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Abstract. This work aims to develop a simple framework for transition prediction over wind-turbine blades, in-
cluding effects of the blade rotation and spanwise velocity without requiring fully three-dimensional simulations.
The framework is based on a set of boundary-layer equations (BLEs) and parabolized stability equations (PSEs),
including rotation effects. An important element of the developed BL method is the modeling of the spanwise
velocity at the boundary-layer edge. The two analyzed wind-turbine geometries correspond to a constant air-
foil and the DTU 10-MW Reference Wind Turbine blades. The BL model allows an accurate prediction of the
chordwise velocity profiles. Further, for regions not too close to the stagnation point and root of the blade, pro-
files of the spanwise velocity agree with those from Reynolds-averaged Navier–Stokes (RANS) simulations.
The model also allows predicting inflectional velocity profiles for lower radial positions, which may allow cross-
flow transition. Transition prediction is performed at several radial positions through an “envelope-of-envelopes”
methodology. The results are compared with the eN method of Drela and Giles, implemented in the EllipSys3D
RANS code. The RANS transition locations closely agree with those from the PSE analysis of a 2D mean flow
without rotation. These results also agree with those from the developed model for cases with low 3D and rota-
tion effects, such as at higher radial positions and geometries with strong adverse pressure gradients where 2D
Tollmien–Schlichting (TS) waves are dominant. However, the RANS and PSE 2D models predict a later tran-
sition in the regions where 3D and rotation effects are non-negligible. The developed method, which accounts
for these effects, predicted earlier transition onsets in this region (e.g., 19 % earlier than RANS at 26 % of the
radius for the constant-airfoil geometry) and shows that transition may occur via highly oblique modes. These
modes differ from 2D TS waves and appear in locations with inflectional spanwise velocity. However, except
close to the root of the blade, crossflow transition is unlikely since the crossflow velocity is too low. At higher
radial positions, where 3D and rotation effects are weaker and the adverse pressure gradient is more significant,
modes with small wave angles (close to 2D) are found to be dominant. Finally, it is observed that an increase
in the rotation speed modifies the spanwise velocity and increases the Coriolis and centrifugal forces, shifting
the transition location closer to the leading edge. This work highlights the importance of considering the blade
rotation and the three-dimensional flow generated by that in transition prediction, especially in the inner part of
the blade.
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1 Introduction

In wind-turbine design, accurate determination of aerody-
namic loads is of importance as they are related to properties,
such as performance and structural loads. Since aerodynamic
loads can be influenced by the boundary-layer character, an
accurate determination of the transition location can be sig-
nificant to obtain a successful wind-turbine design. This has
long been recognized by aerodynamicists, and significant
efforts have been devoted to the development of transition
models.

There are several transition models available (for a review
see, e.g., Saric et al., 2003; Langtry et al., 2006; Pasquale
et al., 2009; Colonia et al., 2017). Some of these are based on
the transport equations, such as the γ (Colonia et al., 2017)
and γ − R̃e2 equation models (Menter et al., 2006; Langtry
et al., 2006; Sørensen, 2009; Menter et al., 2015; Langtry
et al., 2015); other ones rely on stability analysis, such as the
eN method (Smith and Gamberoni, 1956; van Ingen, 1956).
These models are compatible with modern RANS solvers. In
particular, the models of natural and bypass transition cou-
pled with RANS solvers have shown good agreement with
experiments on wind turbines (Özçakmak et al., 2020). The
γ − R̃e2 has also been used for prediction of transition dom-
inated by crossflow instability (Guerrero et al., 2018). More
accessible measurement techniques such as ground-based
thermographic imaging (Reichstein et al., 2019) have of-
fered further data for the development, calibration, and com-
parison of transition models. The methods mentioned above
can provide transition predictions at a relatively low com-
putational cost, being common in engineering applications.
While their accuracy has been validated for a number of two-
and three-dimensional flows, further knowledge about their
performance for rotating wind-turbine blades would be ben-
eficial.

There are also more advanced transition-prediction meth-
ods, such as those based on direct numerical simula-
tions (DNSs) and parabolized stability equations (PSEs)
(Bertolotti et al., 1992; Simen and Dallmann, 1992),
which can provide accurate transition prediction in three-
dimensional flows. DNSs aim at exactly resolving the flow
field, and they can thus provide detailed information about
velocity fluctuations within the boundary layer, based on
which results about transition and turbulence characteris-
tics can be derived. At this moment, only a few studies of
the transition process on wind-turbine blades using high-
resolution simulations are available (Jing et al., 2020). The
DNS approach for transition prediction provides accurate re-
sults, but it implies a high computational cost. With the cur-
rent available computational power, simulations at Reynolds
numbers corresponding to those of real wind turbines are not
possible. The PSE analysis has a much lower computational
cost compared to DNSs (Özçakmak et al., 2020), but it pro-
vides more accurate transition predictions than the RANS ap-
proach with an algebraic-integral or transport model. How-

ever, there are limitations in the linear PSE approach, which
are the inability to predict (i) transition in strongly non-
parallel flows with rapid variation in the streamwise direc-
tion; (ii) transition in strongly three-dimensional flows; and
(iii) transition caused by global instability, as in the case of
strong separation bubbles.

In two-dimensional flow fields, the waves causing in-
stability are typically of the Tollmien–Schlichting (TS)
type (Tollmien, 1929; Schlichting, 1933), whereas in three-
dimensional flow fields, waves of crossflow type are also
common (Saric et al., 2003). The former is more prone in
wings with small sweep angles and very weak or adverse
chordwise pressure gradients, while the latter generally takes
place for large sweep angles and favorable chordwise pres-
sure gradients. Borodulin et al. (2019) showed a good agree-
ment between linear stability results and experiments for
TS waves developing over a swept wing. There were similar-
ities between the TS waves found experimentally and those
for the Blasius boundary layer, such as the shape of the eigen-
functions and phase speed. However, the waves observed
over the swept wing could propagate at a broader range of an-
gles relative to the inviscid streamline, being more unstable
at propagation angles between 25 and 70◦. Unlike the TS in-
stability, crossflow instability has an inviscid origin, caused
by the inflection of the crossflow velocity profile (Saric et al.,
2003). Unstable crossflow modes can be triggered by noise
or even microscopic surface roughness (Bippes, 1999; Gapo-
nenko et al., 2002). The crossflow instability can manifest as
stationary vortices in environments with low turbulence in-
tensity and as traveling modes in cases with high turbulence
intensity/low surface roughness. These waves can propagate
at a narrower range of angles compared to TS waves and are
more unstable for directions nearly perpendicular to the in-
viscid flow direction.

