Wind Energ. Sci., 6, 935-948, 2021
https://doi.org/10.5194/wes-6-935-2021

© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

WIND
ENERGY
SCIENCE

eawe

european academy of wind energy

New methods to improve the vertical extrapolation
of near-surface offshore wind speeds

Mike Optis, Nicola Bodini, Mithu Debnath, and Paula Doubrawa
National Renewable Energy Laboratory, Golden, Colorado, USA

Correspondence: Mike Optis (mike.optis @nrel.gov)

Received: 22 January 2021 — Discussion started: 27 January 2021
Revised: 23 March 2021 — Accepted: 15 April 2021 — Published: 16 June 2021

Abstract. Accurate characterization of the offshore wind resource has been hindered by a sparsity of wind speed
observations that span offshore wind turbine rotor-swept heights. Although public availability of floating lidar
data is increasing, most offshore wind speed observations continue to come from buoy-based and satellite-based
near-surface measurements. The aim of this study is to develop and validate novel vertical extrapolation methods
that can accurately estimate wind speed time series across rotor-swept heights using these near-surface measure-
ments. We contrast the conventional logarithmic profile against three novel approaches: a logarithmic profile
with a long-term stability correction, a single-column model, and a machine-learning model. These models are
developed and validated using 1 year of observations from two floating lidars deployed in US Atlantic offshore
wind energy areas. We find that the machine-learning model significantly outperforms all other models across all
stability regimes, seasons, and times of day. Machine-learning model performance is considerably improved by
including the air—sea temperature difference, which provides some accounting for offshore atmospheric stability.
Finally, we find no degradation in machine-learning model performance when tested 83 km from its training
location, suggesting promising future applications in extrapolating 10 m wind speeds from spatially resolved

satellite-based wind atlases.
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1 Introduction

The accurate characterization of the offshore wind resource
is crucial for a range of analyses needed to support the grow-
ing offshore wind industry. Specifically, accurate time series
estimates of wind speed across the rotor-swept heights of an
offshore wind turbine are used for estimates of turbine and
wind plant power production, which feed into various tech-

nical and economic analyses, ranging from grid integration
(Mahoney et al., 2012), life-cycle cost analyses (Jong et al.,
2017), and capacity expansion studies (Hasager et al., 2015).

Accurate characterization of rotor-swept offshore wind
speeds has been hindered by the sparsity of observations at
rotor-swept heights, especially in the US offshore wind ar-
eas. Offshore meteorological towers are generally too ex-
pensive to install, especially up to 250-300 m, i.e., the ex-
pected upper rotor-swept heights of US offshore wind tur-
bines. Buoy-mounted floating lidar, however, are emerging as
a game-changing technology, especially in the United States,
providing accurate wind speed and direction measurements
up to approximately 250 m (Carbon Trust, 2018); however,
these units are also expensive, mostly owned by wind plant
developers, and their data are kept highly proprietary. In the
United States, for example, as of December 2020, there are
only six publicly available data sources for floating lidar in
US offshore waters (Table 1).
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Table 1. Active floating lidar deployments in US offshore wind energy areas with publicly available data (as of December 2020).

Location Time Start date for Maximum Data

resolution  public data measurement — access

height

Hudson South Call Area, New Jersey 1 min 4 Sep 2019 200 m DNV-GL (2020)
Hudson North Call Area, New Jersey 10 min 12 Aug 2019 200m DNV-GL (2020)
Atlantic Shores, New Jersey 10 min 26 Feb 2020 250m Atlantic Shores Offshore Wind (2020)
Mayflower, Massachusetts Daily 13 Apr 2020 250m Mayflower Offshore Wind (2020)
Humboldt, California ls 1 Oct 2020 250m Pacific Northwest National Laboratory (2020)
Morro Bay, California s 1 Oct 2020 250 m Pacific Northwest National Laboratory (2020)

In place of rotor-swept height measurements, near-surface
observations can be used as substitutes for characterizing the
offshore wind resource (Mohandes and Rehman, 2018). The
main data source is the network of buoy-based wind speed
measurements from the National Data Buoy Center, main-
tained by the National Oceanic and Atmospheric Adminis-
tration (National Data Buoy Center, 1971). These data have
been used to characterize the wind resource in offshore Cali-
fornia (Wang et al., 2019; Optis et al., 2020c), the US off-
shore Atlantic (Optis et al., 2020b), and the Great Lakes
(Doubrawa et al., 2015). These buoys generally provide years
worth of wind speed measurements at heights of less than 5 m
and are of high quality. In addition to these buoys, satellite-
based scatterometer and synthetic-aperture radar measure-
ments of the near-surface wind vector are increasingly being
used to characterize the offshore wind resource (Doubrawa
et al., 2015; Ahsbahs et al., 2017; Hasager et al., 2020; Ahs-
bahs et al., 2020). These data are more spatially resolved than
buoy-based wind speed data, but they are limited in their tem-
poral coverage. Further, there is some error and uncertainty
in how geophysical transfer functions are used to extrapolate
the satellite measurements to the diagnosed 10 m wind speed
that is disseminated (Kelly and Gryning, 2010; Badger et al.,
2015).

