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Abstract. Methods of turbine wake modeling are being developed to more accurately account for spatially vari-
ant atmospheric conditions within wind farms. Most current wake modeling utilities are designed to apply a uni-
form flow field to the entire domain of a wind farm. When this method is used, the accuracy of power prediction
and wind farm controls can be compromised depending on the flow-field characteristics of a particular area. In an
effort to improve strategies of wind farm wake modeling and power prediction, FLOw Redirection and Induction
in Steady State (FLORIS) was developed to implement sophisticated methods of atmospheric characterization
and power output calculation. In this paper, we describe an adapted FLORIS model that features spatial het-
erogeneity in flow-field characterization. This model approximates an observed flow field by interpolating from
a set of atmospheric measurements that represent local weather conditions. The objective of this method is to
capture heterogeneous atmospheric effects caused by site-specific terrain features, without explicitly modeling
the geometry of the wind farm terrain. The implemented adaptations were validated by comparing the simulated
power predictions generated from FLORIS to the actual recorded wind farm output from the supervisory control
and data acquisition (SCADA) recordings and large eddy simulations (LESs). When comparing the performance
of the proposed heterogeneous model to homogeneous FLORIS simulations, the results show a 14.6 % decrease
for mean absolute error (MAE) in wind farm power output predictions for cases using wind farm SCADA data
and a 18.9 % decrease in LES case studies. The results of these studies also indicate that the efficacy of the
proposed modeling techniques may vary with differing site-specific operational conditions. This work quantifies
the accuracy of wind plant power predictions under heterogeneous flow conditions and establishes best practices
for atmospheric surveying for wake modeling.

1 Introduction

Low-fidelity wake modeling utilities such as FLOw Redi-
rection and Induction in Steady State (FLORIS) are typi-
cally used for the estimation of wind farm power output
or the implementation of wind farm controls that help im-
prove the overall performance of a wind farm. This includes
implementing real-time corrective strategies that aid in re-
ducing stress-inducing loads on turbines (Boersma et al.,
2017), avoiding operational side effects like noise pollution
(Leloudas et al., 2007) or shadow flicker (Clarke, 1991), and
maximizing power output through methods of wake steer-
ing and power grid optimization (Fleming et al., 2017b).

FLORIS, and most other control-oriented wake modeling
utilities, implement advanced wake modeling algorithms that
are capable of producing accurate results in a uniform set of
atmospheric conditions (Fleming et al., 2019). However, the
accuracy of any wake model is highly dependent on its ability
to recreate the characteristics present. It is important for these
models to be able to emulate the naturally occurring state
of the wind farm as closely as possible for the controls pro-
cesses and power prediction functionalities to operate with
reliable accuracy. Most current control-oriented wake mod-
eling utilities use a homogeneous approximation to charac-
terize the initial state of the atmosphere, which can introduce
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major inaccuracies in the simulation of wind-farm–flow in-
teractions.

The consequences are particularly evident when observ-
ing the accuracy of power predictions for wind farms lo-
cated within complex terrain or wind farms that are other-
wise subject to spatially variant conditions in the atmosphere.
Because these atmospheres are subject to dramatic changes
in the velocity and direction of wind, it is difficult to antic-
ipate how the resulting wakes will form and what kind of
power output should be expected. In Yang et al. (2019), an
analysis of the impact of spatial heterogeneity in wind farm
flow is presented for a site within complex terrain. This study
showed that using averaged values of wind conditions caused
short-term wind power forecasting to be less accurate, due to
spatial heterogeneity within the wind field and the variability
of wind turbine power curves. With these effects considered,
the current version of FLORIS and many other wake model
utilities are not constructed to accurately model fluid flow
under these conditions.

It should be noted that there are existing wake models that
incorporate elements of heterogeneous wake effects caused
by varying atmospheric conditions. For example, one model
presented in You et al. (2016) takes a statistical approach in
representing heterogeneous power deficit caused by wind-
farm–flow interactions in spatially variant weather condi-
tions. Another method discussed in Shao et al. (2019) pro-
poses an interaction model used for calculating the turbu-
lence intensity of overlapping wakes and represents the rel-
ative positions of wind turbines under arbitrary and vary-
ing wind direction conditions. Brogna et al. (2020) presents
a technique that superimposes the centerlines of wind tur-
bine wakes in complex terrain by following the streamlines
of the background flow field. Clustering methods have also
been implemented, such as Katic et al. (1986) and Clifton
and Lundquist (2012), where the turbines of a wind farm are
sectioned into groups, assigning differing atmospheric char-
acteristics to each cluster of turbines to mimic the heteroge-
neous conditions observed in natural atmospheres. Addition-
ally, many approaches implement data-driven wake model
correction parameters to achieve more accurate solutions,
such as those proposed by Schreiber et al. (2019), Shapiro
et al. (2019), Howland et al. (2020), and Teng and Markfort
(2020).

The aforementioned models present many methods for ap-
proximating farm–flow interaction in heterogeneous condi-
tions. As a contribution to this area of research, this article
will present a modified version of FLORIS that features an
advantageous capability in modeling wind farms with spa-
tially variant weather conditions and complex terrain. This
adapted version of FLORIS presents several novel develop-
ments within the scope of control-oriented wake modeling
research: an interpolation algorithm is implemented, which
allows the user to define a gradient of atmospheric charac-
teristics across the flow field, based on several measurements
within or adjacent to the wind farm; elements of spatially

variant wind direction, wind speed, and turbulence inten-
sity are integrated into wake calculations of the preexisting
FLORIS model; and an additional method is introduced to
minimize error in power prediction accuracy caused by high-
turbulence intensity and wind speed variance.

The objective in developing this proposed model is to cap-
ture a more accurate representation of the effects of wind
farm wake interactions within complex terrain without actu-
ally resolving any terrain geometry during simulation. This
study aims to analyze the accuracy of power output pre-
dictions and wake modeling performance for the proposed
wake model, through comparisons to large eddy simulation
(LES) wind farm supervisory control and data acquisition
(SCADA) records.

2 Existing FLORIS model

FLORIS (NREL, 2020) is a wake modeling utility that is
equipped with tools designed for the control and optimiza-
tion of wind farms and is being developed at the National
Renewable Energy Laboratory (NREL) in collaboration with
Delft University of Technology. This tool uses several com-
putational modeling techniques paired with controls algo-
rithms to approximate and optimize wind turbine wake in-
teractions through integration of real-time supervisory con-
trol and data acquisition (SCADA) data recorded from wind
farms. FLORIS implements the concept of steady-state av-
eraging to simulate the observed dynamic behavior within a
wind farm for each iteration in time and can also be used
as a simulation tool to compute farm–flow interactions in
wind farms under user-defined atmospheric conditions. This
section will give an overview of the mathematical theory in
which the formulations of the wake models of FLORIS were
based. These concepts are also explained in greater detail in
Annoni et al. (2018) and Hamilton et al. (2020).

