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Abstract. Space–time correlations of power output fluctuations of wind turbine pairs provide information on
the flow conditions within a wind farm and the interactions of wind turbines. Such information can play an
essential role in controlling wind turbines and short-term load or power forecasting. However, the challenges
of analysing correlations of power output fluctuations in a wind farm are the highly varying flow conditions.
Here, we present an approach to investigate space–time correlations of power output fluctuations of streamwise-
aligned wind turbine pairs based on high-resolution supervisory control and data acquisition (SCADA) data. The
proposed approach overcomes the challenge of spatially variable and temporally variable flow conditions within
the wind farm. We analyse the influences of the different statistics of the power output of wind turbines on the
correlations of power output fluctuations based on 8 months of measurements from an offshore wind farm with
80 wind turbines. First, we assess the effect of the wind direction on the correlations of power output fluctuations
of wind turbine pairs. We show that the correlations are highest for the streamwise-aligned wind turbine pairs
and decrease when the mean wind direction changes its angle to be more perpendicular to the pair. Further,
we show that the correlations for streamwise-aligned wind turbine pairs depend on the location of the wind
turbines within the wind farm and on their inflow conditions (free stream or wake). Our primary result is that the
standard deviations of the power output fluctuations and the normalised power difference of the wind turbines
in a pair can characterise the correlations of power output fluctuations of streamwise-aligned wind turbine pairs.
Further, we show that clustering can be used to identify different correlation curves. For this, we employ the
data-driven k-means clustering algorithm to cluster the standard deviations of the power output fluctuations of
the wind turbines and the normalised power difference of the wind turbines in a pair. Thereby, wind turbine
pairs with similar power output fluctuation correlations are clustered independently from their location. With
this, we account for the highly variable flow conditions inside a wind farm, which unpredictably influence the
correlations.

1 Introduction

Wind energy continues to be a growing source of energy. In
2019, 15.4GW of new wind power capacity was installed
in Europe, with 24 % thereof located offshore (Komusanac
et al., 2020). Considering the offshore wind power in 2019,
the capacity in Europe has increased by 3.627GW and a total
of seven wind farms were fully connected to the grid. Due to
the increased size of the newly installed wind farms, the av-

erage size of offshore wind farms rose to 621MW (Ramírez
et al., 2020).

With the continuously increasing share of wind energy in
the grid, the challenge of handling this highly fluctuating en-
ergy source becomes more important, as discussed in Ren
et al. (2017). To convert wind energy into electrical energy,
wind turbines are installed generally in groups (wind farms)
at onshore and offshore sites. Fluctuations in their power out-
put result from environmental influences such as changes in
wind speed or wind direction, influences from neighbouring
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wind turbines and their state of operation. These power out-
put fluctuations create challenges regarding the grid stabil-
ity and are therefore an important field of investigation (see
Sorensen et al., 2007; Bossuyt et al., 2017b).

Wind turbines within a wind farm are placed as efficiently
as possible to achieve the maximum power output for a re-
spective site. The spacing of wind turbines is determined
by the terrain of the site and the influence of wind tur-
bines on each other (their wake). Wakes cause energy losses
through reduced wind speeds and, at the same time, greater
power output fluctuations and loads through increased turbu-
lence (Crespo and Hernàndez, 1996; Vermeer et al., 2003).

Wake and wind farm flow effects on different spatial and
temporal scales are reviewed by Porté-Agel et al. (2020).
Many studies do not consider the power output fluctuations
of wind turbines, which significantly impact the power out-
put of a wind farm and the electrical grid. Thus, for further
improvement of wind turbine control strategies like active
power control (Vali et al., 2019) and grid stability by minute-
scale prediction of offshore wind farm power (Valldecabres
et al., 2020), the occurrence of power output fluctuations of
wind turbines and their correlation within a wind farm are of
great interest.

Andersen et al. (2017) investigated the influence of large
coherent structures on the power output of wind turbines in
large wind farms. The large coherent structures were found
to cause high correlations in the power output of streamwise-
aligned wind turbines. Research on wind speed correlations
and power output correlations has shown that the wind tur-
bines within a wind farm influence each other’s power output
fluctuations. Bossuyt et al. (2017a) found significant corre-
lations of the power output for a streamwise-aligned setup
of a wind farm of 100 porous disc models in a wind tun-
nel. Next to an increased turbulence intensity throughout the
wind farm, the correlation of the power output reduced with
the increasing distance of the discs. In a large eddy simula-
tion (LES) study by Lukassen et al. (2018), space–time corre-
lations of velocity fluctuations within a wind farm with peri-
odic boundary conditions (modelling a periodic array of wind
turbines) were analysed and modelled analytically. Velocity
fluctuations, which are directly related to power output fluc-
tuations, showed pronounced space–time correlations. Fur-
thermore, the variance of the wind velocity and the mean
velocity turned out to be important parameters in the space–
time correlation model. Stevens and Meneveau (2014) inves-
tigated the spectra of power output fluctuations of wind tur-
bines in LES of finite-sized and infinitely large wind farms.
The spectra were found to be dependent on the power out-
put correlations of streamwise-placed wind turbines. The
power output correlation of the two wind turbines was sig-
nificantly influenced by the wind direction, i.e. the lowest
correlation for spanwise-placed wind turbines and highest
correlation for streamwise-aligned wind turbines. Dai et al.
(2017) analysed 1 Hz wind farm supervisory control and data
acquisition (SCADA) data concerning the influence of wind

speed fluctuations around a mean velocity and wind direction
fluctuations around a mean wind direction on the wind tur-
bine power output fluctuations of single wind turbines. They
showed a direct relation between the wind speed fluctuations
and power output fluctuations in the partial load regime. Us-
ing 10 min averaged wind farm SCADA data, Braun et al.
(2020) derived a stochastic model for the power time series
of wind turbines based on the temporal autocorrelation of the
power of single wind turbines.

This work analyses 1Hz wind farm SCADA data to de-
scribe the space–time correlations of the power output fluc-
tuations of wind turbine pairs. In contrast to the wind tunnel
measurements by Bossuyt et al. (2017a) and the LES anal-
ysis by Lukassen et al. (2018) mentioned above, the data
set processed here includes unstable inflow conditions (vary-
ing wind speeds and wind directions), dynamically operating
wind turbines and changing flow conditions within the wind
farm. Furthermore, there may be potential measurement in-
accuracies. The result is a large and highly complex data
set. In this paper, we investigate the influencing factors on
the correlation of power output fluctuations of wind turbine
pairs and introduce parameters to distinguish different corre-
lation curves, herein called correlation states. A state defines
a group of similar correlation curves. Note that the states
found here refer to this specific wind farm and the considered
time period. The parameters introduced to characterise corre-
lation curves are then evaluated with a data-driven clustering
algorithm to group the data according to the underlying cor-
relation curves.