The present work aims to develop a simple model for tran-
sition prediction applicable for wind-turbine blades and to
understand the effects of blade rotation on the boundary-
layer flow and its stability. Firstly, a model to compute the
boundary-layer profiles over the wind-turbine blades is de-
veloped. This model is based on the quasi-three-dimensional
boundary-layer equations (BLEs) and accounts for effects of
the blade rotation and the three-dimensional outer flow. A
technique to obtain an approximation for the spanwise ve-
locity is also provided, such that the only required inputs
are the chordwise distribution of pressure or streamwise ve-
locity and the blade geometry. Secondly, the eN method is
employed to predict the transition locations. The N factors
are obtained using an existing PSE code (Hanifi et al., 1994;
Hein et al., 1994) to which rotation effects are added. The
developed framework is applied to two different full-scale
wind-turbine geometries and the results are compared with
the mean-flow and transition data from EllipSys3D RANS
simulations (Michelsen, 1992, 1994; Sørensen, 1994). Tran-
sition prediction within this solver is obtained through the
semiempirical eN method of Drela and Giles (Drela and
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Figure 1. Coordinate system on the wind-turbine blade. � is the
rotation speed, u‖ the mean-flow velocity vector projected in the
x1–x2 plane, k = (α,β,0) the wave vector, and 9 the perturbation
propagation angle relative to the outer streamline.

Giles, 1987; Özçakmak et al., 2020). This transition model
does not account for effects of the blade rotation or the three-
dimensional flow. The PSE results may also indicate accu-
racy of the RANS prediction. Finally, effects of the rotation
speed and spanwise velocity on the transition location are an-
alyzed, and the suitability of XFOIL (Drela, 1989) data as the
input to the developed model is assessed.

2 Boundary-layer model

This section describes the boundary-layer (BL) model devel-
oped in this work.

2.1 Coordinate system

The coordinate system of the BL model is illustrated in
Fig. 1. The blade rotates around a vertical axis at a constant
angular velocity �, and the coordinate system is fixed to the
blade. Therefore, centrifugal and Coriolis forces need to be
included in the fluid-dynamic equations (Kundu et al., 2016).
The first coordinate direction x1 follows the wing contour
along a circular arc with radius r0, the second coordinate di-
rection x2 is perpendicular to the x1 direction in the plane
tangent to the wing surface, and the third coordinate direc-
tion x3 is defined to be in the direction normal to the surface.
Hence, x1, x2, and x3 describe an orthogonal, curvilinear co-
ordinate system. The error committed by assuming that the
x1 and x2 directions are respectively the chordwise and span-
wise directions is low. That is because the chord-to-radius
ratio and the sweep angle are small in the analyzed wind-
turbine blades. For instance, the angle between the x2 and
spanwise directions oscillates between 1 and 4◦.

2.1.1 Boundary-layer equations

There are several integral formulations of the boundary-layer
equations (BLEs) (Du and Selig, 2000; Dumitrescu and Car-
dos, 2011; Drela, 2013; Garcia et al., 2014). However, a dif-
ferential formulation is expected to be more accurate than its

integral counterpart because the latter requires closure rela-
tions which are found through empirical relations (van Gar-
rel, 2004). For this reason, a differential formulation is se-
lected in the present case. When expressed in the coordi-
nate system described in Sect. 2.1, the differential form of
the BLEs can be written as (Warsi, 1999)

∂
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In these equations, cp, γ , κ , µ, M , Re, and Pr denote
specific heat capacity at constant pressure, ratio of specific
heats, thermal conductivity, dynamic viscosity, Mach num-
ber, Reynolds number based on a reference length l0, and
Prandtl number, respectively. Moreover, ρ, p, and T denote
density, pressure, and temperature, whereas u and � repre-
sent velocity and rotation, respectively. hi denotes the Lamé
coefficients, where h2

i = gii and gij is the metric tensor. Note
that since the coordinate system is orthogonal gij = 0 for
j 6= i. The subscripts 1, 2, and 3 indicate components in the
respective x1, x2, and x3 directions. r is the radial position.

In the BL model, the chordwise curvature of the wing
model is neglected, while the radial curvature is considered.
Thus, the metric vector becomes

h1 =
x2+ r0

r0
, h2 = 1, h3 = 1. (5)
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Table 1. Reference values.∞ denotes freestream values.

Variable Reference value

Length l0
Velocity u∞
Angular velocity u∞/l0
Density ρ∞
Pressure p∞
Temperature T∞
Dynamic viscosity µ∞
Thermal conductivity κ∞

Since the code is intended for analysis of laminar flows,
turbulent fluctuations and statistics need not be considered.
In order to obtain a well-conditioned system whose solution
is compatible with the subsequent PSE analysis, the terms in
the system of Eqs. (1) to (4) are normalized by the reference
quantities given in Table 1. The value of l0 is set to c0, the
chord of the airfoil at the radial position r0, where the analy-
sis is performed.

2.1.2 Approximations of the spanwise derivatives

As they stand, the BL equations are dependent on all three
coordinate directions so that their numerical solution re-
quires a full volume discretization. A three-dimensional dis-
cretization can result in a solution procedure that is costly
in terms of computational capacity and CPU time. By em-
ploying approximate models for the derivative terms in the
x2 direction, instead of exact expressions, one can obtain
a quasi-three-dimensional model requiring discretization in
the x1 and x3 directions only. The reduced dimension of the
discretization typically results in significant savings in com-
putational cost and meshing effort. Furthermore, a judicious
selection of the model for the x2 derivative can provide ac-
curate mean flows. These beneficial properties lead a quasi-
three-dimensional model to be employed in the present work.

Similarity solutions for rotating flows suggest that the ve-
locity in the x1 direction can be assumed to depend on the
x2 coordinate linearly (Greenspan, 1968; Hernandez, 2011).
This approximation is employed in the present work, to-
gether with the further assumption that the velocity in the
x2 direction, pressure, and temperature does not depend
on x2. Thus,

u1 = u10

x2+ r0

r0
, u2 = u20 , p = p0, T = T0. (6)

The subscript 0 denotes evaluation at the radial location r0.
This choice can result in a momentum imbalance in the x2 di-
rection at the boundary-layer edge, as pointed by Sturdza
(2003) for swept-wing flows. Sturdza argued that the im-
balance could be compensated for by defining an additional
source term A that accounts for the momentum difference.
The extra source term is then multiplied by a blending func-

tion f (x3) and added to the right-hand side of the spanwise
momentum equation (Eq. 3). A is found by considering mo-
mentum balance at the boundary-layer edge. With the current
approximation of spanwise derivatives and curvature terms,
A becomes

A= ρu1e

∂u2e

∂x1
−
ρu2

1e

r0
− ρ

(
−2�3u1+�

2r0

)
, (7)

where the subscript “e” denotes evaluation at the boundary-
layer edge. The blending function is selected to linearly de-
pend on the wall-normal distance inside the boundary layer,
i.e.,

f (x3)=
x3

x3e

. (8)

2.1.3 Discretization of BLEs

The spanwise approximations described in Sect. 2.1.2 make
the system of the BLEs (Eqs. 1 to 4) include only derivatives
in the x1 and x3 directions. The derivatives in the x3 direction
are evaluated using a second-order central finite-difference
scheme, whereas the derivatives in the x1 direction are eval-
uated using a second-order backward Euler finite-difference
scheme.