2.1 Turbine power output model

The operation and performance of a turbine is modeled with
respect to the relationship between the thrust coefficient, CT,
and power coefficient, CP. The dependence between these
two terms characterizes a turbine’s power output and wake
propagation, therefore making the understanding of this re-
lationship fundamental to the design and operation of wind
farm controls. To model the performance behaviors of a
given turbine, a table is constructed inside of FLORIS that
tabulates CT and CP with respect to wind speed. This table
can be set to a user’s self-obtained data, generated indepen-
dently by NREL’s FAST (Jonkman and Buhl, 2005) or by
integrating CCBlade (Ning, 2013) with FLORIS. The rela-
tionship between CT and CP can also be defined through
the concept of actuator disk theory. This theory relates the
turbine power output and thrust through the axial induction
factor, a, which can be calculated using the definitions from
Burton et al. (2002) and Bastankhah and Porté-Agel (2016):
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CP = 4a(1− a)2, (1)
CT = 4a(1− a). (2)

From these values, the power can then be calculated for tur-
bines under steady-state and yaw-misalignment conditions,
using the following relationship provided by Burton et al.
(2002):

P =
1
2
ρACPu

3cosp(γ ), (3)

where ρ is the air density, A is the rotor-swept area, u is the
rotor-averaged wind speed, and p is a tuneable parameter that
accounts for the power losses due to yaw misalignment seen
in simulations (Burton et al., 2002; Fleming et al., 2017a).
Thus far, the turbine model discussed in this section does
not consider the effects that turbulence may have on the re-
lationship between power output and wind speed. However,
Sheinman and Rosen (1992) analyze the effects of turbulence
intensity on wind farm power output. In this study, it is shown
that turbine power output can be overestimated by more than
10 % if turbulence intensity is not considered. Many empir-
ical and machine-learning methods have been proposed to
solve this issue. However, a nonparametric statistical aver-
aging model may be preferred, such as the model developed
in Hedevang (2014). In Sect. 3.5, a new method of imple-
menting a turbulence-dependent correction to power will be
discussed for FLORIS applications.

2.2 Velocity deficit

FLORIS provides an option to select particular models for
wake velocity deficit and wake deflection separately to suit
the user’s performance needs. The variety in modeling capa-
bilities reflects a range of trade-offs between computational
efficiency and the number of detailed physics applications
applied to calculations. If a model is more computationally
expensive, it is likely to implement more sophisticated al-
gorithms as well, in hopes of achieving a more accurate re-
sult. These models all have a different approach to modeling
turbine wake interactions and offer different strengths and
weaknesses in functionality. Most models can be classified
as either a velocity deficit or a wake deflection calculation,
but there are also the Gaussian and Curl models that incor-
porate both calculations and extend further into the overall
FLORIS wake modeling structure and control tools. For the
purposes of this article, only the Gaussian wake model will
be explained in depth. See Annoni et al. (2018), Martínez-
Tossas et al. (2019), and Bay et al. (2019) for details on ad-
ditional models in FLORIS.

2.3 Gaussian wake

The Gaussian wake model is comprised from a series
of papers, including Bastankhah and Porté-Agel (2014),

Bastankhah and Porté-Agel (2016), Abkar and Porté-Agel
(2015), Niayifar and Porté-Agel (2015), and Dilip and Porté-
Agel (2017). This model is a method of calculation that is
integrated into the structure of all FLORIS wake modeling
and control tools. It integrates the concepts of the Bastankhah
and Porté-Agel wake deflection model, the self-similar ve-
locity deficit model, and elements of atmospheric stability
into one comprehensive method based off of the concept of
a Gaussian wake (Pope, 2000). This section will describe the
different concepts that are implemented in this model.

2.3.1 Self-similar velocity deficit

The Gaussian model computes the streamwise velocity
deficit at any point in a turbine’s wake by using analytical
formulations of Reynolds-averaged Navier–Stokes (RANS)
equations to an assumed Gaussian wake profile. The Gaus-
sian wake is based on the self-similarity theory used for
free shear flows (Pope, 2000) and is developed under the as-
sumption of no pressure gradients within the initial undis-
turbed free-stream flow and uniform flat terrain (Bastankhah
and Porté-Agel, 2014). To calculate the velocity deficit,
u(x,y,z), behind the rotor of a turbine,

u(x,y,z)= U∞

(
1−C

[
exp

(
−(y− δ)2/2σ 2

y

)
· exp

(
−(z− zh)2/2σ 2

z

)])

C = 1−

√
1−

(σy0σz0)C0(2−C0)
σyσz

C0 = 1−
√

1−CT, (4)

where U∞ is the freestream velocity; x, y, and z represent
the spatial coordinates in the streamwise, spanwise, and ver-
tical directions, respectively; and zh is the turbine hub height.
C is the velocity deficit at the wake center; δ represents the
wake deflection computed with equations from Bastankhah
and Porté-Agel (2016); and σ denotes the wake width in the
lateral (y) and vertical (z) directions. The subscript “0” ref-
erences a term’s initial value at the start of the far wake.

The wake width in the y and z directions, σy and σz, is
determined by the thrust coefficient, CT, and the wake ex-
pansion rate, which is parameterized by ky and kz:

σz

D
= kz

(x− x0)
D

+
σz0

D
,

where
σz0

D
=

1
2

√
uR

U∞+ u0
, (5)

σy

D
= ky

(x− x0)
D

+
σy0

D
,

where
σy0

D
=
σz0

D
cosγ, (6)

where D is the rotor diameter, uR is the velocity at the ro-
tor, γ denotes the turbine’s yaw offset, and u0 represents the
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maximum velocity deficit in the wake. Parameters ky and kz
are dependent on the value the ambient turbulence intensity,
I0, as noted in Eq. (8).

The findings of Abkar and Porté-Agel (2015) demonstrate
that ky and kz grow at different rates, but in order to simplify
the model, ky and kz are usually set as equal. The total veloc-
ity deficit at any point in the domain of fluid flow can then be
calculated by combining the wakes using the sum-of-squares
method described in Katic et al. (1986).

In the scope of this study, it is important to note that the in-
troduction of spatial heterogeneity in initial wind conditions
(which is a key principle in the proposed model) violates the
original assumption of no pressure gradient for the derivation
of the Gaussian wake model. Although this limits the model’s
ability to conserve key principles that govern the physical
dynamics of fluid flow, the results of this study show that
the measured improvements in model accuracy outweigh the
consequences of incomplete conservation. In Brogna et al.
(2020), a modified Gaussian wake model is implemented to
simulate wind farms in complex terrain, but the spatial U∞
evolution is considered only in the superposition of wakes
and is omitted for the calculation of the velocity itself. The
benefits of an approach similar to this could be investigated
in future FLORIS developments to improve overall momen-
tum conservation for the heterogeneous model.

2.3.2 Atmospheric stability

The Gaussian model also implements methods proposed by
Abkar and Porté-Agel (2015) and Niayifar and Porté-Agel
(2015), which characterize the effects of atmospheric stabil-
ity by analyzing the levels of veer, shear, and changes to tur-
bulence intensity in the fluid flow. Stull (2012) discusses that
an accurate representation of atmospheric stability requires
the measurement of many other variables in the atmosphere;
but without detailed recordings of elements such as temper-
ature profiles and vertical flux, the three chosen parameters
are able to give a rough idea of the state of the atmosphere in
the FLORIS model.