This abundance of near-surface wind speed measurements
is valuable for offshore wind resource characterization pro-
vided the measurements can be accurately extrapolated to
rotor-swept heights. The conventional wind industry ap-
proach — the power-law profile — is not useful in this context
because the method requires measurements at two heights
to calculate the shear coefficient. The logarithmic wind pro-
file (Monin and Obukhov, 1954), by contrast, is applicable
and has a long history of accurately predicting wind speeds
in the atmospheric surface layer (Holtslag, 1984; Troen and
Petersen, 1989; Emeis, 2013); however, the logarithmic as-
sumption has been shown to break down at rotor-swept
heights under conditions of stable stratification as turbulent
fluxes decrease in magnitude and near-surface winds begin
to decouple from the winds aloft (Optis et al., 2014, 2016).
Under such conditions, phenomena such as low-level jets can
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occur, which idealized models, such as the logarithmic wind
profile, are unable to account for.

Despite these shortcomings, the logarithmic profile still
forms the backbone of the only novel extrapolation method
that has been developed and validated for offshore applica-
tions. This novel method, developed by researchers at the
Technical University of Denmark (DTU) in 2010, derives a
stability-dependent long-term correction to the logarithmic
wind profile (Kelly and Gryning, 2010), where stability data
(e.g., Obukhov length) are provided by numerical weather
prediction simulations. This model (described in more de-
tail in Sect. 3 and herein referred to as the DTU method)
has been used in subsequent studies to extrapolate 10 m di-
agnosed winds from satellite products with good agreement
with offshore observations in Europe (Badger et al., 2015;
Hasager et al., 2020). The DTU method, however, can pro-
vide only a long-term mean wind profile extrapolation and is
not useful when time-series-based wind speeds across rotor-
swept heights are needed (i.e., for most energy and economic
offshore wind analyses).

For such applications, two novel approaches with proven
success on land but not thoroughly validated offshore could
be suitable. The first is a single-column model (SCM)
approach, in which a typical three-dimensional numerical
weather prediction model is reduced to a single vertical di-
mension by assuming horizontal homogeneity (Baas et al.,
2010). Further assumptions (described in Sect. 3) reduce the
model to a simple set of differential equations that can be run
efficiently on a personal computer. The key advantage of the
SCM is its ability to be forced at the lower boundary by wind
and temperature observations. The SCM was used in Optis
and Monahan (2016) and Optis and Monahan (2017) to ex-
trapolate 10 m wind speeds up to 200 m at the Cabauw mete-
orological tower in the Netherlands. Results showed that the
SCM performed about the same as the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2019) during a
10-year period, highlighting the benefit of local observations
driving a highly simplified model.

The second novel method is based on machine learning,
which has emerged as a promising approach for the vertical
extrapolation of wind speeds. Bodini and Optis (2020a) and
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Bodini and Optis (2020b) explored this concept using four li-
dars and surface flux stations dispersed around the Southern
Great Plains site, operated by Argonne National Laboratory.
They found that a relatively simple random forest algorithm,
trained on near-surface atmospheric variables, considerably
outperformed the conventional power-law and logarithmic
wind profiles. This performance held even when a model was
trained at one measurement site and tested at others up to
100 km away, i.e., through a round-robin approach. In the off-
shore environment, Vassallo et al. (2020) used a deep neural
network to extrapolate near-surface winds in offshore Cali-
fornia during a 1-month period, and they also found improve-
ment relative to conventional techniques; however, the time
period was short, and a round-robin approach was not ap-
plied.

The goal of this study is to assess the viability of these
conventional and more novel extrapolation models for use in
US offshore areas. We provide comparisons among the dif-
ferent extrapolation models, and we benchmark against es-
timated wind profiles from the WRF model. We focus this
study on the US North Atlantic and mid-Atlantic offshore ar-
eas, where the US offshore wind industry is most developed
(Musial et al., 2020). In Sect. 2, we describe the domain,
the observations, and the WRF model setup used. Next, in
Sect. 3, we describe the various extrapolation models. Inter-
comparisons of model performance are provided in Sect. 4,
with concluding remarks provided in Sect. 5.

2 Data

2.1 Observations

To develop and validate the various extrapolation models,
we leverage measurement data from two recently deployed
floating lidars in offshore New Jersey and located within two
current wind energy call areas (Fig. 1). These lidars were de-
ployed by the New York State Energy Research and Devel-
opment Authority (NYSERDA), which has made data pub-
licly available in real time through a web-based access portal
(DNV-GL, 2020). The portal also includes detailed techni-
cal information regarding the lidars. An overview of these
floating lidars and the data available are provided in Ta-
ble 2. Lidar-measured wind speeds from 20 to 200 m are used
for the validation of the proposed extrapolation models (see
Sect. 4), whereas the near-surface measurements at 2 m are
used to develop and apply the extrapolation models (Sect. 3).
Lidar-measured wind speeds are reported to have an uncer-
tainty of 3.3 % (NYSERDA, 2021).

