
model performance. In this case, R2 ranges from −∞ to
one, for perfect prediction. R2 equals zero if the prediction
is made simply with the mean value of the observations. The
higher R2 is, the better the model performs. A negative value
of R2 indicates that the selected model performs even worse
than prediction using just the mean value of the observations.

3 Data processing

This section first introduces the data sources in Sect. 3.1 and
then explains the procedure for the determination of the wind
evolution model parameters in Sect. 3.2.
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3.1 Data source

This study involves measured data from two research
projects. The reasons for using two different data sources are,
on the one hand, to find commonality between two different
measurements and avoid accidental conclusions and, on the
other hand, to study whether there are differences or what
kind of differences in the wind evolution can be observed.
The relevant research projects as well as the measurement
campaigns are (briefly) as follows.

Lidar Complex. The research project Lidar Complex was
funded by the German Federal Ministry for Economic Af-
fairs and Energy (BMWi). In this project, a lidar measure-
ment campaign was carried out in Grevesmühlen, Germany.
The measurement site is basically flat, mainly farmland with
hedges and a few large trees. More details about the measure-
ment campaign can be found in Schlipf et al. (2015). The li-
dar deployed in this measurement campaign was the SWE
(Stuttgart Wind Energy) Scanner 1.0, which was adapted
from a WindCube V1 from Leosphere (Schlipf et al., 2015).
This lidar has five measurement range gates focusing at dis-
tances of 54.5, 81.75, 109, 136.25, and 163.5 m, respectively.
The full width at half maximum (FWHM) of the measure-
ment range gates is 30 m (Carious, 2013). The lidar was in-
stalled on the nacelle of a wind turbine (rotor diameter of
109 m) at 95 m. In addition, a meteorological mast is located
295 m southwest of the wind turbine; data from an ultrasonic
anemometer installed at 93 m on the meteorological mast are
also involved in this study. SCADA (supervisory control and
data acquisition) data of the wind turbine are also available.
Recorded yaw positions are used to estimate the misalign-
ment angle α, assuming that the mean wind direction at the
turbine can be approximated with the mean wind direction
measured on the meteorological mast.

ParkCast. The ParkCast2 project is an ongoing project
funded by the German Federal Ministry for Economic Af-
fairs and Energy (BMWi). While this paper is in prepara-
tion, a lidar measurement campaign is being conducted on
the offshore wind farm “alpha ventus”3. Two long-range li-
dars (StreamlineXR) have been deployed in the measurement
campaign. The data used here are from the lidar installed on
the nacelle of wind turbine AV4 (rotor diameter of 126 m) at
92 m, measuring the inflow. The measurement distances were
set to 30–990 m with an increment of 60 m. The FWHM of
the measurement range gates is 60 m. Unfortunately, neither
data from the meteorological mast on FINO14 nor SCADA
data of AV4 for the observed period were available when the
analysis was done. Therefore, the misalignment angle α is
not available for ParkCast.

2https://www.rave-offshore.de/en/parkcast.html, last access:
18 June 2020

3https://www.alpha-ventus.de/english, last access: 18 June 2020
4Forschungsplattform In Nord- und Ostsee Nr. 1 (Research Plat-

form in the North and Baltic Seas No. 1); https://www.fino1.de/en/,
last access: 18 June 2020

Compared to ultrasonic anemometers, lidar systems have
much lower sampling rates. To obtain the highest possible
sampling rate, we select the measurement periods where the
staring mode was used, for both campaigns.

Essential information about the measurements is summa-
rized in Table 2. Figure A1 gives an overview of the wind
statistics of these two selected measurement periods by illus-
trating the relative-frequency distribution of lidar-measured
wind speed and turbulence intensity. For brevity, “Lidar
Complex” and “ParkCast” are used to refer to the selected
measurements throughout the paper.

3.2 Determination of wind evolution model parameters

To obtain the wind evolution model parameters a and b, the
wind evolution is estimated with lidar data and then fitted to
the wind evolution model (Eq. 8). The processing procedure
is described as follows.

Step 1: filtering of the lidar data. The lidar data from Lidar
Complex are filtered according to the carrier-to-noise ratio
(CNR) of the lidar signals (CNR filter). The valid range of
the CNR filter is −24 to −5 dB, determined from the plot of
CNR values and wind speed.

A CNR filter is not, however, suitable for lidar data from
ParkCast because, for a long-range lidar, the backscattered
signals from distant range gates could be very weak, and
thus the CNR values could be low even when the measured
wind speed is plausible. Würth et al. (2018) suggested an
approach to filter the data based on the value range (range
filter) and the standard deviation (standard-deviation filter)
within a certain number of adjacent data points defined as a
window, which can keep more valid data than a CNR filter.
A range filter detects the maximum value difference within
a window and filters the data points for which the maximum
value difference exceeds a threshold. A standard-deviation
filter calculates the standard deviation within a window and
filters the data points for which the standard deviation ex-
ceeds a threshold. Both filters are applied to check the line-
of-sight wind speed with thresholds of 6 ms−1 and 3 ms−1,
respectively. The window size is set to three data points.

Step 2: estimation of coherence. The lidar data are di-
vided into 30 min blocks. This is consistent with the com-
monly used period for calculating the Obukhov length. Only
the data blocks with more than 80 % valid data points are
used to estimate the coherence. The missing values are es-
timated by shape-preserving piecewise cubic interpolation
(Fritsch and Carlson, 1980). The missing end values are each
replaced with their nearest value. Data measured at differ-
ent range gates (i.e., measurement distances) are paired in
the way shown in Fig. 4 to obtain as many samples (i.e.,
data blocks) as possible. The pairing has

(
N
2
)

possibilities
(N is the number of the lidar range gates). The travel time
of the wind field is approximated with the time lag at the
maximum of the cross-correlation 1tM between these two
wind speed signals. The upstream point is always regarded
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Table 2. Summary of measurement setups.