The BLEs can be expressed as

A18+A2
∂8

∂x3
+A3

∂28

∂x2
3
+A4

∂8

∂x1
= A5, (9)

where 8= (u1, u2, T )T denotes the vector of primary vari-
ables. The density is calculated from the temperature and
pressure using the equation of state and the BL approxima-
tion of pressure being constant inside the boundary layer. The
components of the matrices A1, A2, A3, A4, and A5 are found
by collecting terms in Eqs. (1) to (4).

The solution is computed by space marching in the x1 di-
rection. Uniform boundary conditions are assumed at the
inflow. The attachment-line equations (Cebeci, 1999) are
solved at the first inflow node, since the BLEs are ill-
conditioned when u1 is equal to zero. Because of the
boundary-layer singularity (Goldstein, 1948), the system of
equations can become strongly ill-conditioned if flow sepa-
ration is encountered. However, the present code is intended
to be used for transition prediction, and separation within
a laminar-flow region typically causes transition. Therefore,
the separation point can be taken as a reasonable approxima-
tion of the transition location, and the issue is circumvented.

2.2 Edge velocity model

The velocity in the x2 direction at the boundary-layer edge is
required as input to the quasi-three-dimensional BL model.
In order to avoid the necessity of a costly simulation to ob-
tain it, a model for u2e is devised with inspiration from the
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conical-wing approximation (Cebeci, 1999; Sturdza, 2003).
An approximation for u2e is obtained by combining the Eu-
ler equation in the x2 direction with an approximation for
the variation of the pressure coefficient in this direction. The
Euler equation in the x2 direction can be written as (Warsi,
1999)
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All terms on the right-hand side are known except for the
x2 pressure gradient. An approximation for this term can be
found by rewriting the definition of the pressure coefficient
with the reference speed equal to the rotational one, i.e.,

p = Cp
1
2
ρ(�r0)2

+p∞, (13)

and assuming that

Cp = Cp0

r2

r2
0
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where Cp0 is the pressure coefficient at the radial position r0
and r = x2+ r0. Equation (14) models the variation in Cp
due to the change in the reference velocity with r , as well as
a first-order variation in Cp due to the change in the angle of
attack α. The latter is defined as

α = tan−1
(
w∞

�r0

)
+ θ (x2) , (15)

Figure 2. Conical parameters. O and A are the center of rotation
and the cone apex, respectively. Lines of constant β1 are the conical
lines.

with w∞ and θ representing the incoming-flow velocity and
the geometric twist angle, respectively. Note that Eq. (14) is
singular for α0 = 0 and may not be very accurate for small
values of α0. Therefore, some other approximations may
be more suitable for these cases. With inspiration from the
conical-wing approximation (Cebeci, 1999; Sturdza, 2003),
Cp0 is assumed to be constant along conical lines. These lines
as well as other parameters related to the conical-wing ap-
proximation are illustrated in Fig. 2.

With this assumption, the derivative of Cp0 in the x2 direc-
tion can be related to its derivative in the x1 direction by

∂Cp0
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=− tan(β1+β0)
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. (16)

The angles β1 and β0 are defined as
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)
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where x1c denotes the x1 coordinate of point C, where the
line connecting the center of rotation O and the cone apex A
intersects the arc with radius r0. These assumptions lead to
an expression for the pressure derivative, given by
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Inserting Eqs. (13), (14), and (18) in Eq. (12) provides an
expression that can be integrated along x1 to obtain the dis-
tribution of u2e in this direction. However, it is necessary to
obtain an approximation for u2e at the initial point of integra-
tion. In order to do that, we use as inspiration the swept-wing
approximation (Cebeci, 1999) and assume that u2e can be ap-
proximated by the velocity over a conical line (see Fig. 2).
This approximation yields

u2e =
(
2�r0− u1e

)
tan(β1+β0) , (19)

where 2�r0 is a reference velocity. However, Eq. (19) is not
very accurate if u1e is small, as is the case near the attach-
ment line. Thus, it is advisable to start the integration at a po-
sition x10 downstream of the attachment line, where u1e has

https://doi.org/10.5194/wes-6-715-2021 Wind Energ. Sci., 6, 715–736, 2021



720 T. Fava et al.: A simplified model for transition prediction applicable to wind-turbine rotors

a value that is comparable to the freestream velocity. An ap-
proximate initial value for u2e at x10 can be found from

u2e

(
x10

)
=
[
2�r0− u1e

(
x10

)](
x1c − x10

) r0+ r1
r0r1

. (20)

3 PSEs

The coordinate system employed in the PSE analysis is the
one in Fig. 1. The PSEs are derived from the continuity,
momentum, energy, and state equations (Hanifi et al., 1994;
Kundu et al., 2016), as shown in Eqs. (21) to (24). Because of
the complexity of performing a full three-dimensional anal-
ysis, periodicity is assumed in the x2 direction. Moreover,
rotation terms are added to the momentum equations.
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where λ=− 2
3µ denotes the second viscosity coefficient un-

der the Stokes hypothesis. The quantities in these equations
have been normalized with the reference values given in Ta-
ble 1.

The flow can be decomposed as

q (x1,x3, t)= q (x1,x3)+ εq̃ (x1,x3, t) , (27)

where t denotes time, q = (u1, u2, u3, T , ρ)T . Here, pressure
is eliminated using the equation of state. The bar denotes the
mean-flow variables from the BL model or RANS, tilde de-
notes the perturbation quantities, and ε� 1 (Hanifi et al.,
1994; Hein et al., 1994). The perturbation part has the form

q̃ (x1,x3, t)= q̂ (x1,x3)ei2, (28)

where q̂(x1, x3) denotes the slowly varying part of the per-
turbation, i denotes the imaginary unit, and 2 is

2=

x1∫
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α(x′)dx′+βx2−ωt, (29)

where α and β are the wavenumber in the x1 and x2 direc-
tions, respectively, whereas ω denotes the temporal angular

frequency of the disturbance. x0 is the chordwise coordinate
of the initial point of analysis. Including these relations in
Eqs. (21) to (24), assuming that the variation in the x1 direc-
tion is weak compared to the variation in the x3 one (there is
a scale of 1/Re between them), neglecting terms of order ε2,
and collecting the terms, we obtain a system of the form

B1q̂ +B2
∂ q̂

∂x3
+B3

∂2q̂

∂x2
3
+B4

∂ q̂

∂x1
= 0. (30)

In addition, the following normalization condition is used

∞∫
0

q̂∗
∂ q̂

∂x3
dx3 = 0, (31)

where the superscript ∗ denotes the complex conjugate (Han-
ifi et al., 1994). The following boundary conditions are em-
ployed{
û1 = û2 = û3 = T̂ = 0, for x3 = 0,
û1, û2, û3, T̂ → 0, for x3→∞

. (32)

Notice that the far-field condition û3→ 0 can be replaced by
ρ̂→ 0. The derivatives in the x3 direction are computed with
a fourth-order compact finite-difference scheme, whereas the
derivatives in the x1 direction are computed with a second-
order compact finite-difference scheme. Given initial values
of α and β, the growth of the disturbances along x1 is evalu-
ated by marching Eq. (30) in the x1 direction.