Starting with the description of the evaluated data set in
Sect. 2, the processing of the data is explained in Sect. 2.1
and 2.2. The space–time correlation of power output fluctu-
ations per wind turbine pair for time intervals of 600s is in-
troduced. The correlation of wind turbine pairs is analysed in
Sect. 3.1 for different wind directions using a filtered data set
with less varying flow conditions. The correlation for wind
directions with streamwise-aligned wind turbines is evalu-
ated in more detail. In Sect. 3.2, the location dependence of
the power output fluctuation correlation is determined by the
comparison of wind turbine pairs located in different wind
farm rows to confirm the findings of the wind tunnel mea-
surements by Bossuyt et al. (2017a). With this and the re-
sults from the LES analysis by Lukassen et al. (2018), we
identify relevant wind turbine power output statistics that in-
fluence the correlation. In Sect. 4, we use the straightforward
k-means clustering approach (Lloyd, 1982) to group the data
with respect to these statistical quantities, which show that
they are clearly distinguishable correlation states. The con-
clusion and an outlook are drawn in Sect. 5.

2 Reference wind farm and data processing

The analysis performed in this work is based on measure-
ments from the offshore wind farm Global Tech I (GT I). It
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Figure 1. Layout of GT I. Each wind turbine is labelled with its
corresponding number. The spacing of the wind turbines is inho-
mogeneous. The wind directions 90 and 270◦ (marked in the fig-
ure) are analysed in detail in subsequent sections. The red square
depicts the set of wind turbines that are used during the location-
dependence analysis in Sect. 3.2 due to their symmetric arrange-
ment. In the clustering analysis in Sect. 4, the whole wind farm is
used. The blue ellipses exemplarily show the definition of the con-
sidered wind turbine pairs. Table A1 lists the definition of all pairs.

is located in the North Sea, which is more than 100km off
the coast of northern Germany. Its total capacity of 400MW
is provided by 80 wind turbines spread over an area of about
41km2. The wind turbines of type Adwen AD 5-116 have
a rated power of 5 MW, a rated wind speed of 12.5ms−1, a
hub height of 92m and a rotor diameter (D) of 116m. They
are installed in a grid-like, slightly asymmetric pattern with
a triangular shape towards the south (see Fig. 1).

The analysed data set was measured in about 8 months,
from 1 January 2019 until 9 September 2019, and consists
of 1Hz wind turbine SCADA data. The processed signals
include the generated power P , the azimuth angle of the wind
turbines (i.e. the nacelle direction) θ , the nacelle-based wind
direction ϕ (measured relative to θ ), the pitch angle β of each
blade and a reconstructed wind speed U .

The reconstructed wind speed U is not directly measured
but provided as a variable that results from the measured
power and control variables of the wind turbine (details on
the reconstruction of U are not available). Due to this, U
is considered as an approximated and idealised value that
does not include the wind-speed-independent power reduc-
tion, e.g. by a yaw misalignment of the wind turbine. In this
work, it can still be used to assess the effect of the wind speed
on the correlations of power output fluctuations of wind tur-
bine pairs, which is further discussed in Sect. 2.2.

The azimuth angle θ of the wind turbine refers to the di-
rection it is facing in its preset reference system. This system

does not necessarily match the global geographical one due
to the measurement inaccuracies of the azimuth angle and a
potentially inaccurate north orientation of the reference sys-
tem of each wind turbine (cf. Bromm et al., 2018).

The nacelle-based wind direction ϕ is estimated based on
the measurements of two 2D sonic anemometers installed
behind the rotor of each wind turbine. These measurements
have to be treated with care as the measured flow behind the
rotor is disturbed by the rotation of the rotor and the nacelle
itself. Thus, it is only an estimation of the wind direction and
yaw of the wind turbine. However, as shown by Dai et al.
(2017), wind direction fluctuations at reasonable yaw angles
(< 45◦) have only little effect on the power output fluctua-
tions of wind turbines. Thus, inaccuracies in ϕ have no ma-
jor influence on the performed analysis. The combined mea-
surements of θi and ϕi define the wind direction8i at the ith
wind turbine.

To assess the average wind direction for the wind farm, we
average over 8i of all wind turbines to reduce the influence
of false measurements of single wind turbines. Due to the
size of the considered wind farm, the wind direction is not
expected to be consistent throughout the wind farm. Single
wind turbines could be facing different wind directions com-
pared to the average wind direction of the wind farm (see
Schneemann et al., 2020; Sanchez Gomez and Lundquist,
2020). The wind direction of the wind farm that is averaged
over all available wind turbines is defined as 8av.

2.1 Data selection and filtering

Wind tunnel experiments and LES simulations as described
in Sect. 1 pose controllable conditions for evaluating corre-
lations. Such conditions cannot be met in a free-field wind
farm. Next to temporally and spatially varying wind con-
ditions, the wind farm layout leads to unequal conditions
for wind turbines due to their positions, e.g. changing wind
direction throughout the wind farm and asymmetric wind
turbine spacing, especially for large wind farms. Further,
each wind turbine operates independently from other wind
turbines including yawing, pitching, starting up or shutting
down. Next, single wind turbines can be set to operate in a
downrated state or be shut down due to maintenance or other
reasons. The combination of all these factors causes highly
dynamic flow conditions and thus an unpredictable variabil-
ity. To cope with these issues, the data set is filtered for dif-
ferent operation states, creating a cleaned data set with com-
parable operation state conditions for all wind turbines. For
each considered interval of 600s, the conditions defined in
the following have to be met; see Table 1.

In general, a wind turbine operating in partial load is not
pitching, and the velocity in its wake is always below the
rated wind speed. A wind turbine operating in full load aims
at keeping a constant rotor speed and power by pitching its
blades, where the wind speed in its wake can be larger than
the rated wind speed. The data set is limited to partial load to
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Table 1. Filters applied to the raw data of each wind turbine within
the wind farm.

Signal Power Pitch Yaw

Settings 0.5MW≤ P ≤ 4.5MW β <−1.3◦ θ = const.

avoid the effects of pitching and the different wake behaviour
on the correlation. To further avoid effects from the transition
from idle mode into operation or the transition from partial
load to full load, only the data of the wind turbines generating
power in the range of 0.5 and 4.5MW are considered.

The previously defined limited power range still includes
derated wind turbines. For derating wind turbines, their con-
troller is manually changed so that their maximum power is
limited to a certain value, which is lower than their nominal
power. Due to this, wind turbines might start pitching already
in the previously defined load range as their newly set power
limit is already reached at lower wind speeds. Hence, to en-
tirely exclude pitching wind turbines, the data are filtered for
any pitching activity. Please note that for this specific data
set, this implies that β <−1.3◦.

Furthermore, yawing wind turbines are excluded from the
analysis as well. The adjustment of wind turbines to the
wind direction is managed by each wind turbine individually.
Thus, wind turbines could be facing slightly different wind
directions8i and start yawing at different times. The yawing
activity of a wind turbine transfers to its wake, i.e. changes
its deflection (see Bromm et al., 2018). Thus, yawing would
affect the correlation for a pair of two wind turbines. To ex-
clude yawing wind turbines, no change in θ is allowed in the
regarded 600s time interval: θ = const.