Measurement campaign Lidar Complex ParkCast

Selected period 2 to 20 Dec 2013 4 to 14 Jun 2019
Location Grevesmühlen, Germany alpha ventus
Terrain type Onshore, flat Offshore
Device Nacelle-based lidar and met mast Nacelle-based lidar
Measurement height [m] 95 (lidar), 93 (sonic) 92
Range gate [m] 54.5, 81.75, . . ., 163.5 30, 90, . . ., 990
Number of range gates 5 17
Full width at half maximum [m] 30 60
Sampling rate [Hz] 0.99 0.27
Valid samples∗ 3285 10112

∗ After lidar data filtering, data pairing, and outlier filtering. For details see Sect. 3.2.

Figure 4. Pairing of different range gates for estimating coherence
for Lidar Complex, given as an example.

as the reference point. The data measured at the downstream
point are shifted by 1tM to match the reference wind speed
data. The magnitude-squared coherence is estimated using
Welch’s overlapped averaged periodogram method using a
Hamming window, 24 segments, and 50 % overlap. The data
of the reference point are used to calculate lidar-measured
wind statistics.

Step 3: fitting to the wind evolution model. Before fitting
the model, we must consider two issues that might introduce
noise into the coherence estimate. Firstly, because both lidars
are installed on the nacelle of a wind turbine which is actu-
ally in motion; the focus points of the laser beams are moving
as well. This motion causes excitation at certain frequencies
in the estimated coherence. Figure A2 shows a comparison
between an example coherence curve and the power spectral
density (PSD) of the fore-aft and in-plane tower top acceler-
ation of Lidar Complex. The excitation in the coherence con-
forms to that in both PSDs and occurs mainly at frequencies
above 0.2 Hz. To avoid negative effects on the fitting quality
caused by this excitation, the cutoff frequency is hence set
at 0.2 Hz, and the coherence is fitted only up to this cutoff
frequency.

Secondly, according to Schlipf (2015), critical wavenum-
bers where the lidar signals would be only determined
by noises must be checked. The critical wavenumbers are
2π/WL (WL is the full width at half maximum of the range
gate) and its harmonics. As mentioned in Sect. 2.3, the re-
lationship between wavenumber k and dimensionless fre-

quency fdless is fdless = kd/2π . Thus, the smallest critical
value of fdless is d/WL. Considering Lidar Complex as an
example, WL = 30 m and d = 27.25 m for the smallest sepa-
ration, which is the most critical case. d/WL ≈ 0.91, which
is already located in the filtered part (see the grey area in
Fig. 5a).

The fitting is done by a nonlinear least-squares method us-
ing the Levenberg–Marquardt algorithm (Levenberg, 1944;
Marquardt, 1963; Moré, 1978). Only the data blocks with
R2 > 0.8 are considered as valid samples.

Step 4: outlier filtering. The final filtering was done by
checking the value distribution of every relevant variable to
omit outliers. It is emphasized that outliers are not necessar-
ily false data. In some cases, the outlier is from a value range
in which not enough samples were collected. It is very im-
portant to filter outliers properly because it is difficult for a
regression model to capture the relationship for those value
ranges with too few samples. Because the distributions of the
variables all have a long right tail, the outliers are chosen as
all data exceeding the 99th percentile of the data.

Figure 5 is an example plot of the data block from 7 De-
cember 2013 at 12:00–12:30 from Lidar Complex. This
data block is selected here for two reasons: data integrity
and representative wind statistics. In this data block, the
lidar-measured mean wind speed is 7.3–7.7 ms−1, and the
lidar-measured turbulence intensity is 0.10–0.12, for differ-
ent range gates. These values appeared frequently in the se-
lected period according to Fig. A1. Hence, this data block
is regarded as a representative case-study example for Lidar
Complex and is referred to throughout the paper. The figure
illustrates the estimated coherence between different range
gates and the corresponding fitted curves. The shaded areas
show that the selected cutoff frequency of 0.2 Hz is reason-
able for this case. A similar plot from ParkCast is found in
Fig. A3. Because the sampling rate of ParkCast is lower, the
excitation by the nacelle’s movement is not observed in the
coherence, and thus no cutoff frequency was set for ParkCast
data.
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Figure 5. (a–d) Example plots of the estimated coherence between the lidar wind speeds measured at different range gates and the corre-
sponding fitted curves. The separations between the corresponding range gates are 27.25, 54.5, 81.75, and 109 m, respectively. The shaded
areas indicate the data filtered by the cutoff frequency of 0.2 Hz. (e) Time series of the lidar wind speed. The mean lidar wind speed Ul
ranges from 7.3 to 7.7 ms−1, and the lidar-measured turbulence intensity IT,l ranges from 0.10 to 0.12, for different range gates. Date:
7 December 2013. Data source: Lidar Complex.

In Fig. 5c and d, the intercept of the coherence is much
lower than 1, even though the separation is not very large.
This confirms the necessity of choosing a wind evolution
model which is able to define different offset values depend-
ing on the conditions. Indeed, compared with the fitting qual-
ity of Pielke and Panofsky’s model which contains merely a
single parameter – the decay parameter a – the fitting qual-
ity of the wind evolution model (Eq. 8) is overall better (see
Fig. A4). The value of R2 for the fitting of Eq. (8) is almost
always higher than for the fitting of Pielke and Panofsky’s
(1970) model. The wind evolution model used in this work
(Eq. 8) is thus proven able to model the coherence better.

4 Statistical analysis of wind evolution

This section presents a statistical analysis of wind evolution,
including the distributions of the wind evolution model pa-
rameters (Sect. 4.1) and their dependence on measurement
separation (Sect. 4.2).

4.1 Distribution of the wind evolution model parameters

To study the overall characteristics of wind evolution, the dis-
tributions of the wind evolution model parameters for both
measurements are displayed in Fig. 6.