2.2 WRF model

The WRF model is used in this study for two reasons. First,
the DTU method (one of the extrapolation approaches con-
sidered in our analysis) requires surface atmospheric vari-
ables not available from the NYSERDA buoys. Second, vali-
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Figure 1. WRF simulation domain map considered in this study.
The NYSERDA lidars are shown as blue and orange diamonds.
White areas denote Bureau of Ocean Energy Management wind en-
ergy lease areas; gray areas denote Bureau of Ocean Energy Man-
agement call areas.

dating the extrapolation models alongside WRF will provide
key insights into the usefulness of novel extrapolation models
for offshore wind energy and whether further development of
these models is justified.

A summary of the WRF model setup is provided in Ta-
ble 3, and the domain is shown in Fig. 1. The WRF model
is run from 1 September 2019 through 31 August 2020, in
separate monthly runs. For each month, the simulation is ini-
tialized 2 d earlier (e.g., 30 March for April simulations) and
run 1d after the end of the month (e.g., 1 May). The first
day of the simulation is used to spin up the model from ini-
tial conditions, whereas the second and final days are used to
stitch together the monthly runs into a single time series.

3 Extrapolation models

In this section we describe the different wind speed extrapo-
lation models considered in this study. We first describe the
conventional logarithmic wind profile and then discuss the
DTU method, which is adopted for this study. We then dis-
cuss the most novel approaches that we have developed ex-
plicitly for this study, namely the single-column-model and
machine-learning methods.

3.1 Logarithmic profile

The logarithmic wind profile is given as

U(z) = Lj{—*[ln (ZZ—O> — Y (%ZZO)} 1)

where U is the wind speed, « is the von Kdrman constant
(typically taken to be 0.4), z is the height above the sur-
face, u, is the friction velocity, zg is the roughness length,
Ym is the stability function for momentum that adjusts
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Table 2. Summary of observational data set being analyzed.

M. Optis et al.: Novel methods for offshore wind extrapolation

Buoy E06

Buoy E05

Location 39.55°N, 73.43° W
Period analyzed

Distance from coast

Lidar measurement heights
Lidar variables

Surface variables

Measured wind speed uncertainty

69 km

33%

4 Sep 2019-16 Aug 2020

39.97°N, 72.72° W
12 Aug 2019-16 Aug 2020
114km
20-200 m in 20 m increments
Wind speed, wind direction

2 m air temperature, sea surface temperature, 2m wind speed, 2 m wind direction

33%

Table 3. Key attributes of the WRF model used in this study.

Feature Specification
WREF version 4.2.1

Grid spacing for nested domains 6 km, 2km
Output time resolution 5 min
Vertical levels 61

Near-surface-level heights (m)
Atmospheric forcing
Atmospheric nudging

Planetary boundary layer scheme
Microphysics

Longwave radiation

Shortwave radiation
Topographic database

Land-use data

Cumulus parameterization

12, 34, 52, 69, 86, 107, 134, 165, 200
ERAS reanalysis

Ferrier
Rapid radiative transfer model
Rapid radiative transfer model

Kain—Fritsch

Spectral nudging on 6 km domain, applied every 6 h
Mellor-Yamada—Nakanishi—Niino Level 2.5

Global multiresolution terrain elevation data from the US Geological Survey and National Geospatial-Intelligence Agency
Moderate Resolution Imaging Spectroradiometer 30 s

the wind profile depending on atmospheric stability, and
L is the Monin—Obukhov length that characterizes surface
layer atmospheric stability. The friction velocity, u, requires
high-frequency sonic anemometer measurements that are not
available at the NYSERDA buoys. To avoid specifying u.,
we reformulate Eq. (1) to use the 2 m buoy wind speeds as a
reference measurement, allowing the wind profile to be cal-
culated according to

In(z/20) — Ym(z/L,z0/L) ]
In(zrefr/20) — Ym (z2m/L,z0/L) .

Here, we set zop = 0.0001 (which is the WRF output zq for
offshore) and implement the ¥, formulations from Jiménez
et al. (2012), which have become standard correction func-
tions and are currently used in the WRF mesoscale model
surface layer parameterization.

The calculation of L typically requires measurements of
the momentum and turbulent temperature fluxes, which are
not available from buoy measurements but require high-
frequency three-dimensional wind speed components and
temperature measurements. Instead, we can calculate a
“bulk” L based on the bulk Richardson number, Rig:

Uz) = U2m|: (@)

Rig = g 7(0; — Osurf)

= ) 3
Owg U2

where z is the height 2 m above the surface, g is the accel-
eration as a result of gravity, 6,  is the potential tempera-
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ture at 2m, Oy, is the potential temperature at the surface,
and Uy, is the 2 m wind speed. Combining Egs. (2) and (3)
yields the following relationship between L and Rip:

z In (%) —¥n (%’ ZL_O)
L 2
(&) = (- 2)]
where Y, is the stability function for temperature, also taken
from Jiménez et al. (2012).
Using Eq. (4), we iteratively solve for L given Rig, which

combined with Eq. (2) allows for the calculation of the verti-
cal wind profile.