To implement the effects of shear, αs, the power-log law of
wind is used to define the initial wind speed in the flow field,
Uinit:

Uinit

U∞
=

(
z

zh

)αs

, (7)

where a high shear coefficient (αs > 0.2) is indicative of sta-
ble atmospheric conditions, and a low shear coefficient (αs <

0.2) characterizes an unstable atmosphere (Stull, 2012).
The Gaussian model was designed to avoid the inaccura-

cies caused by neglecting the effects of turbulence intensity
by implementing methods introduced by Niayifar and Porté-
Agel (2015). This also includes added turbulence caused by
nearby turbine operation to more accurately calculate the rate
of wake expansion. Many other linear-flow models use a con-
stant parameter that defines the rate of wake expansion and

has no dependency on the operating conditions of the turbine
(Jensen, 1983). From the concepts of Niayifar and Porté-
Agel (2015), the Gaussian model relates the rate of wake
expansion in the lateral and vertical directions directly to
the ambient turbulence intensity present at a turbine and two
tuned parameters, ka = 0.38371 and kb = 0.003678:

ky = kz = kaI + kb. (8)

The turbulence intensity, I , is calculated by superimposing
the initial ambient turbulence intensity (I0) with the sum of
the added turbulence caused by the operation of each influ-
encing upstream turbine, j and I+j . The following relation-
ship is used in FLORIS to calculate the ambient turbulence
intensity at a given turbine with respect to neighboring tur-
bine wakes:

I =

√√√√ N∑
j=0

(
I+j

)2
+ I 2

0 . (9)

N refers to the number of upstream turbines that create a
wake that adds to the ambient turbulence intensity at a down-
stream turbine’s location. In Niayifar and Porté-Agel (2015),
this number was assumed to be one, and the closest turbine
was only taken into account because it would theoretically
give the maximum amount of added turbulence. In the Gaus-
sian model used in FLORIS, all turbines within a distance
of 15D upstream and 2D in the spanwise (y) direction are
included. Although the saturation effects of turbulence are
not yet fully understood in this context, this formulation was
shown to be a more accurate method of calculating added
turbulence intensity in the findings Chamorro and Porté-Agel
(2011), which found that turbulence intensity typically accu-
mulates over two to three turbine rows but then levels off to
an equilibrium at this point.

Based on the original definition proposed in Crespo and
Hernández (1996), the following expression in Eq. (10) has
been tuned through comparisons to high-fidelity computa-
tional fluid dynamics (CFD) simulations (King et al., 2020b)
and several field studies (Fleming et al., 2019, 2020b) to ac-
curately calculate the added turbulence due to upstream tur-
bine j :

I+j = Aoverlap

(
0.5a0.8

j I 0.1
0 (x/Dj )−0.32

)
, (10)

where Dj denotes the diameter of turbine j , and Aoverlap
refers to the fraction of the rotor-swept area of the down-
stream turbine that intersects with the cross-sectional area of
the wake from the upstream turbine. The axial induction fac-
tor, aj , is evaluated based on the value of CT, as defined in
Burton et al. (2002) and Bastankhah and Porté-Agel (2016).

As noted earlier, the Gaussian wake model was developed
under the assumption of flat terrain. Since the heterogeneous
model was specifically designed to best benefit wind farms
located in complex terrain, it is important to know the con-
sequences of violating this assumption. In Fleming et al.
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(2020b), a field study is presented that focuses on analyzing
the performance of the tuned parameters in Eq. 10, by com-
paring two campaigns located in comparatively simple and
complex terrains. The findings of this study indicate that in-
accurate tuning of the tuned variables may worsen FLORIS’s
typical tendency to underpredict wake losses in areas with
complex terrain.

3 Changes to the FLORIS model

Previously, FLORIS derived the initial wind speed, wind di-
rection, and turbulence intensity by using one value to repre-
sent the entire flow-field domain. In this article, we describe
the modifications to FLORIS to accommodate heterogeneous
flows. This section will explain the methods used to calcu-
late wakes based on the gradient of values observed in the
undisturbed flow field without wake effects. The motivation
behind this development was to create a more detailed char-
acterization of the initial state of the atmosphere, which leads
to improvements in the power predictions of a wind farm.

3.1 Initializing the heterogeneous flow field

To implement heterogeneity in FLORIS, an interpolation is
performed based on several input values assigned to spa-
tially varying coordinates inside or adjacent to the wind farm
(see Fig. 2a). These initial inputs are used to approximate
the value of atmospheric characteristics at the location of ev-
ery turbine within the wind farm and at each individual grid
point of the FLORIS flow field. FLORIS performs methods
of interpolation and extrapolation using software packages
provided by SciPy: an open-source scientific computing li-
brary for the Python programming language (Virtanen et al.,
2020). The packages used in this method include a piecewise
linear interpolant and a nearest-neighbor interpolant, which
are combined to create an algorithm that calculates a unique
value for each x and y coordinate within the flow field. Fig-
ure 1 shows a pseudo-code diagram of this process for refer-
ence.

The process begins with implementing a piecewise linear
interpolation method for all points within the region defined
by the input coordinates. First, Delaunay triangulation is per-
formed using the Quickhull algorithm discussed in Barber
et al. (1996). This method forms triangular connections be-
tween input points, based on their relative coordinates, and
defines each triangle by ensuring its circumcircle remains
empty. The result of this triangulation generates a mesh of
triangular elements called a simplicial complex. Further de-
tails on the concept of Delaunay triangulation are explained
in depth in Shewchuk (1999) and Barber et al. (1996).

The next step in determining the interpolated values is to
use the established triangular elements to perform barycen-
tric interpolation. During this step, the barycentric coordi-
nates of each point of interest are determined relative to the
triangular element in which it resides. Based on each set

Figure 1. A diagram representing the processes performed during
the initialization of the heterogeneous FLORIS model.

of barycentric coordinates, the interpolated result is calcu-
lated using a weighted average of the values defined at the
triangle’s vertices (Floater, 2015). A visual depiction of the
methods utilized in this piecewise interpolation method (De-
launay triangulation and barycentric interpolation) is shown
in Fig. 2b. After these processes are complete, FLORIS as-
signs the interpolated values to each flow-field grid point
and turbine location inside the triangulated region bounded
by the input coordinates. Any points that fall outside of this
region must be determined through additional extrapolation
processes.

Linear barycentric interpolation was chosen be imple-
mented for this step because it is relatively efficient in com-
putation and can be easily implemented without requiring
any input parameters other than the locations and values of
wind measurements. Although, it must be noted that the ac-
curacy of the interpolated values is dependent on the qual-
ity of input measurements provided, the complexity of the
terrain geometry, and the weather patterns observed in the
physical wind farm.

The extrapolation process implements a nearest-neighbor
interpolant to calculate all remaining unknown values. Using
the recently interpolated point values in addition to the orig-
inal input values, this method operates by selecting a single
value at the nearest location to the point being extrapolated
and assigning this nearest value to the extrapolated point. A
visualization of this calculation is depicted in Fig. 3.

The nearest-neighbor extrapolation method was chosen
because it defines a feasible relationship between input mea-
surements and does not attempt to extrapolate using a for-
mula derived from a curve-fitting or trend-predictive algo-
rithm. Many other extrapolation methods attempt to predict
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Figure 2. A visual depiction of the methods used to interpolate and define atmospheric characterization values at specific points within the
input coordinates.