To further filter the data for wind directions, the average
wind direction8av of all wind turbines is calculated for each
time step of the regarded 600s time interval. The average
wind direction 8av has to fit the wind direction of interest
within a tolerance of ±10◦ for all time steps in the regarded
600s. Note that the borders of the interval include the lower
limit and exclude the upper limit. Since this data filter only
applies to the average wind direction 8av, individual wind
turbines might have a slightly deviating relative wind direc-
tion for this specific time interval. This deviation could be
caused by a false wind direction measurement, a yawing pro-
cess that has taken place asynchronously to the majority of
other wind turbines or a wind direction deviation due to lo-
cal changes over the area of the wind farm. This means there
is no threshold for yaw misalignment within the 600 s inter-
vals. As mentioned before, these effects have a limited effect
on the power output fluctuations of the wind turbines.

As a summary, the overall data filtering procedure is as
follows. The correlation analysis uses each time interval of
600 consecutive seconds where the two wind turbines of a
wind turbine pair (as defined in Fig. 1) both pass all of the
above-described data filters, i.e. power range, pitch, yawing

and wind direction. This means that for different time inter-
vals, a different set of wind turbine pairs is considered. Fur-
thermore, wind turbine pairs can be considered for multiple
time intervals.

2.2 Correlation of power output fluctuations

Power output fluctuations of individual wind turbines are de-
fined as deviations of the instantaneous power from the av-
erage power of the regarded wind turbine i within a certain
time interval1t . We analyse time intervals of1t600 = 600s:

P ′i,tj (t)= Pi(t)−〈Pi(t)〉1t600 , (1)

where 〈Pi(t)〉1t600 is the average of the measured power Pi(t)
over an interval 1t600, including all 600 values for t in the
discretised interval [tj , tj + 599s]. P ′i,tj (t) is the power out-
put fluctuation within the interval1t600 (the index tj is omit-
ted in the following). Depending on the data availability,
the next interval of 600 consecutive seconds could go from
[tj+1s, tj+1s+599s] and thus overlap the previous one up
to 599 s. This does not result in significantly different find-
ings compared to non-overlapping intervals as shown in Ap-
pendix B.

The selection of the interval size of 600s is based on the
layout of the wind farm and the considered power ranges
or corresponding wind speeds. For example, considering the
spacing of up to 9D for westerly winds, with a cut-in wind
speed of 4ms−1 and a rated wind speed of 12.5ms−1, a
particle moving with the undisturbed wind would take from
about 84 up to 261s to travel from one wind turbine to
its downstream neighbour. Taking a lower advection wind
speed within the wind farm into account, a considered inter-
val length of 600s captures potential correlations of interest.
Each time step followed by 599 consecutive time steps forms
an interval, individually for each wind turbine. For all avail-
able intervals of all wind turbines, the power output fluctua-
tions are calculated based on Eq. (1).

To analyse the influence of wind turbines on each other,
the space–time correlation is calculated using the Pearson
correlation coefficient (Pearson, 1896):

r(τ )=
〈P ′A(t)P ′B(t + τ )〉1t300√

〈P ′2A(t)〉1t300〈P
′2
B(t + τ )〉1t300

, (2)

where 〈. . .〉1t300 is the average over an interval 1t300 = 300s
including all 300 values for t in the discretised interval
[tj , tj + 299s], r(τ ) is the Pearson correlation coefficient in
dependence of a time lag τ , P ′A(t) is the power output fluc-
tuation of the upstream wind turbine A following Eq. (1) at
a time t , and P ′B(t + τ ) is the power output fluctuation of the
downstream wind turbine B at a time t+ τ with a time lag τ .

The Pearson correlation coefficient is a value between −1
and 1, where 1 depicts the maximum possible linear correla-
tion, −1 is the maximal linear anti-correlation and a value
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of 0 depicts no linear correlation. The correlation coeffi-
cient is evaluated for a fixed period of 300s from P ′A(t) to
P ′A(t+300s) and likewise P ′B(t+τ ) to P ′B(t+300s+τ ). This
allows a maximum time lag of τ = 300s for each considered
600s interval.
Similar to Taylor’s hypothesis (Taylor, 1938), we assume that
wind structures responsible for the power output fluctuations
travel at a certain advection speed. Structures that impact an
upstream wind turbine A and then travel to downstream wind
turbine B are expected to have an advection speed similar
to the average wind speed over the distance travelled. But
in contrast to Taylor’s hypothesis, we do not assume frozen
eddies but expect wind structures to change and thus decor-
relate while travelling downstream. Further, as we have no
access to the average wind speed over the distance between
wind turbines A and B, we use the average wind speed mea-
sured at wind turbine B as a reference. Hence, to compare
the correlations calculated for intervals with different aver-
age wind speeds and different wind turbine distances, the
time lag τ is normalised for each time interval starting at tj
individually:

τnorm,intv = τ ·
〈UB(t + τ )〉1t300

xAB
, (3)

where τnorm,intv is the normalised time lag, 〈UB(t+τ )〉1t300 is
the average reconstructed wind speed from a certain (down-
stream) wind turbine B for a time interval 1t300 = 300s for
t in the discretised interval [tj , tj + 299s] and a certain lag
τ . This means for a certain τ that the averaging interval of
〈UB(t+τ )〉1t300 is [tj +τ, tj +τ +299s]. xAB is the distance
between wind turbine A and wind turbine B.

Next, the correlation curves with the normalised lag
τnorm,intv are discretised using a histogram with a reference
time lag of

τnorm = τ ·
Umax

xAB,mean
, (4)

where τ is the time lag (0 to 300s), and Umax is an artifi-
cially introduced velocity that has to be at least equal to the
maximum possible wind speed to fit all normalised curves
(Umax = 13ms−1 for this case). This value is based on the
wind turbine power curve characteristics, including a toler-
ance as the wind turbines considered here reach their rated
power at 12.5 ms−1. xAB,mean is the average distance be-
tween wind turbine A and wind turbine B of the considered
wind turbine pairs. Note that τnorm,intv is used for stretching
and shrinking of the correlation curves. τnorm is only a refer-
ence time lag that is only created for binning of the stretched
or shrunk correlations and does not change the correlation
curves.

Due to the definition of τnorm,intv and τnorm (see Eqs. 3 and
4), the peak of the correlation curves is expected to be found
around τnorm,intv = 1 if the advection speed of the wind speed
fluctuations matches the wind speed affecting wind turbine

B. Thus, in partial load situations where wind turbine B is
in the wake of wind turbine A, the peak is expected to be at
τnorm > 1. Here, the reduced wind speed in the wake recov-
ers slowly, so that the wind speed affecting wind turbine B,
i.e. UB, is already partly recovered and hence larger than the
advection speed of the fluctuations. As mentioned before,UB
is reconstructed and might differ from the actual wind speed
affecting the wind turbines. However, in the context of this
normalisation, the effect on the resulting correlations curves
is marginal as the correlation curves may only be slightly
shifted due to the deviation from the real wind speed.