In the eN method, transition location is predicted based on
the amplification of disturbances presented by the N factors
computed as

N = ln (A/A0)=

x∫
xI

σ (x′)dx′, (33)

where A is the amplitude of the perturbations (A0 = A(x0)),
xI the location where the perturbation first starts to grow,
and σ the growth rate of the perturbation kinetic energy E
defined as (Hanifi et al., 1994)

σ =
1
h1

[
−Im(α)+Re

(
1
E

∂E

∂x1

)]
,

E =

∞∫
0

ρ
(
û2

1+ û
2
2+ û

2
3

)
dx3. (34)

Here, consistent with the PSE framework, we use an
“envelope-of-envelopes” approach, meaning that transition is
predicted based on the envelope of the amplification curves
computed for fixed values of ω and β (see, e.g., Arnal and
Casalis, 2000).
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Figure 3. Wind-turbine blades with radial sections of analysis. The surface is colored with a normalized measure of the axial position of the
mesh point. The radial coordinate r is given in meters. R is the radius of the wind-turbine rotor.

4 Results

The results of the proposed approach are compared to those
from the EllipSys3D RANS code. This solver is based on
the incompressible Navier–Stokes equations and employs
a block-structured, finite-volume discretization, including a
second-order upwind scheme for the discretization of con-
vective terms and a central difference scheme for the dis-
cretization of the viscous ones. Turbulence is modeled us-
ing the shear stress transport (SST) k–ω turbulence model
(Menter, 1993), and the transition prediction is performed us-
ing an eN method (Drela and Giles, 1987) combined with a
model for the turbulence intermittency factor γ (Özçakmak
et al., 2020). The intermittency function is defined as

γ = 1− exp

{
−(x− xtr)2

(
Ue,tr

ν

)2

n̂σ

}
, for x ≥ xtr, (35)

where x is the chordwise position (measured from the stag-
nation line), xtr is the chordwise position of the transition
onset, ν is the kinematic viscosity, σ is the spot propagation
rate, n̂ is the nondimensional spot formation rate, and Ue,tr is
the edge velocity at the chordwise position of the transition
onset (Mayle, 1999). For laminar flow, i.e., x < xtr, γ = 0,
and for fully turbulent flow, γ = 1.

4.1 Test cases

Two different full-scale wind-turbine rotors are investigated.
Both have three blades, and their geometries are illustrated
in Fig. 3. The shaded colors show a normalized measure of
the axial position of each mesh point on the blade surface.
The first geometry (Geometry 1) has a tapered and twisted
blade with a symmetric NACA 63-018 airfoil profile along
its entire span. It was mainly designed to allow the investiga-
tion of the accuracy of the conical-wing-based edge velocity
model when applied to a geometry respecting its geometri-
cal assumptions. The second geometry (Geometry 2) corre-
sponds to the blade of the DTU 10-MW Reference Wind Tur-

bine (Bak et al., 2012). It has a tapered and twisted blade
with spanwise-varying cross-sectional properties. This en-
ables the evaluation of our quasi-three-dimensional model
when applied to a general wind-turbine blade geometry. It
is assumed that the flows over the three blades are simi-
lar so that it is sufficient to analyze one blade. We focus
on the suction side of the blade since transition often oc-
curs earlier there. Attachment-line transition is not expected
to occur as the attachment-line Reynolds number R = 41
and 15 for geometries 1 and 2, respectively, where R =
(u∞Rle sinφ tanφ/(2ν))1/2, u∞ is the incoming infinite ve-
locity, Rle is the curvature radius of the leading edge, and
φ is the sweep angle. This is well below the threshold of 250
for contamination (Poll, 1978).

The main parameters of the two cases are given in Ta-
ble 2. Both were computed using a temperature of 287.5 K,
density of 1.225 kg m−3, dynamic viscosity of 1.784×
10−5 kg m−1 s−1, ratio of specific heats of 1.4, and gas con-
stant of 287 J kg−1 K−1. The meshes used for the RANS
computations of geometries 1 and 2 have 15.5×106 nodes, of
which 118×103 are surface ones. The boundary layer is dis-
cretized with approximately 50 nodes in the wall-normal di-
rection. The corresponding meshes for the BL and PSE mod-
els have 200 and 500 points in this direction, respectively.
This level of discretization provided spatially converged re-
sults for test cases. However, a lower number of grid points
could be used for increased performance when computing
the envelope of N factors with the PSEs.

For the benefit of the reader, the abbreviations of the meth-
ods used in the following sections are summarized in Table 3.

4.2 Pressure distributions

The pressure distributions from RANS and XFOIL are
shown in Fig. 4. Close agreement is obtained for the mid-
dle and outer radial locations of Geometry 1. For Geome-
try 2 and the inner radial location of Geometry 1, XFOIL
results indicate a less severe pressure drop along the air-
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Table 2. Physical parameters of the wind turbines.

Geometry 1 Geometry 2

Number of blades 3 3
Radius [m] 100.0 102.9
Position of maximum chord [m] 12.0 30.0
Root chord [m] 7.5 5.4
Tip chord [m] 3.7 2.9
Maximum chord [m] 14.2 6.0
Root twist angle [◦] −90.0 0.0
Tip twist angle [◦] 0.0 −4.0
Twist angle at position of maximum chord [◦] −17.0 −11.3
Blade cross section (airfoil profile) NACA 63-018 FFA-W3-241 with decreasing thickness up to two-thirds of the radius
Rotational velocity [rad s−1

] 0.64 0.90
Horizontal freestream velocity [m s−1

] 8.0 10.0
Tip-speed ratio 8.0 9.3
Average chord Reynolds number 1.48× 107 1.55× 107

Table 3. Abbreviations of the employed methods.