Figure 3. The extrapolation process used to define the remaining values for characterization of the initial state of fluid flow.

a rate of change outward of the interpolation domain by im-
plementing a function that approximates a predicted progres-
sion of extrapolated values. For example, it was found that
the analytic continuation of radial basis functions (RBFs)
and fitted polynomial splines outside of the initial domain
often produced a non-feasible output that did not respect the
physical limitations of the atmospheric characteristic being
extrapolated. Although it was speculated that these methods
could likely be adjusted with tuning factors to fit extrapolated
data within feasible bounds, efforts to do this were not ex-
plored in this study. Instead, the nearest-neighbor algorithm
was chosen to simplify implementation of realistic extrapo-
lation within the model.

When solving for the interpolated and extrapolated val-
ues for turbulence intensity and wind speed, values are eas-
ily computed because they are defined by values on a non-
cyclical scale. Because wind direction is represented using
angles in degrees, the interpolation and extrapolation meth-
ods must be circular. The issue of interpolating circular data

was addressed by simply computing the interpolation twice
for each angle of wind direction,8: once for the cosine com-
ponent, α, and again for the sine component, β. The wind
direction in a wind farm, 8, can be defined as

8= arctan2
(
β

α

)
, (11)

where α = cos8 and β = sin8. After 8 is computed, the
wind direction interpolation can then be defined for the entire
wind farm.

It should be noted that the vertical (z) dimension is not
considered when interpolating and extrapolating from the at-
mospheric inputs. Instead, all input values are assumed to be
at the same z location, and the interpolation is performed on a
two-dimensional plane at this height. Although this approx-
imation may result in a less accurate result, this approach
allows the interpolation and extrapolation algorithm to oper-
ate with less computational cost. Differences in wind speed
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due to variations in turbine hub height are calculated using
the power law in Eq. (7), as described in Sect. 3.2.

3.2 Heterogeneous wind speed

Before FLORIS performs any calculations for velocity deficit
in wakes, it first assigns an initial value of wind speed (U )
to each grid point in the flow-field grid. In a homogeneous
case, these grid points would all have the same value across
an x–y plane, but in a heterogeneous case, these grid points
all have different values, dependent on the initial values that
have already been established through interpolation. After U
is defined at each grid point, the wind speed values at each
x, y, and z coordinate in the flow-field domain are defined
as Uinit, calculated using the power law in Eq. (7). From this
point, the calculation of wakes proceeds in the same way as
the homogeneous cases, with the exception of a more com-
plex algorithm for accounting for changes in wind direction,
as explained in Sect. 3.3. The velocity deficit behind each
turbine is calculated by applying Eq. (4) from Sect. 2.3.1,
where the free-stream velocity (U∞) in Eq. (4) is defined as
the local Uinit values at each flow-field grid point. Figure 4
shows visualizations of the resulting wakes after subtracting
the calculated velocity deficit from the initial free-stream ve-
locity at each flow-field grid point.

3.3 Heterogeneous wind direction

Similar to wind speed, an interpolation of wind direction is
initially established across the flow-field grid through the
methods of interpolation discussed in Sect. 3.1. The input
values of wind direction are defined so that 270◦ represents
wind movement from west to east (see Fig. 5a), and then once
FLORIS begins computations with these wind directions the
values are converted so that 0◦ represents the wind traveling
from west to east (see Fig. 5b). Using these wind direction
values, the turbine coordinates are rotated about the center
of the simulation domain at these angles, as exemplified in
Fig. 5b.

Using the rotated turbine map shown in Fig. 5b for refer-
ence, the flow field is adjusted to calculate each turbine wake
independently, starting with the turbine that is the furthest
upstream. To initiate the rotation of the flow-field grid, the
grid points are rotated to the angle that is defined at the given
turbine. This initial step is exemplified in Fig. 6 for the cal-
culation of the velocity deficit behind turbine T6 only, but
this will also be repeated for each turbine in the entire wind
farm. This step is necessary to put the original non-rotated
grid points in a frame of reference relative to the each spe-
cific turbine as their particular wake is calculated.

Next, to calculate the velocity deficit caused by each tur-
bine’s wake, all of the grid points in the flow field are rotated
to replicate the effects of changing wind direction. These ro-
tated grid points represent the redirection of the flow in re-
sponse to changing wind direction within the flow field (see

Fig. 7a). Once the velocity deficit has been calculated using
the rotated grid points, the points are rotated back to their
original positions in the flow field. Figure 7b shows the prod-
uct of the final step, where the calculated velocity deficit is
subtracted from the initial free-stream velocity at each flow-
field grid point to reveal the resulting shape of the wake.

As discussed in Sect. 2.2, there is a minor computational
expense in simulating the flow field independently for each
turbine in the wind farm. This is because FLORIS determines
a unique set of rotated grid points relative to the wind di-
rection and coordinates of each turbine separately. The grid
spacing in the streamwise (x) direction relative to the direc-
tion of flow is kept uniform throughout each iteration of the
rotated grid, but the spanwise (y) spacing is adjusted with
respect to the local wind direction inside the flow field. This
allows the model to replicate a gradual change in wind direc-
tion throughout the flow field. The resulting flow-field wake
calculation is shown in Fig. 8.

The grid point spacing in the x direction must be kept con-
stant to avoid elongation or distortion of wake propagation
and placement. Because the grid spacing in the y direction
is not kept uniform, it must be noted that this capability of
emulating a gradual change in wind direction may prevent
the model from conserving momentum in some situations.
Methods of enforcing uniform spacing in the y direction for
each individual turbine wake have been developed but are not
currently implemented because doing so limits the model’s
ability to create a gradient of wind directions within the flow
field. In future work, methods of enforcing momentum con-
servation in this algorithm will be further investigated.

To further exemplify the applications of this functional-
ity, Fig. 9 shows a more complex simulation of non-constant
heterogeneous wind direction simulation in an irregularly
spaced wind farm. The steps that FLORIS performs to eval-
uate this flow condition are identical to the ones displayed
in Figs. 5–7, except it is personalized to the more complex
variations of the depicted state of flow.

It is important to consider that this model was not designed
to calculate the effects of changes in wind direction that are
extremely dynamic. A change in wind direction that is too
drastic will cause grid points in the rotated flow-field grid
(the red points shown in Fig. 7a) to overlap each other within
the same coordinate system, which may result in erroneous
assignment of velocity deficit to these overlapped points. The
limiting amount of wind direction change for the heteroge-
neous model is therefore the amount that causes the flow-
field grid points to overlap in this manner. This limit must
be determined for each wind farm independently, since it is
dependent on the site-specific layout geometry and wind con-
ditions of each case.

Although it may be possible for the wind direction within
a wind farm to change this drastically, these conditions often
involve multiple adjacent domains of flow that are separated
by a boundary, which are difficult to represent in this model.
These weather conditions are also most often observed in in-
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Figure 4. Visualizations of two planes showing the FLORIS flow field during a simulation with heterogeneous wind speed.

Figure 5. A depiction of the initial processes before the calculation of wakes. Panel (a) shows the result of wind direction interpolation, and
panel (b) shows the process used to define the location of the rotated turbine map. The turbines will be referred to individually as T1, T2, T3,
T4, T5, and T6, as defined in panel (a).

stances of lower wind speeds and therefore can be considered
not as lucrative in regards to power production. Plans for fu-
ture developments to FLORIS involve designing a more in-
clusive model that is capable of mitigating issues concerning
rapid changes in wind direction.