As listed in Table 2, there are two main differences be-
tween the lidar settings in both measurements, sampling rate
and measurement range, which might affect the distributions
of the wind evolution parameters. To enhance the compara-
bility of both distributions, two special post-processings are

https://doi.org/10.5194/wes-6-61-2021 Wind Energ. Sci., 6, 61–91, 2021



74 Y. Chen et al.: Parameterization of wind evolution using lidar

executed correspondingly. Firstly, because the lidar sampling
rate of Lidar Complex is approximately 3 times that of Park-
Cast, an artificial data set is made for Lidar Complex by av-
eraging every three data points of the original lidar data to
simulate measurement at a sampling rate similar to that of
ParkCast so that the distributions of both measurements can
be compared. The fitted probability density function (PDF)
of the wind evolution model parameters determined with this
data set is plotted as yellow dashed lines in Fig. 6a and b. The
comparison between the fitted PDF of the original data and
that of the data with a reduced sampling rate indicates that
the lidar sampling rate only very slightly affects the wind
evolution model parameters or, perhaps more accurately, the
estimated coherence. Hence, the different sampling rates do
not account for the differences between the cases observed
in Fig. 6. Secondly, because of the limited measurement
range of Lidar Complex, the maximum separation between
two range gates reaches only 109 m, while that of ParkCast
reaches more than 700 m. To make them comparable, Fig. 6c
and d show only the wind evolution parameters calculated
from the coherence with separation below 120 m of ParkCast.

Apart from that, the measurements were carried out in dif-
ferent environments (onshore and offshore) and at different
times of the year (which impacts atmospheric stability) and
have different wind speed and turbulence intensity distribu-
tions (see Fig. A1). Despite these differences, the distribu-
tions of the wind evolution model parameters do have some
common characteristics. First of all, the value ranges of both
wind evolution model parameters for both measurements are
similar; a ranges mostly from 0 to 6, and b ranges from 0
to 0.5. Values out of these ranges are less likely to happen,
according to the measurements. Second, the values of a and
b are found to follow an inverse Gaussian distribution and a
Gamma distribution, respectively. These two PDFs are deter-
mined by fitting the histograms to all the PDFs supported by
the MATLAB Statistics and Machine Learning Toolbox and
searching for the one with the maximum likelihood. This is
done using a tool called “fitmethis”5.

The corresponding fitted parameters of the PDFs (orange
curves) are displayed in Table 3. It is interesting to observe
that the peak of the probability density is located around
a = 1.8 for the onshore Lidar Complex, while it is around
a = 0.8 for the offshore ParkCast. Moreover, the medians of
a are approximately 2.0 and 1.5 for Lidar Complex and Park-
Cast, respectively. The mean (see µ in Table 3) and median
of a as well as its value of the peak location of the PDF of
Lidar Complex are all higher than that of ParkCast. This in-
dicates that the coherence under similar separation generally
decays faster in an onshore location than an offshore loca-
tion. In terms of b, most of the values are near 0, and val-
ues higher than 0.1 are not often observed. Therefore, the

5Francisco de Castro (2020); fitmethis (https://www.mathworks.
com/matlabcentral/fileexchange/40167-fitmethis, available at:
13 January 2020), MATLAB Central File Exchange

y axes in Fig. 6b and d are plotted logarithmically to make
the higher-value part of b visible. However, b shows no sig-
nificant difference between the two cases observed in the fig-
ure.

It is not yet possible to explain the physical relation-
ship between the wind evolution model parameters and the
above-mentioned PDFs and the physical meaning of the cor-
responding PDF parameters. To verify whether the above-
discussed phenomena commonly occur in wind evolution,
further research involving more different measurement cam-
paigns is necessary. At this point, a hypothesis is made that
the values of a and b might follow an inverse Gaussian dis-
tribution and a Gamma distribution, respectively. The corre-
sponding PDF parameters might depend on the terrain types,
on the one hand. It is not clear if the roughness length would
be a suitable parameter to quantify the influence of the ter-
rain type on the value distribution of wind evolution model
parameters. To figure out a concrete relationship between the
PDF parameters and the terrain types, again, it is necessary to
involve more measured data gathered from different terrain
types. On the other hand, unfortunately, it is not yet possible
to estimate to what extent the atmospheric stability would
affect the distribution of the wind evolution model parame-
ters because there was no sonic data available for ParkCast
to inform the associated investigation until this work was fin-
ished.

4.2 Dependence of the wind evolution model
parameters on measurement separation

Figure 7 shows the fitted curves of the estimated coherence
of all pairings of the above-mentioned Lidar Complex case-
study example. Each color indicates a particular range gate,
while each marker indicates a particular measurement sepa-
ration. The figure shows a very clear dependence of the fitted-
curve form on the measurement separation – the curves with
the same marker overlap despite having different range gates.
This confirms that the coherence depends on the separation
of the measurement points but not on their positions, even in
the wind turbine’s induction zone (defined as within 2.5 ro-
tor diameters on the inflow side of the wind turbine). Since
the curve offset is related only to the offset parameter b, ob-
viously, b must strongly depend on the measurement sepa-
ration. In addition, that all the fitted curves of the coherence
are grouped together suggests it is reasonable to model the
wind evolution based on the dimensionless frequency. Simi-
lar conclusions can be drawn from the example plot of Park-
Cast (see Fig. A5), which proves that these conclusions are
not accidental.

To further study the dependence of the wind evolution
model parameters on the measurement separation, the box
plots of the wind evolution parameters, grouped by the mea-
surement separations, are given in Fig. 8. Although the
ranges of the measurement separation from the two measure-
ment campaigns are very different, the box plots still show
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Figure 6. Distribution of wind evolution model parameters. (a, b) Lidar Complex. (c, d) ParkCast. The curves show the corresponding fitted
probability density function.

Table 3. Parameters of the fitted probability density functions.

Wind evolution model parameters PDF Lidar Complex ParkCast

a Inverse Gaussian distribution µ= 2.07 µ= 1.86

f(x;µ,λ)=
√

λ
2πx3 exp

[
−
λ(x−µ)2

2µ2x

]
λ= 17.23 λ= 2.38

b Gamma distribution k = 0.42 k = 0.24
f(x;k,θ )= 1

0(k)θk
xk−1e−

x
θ θ = 0.18 θ = 0.16

Note: the notations µ,λ,k,θ in the table are independent of the other notations in the article.

similar trends. The decay parameter a shows a decreasing
trend with increasing measurement separation. This decreas-
ing trend of a gradually stops at a separation of about 300 m,
as observed in Fig. 8c. The offset parameter b shows an in-
creasing trend with separation. An increase in b implies a
decreased offset of the coherence curve. This is consistent
with the phenomena observed in Fig. 7 and Fig. A5.