Abbreviation Description

RANS Results from RANS simulations performed with the EllipSys3D code
EVMR Edge velocity model with u1e (x1) from RANS
EVMX Edge velocity model with u1e (x1) from XFOIL
BLR Boundary-layer model with u1e (x1) from RANS and u2e (x1) from EVMR
BLX Boundary-layer model with u1e (x1) from XFOIL and u2e (x1) from EVMX
BLR 2D Two-dimensional boundary-layer equations (no rotation) with u1e (x1) from RANS
RANS (γ = 0.01) Transition locations obtained from RANS for an intermittency factor γ = 0.01
PSER Transition locations obtained from PSEs for BLR velocity profiles
PSEX Transition locations obtained from PSEs for BLX velocity profiles
PSER 2D Transition locations obtained from PSEs (no rotation) for BLR 2D velocity profiles

foil, although RANS and XFOIL pressure gradients are close
to each other for the initial chordwise extent of the air-
foils. For Geometry 1 at r0/R = 0.26 and Geometry 2 at
r0/R = 0.89, XFOIL results also indicate small separation
bubbles at x1 ≈ 0.45, which are not present in RANS distri-
butions. A possible source of those differences is the mis-
match between the angles of attack (AoAs) of XFOIL and
RANS. The XFOIL computations are for an AoA calculated
based on the inflow velocity and that generated by the blade
rotation, which may differ from the actual AoA in the RANS
simulation. Moreover, XFOILCp distributions were obtained
for a two-dimensional section of the wing, without consider-
ing its spanwise variation and the three-dimensionality of the
flow present in the RANS results. Those effects are particu-
larly important for Geometry 1 at r0/R = 0.26.

4.3 Spanwise edge velocity

Here, we compare the chordwise distributions of spanwise
velocity at the edge of the boundary layer u2e obtained with
RANS simulations and the edge velocity model (EVM). The
analyses are performed at three radial locations r0 in the in-

ner (r0/R = 0.26 and 0.40), middle (r0/R = 0.58), and outer
(r0/R = 0.89) parts of the blade, where R is the radius of the
rotor. The inner section for Geometry 2 (r0/R = 0.40) is cho-
sen after the location of the maximum chord at r0/R = 0.30.

Figure 5a, c, and e present the results for Geometry 1. The
spanwise velocity is of the order of 1 % of the freestream
velocity, except close to the stagnation point, where it can
reach higher values. EVMR and RANS results agree for the
middle and outer radial locations after 10 % of the chord.
The differences between EVMX and RANS results are also
small for these locations. The small overestimation of u2e

of the EVMX method compared to RANS/EVMR is related
to the smaller flow acceleration predicted by XFOIL com-
pared to its RANS counterpart (see Eq. 12). The differences
between the EVM and RANS results are larger at the inner
radial position and close to the stagnation point. The reason
is that the approximation for the spanwise pressure gradient
given by Eq. (16) is more accurate at large radii and chord-
wise positions. This approximation relies on the assumption
of Cp0 being constant over conical lines, which may not be
respected at the mentioned locations due to the strong varia-
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Figure 4. Comparison between XFOIL and RANS pressure distributions for the suction side of the airfoils of geometries 1 and 2 at three
radial positions.

tion of the geometry in the radial direction and the flow three-
dimensionality.

The results for Geometry 2 are presented in Fig 5b, d,
and f. At the inner radial location, r0/R = 0.40, EVMR
and EVMX results indicate a higher spanwise velocity than
RANS, similarly to Geometry 1. In previous analysis of Ge-
ometry 2 (Zahle et al., 2014), a region of three-dimensional
flow radially pumped from the root to r0/R = 0.36 was ob-
served. Moreover, a separation bubble is also present from
the root to almost r0/R = 0.40 (Horcas et al., 2017). These
factors increase the flow three-dimensionality at the inner ra-
dial part of the blade, making it more difficult for the quasi-
three-dimensional BL model to capture the flow features cor-
rectly. However, the agreement between EVM and RANS re-
sults improves with r0/R and x1. This is particularly true at
r0/R = 0.58 and 0.89 after 15 % of the chord. The differ-
ences between EVM and RANS velocity distributions were
expected to be higher for Geometry 2 because the spanwise
variation of the airfoil spurs changes in the Cp along coni-
cal lines. The higher spanwise velocity of Geometry 1, espe-
cially at the inner radial location, associated with inflectional
spanwise velocity profiles, as shown in the next section, in-
dicates a higher potential for crossflow instability. These re-
sults suggest that the edge velocity model can provide a reli-
able approximation for u2e for radial positions not too close
to the root of the blade and stagnation point. The results
are expected to be more accurate for geometries respecting
the assumptions of the model and generating a less three-
dimensional flow, such as Geometry 1.

4.4 Velocity profiles

We present the chordwise and spanwise velocity profiles ob-
tained with RANS simulations and the boundary-layer model
as a function of the normal coordinate x3 nondimensional-
ized by the BL thickness δ. Two chordwise positions are an-
alyzed for each radial location. Figure 6 presents the results
for Geometry 1. The BLR, BLX, and BLR 2D profiles of
chordwise velocity are in close agreement with the RANS
results for all locations. They resemble the Falkner–Skan
type of profiles for an accelerating flow and seem to be little
affected by three-dimensionality since they agree with the
BLR 2D solution. Further downstream, around x1 = 0.40,
the flow starts to decelerate (see Fig. 4), which may al-
low the appearance of a viscous instability of the Tollmien–
Schlichting (TS) type. These conclusions also apply to Ge-
ometry 2, whose results are shown in Fig. 7. The quali-
tative behavior of the chordwise velocity profiles is simi-
lar. However, the flow starts to decelerate earlier at around
x1 = 0.30 for the inner radial position and at approximately
x1 = 0.40 for the middle and outer radial locations. There-
fore, an earlier transition may be expected for Geometry 2 at
r0/R = 0.40.

The spanwise velocity at the inner radial position of Ge-
ometry 1 is directed towards the root of the blade as portrayed
in Fig. 6a and b. This reverse flow supports the hypothe-
sis of considerable three-dimensionality at radial locations
closer to the root of the blade (Du and Selig, 2000). Although
the BLR and BLX profiles of spanwise velocity are close to
each other, they indicate a positive velocity (flow towards the
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Figure 5. Spanwise edge velocity.

tip of the blade), whereas the spanwise velocity profile from
RANS is only positive in the near-wall region. The RANS,
BLR, and BLX spanwise velocity profiles present inflection
points. Therefore, they are susceptible to an inviscid instabil-
ity of the crossflow type. Other cases with inflection of the
spanwise velocity profile are the RANS and BLR results at
r0/R = 0.58 of geometries 1 and 2 (Figs. 6d and 7c, d) and
the RANS results at r0/R = 0.40 of Geometry 2 (Fig. 7b).

The BLR and RANS spanwise velocity profiles are in
close agreement at the middle and outer radial positions
of Geometry 1 as presented in Fig. 6c–f. The higher val-
ues obtained with the BLX approach in those cases are
caused by the larger u2e predicted with the edge velocity
model (EVMX). The same occurs at the outer radial location
of Geometry 2, as shown in Fig. 7e and f, in which BLR and
RANS spanwise velocity profiles agree, but the result from
BLX overestimates u2e . Nonetheless, the shapes of the BLX
profiles agree with that of the other methods, indicating that
the mismatch is only due to the u2e values.