3 Wind direction dependence and location
dependence

As described in Sect. 1, this work aims to study the influ-
ences of the free-field wind farm situation on the space–time
correlations of the power output fluctuations. For this, we
analyse the time intervals of a fixed set of 66 wind turbine
pairs, namely those that are streamwise-aligned for the wind
directions 90 and 270◦ (see Fig. 1 and Table A1). Note that
the pairs are the same for both wind directions, but the order
of the evaluation for the wind-direction-dependent correla-
tion differs (i.e. the upstream and downstream wind turbine
position of a pair is reversed).

In the following, we average correlations over a wind di-
rection interval of 20◦ and all available time intervals of the
considered wind turbines (either all wind turbines or a se-
lection of wind turbines). We consider 20◦ intervals due to a
10◦ tolerance in the wind direction measurements of the wind
turbines. The averaged correlation is denoted by R(τnorm). In
Sect. 3.1, the average correlation for the 66 wind turbine pairs
is analysed for each wind direction interval separately. Fur-
ther, the location-dependent correlations for the wind turbine
pairs are evaluated, and wind turbine statistics that charac-
terise the power output fluctuation correlations are investi-
gated in Sect. 3.2.

3.1 Wind-direction-dependent space–time correlation

After applying the data filters described in Sect. 2.1 to the
intervals of the 66 wind turbine pairs, the average correlation
per wind direction is determined. For each wind turbine pair,
the power output fluctuation correlations are averaged over
the wind direction intervals of 20◦, which are applied to steps
of 10◦; i.e. the interval for the wind direction 90◦ corresponds
to the directions 80◦ ≤8av < 100◦, and the consecutive in-
terval for the wind direction 100◦ is 90◦ ≤8av < 110◦. For
the 10◦ wind direction steps from 0 to 170◦, we treat the pairs
according to Table A1 with a reverse order, and for the 10◦

wind steps from 180 to 350◦, we treat the pairs with the given
order. This means that even for the wind directions where
both of the wind turbines of a pair are parallel to the wind
direction, the upstream wind turbine A is chosen according
to the table. Afterward, the results are averaged over all wind
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Figure 2. Availability of data per wind direction interval nor-
malised to the number of the available correlation intervals for 220◦,
namely 9 102 133 intervals. The outer labels depict the wind direc-
tion, and the inner circles denote the percentage of availability.

turbine pairs for each 10◦ step separately. Due to the differ-
ent availability of each wind turbine pair, they influence the
average correlation to a different amount. Figure 2 displays
the amount of data of all correlation intervals of all wind tur-
bine pairs per wind direction interval of 20◦. The main wind
direction is about 220◦ and shows the maximum occurrence,
whereas 90◦ has about 20 % fewer data and 270◦ has about
45 % lesser data. For wind directions from 350 to 20◦, there
were almost no data available.

Figure 3 displays the averaged power output fluctuation
correlation per 10◦ wind direction step, which is averaged
over the 20◦ wind direction interval and all the time inter-
vals of all available wind turbine pairs. The averaged corre-
lation coefficient is plotted as colour, and the time lag τnorm
(Eq. 4) is denoted as the radius. Due to the varying data avail-
ability per wind direction and the applied data filtering (see
Sect. 2.1), the average correlation curve per bin is based on
a different number of data. It turns out that after filtering,
no data are available for the bins around 330 to 10◦. Wind
turbines in a pair are streamwise-aligned for wind directions
around 90 and 270◦. Fluctuations take a certain time to travel
from one wind turbine to the other, where the fluctuations
are influenced by the upstream wind turbine. The highest
correlation peak is at τnorm > 1 according to the definition
of τnorm in Eq. (4). At 90◦, a correlation of about 0.16 is
found, whereas a correlation of about 0.2 is noted at 270◦.
The maximum correlation around 0.2 may seem relatively
low, but it is reasonable considering the high variability in
the flow and wind turbine dynamics in free-field measure-
ments. These dynamics are most likely caused by the wind
direction and wind speed changes and the individual opera-
tion of the wind turbines (yawing, limited power, shut off).

Even though the correlation curves were adapted to the av-
erage wind speed per interval, the wind speeds were just an
assessment and could change during the interval. Also, the
wind direction is averaged over the whole wind farm, which
means certain intervals could include data from wind turbine
pairs facing a slightly different direction. Further, we only
consider the intervals of wind turbine pairs that fit the data
filter; however, other wind turbines could be yawing at the
same time or start pitching. Thus, the flow within the wind
farm could still be influenced by these wind turbines. In the
LES study of Lukassen et al. (2018), a maximum correlation
coefficient of about 0.5 was found for the space–time correla-
tions of wind speeds measured at comparable distances with
comparable wind speed. In the wind tunnel experiments by
Bossuyt et al. (2017a), a maximum correlation of about 0.55
was found for the space–time correlation of the reconstructed
power output of discs placed at comparable distances with
comparable wind speeds. In both the simulations and experi-
ments, the flow conditions are ideal compared to those in the
free-field measurements. For wind directions approaching 0
and 180◦, the wind turbines in a pair are oriented more per-
pendicular to the wind direction, and the fluctuations reach
both wind turbines A and B at nearly the same time. This
leads to a change in the expected position of the highest peak
and the peak magnitude of the correlation curves. The corre-
lations found are not as pronounced as those for the stream-
wise case (i.e. around 90 and 270◦), which confirms the sim-
ulation results by Stevens and Meneveau (2014). Thus, we
will not investigate the spanwise correlations in further de-
tail.

Figure 4 shows the average power output fluctuation cor-
relation around 90 and 270◦ in detail as cuts through Fig. 3.
The absolute peaks are at 90 and 270◦. For wind directions
where the wind turbines in a pair are less streamwise-aligned,
the peak decreases and the correlation curve flattens. The cor-
relations for 270◦ are more defined and show slightly larger
peak values compared to those for 90◦. This may be due to
the asymmetric wind farm layout (see Fig. 1). The deviation
between the average correlation curves for wind directions
around 260 and 280◦ could be caused by the not entirely hor-
izontally aligned wind turbines and by the triangular shape at
the lower part of the wind farm; however, this phenomenon
is not further investigated in this analysis.

3.2 Location-dependent space–time correlation

The location dependence of the averaged power output fluc-
tuation correlations is investigated for wind direction inter-
vals around 90 and 270◦. As mentioned before, the wind tur-
bines are, on average, streamwise-aligned for these two wind
direction intervals. The most northern wind turbines, 1 to 8,
and wind turbines 58 to 80 in the lower triangle of the wind
farm do not follow the symmetric pattern of the square con-
sisting of wind turbines 9 to 57. Thus, the following results
are limited to this symmetric square as marked in Fig. 1.
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Figure 3. Average power output fluctuation correlation per 10◦

wind direction step of all available wind turbine pairs within the
wind farm. Since the power output fluctuation correlation is aver-
aged for wind direction intervals of 20◦, the intervals overlap by
10◦. For a better visibility the intervals are visualised in 10◦ steps
only; i.e. for 90◦ the interval goes from 80 to 100◦ but is visualised
from 85 to 95◦. The radius of the circle is the time lag τnorm; i.e.
τnorm = 0 is in the origin, and τnorm = 1 is on the inner black circle.
No data were available for the wind direction interval around 350◦

(see Fig. 2).