“4)

Rig =

3.2 DTU model

Noting the breakdown of the logarithmic wind profile in very
stable conditions, the DTU method aims to preserve its ap-
plicability by applying it only in the context of a mean long-
term wind profile, which is generally well estimated as log-
arithmic. The overall approach is to account for the distri-
bution of L value output from WRF throughout the year. As
such, the DTU method is suitable only for long-term wind re-
source assessment because it requires at least 1 year of data
and ideally many years (Kelly and Gryning, 2010).

The stability correction applied to the log extrapolation
is height-dependent and computed based on empirical con-
stants and atmospheric conditions at the site: the percentage
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Parameters from WRF

Obukhov Length
L(t) [m]

Kinematic Heat Flux
H(t) [Kms?]

Friction Velocity
u{t) [ms?]

2-m Air Temperature

T(t) [K]

Constants
b=4-7: Cstable =5
Correction Functions

Correction Function for
Unstable Conditions
wunstable ( OunstablesZ )

Correction Function for
Stable Conditions

wstab/e(astab/a Z, bl Cstable)

Intermediate
Quantities

Ostabie(H, T U~

nstable(L)

C"unstable( H; 7: u *)
n unstable(L)

\ 4

Long-Term
Stability Correction

UJ(Z ) =n unstablewunstable - Nstaple wsmble

Figure 2. Schematic of quantities and calculations involved in the DTU model considered herein.

of stable vs. unstable conditions; the quadratic mean of the
kinematic heat flux; the mean, near-surface air temperature;
and the time-averaged friction velocity. These input parame-
ters are taken from the WRF simulations and are combined
with stability functions, v,, based on similarity theory to
compute a vertical profile of the correction function (Fig. 2).
This correction is then added to the log extrapolation to yield
a wind speed profile, as in Eq. (1), where u, is taken from the
WREF simulation, and zq is computed using the Charnock re-
lationship, zg = auﬁ/ g, with g being the acceleration caused
by gravity, and o = 0.0144 (Charnock, 1955).

Before implementing this model, we verify that the prob-
ability distribution functions for atmospheric stability are a
good fit to the empirical distributions. This comparison is
given in Fig. 3. The functions shown in this figure take into
account the percentage of stable vs. unstable conditions at
the NYSERDA buoy sites (nguable and nyngiable), scales of
variation for ™! (Ostable and Oynstable), and empirical con-
stants (Cstable =5 and Cypgtable = 12). Note that previous
work focusing on other data sets used different values for
the C£ constants (e.g., both were set to 3.0 in Badger et al.,
2015, to extrapolate satellite-derived wind speed measure-
ments).

3.3 Random forest machine-learning model

The third model considered is based on machine learning.
Here, we consider a relatively simple ensemble-based re-
gression tree method, known as a random forest model,
which has shown strong predictive power in previous land-
based wind speed extrapolation work (Bodini and Optis,
2020a, b) and in relating wind plant energy production to on-
site atmospheric variables (Optis and Perr-Sauer, 2019). We
use the RandomForestRegressor module in Python’s
Scikit-learn (Pedregosa et al., 2011). We consider a range
of 10 min averaged input variables available from the NY-
SERDA buoys: 2m wind speed, wind direction, pressure,
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Figure 3. Empirical vs. theoretical distribution of atmospheric sta-
bility for the two buoy sites.

and air temperature; the sea surface temperature and air—sea
temperature difference; and the time of day and month of
year. Wind direction, time of day, and month of year are all
decomposed into their sine and cosine components to pre-
serve circularity (i.e., 0 and 360° directions are equivalent,
as are 00:00 and 24:00 LT)!. A summary of these variables is
listed in Table 4.

To ensure that the observation sets over which the random
forest is trained and tested cover as much of the seasonal vari-
ability as possible, we build the testing set using a consecu-
tive 20 % of the observations from each month in the period
of record. We evaluate 20 randomly selected combinations
of the hyperparameters with a fivefold cross-validation. The
hyperparameters considered in the cross-validation and their

IBoth are needed because each value of sine only (or cosine
only) is linked to two different values of the cyclical feature.

Wind Energ. Sci., 6, 935-948, 2021
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Table 4. Input features used for the random forest model.

Input feature Acronym  Measurement

height
(ma.g.l.)

2 m wind speed WS 2m 2
Covine of 2m wind drcton P .
2 m air temperature T 2
Sea surface temperature SST 0
Air—sea temperature difference =~ 7-SST -
2 m air pressure )4 2
Sinf% of tim.e of the day Time 3
Cosine of time of the day

Sine of month Month B

Cosine of month

Table 5. Algorithm hyperparameters sampled in the random forest
cross-validation.