The BLR and BLX results for the spanwise velocity at the
inner and middle radial parts of Geometry 2 (Fig. 7a–d) in
general do not follow the trend of the RANS results. An ex-
ception is the BLR spanwise velocity profile at r0/R = 0.58
and x1 = 0.25. As shown in Fig. 7a and b, the RANS profile
presents an inversion of direction between 10 % and 20 % of
the chord. This also occurs in a smaller extent at the inner
radial position of Geometry 1 (Fig. 6a and b), where, at the
near-wall region, the spanwise velocity profile presents an
inversion of direction. The fact that the inversion of the span-
wise velocity profile only occurs at the inner radial position
of geometries 1 and 2 may confirm the three-dimensional
character of the flow at smaller radii.

The effects of rotation on the spanwise velocity are inves-
tigated using the approach of Du and Selig (2000), in which
the rotation speed is varied while the angle of attack is kept
constant. This allows for segregating the effects of the varia-
tion of the spanwise velocity as well as Coriolis and centrifu-
gal forces from those caused by the variation of the angle
of attack. The selected rotation speeds are 5 %, 50 %, 100 %,
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Figure 6. Boundary-layer profiles for Geometry 1.

and 150 % of that used in RANS (0.64 and 0.9 rad s−1 for ge-
ometries 1 and 2, respectively). The 5 % and 50 % cases ac-
count for the accelerating phase of the wind turbine, whereas
the 150 % case is not in the normal operating range of most
turbines but offers insight into how overspeed may impact
transition.

Analysis of the data for Geometry 1 shows that the invis-
cid flow is accelerated in the −x2 direction near the stagna-
tion point due to a negative spanwise pressure gradient and
the Coriolis force to a lesser extent. The dominant term of the
latter is −2ρu1�3 in Eq. (11), pointing in the −x2 direction.
After roughly 10 % of the chord, where the flow reaches its
maximum streamwise velocity, the spanwise pressure gradi-
ent decreases substantially. Hence, the centrifugal force with

leading term ρ�2
3x2 in Eq. (11) and the inertial term with ρu2

1
in Eq. (12) overcome the Coriolis force and accelerate the
flow in the +x2 direction. For small radii, the Coriolis force
tends to increase faster with the rotation speed than the cen-
trifugal and inertial ones, impelling the flow in the−x2 direc-
tion. The centrifugal and inertial forces tend to grow faster
with � at the middle and outer parts of the blade, forcing the
flow in the +x2 direction.

Figure 8 presents the BLX spanwise velocity profiles for
Geometry 1. Compared to an almost translatoric situation
(0.032 rad s−1), rotation tends to accelerate the flow in the
x2 direction, driven by the centrifugal and inertial forces.
Considering r0/R = 0.58 and 0.89, the spanwise velocity
increases with � since the centrifugal and inertial forces
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Figure 7. Boundary-layer profiles for Geometry 2.

grow faster at larger radii. At the inner radial position, the
spanwise velocity decreases when � increases from 0.32 to
0.96 rad s−1 because the Coriolis force grows faster than
its counterparts. These velocity profiles present inflection
points, indicating the potential of crossflow instability. In-
flectional profiles can also be observed at the inner radial po-
sition of Geometry 2.

The boundary-layer profiles for Geometry 2 are presented
in Fig. 9. The airfoils of Geometry 2 sustain negative chord-
wise and spanwise pressure gradients over a larger chordwise
extent compared to Geometry 1. Therefore, it is not possible
to decouple a region where the pressure gradient is dominant
from another in which rotation effects are preponderant. This
fact makes the effects of rotation less clear than in the pre-

vious geometry. However, one can still observe the trend de-
scribed in the theoretical analysis. At the downstream chord-
wise stations, the flow accelerates with � in the −x2 at the
inner locations and in +x2 directions at the outer sections.
An increase in the rotation speed tends to accelerate the flow
in the −x2 direction at r0/R = 0.58. This fact indicates that
the pressure gradient and Coriolis forces are more important
than the inertial and centrifugal ones at this location. This
trend remains for the downstream chordwise station since the
negative spanwise pressure gradient does not vanish.
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Figure 8. Spanwise velocity profiles for Geometry 1 for several rotation speeds.

4.5 Transition prediction

The quasi-three-dimensional PSE model is applied to ana-
lyze the disturbance growth inside the boundary layer. The
onset of transition is assumed to occur when the amplifica-
tion factorN based on the integral disturbance energy (Hanifi
et al., 1994) reaches Ncrit. This state corresponds to the ap-
pearance of the first turbulent spots. Although not represen-
tative of all atmospheric conditions, it is assumed Ncrit = 9
in the current work to have a larger region of laminar flow
in the RANS results, allowing a more detailed comparison
between the developed model and RANS. In the EllipSys3D
code, when the eN method of Drela and Giles (1987) indi-
cates thatNcrit was reached, the onset of transition is detected
and the intermittency factor γ starts to grow from zero in the
laminar region to one in the fully turbulent flow (Özçakmak
et al., 2020). As the transition location is not directly stored in
RANS data, we choose to select a small value for this param-
eter (γ = 0.01 is selected) to indicate the transition location.

The transition locations for Geometry 1 as a function of
the radial position are presented in Fig. 10a. Transition is
delayed as the radial position increases, which agrees with
previous works that observed stabilizing effects of rotation

for increasing radii (Du and Selig, 2000). PSER and RANS
transition locations agree from r0/R = 0.68 to the tip of the
blade. For r0/R < 0.68, PSER results indicate an earlier tran-
sition compared to RANS. This is due to the effects of the
spanwise velocity and rotation, which are not considered in
the EllipSys3D transition model. As shown in Sect. 4.4, the
spanwise velocity reaches higher values at lower radii. More-
over, the presence of a laminar separation bubble at the inner
part of the blade increases the rotation effects because the
Coriolis force passes to act in the same direction of the cen-
trifugal one. Therefore, differences between transition loca-
tions from RANS and the developed model were expected
to be larger at lower radii. Another conclusion is that con-
sidering three-dimensional and rotation effects leads to the
prediction of earlier transition locations. The PSER 2D tran-
sition locations, which do not consider 3D and rotational ef-
fects, are in close agreement with the RANS results, except
at r0/R = 0.26, where the former indicates transition slightly
downstream. Concerning the PSEX results, earlier transition
locations are obtained for r0/R ≥ 0.58 compared to RANS
and PSER. This is likely due to the higher spanwise velocity
found at these locations with the PSEX method. PSEX and
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Figure 9. Spanwise velocity profiles for Geometry 2 for several rotation speeds.

PSER transition locations are close to each other for lower
radial positions, probably because the differences between
their predicted spanwise velocity profiles are smaller.