Figure 4. Average power output fluctuation correlations for wind
direction intervals from around 70 to 110◦ and around 250 to 290◦

as radial cuts through Fig. 3. 8c depicts the centre of the wind di-
rection intervals.

Figure 5. Average power output fluctuation correlation for wind di-
rection intervals around 90 and 270◦ considering the wind turbines
9 to 57 in the symmetric square (see Fig. 1). 8c depicts the centre
of the wind direction intervals.

Figure 5 displays the averaged correlations of the power
output fluctuations for all wind turbine pairs included in
the upper square of the wind farm for the wind direction
intervals 90 and 270◦. A total of 4 916 277 intervals and
3 329 333 intervals of 600s are averaged for 90 and 270◦,
respectively. Similar to Fig. 4, both correlation curves show
similar shapes, whereas the correlation for 270◦ is generally
higher than that for 90◦. The maximum averaged correlation
coefficient is about 0.16 and 0.21 for 90 and 270◦, respec-
tively.

Further, the power difference (normalised by the average
power output of the upstream wind turbine A) and the av-
erage standard deviation of the power output fluctuations of
both wind turbines in a pair are determined to analyse the
flow conditions. The results for 90 and 270◦ are listed in Ta-
ble 2. For both wind directions, the averaged standard devia-
tion of the power output fluctuations is larger for the down-
stream wind turbine B than for the upstream wind turbine
A. However, the averaged standard deviation of the power
output fluctuations for 90◦ is smaller than that for 270◦. The
normalised power difference of the wind turbine pairs for 90
and 270◦ is about 12 % and 8 %, respectively. The different
behaviour is likely to be caused by the distinct meteorologi-
cal conditions, e.g. distribution of mean wind speed and at-
mospheric stability, between the two wind directions.

To further investigate the wind turbine location depen-
dence of the power output fluctuation correlations, the av-
erage correlation of wind turbine rows is calculated for both
wind directions. Here, a wind turbine row consists of a line of
wind turbines perpendicular to the incoming wind, as shown
in the upper right corner of Fig. 6. For both wind directions,
no sharp correlation is found for the first row (turbine A in
the first row, turbine B downstream of A, dark blue curves).
It should be noted that the upstream wind turbine A is stand-
ing in the free stream, while the downstream wind turbine B
is affected by the wake of the upstream wind turbine. Thus,
the two wind turbines have very different inflow conditions.
For wind turbine pairs located further downstream, both wind
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Table 2. Averaged wind turbine statistics computed for the wind direction intervals around 90 and 270◦ with A as the upstream wind turbine

and B as the downstream wind turbine.
√
〈P ′2A〉1t600 is the standard deviation of the power output fluctuations of wind turbine A over 600s

intervals 1t600 (analogue for wind turbine B for the same 600s intervals, respectively). 〈PA〉1t600 and 〈PB〉1t600 are the average power of
wind turbines A and B over the same 600s intervals. 〈. . .〉all denotes the average of the statistics over all available time intervals of the wind
turbine pairs. Note that 8c depicts the centre of 20◦ wind direction intervals, here from 80 to 100◦ and from 260 to 280◦.

8c

〈√
〈P ′2A〉1t600

〉
all

〈√
〈P ′2B〉1t600

〉
all

〈
〈PA〉1t600−〈PB〉1t600

〈PA〉1t600

〉
all

[kW] [kW]

90◦ 212 222 0.12
270◦ 247 260 0.08

Figure 6. Averaged power output fluctuation correlation per wind
farm row for wind direction intervals around 90◦ (a) and 270◦ (b)
considering all wind turbines in the symmetric square (see Fig. 1).
8c depicts the centre of the wind direction intervals. For the consid-
ered correlation curves, wind turbine A is located in the respective
coloured row and turbine B is one row downstream of A. As the
wind turbines are analysed in pairs of two, the last row of wind
turbines is unlabelled, as these wind turbines do not have a down-
stream partner. For both figures, the numbering and the colours of
the rows are identical with regard to the considered wind direction.

turbines are standing in the wake of the upstream wind tur-
bines. Here, a clear correlation is found. For the correlation
curves of the second to last row, the peaks become more de-
fined as their width decreases.

As described by Bossuyt et al. (2017a), the turbulence in-
tensity increases with the flow towards the back of the wind
farm. Furthermore, as indicated above in Lukassen et al.
(2018), the variance of wind speed fluctuations plays an im-

portant role in modelling the velocity space–time correla-
tions. To evaluate the row-dependent conditions in the mea-
surement data, Table 3 lists the average standard deviations
of the power output fluctuations measured at the upstream
and downstream wind turbine of all pairs, as well as the
average normalised power difference of all pairs. For both
wind turbines in a pair, the average standard deviations of
the power output fluctuations show a clear increasing trend
throughout the wind farm, which is similar to that of the tur-
bulence intensity in the wind tunnel results mentioned above.
The normalised power difference is largest for the first row,
which is caused by the previously described deviating in-
flow conditions of the upstream and downstream wind tur-
bine. This was also found in the experiment by Bossuyt et al.
(2017a) where the first row generates the maximum power,
while the second and following rows show a significant re-
duction.

4 K -means clustering of power output fluctuation
characteristics

Results of Sect. 3.2 reveal that the standard deviation of
the power output fluctuations and the power difference of
the wind turbines change depending on the location of the
wind turbine (pairs) within the wind farm. As explained in
Sect. 2.1, conditions in a wind farm are never ideal due to
the variety of influence factors such as wind direction and
wind speed fluctuations or influences of surrounding wind
turbines. Turbines within the wind farm that are turned off or
derated might create free-stream-like inflows for downstream
wind turbine pairs. Such irregularities influence the standard
deviations of the power outputs and the normalised power
differences calculated for wind turbine pairs. For example,
a wind turbine that is turned off for a certain time interval is
not considered in the analysis. However, it still influences the
flow conditions within the wind farm and the statistics or cor-
relations of the surrounding wind turbine pairs. Thus, a con-
sidered wind turbine pair downstream of the non-operating
wind turbine could show a different correlation than if the
upstream wind turbine would be turned on. To identify these
locally abnormal conditions and the resulting deviations in
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Table 3. Averaged wind turbine statistics per wind farm row computed for wind direction intervals around 90 and 270◦ with A as the

upstream wind turbine and B as the downstream wind turbine.
√
〈P ′2A〉1t600 is the standard deviation of the power output fluctuations of

wind turbine A over a 600s interval 1t600 (analogue for wind turbine B for the same 600s intervals). 〈PA〉1t600 and 〈PB〉1t600 are the
average power outputs of wind turbines A and B over the same 600s intervals. 〈. . .〉row denotes the average of the statistics over all available
time intervals of the wind turbine pairs in a row. Note that 90 and 270◦ again refer to the 20◦ wind direction intervals from 80 to 100◦ and
from 260 to 280◦. 〈√