3.4 Heterogeneous turbulence intensity

The geographic distribution of turbulence intensity is estab-
lished for the initial state of the flow field through the interpo-
lation methods discussed in Sect. 3.1. This strategy of defin-
ing a more detailed variation of turbulence intensity in the

flow field makes the approximation of wake dissipation and
deflection more accurate, therefore improving the estimation
of the effect of nearby turbine operation within a wind farm.
The implementation of heterogeneous turbulence intensity
and heterogeneous wind speed are similar, in that the initial
heterogeneous conditions are established throughout the flow
field by interpolating from the input values, and then waked
conditions are updated throughout FLORIS computations of
flow-field interactions. During the calculation of wakes, the
ambient turbulence intensity that is initially defined at each
turbine location is continuously recalculated to account for
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Figure 6. Depiction of the process performed in FLORIS to align the flow-field grid with the location and wind direction of turbine T6 (as
defined in Fig. 5a).

Figure 7. Visualizations of FLORIS calculating velocity deficit turbine T6 in conditions of heterogeneous wind direction. The velocity
deficit is calculated using the grid points in the fully rotated position (a) and then applied to the free-stream velocity defined at the grid points
in their original non-rotated location (b).

Figure 8. Visualization of a flow field with heterogeneous wind
direction. Turbine rotors are indicated by black lines.

Figure 9. A second visualization of a flow field with more complex
heterogeneous wind direction. Wind input measurements are indi-
cated using diamond markers, and turbine rotors are shown with
black lines.
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Figure 10. Visualization of a flow field with heterogeneous turbulence intensity. The turbines that experience higher turbulence intensity
show a faster rate of wake recovery, and vice versa. Turbine rotors are indicated by black lines.

added turbulence intensity resulting from turbine wakes up
to 15D upstream, as previously discussed in Sect. 2.3.2 and
in Niayifar and Porté-Agel (2015). A horizontal plane of a
FLORIS simulation featuring heterogeneous turbulence in-
tensity can be observed in Fig. 10.

It is important to note that in the interest of conserving
computational efficiency, calculations for evaluating the rate
of wake expansion and recovery are only dependent on the
updated turbulence intensity at the location of the turbine cre-
ating the wake.

3.5 Turbulence correction

In addition to the heterogeneous features, developments were
also made to reduce inaccuracies in power output predictions
caused by turbulent operating conditions. As mentioned in
Sect. 2.1, the accuracy of the zero-turbulence power curve is
compromised in conditions of varying turbulence intensity.
The revised power calculation, presented in this section, in-
cludes a parameter that approximates the effect of turbulence
intensity on the power output of a turbine in a wind farm.

Specifically, this approach adjusts the power output with
respect to the level of turbulence intensity at a turbine. The
adjusted power is calculated by using distribution of the wind
speed fluctuations at the turbine, based on calculations that
consider the original wind speed and the standard devia-
tion in wind speed. The first step in this algorithm is to cre-
ate a normalized probability density function, f (x), of wind
speeds, x, evenly distributed within the domain of 1 standard
deviation from the mean wind speed, µ. The standard devia-
tion, σ , is determined by multiplying the turbulence intensity
at the turbine by the mean wind speed, µ. Wind speeds that
are greater than the cutout wind speed are omitted.

The value of the power coefficient, CP, in the power table
is also determined at each wind speed, xi , and at the original
wind speed (µ). The ratio of the adjusted power (Padj) to the
original value of power (P0) is referred to as the turbulence
parameter, 3. The turbulence parameter can be calculated
by summing the weighted adjusted values of power in the
following expression, for each wind speed, xi , in the domain
of the probability density function, f (xi):

3 =
Padj

P0

=

∫ x100
x1

f (xi,µ,σ )CP,ix
3
i dxi

CP,µµ3

=

∑100
i=1f (xi,µ,σ )CP,ix

3
i

CP,µµ3 , (12)

where the integral of f (xi) is approximated by taking 100
samples of the f (xi). The resulting power curves depending
on turbulence intensity are shown in Fig. 11. As the turbu-
lence intensity increases, the power output increases in re-
gion 2 and decreases across region 3.

The following expression may be used to calculate the fi-
nal value of adjusted power output, Padj, with respect to the
current turbulence intensity at a turbine:

Padj = P03=
1
2
ρACP,µcosp(γ )µ33, (13)

where γ is the yaw angle of the turbine, and3 represents the
turbulence parameter. The value of3must always be greater
than zero.

In future work, this turbulence-correction model could be
improved by implementing a similar consideration of the
thrust coefficient, CT. Because the velocity deficit compu-
tations in this model rely on the value of CT, it may be ad-
vantageous to expand this method to calculate an adjustment
parameter for the effects of turbulence on rotor thrust.

It is important to note that similar models have been
developed that incorporate methods of turbulence re-
normalization based on machine-learned or empirically de-
rived data (Clifton and Wagner, 2014). The proposed method
discussed in this section was developed to attempt to repre-
sent the variation of power output due to turbulence effects,
while using a simple strategy that is not dependent on the
availability of data other than the current wind farm atmo-
spheric measurements and the power curve provided by the
turbine manufacturer. In future work, it may be advantageous
to incorporate more complex techniques that are able to cap-
ture the effects of turbulence intensity with greater detail and
accuracy.
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Figure 11. Adjusted power curve for the NREL 5 MW reference turbine for different turbulence intensities. The dashed lines denote the
cut-in, rated, and cutout wind speeds and also represent the boundaries of the first, second, and third regions, respectively.

4 Model validation and analysis

Two validation studies are presented to analyze the effec-
tiveness of the adapted FLORIS wake model. In Sect. 4.1,
a 38-turbine wind farm is simulated using the heterogeneous
FLORIS model and compared to results from large eddy sim-
ulations to evaluate the accuracy of wind farm power predic-
tions. Additionally, Sect. 4.2 presents a study where a large
wind farm is simulated using the heterogeneous FLORIS
model and turbulence power calculations. The results of
these FLORIS simulations are compared to the wind farm’s
SCADA data records to further evaluate the model’s power
prediction accuracy and wake model performance.

4.1 Comparisons to LES

This section presents a validation study that evaluates the
power prediction accuracy of the proposed heterogeneous
FLORIS model in comparison to large eddy simulations of a
38-turbine array, calculated using NREL’s tool Simulator fOr
Wind Farm Applications (SOWFA) (Fleming et al., 2013).
The simulated wind farm contains 38 turbines modeled with
NREL’s 5 MW reference turbine design criteria (Jonkman
et al., 2009) and arranged in a concentric circular layout sim-
ilar to Thomas et al. (2019), Fleming et al. (2020a), and King
et al. (2020a).

Twelve test cases were evaluated for this study; each was
simulated using different wind directions, varying from 10
to 340◦ in 30◦ intervals. Spatially homogeneous inputs were
used to simulate wind direction and turbulence intensity,
where turbulence intensity was at 9 % for all cases. The free-
stream wind speed remained close to 8 ms−1 for all cases,
with minor spatial variations. FLORIS wind speed inputs
were obtained by extracting the free-stream velocity from
LES results at locations upwind of turbines in undisturbed
flow. These extracted input values create a velocity gradient
in the direction normal to the wind direction in the hetero-
geneous FLORIS model, as seen on the right in Fig. 12. The

wind speed input for the homogeneous FLORIS model was
obtained by taking an average of the heterogeneous input val-
ues for each case.