The decay of coherence is supposed to result from the evo-
lution of turbulence eddies depending on travel time. The
dependence of the decay parameter a on the measurement
separation, or rather the travel distances, actually reveals the
dependence of a on the travel time. Figure 9 shows the cor-
relation between a and the travel time approximated by 1tM
of ParkCast. The fitted curve represents a negative correla-
tion trend between them. This implies that the decay rate
of the coherence decreases with increasing travel time. The

nonlinear least-squares fitting is done using the Levenberg–
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963;
Moré, 1978).

5 Parameterization model

This section first presents the training procedure of GPR
models with the application of the ARD-SE kernel to select
the suitable predictors in Sect. 5.1. Following that is a discus-
sion of the selected predictors in Sect. 5.2 and an evaluation
of the model performance in Sect. 5.3.

5.1 Model training

The initial settings for GPR model training are listed in Ta-
ble 4. The setting of “exact GPR” means that a standard
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Figure 7. Fitted curves of the estimated coherence between the lidar
wind speeds measured at different range gates. The range gates R1
to R5 are located at 54.5, 81.75, 109, 136.25, and 163.5 m, respec-
tively. 1D = 27.25 m. The mean lidar wind speed Ul ranges from
7.3 to 7.7 ms−1, and the lidar-measured turbulence intensity IT,l
ranges from 0.10 to 0.12, for different range gates. Date and time:
7 December 2013 at 12:00–12:30. Data source: Lidar Complex.

Table 4. Initial settings of GPR model training.

Hyperparameter Setting

Basis function Constant
Kernel function ARD-SE
Fitting method Exact GPR
Prediction method Exact GPR
Initial value of σn Standard deviation of observed target values
Initial value of σf Standard deviation of observed target values
Initial value of σm 10
Standardization True

GPR is applied in the fitting and prediction process; other-
wise GPR can be approximated using different methods to
reduce the computation time for large amounts of training
data. The initial values of σn, σf, and σm listed in the table
are just used to initiate the training process, and their final
values will be estimated from the training data by the GPR
algorithm. The training data are standardized by centering
and scaling the data of each predictor by its mean and stan-
dard deviation, respectively, which gives the standard scores
(also called z scores) (Kreyszig, 1979; Mendenhall and Sin-
cich, 2007) of the predictor data.

Training the model is a two-step process. In the first step,
all the potential predictors are included in a preliminary train-
ing to determine the characteristic length scale σm for each
predictor (see Eq. 27). Figure 10 illustrates a comparison
among the log(σ−2

m ) of all potential predictors. As explained
in Sect. 2.6, the larger log(σ−2

m ) is, the more important and
useful the corresponding predictor is for a GPR model, and
thus this predictor should be selected. In the second step, new
GPR models are trained only with the selected predictors,
applying a 5-fold cross-validation to evaluate the model per-

formance, using RMSE (see Eq. 29) and R2 (see Eq. 30) as
criteria.

Table 5 displays the predictors selected according to dif-
ferent lower limits of log(σ−2

m ) under different measurement
campaigns (Lidar Complex or ParkCast), different data avail-
ability (whether sonic data are available), and different tar-
gets (a or b). R2 and the RMSE of the 5-fold cross-validation
for the model trained with the respective combination of pre-
dictors are shown in the table as well.

In general, the more relevant predictors are involved in the
model, the more accurate predictions the model can make.
However, using more predictors entails a larger training data
set and thus a longer model training time. On the other hand,
it might also reduce the applicability of the model because
predictions can only be made when all predictors are con-
sistently available and reliable. The trade-off between these
factors must be considered in predictor selection, and it is
aimed to achieve relatively high model performance with
as few predictors as possible. The bold text in Table 5 in-
dicates the recommended predictor combinations for each
situation based on these considerations. The predictors with
log(σ−2

m )>−2 are generally essential for the model.
Let us take the situation of using lidar data from Lidar

Complex to predict a as an example to explain the process
of predictor selection (see Fig. 10a top and the first block
in Table 5). Firstly, since log(σ−2

m ) of IT,l and Tl are much
smaller than the others, it is not necessary to consider these
two predictors, and the lower limit of log(σ−2

m ) can be ini-
tially set to −4 (see Table 5: case 1). Then, try to increase
the lower limit of log(σ−2

m ) step by step, e.g., first to −2 (see
Table 5: case 2) and then to 0 (see Table 5: case 3), to fur-
ther reduce the number of predictors. The resulting models
are evaluated to determine whether it is appropriate to re-
move these predictors. For example, the comparison between
case 1 and case 2 shows that removing d almost does not
affect the model performance in this situation, with R2 de-
creasing only slightly from 0.70 to 0.69. However, further
abandonment of1tM significantly reduces the prediction ac-
curacy, reducing R2 more substantially from 0.69 in case 2
to 0.59 in case 3. Therefore, it is no longer proper to remove
further predictors, and the predictor combination in case 2 is
recommended.

5.2 Discussion of selected predictors

Feature selection is not only a tool to select suitable predic-
tors for a machine learning model but also could shed some
light on intrinsic relationships among data. Here are some
discussions about the selected predictors to provide some in-
sights into possible correlations between wind evolution and
these predictors.

Selection between two related variables. In the prelimi-
nary training, two pairs of related variables are intentionally
involved at the same time: σ and IT and T and L. It is only
necessary to select one of the two related variables (if deter-
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Figure 8. Box plots of the wind evolution model parameters grouped by the measurement separations d . (a, b) Lidar Complex. (c, d) Park-
Cast. The bottom and top of the boxes indicate the first (25th percentile) and third (75th percentile) quartiles. The lower and upper whiskers
show the 5th and 95th percentiles. The red line in the middle indicates the median value. Minimum sample size is 50.

Figure 9. Correlation between the decay parameter a and the travel
time approximated by 1tM. Data source: ParkCast.

mined to be relevant) because they can be converted into each
other (givenU ). In terms of σ and IT, it is surprising to notice
that the GPR models show a preference for σ rather than IT,
although IT is more commonly used in data analysis and sim-
ulation in wind energy. The only exception is the situation of
using sonic data from Lidar Complex to predict b (cases 16–
18). It is possible that GPR generally tends to select funda-
mental variables (directly calculated from measured data) in-
stead of derived variables (calculated from other variables).
However, the selection becomes complicated for T and L. In
some situations, L is clearly more preferred, e.g., log(σ−2

m )

of L is obviously higher than log(σ−2
m ) of T in Fig. 10a top

and b. In the other situations, log(σ−2
m ) of L and log(σ−2

m ) of
T show similar values. For consistency, we decided to select
L for all cases whenever L is determined to be relevant.