Figure 10b presents the transition locations for Geome-
try 2. PSER and PSER 2D results are in close agreement.
This indicates that three-dimensional effects and rotation are
likely not very important for this blade. As discussed in
Sect. 4.4, the pressure gradient seems to be more important
than rotation effects in Geometry 2. PSER and PSER 2D
present slightly downstream transition locations when com-
pared to RANS. The PSEX transition locations are down-
stream of the PSER ones, possibly due to the weaker adverse
pressure gradient in the Cp distributions from XFOIL. The
transition delay due to increasing radius is less significant in
Geometry 2, probably because of the lower influence of ro-
tation effects.

The PSER contours of the N factor as a function of the
chordwise position and propagation angle 9 are shown in
Fig. 11. 9 is the angle between the inviscid streamline and
the perturbation wave vector (see Fig. 1). The dashed red
line indicates the transition location. Considering Geome-
try 1 in Fig. 11a–c, the region of criticalN factor is displaced

Figure 10. Transition locations.

in the −9 direction, and it is less symmetrical at the in-
ner radial location. The critical modes have 9 =−58, −24,
and −6◦ at r0/R = 0.26, 0.58, and 0.89, respectively. The
lower 9 =−58◦ at r0/R = 0.26 is possibly related to the
stronger and inflectional spanwise velocity occurring at this
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Figure 11.N -factor contours from PSER for three radial positions. The white line indicates the critical region, and the red dashed line shows
the transition location.

location, which makes transition more susceptible to oblique
and crossflow modes. Transition occurs significantly earlier
at this position (x1 = 0.23, compared to x1 = 0.34 and 0.37 at
r0/R = 0.58 and 0.89, respectively). The PSER 2D contours
of the N factor, shown in Fig. 12a–c, are more symmetri-
cal around 9 = 0◦, with the critical modes having lower |9|
(9 = 17, 5◦, and 4◦ for r0/R = 0.26, 0.58, and 0.89, respec-
tively). This shows that the oblique critical modes obtained
in the PSER results are caused by three-dimensionality and
rotation.

Figure 11d–f shows that the PSER critical regions are
more elongated in the9 direction for Geometry 2, indicating
transition susceptibility to a broader range of waves. The crit-
ical modes have 9 =−12, −16, and −12◦ for r0/R = 0.40,
0.58, and 0.89. These waves are less oblique than those for
Geometry 1, particularly at the inner radial location. No-
tice that the BL profiles of spanwise velocity at this location
(Fig. 7b) do not present an inflection point, making transi-
tion via lower |9| modes more likely. Regarding the PSER

2D results, in Fig. 12d–f, the regions of critical N factors are
more centered around 9 = 0◦, with the critical modes for
r0/R = 0.40, 0.58, and 0.89 presenting 9 = 0◦. This means
that disregarding 3D and rotation effects in the mean flow
leads to 2D critical modes for Geometry 2.

Figure 13a–c presents the profiles of the perturbation of
u1 velocity of the modes leading to transition in Geom-
etry 1. The PSER and PSEX modes are in close agree-
ment for the three radial positions, indicating that they pre-
dict the same transition mechanism. At r0/R = 0.26, these
modes have a single peak, located at x3/δ = 0.2, associated
with their high |9| and the inflectional spanwise velocity
(Fig. 6b). This indicates that transition may be triggered by
oblique TS or crossflow modes. The PSER 2D critical mode
differs from the previous ones by presenting a near-wall
peak, at x3/δ = 0.1, and having a second lobe for x3/δ > 0.7.
At r0/R = 0.58, the PSER and PSEX modes approach the
PSER 2D one by developing a near-wall peak, although less
important than the one at x3/δ = 0.2, and a second lobe for
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Figure 12. N -factor contours from PSER 2D for three radial positions. The white line indicates the critical region, and the red dashed line
shows the transition location.

x3/δ > 0.7. The PSER and PSEX modes finally converge to a
2D mode at r0/R = 0.89, where they are in close agreement
with the PSER 2D one. The latter is similar to a 2D TS wave,
as also observed for r0/R = 0.58. The appearance of near-
wall peaks in the PSER and PSEX modes at r0/R = 0.58
and 0.89 as well as the close agreement between these modes
and the PSER 2D ones at r0/R = 0.89 can be related to the
amplification of 2D TS waves due to an adverse pressure gra-
dient.

The results for Geometry 2 are presented in Fig. 13d–f. As
occurs for Geometry 1, the PSER and PSEX modes agree for
the three radial positions. They indicate double-peak modes,
with maxima at x3/δ = 0.1 and 0.2. The former has a larger
or similar magnitude compared to the latter. These modes are
close to the PSER 2D ones except around x3/δ = 0.2, where
the PSER and PSEX modes have more pronounced peaks.
The presence of a peak at x3/δ = 0.1 for all radial locations
is related to a strong adverse pressure gradient in Geome-
try 2. The second peak, at x3/δ = 0.2, seems to be associated

with the obliqueness of the mode, having a larger amplitude
for larger values of |9|. A 2D TS mechanism seems to be
more important in Geometry 2 because the critical modes are
closer to the PSER 2D ones, and the adverse pressure gra-
dient is stronger. However, a mechanism related to oblique
TS waves, engendered by 3D and rotation effects, appears to
be more important for transition in Geometry 1. This is due to
its larger sweep angle and region of favorable pressure gradi-
ent. Although the crossflow velocity profiles are inflectional,
the magnitude of this velocity component is very low, of the
order of 0.1 % of the freestream velocity, except for the inner
radial location of Geometry 1, where it reaches 3.5 %. Thus
excluding Geometry 1 at r0/R = 0.26, a crossflow transition
mechanism is unlikely. Nevertheless, the effect of the span-
wise velocity on transition cannot be neglected as it allows
transition through oblique modes.

In the following, we analyze the effects of rotation on the
transition locations. Figure 14a presents the PSEX transition
locations as a function of the radial position and rotation
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Figure 13. PSE results for the mode leading to transition.

Figure 14. Transition locations for several rotation speeds.

speed for Geometry 1. The displayed trend indicates that an
increase in the rotation speed shifts the transition location
closer to the nose. In particular, the rise in � from 0.32 to
0.96 rad s−1 leads to transition 37 % earlier. The case corre-
sponding to 5 % of the RANS rotation speed (not shown) did
not present any mode reaching Ncrit, further indicating the
destabilizing effect of rotation. These effects occur through
the Coriolis and centrifugal forces acting on the disturbances
as well as through the variation of the spanwise velocity. The
former seems to be preponderant since there is no significant
variation in the spanwise velocity with � at r0/R = 0.89,
but transition occurs earlier regardless. There is a delay in
transition for increasing radius up to r0/R = 0.47, where the
Coriolis force is prevalent. Further increases in radius do not
significantly change the transition locations, indicating a bal-
ance between the rotation effects. The presence of a laminar
separation bubble for radial positions closer to the root can
make the Coriolis force act in the same direction as the cen-
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Figure 15. N -factor contours from PSEX at r0/R = 0.58 for several rotation speeds. The white line indicates the critical region, and the red
dashed line shows the transition location.

trifugal one. For higher radial positions and in the absence of
separation, these two forces tend to balance each other.