To analyze the effects of wake losses for the simu-
lated wind farm, additional heterogeneous and homogeneous
FLORIS simulations were conducted excluding all FLORIS
wake calculations. Figure 13 shows the total wind farm out-
put predictions from all four FLORIS simulation models and
compares them to the LES case result (shown in black). The
trends observed Fig. 13 indicate that the models which ne-
glected wake loss calculations drastically overestimated to-
tal wind farm power output, with the heterogeneous model
reporting more accurate power predictions overall. Alterna-
tively, the FLORIS models that did perform wake loss calcu-
lations produced a much more accurate estimation of wind
farm power output.

The absolute error of the total wind farm power output was
calculated for each model to analyze power prediction ac-
curacy at every wind direction evaluated in the case study.
The results of these calculations are shown in Fig. 14, and
each model’s average absolute error over all wind directions
is recorded in Table B1 for reference. In Table B1, an 18.9 %
decrease in average absolute error is reported when using the
heterogeneous wake model compared to the homogeneous
wake model.

The mean absolute error (MAE) of power predictions at
individual turbines in the wind farm was also calculated us-
ing Eq. (14).

MAE=
1
n

n∑
i=1
|Pmodel,i −Pactual,i |, (14)

where n is the number of turbines in the wind farm, Pactual,i
is the LES-generated wind farm power output for turbine i,
and Pmodel,i represents the predicted power output from the
FLORIS model for turbine i. MAE was calculated for each
FLORIS model at every wind direction in the case study. The
resulting MAE values are shown in Fig. 15, and the average
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Figure 12. Horizontal cut planes of the FLORIS simulations with wind direction at 270◦. Wake losses were calculated using the homoge-
neous FLORIS model (a) and heterogeneous FLORIS model (b). Turbine rotors are indicated by black lines.

Figure 13. Total wind farm power output calculated using the ho-
mogeneous and heterogeneous FLORIS models, with and without
wake losses. The results of the SOWFA simulation are also plotted
for reference in black.

Figure 14. Absolute error in total farm power output calculated
using the homogeneous and heterogeneous FLORIS models, with
and without wake losses.

MAE for all wind directions is reported in Table B2 for each
FLORIS model.

In comparison to Fig. 14, Fig. 15 indicates a more ob-
servable and consistent disparity in power output accu-
racy between the results of heterogeneous and homogeneous

Figure 15. Mean absolute error of individual turbine power output
predictions calculated using the homogeneous and heterogeneous
FLORIS models, with and without wake losses.

FLORIS wake simulations. Table B2 validates this obser-
vation by reporting a 19.5 % decrease in MAE at each tur-
bine when using the heterogeneous model. The data provided
in this comparison confirm that the proposed heterogeneous
model offers substantial advancements in the generation of
accurate power predictions at individual turbines within a
wind farm.

4.2 Comparisons to wind farm SCADA data

This section summarizes a validation study presenting com-
parisons of FLORIS power predictions to SCADA-recorded
power outputs from an observed operational wind farm. A
large, utility-scale wind farm located within mountainous ter-
rain was chosen for this study because it is often subject
to unpredictable and dramatic shifts in weather conditions.
More information regarding the physical layout and charac-
teristics of this wind farm can be found in Appendix A. The
motivation behind performing these simulations was to quan-
tify the effect of the recent developments to FLORIS in re-
ducing the error in power output predictions for wind farms
in complex terrain.
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Figure 16. Horizontal planes of two different FLORIS simulations, taken at the same time-step iteration.

FLORIS simulations were performed using heterogeneous
inputs of wind direction, turbulence intensity, and wind
speed, which were taken from the wind farm’s SCADA
records. These inputs include four wind measurement val-
ues for each atmospheric characteristic, derived from mete-
orological (MET) tower measurements placed in various lo-
cations throughout the wind farm. Similar simulations were
performed using an identical FLORIS model but with a sin-
gular homogeneous input for wind speed, wind direction,
and turbulence intensity. These homogeneous inputs were
derived by evaluating the average of the five heterogeneous
input values at each time step. The resulting power output of
all simulations was recorded with the inclusion of the turbu-
lence correction and without. All cases were simulated us-
ing data averaged at time steps of 10 min over a range of
2 months.

In the following discussion, the results from all FLORIS
simulations are presented and analyzed to determine the ac-
curacy of power predictions from each test case. Figure 16 in-
cludes two horizontal planes showing a partial section of het-
erogeneous flow calculations during these simulations. This
figure demonstrates the visual capabilities of the heteroge-
neous model and how the effects of the new wake calcu-
lations can be translated into visual information for further
analysis of wake interactions within a wind farm.

Although these visualizations do not give direct estimates
of power prediction, they are helpful in translating the input
measurements into a form that characterizes the general be-
havior of wind farm dynamics for the interpretation of the
observer. The cut plane visualization is helpful in perform-
ing qualitative analysis of turbine wake interactions and is
more useful when displaying the estimated weather condi-
tions characteristic of each location in the flow field, which
is improved in the heterogeneous model.

When comparing the performance of the simulations, the
calculated power output was tabulated and compared for ac-
curacy. In Fig. 17, the sum of wind farm power output from
each FLORIS simulation is normalized with respect to the
rated power output for the wind farm and plotted along with
the recorded SCADA output. This approach highlights any

Figure 17. Power output calculated by FLORIS for homogeneous
(red), heterogeneous without the turbulence correction (blue), and
heterogeneous with the turbulence correction (green), compared
with SCADA data shown in black. Each shaded region represents
the difference between predictions of power output and the mea-
sured power output from SCADA data.

weaknesses in each model, relative to the overall perfor-
mance of the others. A 24 h period was chosen to demon-
strate how the models performed under average diurnal con-
ditions. Figure 17 shows a day with relatively variant weather
conditions and many rapid shifts in power output.

In Fig. 17, it is evident that the heterogeneous models are
predicting the power output more accurately than the homo-
geneous model. The trend line of the heterogeneous simula-
tions consistently follows closer to the line representing the
power output recorded from SCADA data. Additionally, the
heterogeneous simulation that included turbulence-intensity
corrections showed an extra advantage in estimating turbine
performance, following closely to the trend line of the het-
erogeneous simulation, and also reliably contributing error-
reducing improvements to the heterogeneous model. While
this juxtaposition is effective in ranking each model’s ability
to estimate total farm power output, it should be noted this
comparison only indicates the accuracy of a calculations for
the entire wind farm power output collectively, without con-
sidering the accuracy at each turbine individually.

It is possible for wake models to overpredict the power
output of some turbines, and underpredict others, in a way
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Figure 18. Sum of the normalized absolute error at each turbine in
the wind farm, computed at each time step.

that produces a total wind farm power estimate that seems
accurate but is not using reliable and precise methods of cal-
culation. To verify that the recent additions to FLORIS have
improved the power-predicting capabilities, it must be con-
firmed that the new model produces a consistently accurate
estimate with respect to each iteration in the time series and
each turbine within the wind farm individually. To prove this
model’s consistency in accuracy, the normalized absolute er-
ror was calculated at each turbine at each iteration of the time
series for this same day. The sum of the absolute error at all
turbines within the wind farm is calculated for each simu-
lation model at each time iteration. To calculate the sum of
absolute error (SAE) for all turbines, the following formula
was applied to each time iteration of the simulation.

SAE=
n∑
i=1
|Pmodel,i −Pactual,i |, (15)

where n is the number of turbines in the wind farm, Pactual,i
is the measured power output of turbine i, and Pmodel,i is the
predicted power output of turbine i from a given FLORIS
model. The results of each FLORIS model were calculated
and plotted on the same set of axes in Fig. 18.