Introducing higher-order wind statistics as predictors. So
far, skewness G1 and kurtosis G2 of wind speed have not
been considered in wind evolution research. However, it is
worth noting that both are selected as predictors in all cases
except case 15, despite different measurement sites and de-
vices. Case 4 and case 9 are aimed at examining the effects
of G1 and G2 on the prediction of a and b, respectively,
with G1 and G2 removed in comparison to cases 1 and 7.
Case 4 and case 9 show much worse prediction accuracy,
with R2

= 0.53 in case 4 compared to R2
= 0.70 in case 1

and R2
= 0.46 in case 9 compared to R2

= 0.70 in case 7.
This comparison confirms that G1 and G2 are essential for
predicting wind evolution when using lidar data and intro-
ducing G1 and G2 as predictors can significantly improve
the models, despite uncertainties contained in their estimated
values from measured data (see Sect. 2.5). This implies that
G1 andG2 might contain additional information which could
distinguish different states of turbulence given a particular
mean wind speed and turbulence intensity, and this “differ-
ent state” might be relevant to wind evolution.

Different approximations of travel time. 1tM and 1tT are
two different approximations of travel time. Although1tM is
expected to be more predictive than1tT,1tT is still involved
in the model training because, in application, it is easier to
calculate 1tT than 1tM. Cases 5 and 10 are selected to com-
pare with cases 1 and 7, respectively, to examine the different
effects of 1tT and 1tM on the GPR models. The respective
values of R2 show that replacing1tM with1tT only slightly
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Figure 10. Comparison of the relative importance of predictors. (a) ParkCast, lidar data. (b) Lidar Complex, lidar data. (c) Lidar Complex,
sonic data. log(σ−2

m )=−∞ is not displayed.

decreases the prediction accuracy. Therefore, for a simpler
calculation of travel time, 1tT can be used as a predictor in-
stead.

Effect of misalignment angle. As discussed in Sect. 2.5,
misalignment angle α is supposed to be an important predic-
tor for the prediction of the horizontal coherence. In cases
13–15, where sonic data from Lidar Complex are used to
predict a, α shows a high relevance with log(σ−2

m )> 0. How-
ever, for the prediction of b using sonic data (cases 16–18),
removing α from predictors does not influence the predic-
tion accuracy much, especially when comparing case 16 and
case 17, with R2

= 0.80 and R2
= 0.78, respectively. These

results indicate that α is essential for the prediction of a but
not relevant for predicting b.

In addition, α is introduced in the prediction using lidar
data (case 6 and case 11) as well to examine its effect, al-
though α is actually not available when only using a lidar in
the staring mode. As mentioned in Sect. 3.1, α is approxi-
mated by the deviation between the yaw position of the tur-
bine and mean wind direction taken on the meteorological
mast. Cases 6 and 11 both show better prediction accuracy
than cases 1 and 7, with R2

= 0.76 and R2
= 0.81, respec-

tively, despite the uncertainties in the approximation of α.
This means that if α were available, the prediction accuracy
of the models trained with lidar data could be further im-
proved. As mentioned earlier, α could be made available,
e.g., by deploying a multi-beam lidar.

Introducing one of the targets as a predictor for the other.
According to the wind evolution model (Eq. 8), a and b

jointly determine the shape and the position of the mod-
eled coherence, and thus they have a certain correlation with
each other. Introducing one of them as a predictor for the
other may improve its prediction accuracy. Case 12, with
R2
= 0.74, compared to R2

= 0.70 in Case 7, confirms that
introducing a as a predictor for b can help with the prediction
of b. This means it could be a good idea to predict the wind
evolution model parameters successively rather than in paral-
lel. This concept is not yet fully studied in this work, and thus
case 12 is not presented as a recommendation. To prove its
applicability, it is necessary to investigate which wind evolu-
tion model parameter should be first predicted and how the
prediction uncertainty in the first parameter would propagate
to the second.
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Table 5. Summary of the predictors selected according to different lower limits of log(σ−2
m ) under different measurement campaigns,

different data availability, and different targets. R2 and RMSE are obtained from a 5-fold cross-validation of the model trained with the
respective combination of predictors. The bold text indicates the recommended predictor combinations.

Measurement Target Case log(σ−2
m ) Predictors RMSE R2

Lidar Complex lidar data a 1 >−4 Ul, σl, G1,l, G2,l, Ll, 1tM, d 0.39 0.70
2 >−2 Ul, σl, G1,l, G2,l, Ll, 1tM 0.40 0.69
3 > 0 Ul, σl, G1,l, G2,l, Ll 0.46 0.59
4 – Ul, σl, Ll, 1tM, d 0.49 0.53
5 – Ul, σl, G1,l, G2,l, Ll, 1tT, d 0.41 0.67
6 – Ul, σl, G1,l, G2,l, Ll, 1tM, d , α 0.35 0.76

Lidar Complex lidar data b 7 >−2 Ul, σl, G1,l, G2,l, Ll, 1tM, d 0.047 0.70
8 >−1 Ul, σl, G1,l, G2,l, Ll 0.081 0.12
9 – Ul, σl, Ll, 1tM, d 0.063 0.46

10 – Ul, σl, G1,l, G2,l, Ll, 1tT, d 0.048 0.69
11 – Ul, σl, G1,l, G2,l, Ll, 1tM, d , α 0.038 0.81
12 – Ul, σl, G1,l, G2,l, Ll, 1tM, d , a 0.044 0.74

Lidar Complex sonic data a 13 >−4 Ux,s, G1,x,s, G2,x,s, Lx,s, σy,s, G1,y,s, G2,y,s 0.30 0.83
Ly,s, σz,s, G1,z,s, G2,z,s, 1tM, d , α