Hyperparameter Possible

values
Number of estimators 10-800
Maximum depth 4-40
Maximum number of features 1-11
Minimum number of samples to split 2-11
Minimum number of samples for a leaf 1-15

sampled ranges are shown in Table 5. We evaluate the per-
formance of the learning algorithm based on the root-mean-
square error (RMSE) between the measured and predicted
wind speed at extrapolation height: the set of hyperparame-
ters that leads to the lowest RMSE is selected and used to
assess the final performance of the learning algorithm.

As described in detail in Bodini and Optis (2020b), it is
both impractical and unfair to evaluate a machine-learning
model at the same site where it is trained. Critically, the
model requires observations of the lidar-measured wind
speeds up to 200m to be trained. Evaluating model perfor-
mance at the training site is impractical because the wind
profiles are already known and unfair because the other ex-
trapolation methods do not have such knowledge of lidar-
measured wind profiles. Instead, model performance must be
assessed through a round-robin approach, in which the model
is evaluated at a site not used to train the model. Specifically,
in this study, the random forest model is trained on data at
NYSERDA buoy EO5 and then evaluated against other ex-
trapolation models at NYSERDA buoy E06, located 83 km
away, and then vice versa. This round-robin approach en-
sures a fair comparison of the different extrapolation meth-
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ods and that no model has prior knowledge of lidar-measured
wind profiles at the site where it is evaluated.

3.4 Single-column model

The fourth model considered is an SCM. Essentially, it is a
stripped-down version of a three-dimensional model, such as
WRE, in which only vertical exchanges are considered and
horizontal homogeneity is assumed. This greatly simplifies
the governing equations of a three-dimensional model and
reduces the SCM to a one-dimensional model in the verti-
cal direction. By assuming no moisture or cloud radiation,
the equations of motion simplify further and depend only on
the horizontal pressure gradients, the Coriolis force, and the
vertical turbulent flux of momentum and temperature:

ou a(u'w’")

ov 7 ) o(v'w’)

ot G 0z

00  3(0'w’)

— = , &)
ot 0z

where u, v, and w are the three vector wind components; ¢ is
time; z is the height above the surface; 6 is potential tem-
perature; and ug and vg are the u and v components of the
geostrophic wind. The u’w’, v'w’ terms represent the u and
v components of the vertical turbulent momentum flux, and
0’w’ represents the vertical turbulent temperature flux.

The momentum and temperature fluxes are not solved di-
rectly but rather parameterized based on well-established
eddy—diffusivity relationships:

u
ww = — —
"oz
av
vw =—-Kn—,
"9z
— 00
0w = —Kp—, (6)
0z

where Ky, and Ky, are the eddy diffusivities for momentum
and temperature, respectively. These terms are themselves
parameterized with a range of possible options in the litera-
ture (Optis and Monahan, 2016, 2017). We adopt a relatively
simple first-order closure model that includes eddy diffusivi-
ties that are related to the wind speed gradient and a stability
function that depends on the Richardson number:

U
K =15~ fm(Ri).
0z
oUu
Kn =lmlh¥fh(Ri), @)

where I, and /[, are the mixing lengths for momentum and
temperature, respectively, and f; and f}, are the stabil-
ity functions for momentum and temperature, respectively.
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There are a range of proposed formulations for the mixing
lengths and stability functions. Here, we use the one devel-
oped by Smith (1990), which showed strong results when
used in an SCM in previous studies (Optis and Monahan,
2016, 2017). A detailed explanation and the equations of the
stability functions and mixing lengths can be found in Smith
(1990), Cuxart et al. (2006), and Optis and Monahan (2017).

The SCM equations are solved on a logarithmically
stretched grid from a height of 2-2000m with 200 grid
levels that provide higher resolution near the surface. The
lower boundary conditions at 2m are the measured wind
speed components and temperature from the NYSERDA
buoys. The upper boundary conditions are the 800hPa
pressure-level data provided by the ERAS reanalysis. A zero-
temperature gradient boundary condition is also applied at
the top of the domain.

Recognizing that the geostrophic wind can change with
height in conditions of horizontal temperature gradients, we
calculate a geostrophic wind profile at each time step to
force the simulations. This is done by first assuming that the
800 hPa winds from ERAS are geostrophic, which is a rea-
sonable assumption at 2000 m, where surface friction effects
should be negligible. Next, we calculate the geostrophic wind
at the surface using surface pressure and air temperature data
from the ERAS reanalysis product:

1 oP
UG =——-—,
fr 9y
1 oP ®
VG = ——,
7 o ox

where p is air density, and P is pressure. The horizontal pres-
sure gradient terms are calculated by taking a planar best fit
of the closest nine ERAS grid points that surround the buoy
locations. Equation (8) is used to calculate the geostrophic
wind components at 2m, and finally the geostrophic wind
profile is found by linearly interpolating the 2 m and 800 hPa
values to the different SCM heights.

To initialize the simulation, we start by solving for the neu-
tral vertical wind profile by imposing an equilibrium condi-
tion (i.e., du /9t = 0; dv/dt = 0; 3(8’w’)/dz = 0). The simu-
lation then moves forward from the neutral profile as a time-
marching algorithm using the complete set of equations pro-
vided in this section. A continuous simulation is launched for
the whole year of measurements without interruption.