〈P ′2A〉1t600

〉
row

〈√
〈P ′2B〉1t600

〉
row

〈
〈PA〉1t600−〈PB〉1t600

〈PA〉1t600

〉
row

[kW] [kW]

Row 90◦ 270◦ 90◦ 270◦ 90◦ 270◦

1 114 166 164 216 0.27 0.19
2 186 232 222 258 0.05 0.02
3 224 254 242 265 0.09 0.06
4 243 269 241 268 0.10 0.06
5 250 276 234 274 0.08 0.08
6 232 280 220 278 0.06 0.04

the power output fluctuations and their correlations, the k-
means clustering algorithm is used to sort the correlations
based on previously defined statistics, standard deviation and
the normalised power difference of the wind turbines in a
pair.
k-means clustering is an algorithm that iteratively sorts

data into k clusters. After choosing an initial centre for each
cluster (centroids) within the data, all data points are assigned
to their nearest centroid. Afterwards, the new centres of the
clusters are calculated based on the assigned data points.
These steps are repeated until a previously defined number
of iterations is reached or when the centres of the clusters no
longer change. Finally, the data are distributed into k clus-
ters. The result of the k-means algorithm is dependent on the
starting positions of the cluster centres. Thus, the algorithm
can be repeated with changing starting points for the clusters
to find the best possible solution.

In the following, we investigate the clustering results for
the directions 90 and 270◦. Here, the triangular shape of the
lower part of the wind farm (wind turbines 58 to 80) and
the most northern wind turbines 1 to 8 are now incorporated
(see Fig. 1) to identify the flow conditions of the whole wind
farm. This results in 6 985 830 considered time intervals for
90◦ and 4 914 448 considered time intervals for 270◦.

Clustering is performed using the k-means algorithm of
MATLAB (MATLAB, 2019) based on Lloyd (1982) using
random sample points as initial centroids to find the best so-
lution. Clustering is repeated 10 times to avoid the genera-
tion of local centroids, and the run with the clusters with the
lowest sum of point-to-centroid distances within the clusters
is chosen. As a distance metric for the clusters, the squared
Euclidean distance is chosen. The maximum number of iter-
ations is set to 300 and k is set to five clusters. This number
was empirically chosen as the data were grouped into a rea-
sonable set of groups with clearly distinguishable correlation

curves (correlation states). A greater number of clusters leads
to further clusters with similar correlation curves. The only
difference found was in the standard deviation of the power
output fluctuations of the wind turbine pairs. Here, the clus-
ter indicates a higher standard deviation of the power out-
put fluctuations for the upstream wind turbine A instead of
the downstream wind turbine B. This slightly abnormal be-
haviour is shown in more detail in Appendix C. Also, differ-
ent orderings of the intervals have been tested, namely ran-
dom sorting, data sorted for an increasing standard deviation
of the power output fluctuations of the downstream wind tur-
bine B, and chronological sorting according to the available
time intervals. The results are equal, including the first deci-
mal place of the centroids for all cases. Thus, a random sort-
ing is used in further analysis.

Table 4 lists the determined centroids (centres of the clus-
ters) for wind directions 90 and 270◦. Standard deviations of
the power output fluctuations of both wind turbines A and
B significantly decrease, while the normalised power differ-
ence of A and B significantly increases from Cluster 1 to 5.
To further investigate these findings, we analyse the correla-
tion curves corresponding to the clusters.

Figures 7 and 8 show the average correlations for both
wind directions for each of the five clusters (upper plots) and
the percentage frequency of each pair within each of the five
clusters (lower plots).

As expected from Figs. 4 and 5, the average correlations
for 270◦ are higher than those for 90◦. Cluster 1 includes
nearly 6 % of the data and has the highest correlation. This
is a significant increase compared to the average correlation
shown in Fig. 5. The correlation decreases while the amount
of data per cluster increases from Cluster 2 to 4. No corre-
lation is found for Cluster 5. A clear trend is visible upon
looking at the occurrence of wind turbine pairs within each
cluster. While Cluster 1 with the highest correlation is dom-
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Table 4. Cluster centroids for wind direction intervals around 90 and 270◦ with A as the upstream wind turbine and B as the downstream

wind turbine.
√
〈P ′2A〉1t600 is the standard deviation of the power output fluctuations of wind turbine A over 600s intervals 1t600 (analogue

for wind turbine B for the same 600s intervals, respectively). 〈PA〉1t600 and 〈PB〉1t600 are the average power output of wind turbines A and
B over the same 600s intervals. 〈. . .〉cluster denotes the average of the statistics over all available time intervals of the wind turbine pairs
within a cluster. Note that 90 and 270◦ again refer to 20◦ wind direction intervals from 80 to 100◦ and from 260 to 280◦.〈√

〈P ′2A〉1t600

〉
cluster

〈√
〈P ′2B〉1t600

〉
cluster

〈
〈PA〉1t600−〈PB〉1t600

〈PA〉1t600

〉
cluster

[kW] [kW]

Cluster 90◦ 270◦ 90◦ 270◦ 90◦ 270◦

1 513 535 527 540 0.02 0.05
2 367 381 387 405 0.05 0.06
3 253 283 271 298 0.10 0.06
4 157 197 174 213 0.13 0.07
5 73 117 86 133 0.14 0.11

Figure 7. Clustering for wind direction interval around 90◦ with randomly sorted 600s time intervals. 8c depicts the centre of the wind
direction interval. Panel (a) plot shows the average power output fluctuation correlation curve per cluster. The legend lists the share of data.
Panel (b) shows the percentage frequency of each wind turbine pair within the respective cluster given as colour. As the wind turbines are
analysed in pairs of two, the last row of wind turbines is unlabelled, as these wind turbines do not have a downstream partner.

inated by wind turbine pairs, where the upstream wind tur-
bine is located towards the back of the wind farm, Cluster 5
with no correlation is dominated by wind turbine pairs with
its upstream wind turbine located in the first row of the wind
farm. From clusters 2 to 4, the dominating wind turbine pairs
shift from the back rows towards the front rows, whereas the
percentage frequency becomes more balanced throughout the
wind farm (i.e. more light-green-coloured turbines).