14 >−2 Ux,s, G2,x,s, σy,s, G1,y,s, σz,s, G2,z,s, α 0.39 0.70
15 > 0 Ux,s, σz,s, α 0.39 0.70

Lidar Complex sonic data b 16 >−3 Ux,s, IT,x,s , G1,x,s, G2,x,s, Lx,s, G1,y,s, G2,y,s 0.039 0.80
G1,z,s, 1tM, d , α, a

17 >−2 Ux,s, IT,x,s , G1,x,s, G2,x,s, G1,y,s, G1,z,s, d 0.040 0.78
18 >−1 IT,x,s , G2,x,s, G1,y,s 0.081 0.13

ParkCast lidar data a 19 >−1 Ul, σl, G1,l, G2,l, Ll, 1tM, d 0.53 0.81
20 > 0 Ul, σl, G1,l, G2,l, Ll, 1tM 0.67 0.69

ParkCast lidar data b 21 >−1 Ul, σl, G1,l, G2,l, Ll, 1tM, d 0.11 0.67
22 > 0 Ul, σl, G1,l, G2,l 0.16 0.31

Notes: cases 4–6 and cases 9–12 are selected for comparison with case 1 and case 7 for different purposes, respectively. Case 4 and case 9 are selected for examination
of the effect of introducing G1 and G2 as predictors. Case 5 and case 10 are selected for examination of the different effects of 1tM and 1tT. Case 6 and case 11 are
selected for examination of the effect of having α available. Case 12 is selected for examination of the effect of introducing a as a predictor for b.

Prediction using sonic data. Additional research on using
sonic data as predictors aims to provide some insights into
whether it is worth involving sonic data in wind evolution
prediction when available. When comparing the model per-
formance of using lidar data and sonic data from Lidar Com-
plex, case 13 – the best case of using sonic data to predict
a – shows a higher prediction accuracy (R2

= 0.83 ) than
case 6 – the best case of using lidar data given α available
(R2
= 0.76). However, case 13 needs many more predictors

than case 6, whereas case 14 and case 15, with fewer pre-
dictors, do not show any advantage in prediction accuracy.
For predicting b, case 16 – the best case of using sonic data
(R2
= 0.80) – does not outperform case 11 – the best case

of using lidar data given α available (R2
= 0.81). It must

be emphasized that the ultrasonic anemometer is installed
on a meteorological mast located 295 m away from the li-
dar. There must be a deviation between the sonic data and
the true values in the wind field where the coherence is es-
timated, which reduces the prediction accuracy when using
sonic data. Figure 11 illustrates a comparison between the

model performance of the recommended cases of using lidar
data and sonic data.

Interestingly, case 15 can achieve the same predictive ac-
curacy as case 1, with only three predictors: mean wind speed
Ux,s, standard deviation of the vertical wind component σz,s,
and the misalignment angle α. In fact, σz,s is determined to be
the most important predictor by the ARD-SE kernel, having
the maximum value of log(σ−2

m ). This might imply a possible
correlation between wind evolution and vertical convection.

Influence of atmospheric stability. We initially intended to
study the influence of atmospheric stability using a dimen-
sionless height ζ as the stability parameter (see Sect. 2.5).
However, very surprisingly, ζ is not selected as a relevant
predictor in any cases, and log(σ−2

m ) is quite small compared
to the others (see Fig. 10c). In the end, we found that the sta-
bility happens to be mostly neutral during the chosen mea-
surement in Lidar Complex. This could be the reason for ζ
not being selected as a predictor. Therefore, it is not possi-
ble to analyze the influence of atmospheric stability on wind
evolution in this study.
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Figure 11. Comparison of prediction performance of models using lidar data and sonic data from Lidar Complex. (a, b) Lidar data. (c,
d) Sonic data. The subscript “pred” indicates the predicted values.

5.3 Model evaluation

As shown in Table 5, R2 of all recommended cases ranges
from 0.67 to 0.83. These results are much better than that of
the preliminary study (Chen, 2019); in particular, the predic-
tion accuracy of the offset parameter b has been significantly
improved. This is mainly owing to the use of the ARD-SE
kernel, which can help to select predictors reasonably and
give different weights to predictors according to their rele-
vant importance for the prediction, whereas kernel functions
with a common length scale for predictors were applied in
the preliminary study.

The prediction errors of a and b are quantified with the re-
spective RMSE between their predicted and observed values.
But in fact, the shape and position of the predicted coherence
determined by both parameters together is the final prediction
goal. And the corresponding prediction errors will eventually
appear as the deviation between the predicted curve and its
estimated curve due to the prediction errors of a and b.

To intuitively display how the prediction errors affect the
shape and the position of the predicted coherence in the fre-
quency domain, Fig. 12 shows the predicted coherence and
the corresponding 95 % confidence interval for the example
case from Lidar Complex. For the example prediction with
lidar data in Fig. 12a, the prediction of a and b is made by

the GPR models in cases 6 and 11, respectively. And for the
example prediction with sonic data in Fig. 12b, the prediction
of a and b is made by the GPR models in cases 13 and 17, re-
spectively. The predicted coherence and the 95 % confidence
interval are reconstructed by putting the predicted values of
a and b and their lower and upper bounds of the 95 % confi-
dence interval into the wind evolution model (Eq. 8). It can
be observed that the prediction is very good for this example
because the predicted coherence is almost overlapped with
the one estimated from the measured data, and the 95 % con-
fidence interval is quite narrow.

To show the prediction errors in a more general sense, the
RMSE interval is additionally indicated as shaded areas in
Fig. 12. The lower and upper bounds of the RMSE interval
are determined with

γ 2
model,lb(fdless)

= exp
[
−

√
(apred+1a)2 · f 2

dless+ (bpred+1b)2
]

(31)

and

γ 2
model,ub(fdless)

= exp
[
−

√
(apred−1a)2 · f 2

dless+ (bpred−1b)2
]
, (32)
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Figure 12. Example predicted coherence with 95 % confidence interval for two different measurement separations of Lidar Complex. (a) Pre-
diction with lidar data: a for case 6 and b for case 11. (b) Prediction with sonic data: a for case 13 and b for case 17. The shaded areas
indicate the RMSE interval. The input predictor data and the estimated coherence are from the case-study example of Lidar Complex: 7 De-
cember 2013 at 12:00–12:30. The mean lidar wind speed Ul ranges from 7.3 to 7.7 ms−1, and the lidar-measured turbulence intensity IT,l
ranges from 0.10 to 0.12, for different range gates.

respectively, where apred and bpred are the predicted values
of a and b and 1a and 1b are the respective RMSE. The
narrow RMSE interval shows that the GPR models perform
overall well in the prediction of wind evolution.