The trends observed in Fig. 18 exhibit similar characteris-
tics that indicate the accuracy of the model at each turbine is
increasing with the application of the heterogeneous model
and turbulence-intensity correction parameter. The heteroge-
neous model reliably produces less error when calculating
the power at each turbine over the time series, which ensures
that the power predictions of the entire farm are not self-
compensating because of simultaneous overpredictions and
underpredictions of individual turbine outputs. Furthermore,
if Fig. 18 is analyzed with respect to the trends of normal-
ized power in Fig. 17, it is evident that the addition of het-
erogeneity and turbulence-intensity corrections contributes
to improving the accuracy of FLORIS power predictions in
instances of overprediction and underprediction, as well as
transitions between the two with relative consistency.

To ensure these same trends of accuracy persist over the
entire 2-month period, the percent error of the total wind

farm power output was calculated at each time-step iteration
using the following equation.

Percent error=
|Pmodel−Pactual|

|Pactual|
, (16)

where Pactual is the measured power output of the wind farm,
and Pmodel is the power output of the wind farm predicted
by a given FLORIS model. The results of these calculations
were grouped into three separate domains: wind speeds of
less than 5 ms−1, wind speeds in the range of 5 to 11 ms−1,
and wind speeds greater than 11 ms−1. Time iterations when
wind speed was less than the cut-in wind speed (2.5 ms−1)
were considered negligent in regards to power production
and therefore omitted from the data set. A histogram of the
percent error in each wind speed domain was computed over
the entire time series to display the distribution of error with
respect to each simulation (Fig. 19).

Although the plots for the wind speed domains vary
slightly in distribution, it is clear that each histogram exem-
plifies a trend toward accuracy in simulations that incorpo-
rate heterogeneity and turbulence-correction calculations. It
is important to note that only the data points shown in the
percent-error range of each histogram were used to calculate
the respective binned averages. The outliers were omitted be-
cause they tend to skew the presentation of the data set in a
way that obscures the actual trend of data.

The mean absolute percent error (MAPE) values of all
time-step iterations are also reported in Table 1. The data
for this table were calculated by evaluating the percent er-
ror of FLORIS power predictions for the full wind farm at
each time step and then solving for the mean over the entire
time series. This calculation is expressed as

MAPE=
1
n

n∑
i=1

|Pmodel,i −Pactual,i |

|Pactual,i |
, (17)

where n is the number of time steps in the total simulation,
Pactual,i is the recorded power output of the wind farm at time
step i, and Pmodel,i denotes the predicted power output from
the FLORIS model at time step i.

When comparing the MAPE values in Table 1 with the his-
tograms of Fig. 19, an increase in MAPE is observed in Ta-
ble 1 for lower wind speeds of simulations that implemented
heterogeneous and turbulence correction models. This is a
trend that is not characteristic of the histograms depicted in
Fig. 19b. In reference to this observation, it is important to
note that the metric of MAPE penalizes overpredictions with
more weight than underpredictions. Furthermore, MAPE cal-
culates mean with equal weight for all time steps in the data
set, which is not always ideal for an indication of overall
farm power output accuracy. It is possible that the reported
increase in MAPE with lower wind speeds may be an indica-
tion that the heterogeneous and turbulence-intensity correc-
tion models tend to produce more frequent overpredictions
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Figure 19. Percent error of all three FLORIS models, plotted for comparison within varying ranges of wind speeds.

Table 1. Mean absolute percent error in total wind farm power output for all FLORIS models, tabulated for comparison within varying
ranges of wind speeds.

FLORIS simulation model
Mean absolute percent error at wind speed (%)

< 5 ms−1 5–11 ms−1 > 11 ms−1 all

Homogeneous 43.2 16.3 10.0 22.4
Heterogeneous 48.2 14.5 8.0 22.5
Heterogeneous with turbulence-intensity correction 61.4 11.8 5.5 24.2

of power output in conditions where wind speeds are near
the cut-in speed. If this is true, further investigations may be
conducted in future work to determine why this is happening
and how it could be circumvented.

Although MAPE is an informative metric for analyzing
the average percent error relative to a specific power output
range, methods that use unweighted averaging are sometimes
misleading in the analysis of overall power prediction accu-
racy. The relative error during time-step iterations with lower
power output can seem large, even when the absolute error is
insignificant in comparison to the magnitude of total farm
output.

A more comprehensive representation of relative model
accuracy is presented in the following table, where the mean
absolute error (MAE) is evaluated for total wind farm out-
put. This was calculated by evaluating the absolute error at
each time step and then taking the mean of these error val-
ues. This calculation is performed using Eq. (14), where n is

the total number of time steps in the simulation, Pactual,i is
the recorded power output of the wind farm at time step i,
and Pmodel,i is the predicted power output from the FLORIS
model at time step i.

By taking an average of absolute errors instead of relative
errors, MAE is a more effective metric in representing the
overall accuracy of total wind farm power prediction. The re-
sulting MAE values are shown in Table 2, where a clear trend
of increased accuracy is observed for models that imple-
ment heterogeneity and turbulence-adjustment calculations,
including the cases where wind speeds are below 5 ms−1.

Lastly, values of MAE were also calculated to represent
the accuracy of the model at each individual turbine within
the wind farm. Using this metric, Table 3 shows that sim-
ulations implementing the heterogeneous model and turbu-
lence correction calculations outperformed the homogeneous
model in the prediction of individual turbine power output.
This should be expected, since the overall farm output in Ta-
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Table 2. Mean absolute error in total wind farm power output for all FLORIS models, tabulated for comparison within varying ranges of
wind speeds. Total rated wind farm output was scaled to 100 MW for reference.

FLORIS simulation model
Mean absolute error at wind speed (MW)

< 5 ms−1 5–11 ms−1 > 11 ms−1 all

Homogeneous 4.7 25.7 38.7 22.6
Heterogeneous 4.2 22.8 31.4 19.4
Heterogeneous with turbulence-intensity correction 4.1 19.0 22.0 15.5

Table 3. Mean absolute error in individual turbine power output for all FLORIS models, tabulated for comparison within varying ranges of
wind speeds. Total rated wind farm output was scaled to 100 MW for reference.

FLORIS simulation model
Mean absolute error at wind speed (MW)

< 5 ms−1 5–11 ms−1 > 11 ms−1 all

Homogeneous 0.046 0.244 0.199 0.152
Heterogeneous 0.041 0.208 0.191 0.133
Heterogeneous with turbulence-intensity correction 0.041 0.202 0.179 0.129

ble 2 followed a similar trend. The marked improvement of
power predictions at individual turbines suggests that the ad-
dition of the proposed heterogeneous and turbulence correc-
tion methods enhances the FLORIS wake model by simu-
lating farm–flow interactions with more thorough detail and
greater accuracy.

To analyze the influence of wake effects in this study,
an identical set of simulations were performed excluding
FLORIS wake loss calculations, and the results for MAE at
the overall farm and individual turbine levels are reported in
Tables B3 and B4 in Appendix B. These simulations seem
to indicate that the wake losses at the observed subject wind
farm are relatively small, due to the large spacing between
turbines in the stream-wise direction. The study presented in
Sect. 4.1 analyzes the performance of the proposed hetero-
geneous model in a wind farm with more influential wake
losses to give a more detailed analysis of the effects of wake
losses.