Figure 14b portrays the results for Geometry 2. The in-
crease in � plays a destabilizing role. This observation is
supported by the fact that the case with 5 % of the RANS ro-
tation speed (not shown) presented no mode reaching Ncrit.
However, the variation of� does not play a role as important
as for Geometry 1. For instance, transition occurs 8 % earlier
on average for an increase in � from 0.45 to 1.35 rad s−1.
The transition location moves less with the rotation speed for
Geometry 2 because this blade maintains a non-negligible
pressure gradient over a larger chordwise extent, overtaking
rotation effects. The fact that the spanwise velocity in Geom-
etry 2 varies more with � than in Geometry 1 with a smaller
effect on transition corroborates this claim. Transition is de-
layed when increasing the radius up to r0/R = 0.58, a range
along which the Coriolis force is dominant. Only slight vari-
ations in transition locations occur after this radial position,
pointing to a balance in the rotation effects.

The PSEX contours of the N factor at r0/R = 0.58 for ge-
ometries 1 and 2 are shown in Fig. 15. In the case of Geom-
etry 1, as shown in Fig. 15a–c, the increase in � forces the
critical region towards lower x1. This region lies mostly in
the−9 half plane, meaning that the critical waves propagate
towards the root of the blade. These modes present9 =−25,
−24◦, and −25◦ for �= 0.32, 0.64, and 0.96 rad s−1. For
Geometry 2, in Fig. 15d–f, we also observe the displace-
ment of the critical region to lower x1 with the increase in�.
Moreover, the flat critical region extending from 9 =−60
to 40◦ obtained with �= 1.35 rad s−1 shows that the higher
rotation velocity allows transition through a broader range
of disturbances. The critical regions are mostly located in
the −9 half plane, indicating stronger transition suscepti-
bility to waves traveling to the inner blade part. The criti-
cal modes present 9 =−16, −15, and −13◦ for �= 0.45,
0.9, and 1.35 rad s−1. The analysis of the full geometry indi-
cates that the increase in � reduces the critical |9| in the re-
gion 0≤ r0/R ≤ r , where r = 0.58 and 0.5 for geometries 1
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Figure 16. PSEX results for the mode leading to transition for several rotation speeds.

and 2. For larger r , the opposite occurs, i.e., rising� leads to
increasingly oblique critical modes.

Figure 16a–c shows the PSEX profiles of the critical
modes for Geometry 1. All modes collapse at the inner ra-
dial location, indicating that � does not alter the transition
mechanism. The inflectional spanwise velocity profiles at
this location (Fig. 8a and d) seem to render the transition
mechanism, through oblique modes, quite robust to changes
in �. At r0/R = 0.58 and 0.89, the modes for �= 0.64 and
0.96 rad s−1 are in close agreement. However, the mode for
�= 0.32 rad s−1 differs from the previous ones by the pres-
ence of a near-wall peak. As already discussed, the mode
shapes are closely related to their propagation angles, with
higher-|9|modes occurring at locations of inflectional span-
wise velocity and tending to have a single peak like those
at r0/R = 0.26. Figure 16d–f shows the results for Geom-
etry 2. At r0/R = 0.40, the increase in � reduces |9| and
makes double-peak modes such as those for �= 0.45 and

0.9 rad s−1 become a 2D, single-peak mode like the one for
�= 1.35 rad s−1. At r0/R = 0.58, all modes collapse and
present double peaks. At the outer radial location, the mode
for�= 0.45 rad s−1 is nearly 2D, and the rise in� increases
its obliqueness (i.e., increases |9|). The modes for higher
� are in close agreement at this location. In Geometry 2, the
adverse pressure gradient is more important, and transition is
more susceptible to modes closer to 2D TS waves with near-
wall peaks. The increase in the rotation tends to prompt these
2D modes at low radial locations, while it makes the critical
modes more oblique at higher radii.

5 Conclusions

A framework for transition prediction applicable to flows
over wind-turbine blades is developed. The method, which
comprises a boundary-layer model and the PSE, accounts for
effects of the quasi-three-dimensional flow and the blade ro-
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tation. It aims to provide more reliable transition predictions
without requiring three-dimensional simulations. Using the
developed method, we have analyzed the role of flow three-
dimensionality and rotation on the transition onset over two
geometries.

The developed method provides accurate chordwise veloc-
ity profiles and, for locations not too close to the root of the
blade and stagnation point, spanwise velocity. The flow is
highly three-dimensional close to the root of the blade, re-
ducing the accuracy of a quasi-three-dimensional approach.
The spanwise velocity obtained with the model better agrees
with RANS for geometries respecting the conical-wing ap-
proximation. Some of the spanwise velocity profiles contain
inflection points, which may allow crossflow instability, not
considered in two-dimensional transition models. Rotation
was shown to accelerate the flow towards the tip of the blade
in the developed flow region, while the opposite occurs near
the stagnation point.

Transition locations from the eN method implemented in
the EllipSys3D RANS code closely agree with those from
the PSE analysis of a 2D mean flow without rotation. RANS
transition locations are close to those from the model devel-
oped in this work in places where 3D and rotation effects
are low. This occurs for Geometry 2 and higher radial po-
sitions in Geometry 1. However, results of the RANS tran-
sition model and the 2D approach deviate from those from
the new approach for locations from the root to approxi-
mately 58 % of the radius of Geometry 1, where 3D and ro-
tation effects are important. At these locations, the combined
influence of three-dimensionality and rotation leads to ear-
lier transition onsets. These effects make the transition occur
through oblique modes, which have single peaks and are not
predicted with the 2D approach. The oblique modes appear in
locations where the spanwise velocity profile is inflectional,
raising the possibility of being related to crossflow instabil-
ity. However, except for the inner radial location of Geome-
try 1, the magnitude of the crossflow velocity seems to be too
low to trigger crossflow transition. The single-peak modes
may be very oblique TS waves. For larger radial positions,
the flow tends to be more two-dimensional, and the adverse
pressure gradient is more important. Thus the critical modes
become less oblique and develop features of 2D TS waves,
such as a second peak near the wall. Finally, it is also shown
that the increase in the rotation speed, through the modifica-
tion of the spanwise velocity and the increase in the Coriolis
and centrifugal forces, seems to shift the transition location
closer to the leading edge.

In order to better understand the transition process over the
rotating blades and validate the prediction of the presented
approach, in-depth investigation through DNS simulations
and detailed experimental works are desired.
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