Moreover, it is important to check if the prediction errors
of the models are relevant to the values of the predictors. Tak-
ing the models trained with the lidar data from Lidar Com-
plex (case 6 and case 11) as an example, Figs. 13–16 show
the box plots of the prediction errors, defined as the devia-
tion between the predicted and the observed values of targets,
with respect to the values of the predictors. The histograms
of the predictor values are plotted below the box plots cor-
respondingly. The x axes of the box plots correspond to the
upper bound of the respective bin in the histograms. For ex-
ample, in Fig. 13a, the first box labeled with “4” means it is
plotted with the prediction errors of the samples attributed to
the mean wind speed range of 3–4 ms−1. To avoid accidental
conclusions, there is a minimum sample size requirement of
50 for the box plots.

The box plots indicate data within the first and the third
quartiles (i.e., 25th and 75th percentile) and represent the
main part of the data, whereas whiskers show the tails of
the distributions of the data indicating extreme values. In
Figs. 13–16, it can be observed that the boxes of the pre-
diction errors of a and b are all quite narrow and centered
around 0, indicating small prediction errors for the major-
ity of samples. The fact that the boxes are centered around
0, as well as the median and mean values (indicated as red
lines and yellow crosses, respectively), means that there is
no systematic error with respect to predictor values. In the
box plots for the prediction errors of a, the ranges of boxes
and whiskers do not show obvious relevance to predictor val-

ues except for small travel time and measurement separation.
The large range of the box and whiskers of the first box in
Fig. 15b (and that of the first box in Fig. 16a) implies that
the prediction of a is likely more uncertain for small travel
time and measurement separation (both are related to some
extent). The ranges of boxes and whiskers of the prediction
errors of b show some relevance to the values of standard de-
viation, skewness, travel time, and measurement separation.
In Fig. 13b, a clear trend can be observed: the ranges of the
boxes and whiskers decrease with the values of standard de-
viation, indicating that the prediction of b might be better for
high turbulence. A similar trend can be observed in Fig. 14a,
meaning that the prediction of bmight be better under the cir-
cumstance of negative skewness (longer left tail) than that of
positive skewness (longer right tail). In Fig. 15b and Fig. 16a,
the ranges of boxes and whiskers get larger with travel time
and measurement separation, implying that the prediction er-
rors of b increase with travel time and measurement separa-
tion.

It is worth emphasizing that the performance of any re-
gression model can be only as good as the quality of the
training data. No choice of regression model can eliminate
noise from the training data. And the noisier the training data
are, the more uncertainties the prediction of the regression
model will contain. A good data source is always essential
for training a good regression model.

6 Conclusions and outlook

This paper aims to investigate the potential of Gaussian pro-
cess regression (GPR) in the parameterization of wind evolu-
tion. This research has been motivated by the need for lidar-
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Figure 13. Prediction errors of a (case 6) and b (case 11) from Lidar Complex with respect to the values of predictors. (a) Lidar-measured
mean wind speed Ul. (b) Standard deviation of lidar-measured wind speed σl. n is the sample size. The bottom and top of the boxes indicate
the first and the third quartiles, i.e., 25th and 75th percentile, respectively. The lower and upper whiskers show the 5th and 95th percentiles.
The red line and the yellow cross in the middle indicate the median and mean value, respectively.

Figure 14. Prediction errors of a (case 6) and b (case 11) from Lidar Complex with respect to the values of predictors. (a) Skewness of
lidar-measured wind speed G1,l. (b) Kurtosis of lidar-measured wind speed G2,l. n is the sample size. The bottom and top of the boxes
indicate the first and the third quartiles, i.e., 25th and 75th percentile, respectively. The lower and upper whiskers show the 5th and 95th
percentiles. The red line and the yellow cross in the middle indicate the median and mean value, respectively.
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Figure 15. Prediction errors of a (case 6) and b (case 11) from Lidar Complex with respect to the values of predictors. (a) Integral length
scale of lidar-measured wind speed Ll. (b) Time lag determined by the peak of maximum cross-correlation 1tM. n is the sample size. The
bottom and top of the boxes indicate the first and the third quartiles, i.e., 25th and 75th percentile, respectively. The lower and upper whiskers
show the 5th and 95th percentiles. The red line and the yellow cross in the middle indicate the median and mean value, respectively.

Figure 16. Prediction errors of a (case 6) and b (case 11) from Lidar Complex with respect to the values of predictors. (a) Measurement
separation d . (b) Misalignment angle of wind direction and lidar measurement α. n is the sample size. The bottom and top of the boxes
indicate the first and the third quartiles, i.e., 25th and 75th percentile, respectively. The lower and upper whiskers show the 5th and 95th
percentiles. The red line and the yellow cross in the middle indicate the median and mean value, respectively.
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assisted wind turbine control for accurate models to predict
wind evolution, in order to avoid harmful and unnecessary
control actions. In addition, the commonly used 3D stochas-
tic wind field simulation method can be extended to 4D by
integrating wind evolution to provide a more realistic simu-
lation environment for this control concept.

In this research, data from two nacelle-mounted lidars in
both onshore and offshore locations were used to estimate
wind evolution. The estimated wind evolution was fitted to a
two-parameter wind evolution model, modified from a model
suggested in the literature. To shed light on some characteris-
tics of wind evolution, a statistical analysis was done for the
wind evolution model parameters.