As noted in Sect. 3.3, the implementation of methods uti-
lized to simulate spatially variant wind direction causes the
heterogeneous model to be marginally less efficient in com-
putation. To quantify this increased computational cost, each
simulation was timed in this study. On average, these time
records show that the simulations using the heterogeneous
model took less than 10 % longer to compute than those us-
ing the homogeneous model. The choice to sacrifice compu-
tational efficiency in the heterogeneous model was seen as
a necessary trade-off to achieve greater detail and accuracy
in simulations of more dynamic environments. Future devel-
opments to FLORIS will attempt to optimize the efficiency
of this model and reduce the time necessary to simulate the
effects of changing wind direction.

5 Conclusions

This article introduces a method to include heterogeneous
flow fields into the FLORIS simulation tool, as well as a
turbulence correction to the power reported at each turbine.
To analyze the developed model’s improvements in accuracy,
several FLORIS simulations with and without these changes
were compared to large eddy simulations and SCADA data
from a utility-scale wind farm. The results of the FLORIS
simulations indicate that these two modifications improve
power predictions of the wind farm at the turbine and wind
farm level. The increased accuracy of this model’s power pre-
diction capabilities shows that this method is more precise in
predicting farm–flow interaction in heterogeneous and turbu-
lent environments, which previous versions of FLORIS were
not able to simulate.

Overall, the heterogeneous and turbulence-intensity cor-
rection modifications presented in this article showed a pos-
itive effect on the accuracy of FLORIS capabilities. This
improved model provides a more detailed quantitative and
qualitative analysis of wind farm flow, including the demon-
stration of heterogeneous flow in cut-plane velocity plots
and improved accuracy in power prediction at individual
turbines as well as total wind farm power output. Compar-
ing FLORIS power predictions to LES, the heterogeneous
FLORIS model showed an 18.9 % decrease in mean abso-
lute error (MAE) for total wind farm power output and a
19.5 % decrease in MAE for individual turbine power pre-
dictions compared to the homogeneous FLORIS model. In
comparisons to SCADA data, FLORIS simulations that im-
plemented the heterogeneous flow model showed a 14.6 %
decrease in MAE for wind farm power output predictions
compared to homogeneous model simulations. With the use
of the proposed turbulence-intensity correction method in ad-
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dition to the heterogeneous model, the MAE in farm power
output predictions showed a 31.42 % MAE decrease com-
pared to the homogeneous model.

These modifications to FLORIS have outlined a frame-
work for a wake model that features atmospheric heterogene-
ity and turbulence-intensity corrections to the power curve
and provides a platform for further developments in this area
of research. In agreement with this study, the findings of
Fleming et al. (2020a) also indicate that this model shows
promise in enhancing the performance of FLORIS’s existing
wind farm optimization controls, in addition to improving the
accuracy of wind farm power predictions.

Further studies relating to the effectiveness of this model
when applied to wind farm controls would be very benefi-
cial in determining future developments to these algorithms.
Additionally, more extensive investigations should be con-
sidered to evaluate the efficacy of the proposed model in
a wider variety of operational conditions, particularly those
with lower wind speeds and extreme variations in wind di-
rection. Other future work will investigate alternative inter-
polation methods for the flow field that consider the wind
farm terrain map, capabilities for simulating more dynamic
changes in wind direction, implementing enforcement of mo-
mentum conservation, and optimizing the model’s computa-
tional efficiency.
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Appendix A: Wind farm characterization

Figure A1. Map of a selected section of the observed wind farm discussed in Sect. 4.2. This plot show the inter-distance between turbine
locations in the northing (y) and easting (x) directions. The distances shown on each axis are labeled relative to the average rotor diameter
(D) of the turbines in the wind farm.

Table A1. This table lists several key attributes that characterize the nature of the terrain and turbine layout of the observed wind farm
discussed in Sect. 4.2. Distance values are reported relative to the average turbine rotor diameter (D). Spanwise and stream-wise directions
are defined to be perpendicular and parallel to the average wind direction during the wind farm, respectively.

Measured quantity Distance in terms of average rotor diameter (D)

Average stream-wise inter-distance 20.0D
Average spanwise inter-distance 2.0D
Range of elevation variation 2.2D
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Appendix B: Additional results

Table B1. Absolute error of total wind farm power output predictions for four different FLORIS models compared to LES simulations, as
discussed in Sect. 4.1. An average absolute error is reported, which was taken over all wind direction cases.

FLORIS simulation model Average absolute error of wind farm power output (MW)

Heterogeneous 0.636
Homogeneous 0.784
Heterogeneous without wake losses 12.796
Homogeneous without wake losses 13.450

Table B2. Mean absolute error of individual turbine power outputs for four different FLORIS models compared to LES simulations, as
discussed in Sect. 4.1. An average MAE is reported, which was taken over all wind direction cases.

FLORIS simulation model Average MAE of individual turbine power output (MW)

Heterogeneous 0.124
Homogeneous 0.154
Heterogeneous without wake losses 0.389
Homogeneous without wake losses 0.428

Table B3. Analysis of wake influence in the observed wind farm discussed in Sect. 4.2. This table shows the average mean absolute error in
total wind farm power output for three different FLORIS models, omitting FLORIS wake loss calculations. This average was taken over all
time steps, and the total rated wind farm output was scaled to 100 MW for reference.

FLORIS simulation model
MAE for overall wind farm power output (MW)

< 5 ms−1 5–11 ms−1 > 11 ms−1 all

Homogeneous 4.9 26.1 38.2 22.7
Heterogeneous 4.6 28.1 13.0 18.6
Heterogeneous with turbulence-intensity correction 4.0 24.9 21.9 18.5

Table B4. Analysis of wake influence in the observed wind farm discussed in Sect. 4.2. This table shows the average mean absolute error of
individual turbine power output for three different FLORIS models, omitting FLORIS wake loss calculations. This average was taken over
all time steps, and the total rated wind farm output was scaled to 100 MW for reference.

FLORIS simulation model
Average MAE of individual turbine power outputs (MW)

< 5 ms−1 5–11 ms−1 > 11 ms−1 all

Homogeneous 0.045 0.244 0.198 0.152
Heterogeneous 0.0415 0.229 0.263 0.155
Heterogeneous with turbulence-intensity correction 0.042 0.223 0.263 0.152
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Code availability. FLORIS (NREL, 2020) and SOWFA (Flem-
ing et al., 2013) are both open-source simulation tools de-
veloped, in part, by the National Renewable Energy Labora-
tory (NREL). The proposed changes to FLORIS code can be ac-
cessed on the “main” branch of NREL’s FLORIS GitHub repository
(https://doi.org/10.5281/zenodo.2672982) (Mudafort et al., 2021).
Similarly, the SOWFA code can be accessed through NREL’s
SOWFA GitHub repository at https://github.com/NREL/SOWFA
(last access: 2 February 2021) (Github, 2021).

Data availability. The data used for the 32-turbine validation case
discussed in Sect. 4.1 can be made available upon request, by con-
tacting Jennifer King at jennifer.king@nrel.gov. SCADA data and
other farm-specific information for the commercial wind farm dis-
cussed in Sect. 4.2 are not publicly available due to proprietary pri-
vacy restrictions.
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