The comparison of the results of Figs. 7 and 8 and Table 4
depicts that the greater the standard deviations of the power
output fluctuations and the smaller the normalised power dif-
ference of the wind turbines in a pair, the higher the corre-
lation for the wind turbine pairs. The slight row dependence,
which was already indicated in Table 3, can be confirmed

here. This is illustrated by a colour coding of the frequency of
occurrence of wind turbine pairs in each cluster in the lower
subplot of Fig. 7 (respectively Fig. 8). The sum of all fre-
quencies of all wind turbines within one cluster adds up to
100 %, meaning a yellow-coloured wind turbine pair makes
up about 3 % of the respective cluster, and a green-marked
wind turbine pair makes up about 1.5 % of the respective
cluster. For example, the correlation peak for Cluster 1 of
more than 0.3 for 90◦ (respectively 0.4 for 270◦) partly in-
cludes pairs with the upstream turbine in the last row and
some turbine pairs in the rows before. This is considerably
larger than the correlation curve of row 6 of Fig. 6.
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Figure 8. Clustering for wind direction interval around 270◦ with randomly sorted 600s time intervals. 8c depicts the centre of the wind
direction interval. Panel (a) shows the average power output fluctuation correlation curve per cluster. The legend lists the share of data. Note
that the values do not add up exactly to 100 % due to rounding. Panel (b) shows the percentage frequency of each wind turbine pair within
the respective cluster given as colour. As the wind turbines are analysed in pairs of two, the last row of wind turbines is unlabelled, as these
wind turbines do not have a downstream partner.

5 Conclusions

We presented an approach to analyse the correlations of
power output fluctuations of wind turbine pairs for 600 s time
intervals based on 1 Hz SCADA data, which copes with the
challenge of highly variable flow conditions in the measure-
ment data and the identification of correlation states. Fur-
ther, we investigated different influences on the correlation
of power output fluctuations of wind turbine pairs. The in-
vestigation of the influence of different wind directions on
the correlations of power output fluctuations of wind turbine
pairs showed that streamwise-aligned pairs are correlated. In
contrast, spanwise pairs show nearly no correlation of power
output fluctuations. Thus, we focused our investigation on
the streamwise wind turbine pairs.

Inspired by the findings of Bossuyt et al. (2017b), which
showed an increasing turbulence intensity throughout the
wind farm and the model for velocity space–time correla-
tions by Lukassen et al. (2018), we introduced and evaluated
parameters to characterise correlation states of power output
fluctuations. The chosen parameters were the standard devi-
ations of the power output fluctuations and the normalised
power difference of wind turbines in a pair.

In general, we found that the averaged correlation curves
of power output fluctuations for 270◦ with a maximum corre-
lation coefficient of 0.21 have more defined (narrower) peaks
compared to those of the averaged correlation curves for 90◦

with a maximum correlation coefficient of 0.16. Further, the
standard deviation of the power output fluctuations of the
wind turbines in a pair was larger for 270◦ than for 90◦.

This difference, together with the slightly asymmetric layout
of the wind farm and different inflow conditions for 90 and
270◦, is most likely the root cause for this deviation in the
correlation curves. In the context of the considered highly
varying flow conditions, peak correlations around 0.21 or
0.16 are still considered significant. The cause for these rel-
atively low peak correlations lies in the varying flow condi-
tions or noisiness of the flow within the wind farm.

The investigation of the average correlation for wind tur-
bine pairs per wind farm row strengthened our previous find-
ings. We found different correlation curves for the rows of
the wind farm, becoming more defined (more narrow peaks)
towards the back of the wind farm. Wind turbine pairs, where
the upstream wind turbine A is located in the first row and the
downstream wind turbine B is located in the second row of
the wind farm show no correlation. In addition, large nor-
malised power differences of the wind turbines in a pair and
small standard deviations of power output fluctuations were
observed. This is most likely caused by the free stream inflow
of the upstream wind turbine A of the pairs. Most impor-
tantly, the analysis of the separate rows of the wind farm re-
vealed a trend of increasing standard deviations of the power
output fluctuations throughout the wind farm and a decreas-
ing normalised power difference of the wind turbines in a
pair. As mentioned before, the flow throughout the wind farm
is highly variable due to the individual control and operation
of the wind turbines. This means that not all wind turbine
pairs in the same row are affected by the same flow condi-
tions, as upstream wind turbines could be turned off, could
be yawing or could be pitching. This further means that they
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show different correlation curves and should be sorted into
different correlation states. Thus, to group data according
to the underlying flow conditions, which define the differ-
ent correlation states, the introduced parameters (standard
deviation of the power output fluctuations of wind turbines
in a pair and the normalised power difference of wind tur-
bines in a pair) were combined with the k-means cluster-
ing algorithm. The clustering showed similar results for the
wind directions 90 and 270◦. The clusters had distinguish-
able values in the standard deviation of the power output fluc-
tuations and in the normalised power output differences of
the wind turbines, which were directly related to the average
correlation curve per cluster. Increased standard deviations
of the power output fluctuations combined with the small
normalised power difference of the wind turbines in a pair
showed the most defined correlations with the highest peak
(Cluster 1). This combination was found for wind turbine
pairs located further downstream in the wind farm and some
wind turbine pairs from rows towards the front. For 90◦, the
peak of the correlation increased via clustering from 0.16 to
0.32, and for 270◦ the peak of the correlation increased from
0.21 to 0.41. A value of 0.41 is close to the correlations found
in the LES study by Lukassen et al. (2018) and experiments
by Bossuyt et al. (2017b), which were between 0.5 and 0.55
for similar wind turbine spacing and similar wind speeds. In
addition, for both wind directions, a cluster of non-correlated
wind turbines (Cluster 5) was found, which mainly consists
of wind turbine pairs in the first rows of the wind farm. Clus-
ters 2, 3 and 4 were not as significant as clusters 1 and 5 and
showed distinguishable correlation curves with their peaks
ranging from 0.14 to 0.22 for 90◦ and from 0.2 to 0.31 for
270◦.

Hence, we found that to analyse correlation states of power
output fluctuations of streamwise wind turbine pairs in vary-
ing flow conditions, the standard deviation of the power out-
put fluctuations of wind turbines in a pair as well as the
normalised power difference of the wind turbines in a pair
have been proven to be suitable to identify correlation states.
Furthermore, the data-driven k-means clustering approach
enables an automated grouping of the data into correlation
states based on these parameters. As an outlook, further anal-
ysis of the space–time correlations within an offshore wind
farm could help control wind turbines, e.g. for power output
fluctuation management or active wake control. Also, knowl-
edge about the correlation of wind turbine pairs allows short-
term power output fluctuation forecasting within the wind
farm and interactive wind turbine control.

The presented findings can be enhanced in the future by
adding lidar or radar measurements to access independent
wind direction and wind speed measurements. Moreover, the
analysis of correlation states might be extended to include the
correlation of wind turbine pairs with multiple inter-turbine
distances and the correlation of non-aligned wind turbine
pairs. Clustering of correlation states can be further inves-
tigated by increasing the number of clusters to k > 5. Re-
sults for k = 6 indicated that the statistics of the upstream
and downstream wind turbine of a pair have a different in-
fluence on its correlation. In addition, it is worth consider-
ing alternative clustering methods like k-medoids (Kaufman
and Rousseeuw, 1990), which is less sensitive to outliers or
density-based spatial clustering of applications with noise
(DBSCAN) (Ester et al., 1996), which is also less sensitive
to outliers and has no fixed cluster shapes and fixed number
of clusters. Using these algorithms could improve the clus-
tering of the intervals and more defined correlation curves or
could identify further clusters. Furthermore, measurements
on the boundary layer conditions help assess the influence of
wind turbine wakes on the space–time correlations of power
output fluctuations with the additional knowledge on the at-
mospheric stability.
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Appendix A: Wind turbine pairs

To calculate the power output fluctuation correlation, wind
turbine pairs are chosen according to the respective wind di-
rection. In total, 66 wind turbine streamwise pairs can be de-
fined. Table A1 depicts the definition of wind turbine pairs
for wind direction 270◦. For wind direction 90◦, the same
pairs are chosen but with switched wind turbine order. For
example, for pair 1 for 270◦, wind turbine 1 is the upstream
wind turbine and wind turbine 2 is the downstream wind tur-
bine. For 90◦, wind turbine 2 is the upstream wind turbine
and turbine 1 is the downstream wind turbine.