4 Results

The four vertical extrapolation models presented in the pre-
vious section are all validated against lidar data from NY-
SERDA buoys E05 and E06 during the full period of record.
For each lidar, we consider only the time periods where wind
speeds are reported at every height from 20-200 m. Based
on recent best-practice recommendations for validating off-
shore wind models (Optis et al., 2020a), we validate the

https://doi.org/10.5194/wes-6-935-2021
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Table 6. The 10 MW offshore reference wind turbine specifications
from Beiter et al. (2020) used to calculate REWS.

Characteristic Value
Rated power 10MW
Rotor diameter 196 m
Hub height 128 m

Rotor-swept heights ~ 30-226 m

rotor-equivalent wind speed (REWS) rather than an assumed
hub-height wind speed. Details for calculating REWS are
provided in Wagner et al. (2014). To calculate REWS, we
assume a 10 MW offshore reference turbine as described in
Beiter et al. (2020) and summarized in Table 6.

We also assess model performance using the four recom-
mended performance metrics from Optis et al. (2020a), sum-
marized in Table 7. We note that the DTU method is ca-
pable of modeling only the mean wind profile; therefore,
time-series-based performance analysis throughout this sec-
tion excludes the DTU method.

We begin with a comparison of the mean wind profile
in Fig. 4, showing results at both NYSERDA buoys E05
and E06. The observed wind profile shows moderate shear,
increasing from approximately 8.5 to 10.5ms~! at E05
and 8.0 to 10.3ms~! at E06. As shown, the random forest
machine-learning model provides excellent agreement with
the mean profile, whereas the other models are deficient in
some respects. The SCM underestimates wind speeds at E05
but is very close to the observed profile at E06. The loga-
rithmic profile captures the upper winds relatively well with
a slight positive bias, but it has increasingly higher bias at
lower heights. The DTU method significantly overestimates
wind speeds, especially at the upper heights, with nearly a
1.5ms~! bias at 200 m. Finally, we see that the WRF model
tends to underestimate the wind profile.

REWS-based performance metrics for the different mod-
els are shown in Fig. 5. Again, the strong performance of
the machine-learning model is apparent, with considerably
lower error metrics and higher correlation to observations
relative to the other models. The bias is notably negligible at
buoy E05 and slightly negative at E06. In contrast, the SCM
has the weakest performance across all metrics at EO5 and all
but the bias at E06. The logarithmic profile performance falls
in between the machine-learning model and the SCM and is
the only model with a positive bias at both buoys. Finally,
the WRF model tends to perform similarly to the logarith-
mic model, with slightly lower unbiased RMSE and higher
correlation but higher magnitude of bias and earth mover’s
distance (EMD).

Next, we consider the role of atmospheric stability in rela-
tive model performance. Here, we distinguish between un-
stable and stable conditions using the WRF-modeled bulk
Richardson number, Rig, between 200 m and the surface

Wind Energ. Sci., 6, 935-948, 2021
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Table 7. Performance metrics used to assess extrapolation model performance.

Name Abbreviation  Description

Bias Bias Difference between the mean modeled and observed
result

Unbiased RMSE cRMSE The random error component after bias is removed,
describing the differences in model variations around
the mean

Square of correlation R? The correspondence or pattern between the modeled

coefficient and observed variable

Earth mover’s distance ~EMD

Difference between the probability distributions

between the modeled and observed variable

NYSERDA Lidar e05

NYSERDA Lidar e06

200 4

1751

150 -

1254

Height (m)
I
o

75 A

50 -

25

Lidar
Random forest

- Single column model
WRF model

Log profile

DTU method

80 85 90 95 100 105 11.0 115 12.0
Wind speed (ms~1)

80 85 90 95 100 105 11.0 115 12.0
Wind speed (m s~1)

Figure 4. Mean modeled and observed wind profiles at NYSERDA buoys E05 and E06. The dotted line denotes the observed profile, and

solid colors denote the different extrapolation models.

(Rig < 0 for unstable conditions; Rig > 0 for stable condi-
tions). Mean wind profiles by stability regime are shown in
Fig. 6. Here, we focus only on buoy EO5 and note that relative
performance is similar at both buoys. The machine-learning
model shows similar performance in unstable and stable con-
ditions, accurately capturing the unstable profile and slightly
underestimating the stable profile. The SCM performs rea-
sonably well in unstable conditions but is unable to capture
the high shear in the stable regime and significantly underes-
timates wind speeds. The log profile similarly underestimates
wind speeds in stable conditions but overestimates in unsta-
ble conditions. Finally, the WRF model underestimates the
wind profile in unstable conditions while accurately captur-
ing winds greater than 100 m in stable conditions but overes-
timating them when less than 100 m. Overall, we see that all
models apart from the random forest struggle with consistent
accuracy across stability regimes.