In the statistical analysis, the distributions of the wind evo-
lution model parameters of both measurements show some
common characteristics, despite different wind-field-related
variables and settings of the measurements. The value ranges
of both wind evolution parameters a (i.e., the decay param-
eter) and b (i.e., the offset parameter) are very similar in
both measurements. The distributions of a and the b seem
to follow an inverse Gaussian distribution and a Gamma dis-
tribution, respectively. The fitted parameters of the proba-
bility density functions are different in both measurements.
We hypothesize that the parameters of the probability den-
sity functions might depend on the terrain type. Moreover, a
strong dependence of wind evolution model parameters was
observed on measurement separations. The decay parame-
ter a shows a decreasing trend with increasing measurement
separation, while the offset parameter b shows an increasing
trend with increasing measurement separation.

An investigation was done to explore the potential of using
GPR to achieve parameterization models for wind evolution.
GPR models were trained with the wind evolution model pa-
rameters (i.e., targets) and some wind-field-related variables
(i.e., predictors) acquired from the lidars and a meteorolog-
ical mast. The automatic relevance determination squared
exponential kernel was applied to evaluate the relative im-
portance of different predictors and to select the essential
predictors for the models under different data availabilities.
The performance of the GPR models was evaluated with the
coefficient of determination R2 and root mean square error
(RMSE) using a 5-fold cross-validation. The R2 of the mod-
els in the recommended cases for both targets, under differ-
ent measurement campaigns and different data availabilities,
ranges from 0.67 to 0.83.

A comparison between the models trained with different
predictor combinations provides some interesting insights.
(1) GPR models show preference to a fundamental variable
than a derived variable when selecting between two related
variables. (2) Introducing higher-order wind statistics (i.e.,
skewness and kurtosis) as predictors can improve the models.
(3) When using travel time as a predictor, the approximation
determined with the maximum cross-correlation is slightly
preferred than Taylor’s translation hypothesis, but the latter
could still be an option for the sake of simplification. (4) In-

troducing one of the targets as a predictor for the other can
also improve the models, but further research needs to be
done to understand the propagation of the uncertainties intro-
duced by the first predicted target. (5) Considering the mis-
alignment angle as a predictor can properly account for its
influence on the horizontal coherence. (6) Prediction using
sonic data (not measured nearby) does not show any advan-
tages given that it requires many more predictors to exceed
the prediction using lidar data.

The predicted coherence is obtained by putting the two
predicted parameters into the wind evolution model. To intu-
itively display how the prediction errors of a and b affect the
shape and the position of the predicted coherence in the fre-
quency domain, the predicted coherence and its 95 % confi-
dence interval were visualized for a representative case-study
example. The predicted coherence matches the coherence es-
timated from data very well, and the 95 % confidence interval
is relatively narrow. In addition, the RMSE interval was also
demonstrated to show the impact of the RMSE of a and b
in a more general sense. The RMSE interval turns out to be
quite narrow, indicating an overall good model performance.
Furthermore, the prediction errors of a and b were analyzed
with respect to the values of each predictor, shown as box
plots. The results show that, for both a and b, there is no sys-
tematic error with respect to predictor values. The prediction
of a seems to be less accurate for small travel time and mea-
surement separation. The prediction errors of b show some
relevance to the values of standard deviation and skewness
of wind speed, travel time, and measurement separation.

There is still space to improve the performance of the pa-
rameterization model. Since the performance of any regres-
sion model can be only as good as the quality of the training
data, reducing the uncertainty in the training data or increas-
ing the data amount could improve the model performance.
For example, methods to improve the estimation of the co-
herence and the wind statistics from lidar data are desirable.
Moreover, the predictors discussed above do not cover all
possibilities. Introducing new proper predictors could hence
also improve the model performance. In fact, the model con-
cept is very flexible. Any improvement of any part of the
workflow can be easily integrated.

In the future, besides the ideas mentioned above, it would
be interesting to involve more measurement data, especially
from different terrain types, to further investigate whether the
wind evolution characteristics found here occur commonly,
and what physical principles stand behind them. Another
question that needs answering is whether it is possible to
achieve a generally applicable parameterization model and
how to do so. Moreover, considering that the computational
time of the model training could be an important issue for
some applications, e.g., real-time model training, it is worth
comparing GPR with some alternative algorithms to develop
insight into the trade-off between computation time and the
prediction accuracy. Furthermore, considering the applica-
tion of the parameterization model using real-time measure-
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ment data as predictors, an additional model will be needed
to determine whether the current data meet the quality re-
quirements to be input into the parameterization model.

Last but not least, as mentioned above, our model con-
cept is very flexible, and its methodology can be applied in
different situations. For example, for other lidar trajectories
or even other measurement devices, the model concept can
be modified by replacing the coherence estimation method.
The wind evolution model and the regression model can also
be changed. Basically, one can achieve a parameterization
model to meet various specific requirements by following the
concept and the methodology presented in this paper.
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Appendix A

Figure A1. Distribution of lidar-measured mean wind speed and turbulence intensity for the selected period. (a, c) Lidar Complex, from the
range gate at 163.5 m. (b, d) ParkCast, from the range gate at 150 m.
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Figure A2. (a) Example coherence: Ul = 11.7 ms−1, d = 81.75 m,
R2
= 0.95. (b) and (c) PSDs of the fore-aft and in-plane tower top

acceleration, respectively. The x axis is logarithmic. Date and time:
7 December 2013 at 12:00–12:30. Data source: Lidar Complex. Be-
cause of data protection it is not allowed to show any values con-
cerning the turbine properties.
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Figure A3. (a–d) Example plots of the estimated coherence between the selected range gates R and the corresponding fitted curves. The
corresponding measurement distances are 120, 240, 360, and 480 m, respectively. (e) Time series of the lidar wind speed. The mean lidar
wind speed is 11.6 ms−1. Date: 12 June 2019. Data source: ParkCast.
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Figure A4. Comparison of the fitting quality (R2) of the two-
parameter wind evolution model (Eq. 8) and that of the one-
parameter wind evolution model (Eq. 5). The subscripts “1par” and
“2par” indicate one-parameter and two-parameter, respectively.

Figure A5. Fitted curves of the estimated coherence between the
lidar wind speeds measured at different range gates. The range gates
R1 to R5 are located at 150, 270, 390, 510, and 630 m, respectively.
1D = 120 m. The mean lidar wind speed Ul is 11.6 ms−1. Date and
time: 12 June 2019 at 22:30–23:00. Data source: ParkCast.
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