Table A1. Definition of streamwise wind turbine (WT) pairs for wind direction 270◦.

Pair 01 02 03 04 05 06 07 08 09 10 11 12 13 14
WTs 01, 02 02, 03 03, 04 04, 05 05, 06 06, 07 07, 08 09, 10 10, 11 11, 12 12, 13 13, 14 14, 15 16, 17

Pair 15 16 17 18 19 20 21 22 23 24 25 26 27 28
WTs 17, 18 18, 19 19, 20 20, 21 21, 22 23, 24 24, 25 25, 26 26, 27 27, 28 28, 29 30, 31 31, 32 32, 33

Pair 29 30 31 32 33 34 35 36 37 38 39 40 41 42
WTs 33, 34 34, 35 35, 36 37, 38 38, 39 39, 40 40, 41 41, 42 42, 43 44, 45 45, 46 46, 47 47, 48 48, 49

Pair 43 44 45 46 47 48 49 50 51 52 53 54 55 56
WTs 49, 50 51, 52 52, 53 53, 54 54, 55 55, 56 56, 57 58, 59 59, 60 60, 61 61, 62 62, 63 64, 65 65, 66

Pair 57 58 59 60 61 62 63 64 65 66
WTs 66, 67 67, 68 69, 70 70, 71 71, 72 73, 74 74, 75 76, 77 77, 78 79, 80
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Appendix B: Statistical dependence of 600 s intervals

The analysed 600 s intervals are not statistically independent
as they overlap by 599 s in the extreme case. Also, thinking
of bigger gusts evolving through the wind farm, it is most
likely that wind turbine pairs experience similar correlation
states when being affected by the gust. To clarify the influ-
ence of the overlapping of the considered intervals, we per-
formed the calculations again using only non-overlapping in-
tervals. The following figure (Fig. B1) compares the results
for non-overlapping and overlapping intervals exemplary for
wind direction 270◦. Figure B1a displays the comparison of
the average correlation curves per wind farm row. Figure B1b
displays the comparison of the average correlation curves per
cluster. In general, the results of the non-overlapping inter-
vals are similar to the results of the overlapping intervals and
differ at most by about 10 %. However, Fig. B1a shows that
this data set is at the limit of representing the correlations as
the average correlation curves start to wiggle for τnorm > 2
due to the low number of data points. In total, only 8121
non-overlapping 600 s intervals are available for 270◦, which
resemble a measurement time of about 56 d. For all wind tur-
bine pairs, 11 514 intervals are available as multiple wind tur-
bine pairs are available in the same interval.

Figure B1. Comparison of the average power output fluctuation correlation for wind direction interval 270◦ of non-overlapping and overlap-
ping intervals. For both plots, the average correlation curves for non-overlapping intervals are marked with “NO” and plotted with a dashed
line. The average correlation curves for overlapping intervals are plotted in both cases as a solid line.
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Appendix C: Effect of the numbers of clusters

As mentioned in Sect. 4, the number of clusters chosen
for the present analysis was k = 5. This decision was made
based on the results for k = 6 presented in Figs. C1 and C2.
For wind direction 90◦, six separable correlation curves are
found. Comparing Fig. C1 to Fig. 7 shows that Cluster 2 of
Fig. 7 seems to be separated into two clusters (Cluster 2 and
3 of Fig. C1).

For wind direction 270◦, only five clearly separable cor-
relation curves are found where one is overlapped by a very
similar one. Comparing Figs. C2 to 8 shows that Cluster 3 of
Fig. 7 seems to be separated into two similar clusters (Cluster
3 and 4 of Fig. C2). The new clusters also do not reveal any
further characteristics.

Looking at the statistics of the correlation curves listed in
Table C1, it can be found that for wind direction 90◦, Clus-
ter 2 shows a higher standard deviation of the power out-
put fluctuations for wind turbine A instead of B, while Clus-
ter 3 shows a higher standard deviation of the power output
fluctuations for wind turbine B instead of A, similar to all
other clusters. For the wind direction 270◦, Cluster 4 shows
a higher standard deviation of power output fluctuations for
wind turbine A instead of B, while Cluster 3 shows a higher
standard deviation of power output fluctuations for wind tur-
bine B instead of A, similar to all other clusters.

Table C1. Averaged wind turbine statistics computed for wind direction intervals around 90 and 270◦ and k = 6, withA as the upstream wind

turbine and B as the downstream wind turbine.
√
〈P ′2A〉1t600 is the standard deviation of the power output fluctuations of wind turbine A

over a 600s interval 1t600 (analogue for wind turbine B for the same 600s intervals, respectively). 〈PA〉1t600 and 〈PB〉1t600 are the average
power of wind turbines A and B over the same 600s intervals. 〈. . .〉cluster denotes the average of the statistics over all available time intervals
of the wind turbine pairs. Note that here 90 and 270◦ again refer to 20◦ wind direction intervals from 80 to 100◦ and from 260 to 280◦.〈√

〈P ′2A〉1t600

〉
cluster

〈√
〈P ′2B〉1t600

〉
cluster

〈
〈PA〉1t600−〈PB〉1t600

〈PA〉1t600

〉
cluster

[kW] [kW]

Cluster 90◦ 270◦ 90◦ 270◦ 90◦ 270◦

1 523 541 526 547 0.02 0.04
2 327 394 435 412 0.02 0.06
3 393 247 324 343 0.09 0.06
4 240 317 263 263 0.11 0.07
5 152 194 168 211 0.13 0.07
6 72 116 84 132 0.14 0.11

The correlation curves and statistics imply that the further
separation of the statistics with k > 5 does not reveal any
correlation states that are more significant than those found
for k = 5. Clustering with k > 5 might further distinguish the
flow states for wind turbine pairs based on the standard de-
viations of power output fluctuations of wind turbines A and
B. However, this is not further investigated, as this effect is
not included in the scope of the work presented here.

https://doi.org/10.5194/wes-6-997-2021 Wind Energ. Sci., 6, 997–1014, 2021



1012 J. K. Seifert et al.: Power output fluctuations in an offshore wind farm

Figure C1. Clustering for wind direction interval around 90◦ with randomly sorted parameters and k = 6. 8c depicts the centre of the wind
direction interval.

Figure C2. Clustering for wind direction interval around 270◦ with randomly sorted parameters and k = 6.8c depicts the centre of the wind
direction interval.
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