This relative consistency is further illustrated in Fig. 7,
which shows the REWS performance metrics by stability
regime. Again, we focus on buoy EO5 and note the similar

Wind Energ. Sci., 6, 935-948, 2021

relative performance between models at buoy E06. We also
see the random forest with the strongest performance met-
rics, apart from slightly higher magnitude bias and higher
EMD in stable conditions relative to the WRF model. The
SCM shows lower magnitude bias and EMD in unstable rel-
ative to stable conditions but high unbiased RMSE and cor-
relation across both regimes. The log profile performs better
in unstable conditions than stable conditions for all perfor-
mance metrics, whereas the WRF model cRMSE and R? are
lower in unstable conditions, but bias and EMD are higher
relative to stable conditions.

Next, we present 12-by-24 heat maps to show the com-
bined diurnal and monthly trends of model performance. We
show only the bias heat maps in Fig. 8. We see that the
machine-learning model has consistently low magnitude bias
throughout the diurnal and monthly cycles, with no clear di-
urnal trends but a tendency to overestimate wind speeds in
the fall. The SCM shows considerable negative bias through-
out the year, with a tendency to overestimate wind speeds
in November. Interestingly, the bias in December is pos-

https://doi.org/10.5194/wes-6-935-2021



M. Optis et al.: Novel methods for offshore wind extrapolation

cRMSE (ms~1)

3.0

2.5

2.0

1.5

1.0 1

0.5 A

0.0 -

e05 e06

EMD (ms~1)

0.6

0.5 1

0.4 1

0.3

0.2

0.1

0.0 -

e05 e06

Bl Random forest

B Single column model

943

Bias (ms™1)

0.2 1

0.1

0.0 +---

—-0.1-

-0.2 1

—0.3 1

-0.4 1

e05 e06

RZ

1.0

0.8 1

0.6 1

0.4 4

0.2 A

0.0 -

e05 e06

I WRF model Il | og profile

Figure 5. REWS performance metrics for the different vertical extrapolation models.
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Figure 6. Mean modeled and observed wind profiles at NYSERDA buoy E05 in unstable (left panels) and stable (right panels) atmospheric

conditions.

itive from 01:00 to 12:00LT and negative form 13:00 to
00:00 LT. The WRF model shows some trends, with positive
bias in spring in the early hours and negative bias in the mid-
dle hours. Finally, the logarithmic profile shows substantial
trends, with strong overestimation of winds through most of
the year and underestimation in spring, with the largest mag-
nitude of the underestimates in the early hours.

https://doi.org/10.5194/wes-6-935-2021

4.1 Explaining DTU model performance

Figure 4 showed that the DTU method significantly over-
estimated wind speeds. This is a surprising result given its
strong performance in Badger et al. (2015), in which 10 m
satellite-measured winds were extrapolated. To explore this,
we compare DTU model performance using both 2 and 20 m
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Figure 7. REWS performance metrics for the different vertical extrapolation models at NYSERDA buoy E05 for unstable and stable condi-

tions.

measurements as the basis for extrapolation. The results are
shown in Fig. 9. The extrapolation from the 2m measure-
ments does not match the measured wind speed profile. This
is likely because the measurement height is too low and lo-
cated within the viscous sublayer, where log-law approxima-
tions are not valid. When the same method is used to extrapo-
late from the 20 m lidar measurements, we see a good match
between the extrapolated and measured values. This analysis
reveals that the DTU method is not suitable for extrapolation
based on buoy wind speed measurements, which are often
made with propeller or cup anemometers between 2 and 5 m
above the sea surface. Instead, this method should be applied
to short offshore meteorological masts and satellite-derived
wind speed estimates.

4.2 Feature importance in the random forest

Finally, we examine the random forest model in more detail
given its strong performance in this study. Figure 10 shows
the relative feature importance for each variable used to train
the random forest model. Feature importance for the random
forest model is calculated based on how many times the al-
gorithm uses the variable to split the data, weighted by the
improvement in model performance because of the split. Not
surprisingly, the 2 m wind speed is the most important fea-
ture (nearly 80 %). The second most important feature is the

Wind Energ. Sci., 6, 935-948, 2021

air—sea temperature difference at nearly 20 %. This is an im-
portant result and highlights the influence of atmospheric sta-
bility on offshore wind profiles.

In fact, Debnath et al. (2020) found that a positive air—sea
temperature difference was the key driver in the observed
frequent occurrences of extreme wind shear and low-level
jet events at the EO5 and E06 buoys. Table 8 shows that in-
cluding the air—sea temperature difference results in consid-
erable improvements in random forest model performance,
especially during the extreme high-shear cases identified in
Debnath et al. (2020). Notably, the bias and EMD are both
halved for the high-shear cases when using the air—sea tem-
perature difference as an input feature.

Finally, we examine how random forest model perfor-
mance using the default round-robin approach (i.e., model
trained and tested at different buoys) compares to that when
trained and tested at the same site. In general, the model
should perform best when tested at the training site, as was
found in Bodini and Optis (2020b). The degree of model de-
terioration with distance can provide insight into how well
the model can generalize across space to perform extrapola-
tion. The results of this comparison are shown in Table 9.
Interestingly, at each site and for each metric, the round-
robin performance is slightly better than the same-site perfor-
mance. Accounting for the fact that the limited 1-year analy-
sis contributes to some uncertainty in these metrics, it is clear

https://doi.org/10.5194/wes-6-935-2021
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that there is at best negligible model degradation through-
out an offshore distance of 83 km. In contrast, Bodini and
Optis (2020b) found that, on land, model performance de-
creased with distance from the training site, ranging from
11 %—14 % reductions throughout distances ranging between
40-100 km. The negligible performance reduction offshore —

https://doi.org/10.5194/wes-6-935-2021
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Figure 10. Relative feature importance for the random forest model
in predicting 120 m wind speeds at NYSERDA buoy EO5.

which can be attributed to the horizontal homogeneity of the
offshore environment — has important implications for the ap-
plicability of machine-learning extrapolation techniques for
all US offshore waters using only a handful of lidar training
sites.
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Table 8. Performance metrics at buoy EO5 for the random
forest model with and without the air-sea temperature differ-
ence (AT,jr_sea) as an input feature.

Metric All data High-shear cases
Without With Without With
ATiir—sea ATiir—sea ATgir—sea ATyir—sea
Bias (m sfl) 0.03 0.04 —1.05 —0.58
cRMSE (m s_l) 1.07 0.84 1.46 1.29
EMD (ms~1) 0.19 0.12 1.05 0.58
R? 0.95 0.97 0.89 0.91

Table 9. Comparison of random forest model performance when
trained and tested under a round-robin vs. a same-site approach.

Metric Buoy E05 Buoy E06
Round Same Round Same
robin site robin site
Bias (ms™1) 0.07 —0.09 —-0.05 —-0.02
cRMSE (ms~1) 0.86 0.94 0.89 0.94
EMD (ms~1) 0.13 0.16 0.09 0.3
R? 0.97 0.96 096  0.96

5 Conclusions

In this study, we developed novel methods for the vertical ex-
trapolation of near-surface offshore wind speeds. We evalu-
ated these methods against conventional extrapolation meth-
ods and WRF-modeled wind speeds using two floating li-
dars deployed in US Atlantic wind energy call areas during
a l-year period. Of the four wind speed vertical extrapola-
tion models considered, the random forest machine-learning
model significantly outperformed the other models and ac-
curately represented winds across the vertical profile in dif-
ferent seasons and times of day and in different stability
regimes. Further, the random forest model substantially out-
performed the WRF model, highlighting the benefit of local
observations in generating wind profiles. Moreover, the ran-
dom forest model showed negligible to no performance de-
crease throughout the 83 km distance between the two float-
ing lidars.

The SCM performance offshore could be improved con-
siderably through better accounting of near-surface stabil-
ity. The model was forced at its lower boundary only by
the 2m wind speed and temperature and critically did not
consider the role of sea surface temperature and related heat
flux; therefore, the SCM really had no way to account for
or to characterize the role of atmospheric stability, which
was demonstrated in this study to be an important driver of
the wind profile. In contrast, the WRF model can capture
these effects, and the machine-learning model used the air—
sea temperature difference, a proxy for atmospheric stability,
as an input variable, which considerably improved model re-
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sults. Improving the SCM design to account for atmospheric
stability (e.g., by substituting the temperature lower bound-
ary condition with a flux-based measurement) should be an
area of future work.

Results from this study clearly show the promise of a
machine-learning-based approach to offshore wind extrapo-
lation. It seems likely that models trained on only a handful
of lidars dispersed in offshore waters could be sufficient to
accurately extrapolate wind speeds at all offshore locations
in the surrounding area where surface measurements exist.
This hypothesis should be tested more thoroughly using the
additional floating lidars recently deployed in US waters (Ta-
ble 1). The ability for a machine-learning model to generalize
across different oceans in particular (e.g., training a model in
the Atlantic and testing it in the Pacific) would be an impor-
tant area of future work as the US offshore wind industry
looks to Hawaii, the Pacific Northwest, and the Great Lakes
for future expansion (Musial et al., 2020).

Applying the machine-learning approach to satellite-based
wind speed observations would be the next future area of
study. A collaboration between the National Renewable En-
ergy Laboratory and DTU resulted in a US Atlantic wind
atlas at 10 ma.s.l. (above sea level) (Ahsbahs et al., 2020).
Training and evaluating a machine-learning model at floating
lidar sites using only data available across all the US Atlantic
area (i.e., satellite-measured winds and sea surface tempera-
ture) would provide key insights into whether the Ahsbahs
et al. (2020) wind atlas could be accurately extrapolated
across offshore wind turbine rotor-swept heights.

This proposed scope of future research will be aided by
continued efforts to make floating lidar data public. Most de-
ployed lidars are currently owned by wind energy develop-
ers and not publicly available. Public access to these data
would greatly improve our understanding of the US offshore
wind resource and help produce more accurate hub-height
observation-based offshore wind atlases.

Code and data availability. Observational data from the floating
lidars are publicly available at DNV-GL (2020). The open-source
WRF model was used for the numerical weather prediction simula-
tions.
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