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Abstract. Numerical wind resource modelling across scales from the mesoscale to the turbine scale is of in-
creasing interest due to the expansion of offshore wind energy. Offshore wind farm wakes can last several tens
of kilometres downstream and thus affect the wind resources of a large area. So far, scale-specific models have
been developed but it remains unclear how well the different model types can represent intra-farm wakes, farm-
to-farm wakes as well as the wake recovery behind a farm. Thus, in the present analysis the simulation of a
set of wind farm models of different complexity, fidelity, scale and computational costs are compared among
each other and with SCADA data. In particular, two mesoscale wind farm parameterizations implemented in
the mesoscale Weather Research and Forecasting model (WRF), the Explicit Wake Parameterization (EWP) and
the Wind Farm Parameterization (FIT), two different high-resolution RANS simulations using PyWakeEllipSys
equipped with an actuator disk model, and three rapid engineering wake models from the PyWake suite are se-
lected. The models are applied to the Nysted and Rødsand II wind farms, which are located in the Fehmarn Belt
in the Baltic Sea.

Based on the performed simulations, we can conclude that both WRF+FIT (BIAS= 0.52 m s−1) and
WRF+EWP (BIAS= 0.73 m s−1) compare well with wind farm affected mast measurements. Compared with
the RANS simulations, baseline intra-farm variability, i.e. the wind speed deficit in between turbines, can be
captured reasonably well with WRF+FIT using a resolution of 2 km, a typical resolution of mesoscale models
for wind energy applications, while WRF+EWP underestimates wind speed deficits. However, both parame-
terizations can be used to estimate median wind resource reduction caused by an upstream farm. All considered
engineering wake models from the PyWake suite simulate peak intra-farm wakes comparable to the high fi-
delity RANS simulations. However, they considerably underestimate the farm wake effect of an upstream farm
although with different magnitudes. Overall, the higher computational costs of PyWakeEllipSys and WRF com-
pared with those of PyWake pay off in terms of accuracy for situations when farm-to-farm wakes are important.

1 Introduction

Numerical wind resource modelling for wind energy cov-
ers scales from the wind turbine level to the meso- and
macroscale of synoptic systems (Fig. 1; Porté-Agel et al.,
2020; Veers et al., 2019). In the past, targeted models have
been developed for the different scales. However, with the
increasing expansion of wind energy, atmospheric processes

that involve different scales are of increasing relevance: in-
dividual microscale wind turbine wakes converge to a wind
farm wake downstream of a farm. These wind farm wakes
can extend more than 50 km both onshore (Lundquist et al.,
2019) and offshore (Cañadillas et al., 2020) and thus affect
wind resources of neighbouring farms. In addition, they are
affected by processes on the mesoscale and synoptic scale,
which become increasingly relevant as the studied area be-
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comes larger (Vincent et al., 2013; Mehrens et al., 2016);
thus, flow over larger areas is not uniform. Rapid engineering
models or other high-resolution models that are targeted for
the use of microscales around turbines often do not account
for this non-uniformity. Instead mesoscale models equipped
with a wind farm parameterization (WFP) can be applied to
capture these mesoscale variabilities. However, with a typical
resolution of about 1–2 km used in wind energy applications
according to Fischereit et al. (2022), mesoscale models can-
not resolve individual turbines within a farm.

With this in mind, the aim of this study is 2-fold: first, to
evaluate the performance of WFPs included in a mesoscale
model using a typical horizontal resolution applied in wind
energy application against mast measurements, SCADA data
and high-resolution wake models, sometimes also termed
wind turbine wake models (Göçmen et al., 2016), in terms
of intra-farm wakes; and second, to compare farm-to-farm
wakes and long-distance wakes of WFPs and high-resolution
wake models. Different model types do not only differ in the
typical domain size and therefore in the spatial scales that
they can capture, but also by their computational costs mea-
sured in central processing unit (CPU) time (Fig. 1). Thus,
based on the analysis this study also addresses the question
of whether more computational demanding model simula-
tions provide better accuracy when modelling intra-farm and
farm-to-farm wakes.

For the investigations, we employ as the mesoscale model
the Weather Research and Forecasting (WRF) v4.2.2 model
(Skamarock et al., 2019) equipped with the Explicit Wake
Parameterization (EWP, Volker et al., 2015) and the wind
farm parameterization by Fitch et al. (2012) (FIT). FIT and
EWP are the most applied WFPs according to a recent re-
view (Fischereit et al., 2022). While some studies have in-
vestigated intra-farm wakes using FIT (Jiménez et al., 2015;
Eriksson et al., 2015, 2017), only a few studies (Hansen et al.,
2015; Poulsen, 2019) have evaluated intra-farm wakes with
EWP against measurements or SCADA data. In addition, in
Hansen et al. (2015) WRF was used in a very coarse horizon-
tal resolution so that the entire wind farm was located within
one grid cell. In contrast to that, Jiménez et al. (2015) and
Eriksson et al. (2015) used WRF with a very high horizontal
resolution of 333 m and Eriksson et al. (2017) even a resolu-
tion of 111 m. These resolutions are within the terra incog-
nita numerical region or the “grey” zone of the applicability
of mesoscale models (Wyngaard, 2004; Honnert et al., 2020).
Within that zone, large coherent overturning structures start
to be partially resolved when their length scale is approach-
ing the effective grid resolution. This violates assumptions
that are applied in the turbulence and shallow convection pa-
rameterizations and thus reduces the accuracy of the numer-
ical simulations in that zone (Honnert et al., 2020). In the
present study, a typical resolution for wind energy applica-
tions (Fischereit et al., 2022), namely 2 km, is applied.

The intra-farm wakes in WRF–EWP and WRF–FIT
are evaluated both against SCADA data as well as

high-resolution Computational Fluid Dynamics Reynolds-
Averaged Navier–Stokes (CFD–RANS) and engineering
wake modelling. We employ the RANS model PyWakeEl-
lipSys (PyWakeEllipSys, 2022), which is based on the Ellip-
Sys3D CFD flow solver (Michelsen, 1992; Sørensen, 1995)
and three different engineering wake models included in the
PyWake suite (Pedersen et al., 2019). High-resolution wake
models are typically applied to single wind farms. Only a
few studies have applied engineering wake models to farm-
to-farm cases (Nygaard and Hansen, 2016; Nygaard et al.,
2020; Larsén et al., 2019) or to evaluate long-distance wakes
(Nygaard and Newcombe, 2018). These studies found that
simple wake models can in principle represent farm-to-farm
wakes if no coastal gradient is present, but did not com-
pare the performance of different engineering wake models,
which will be done in this study.

The paper is structured as follows: in Sect. 2 the applied
mesoscale and high-resolution wake models as well as the
available measurements are introduced. The results are pre-
sented in Sect. 3 and split into two parts. In the first part,
WRF simulation results are evaluated against mast measure-
ments (Sect. 3.1). In the second part, the performance of the
different wake models to represent intra-farm (Sect. 3.2) and
farm-to-farm wakes (Sect. 3.3) is evaluated for a flow case in-
cluding farm-to-farm effects. In addition, the representation
of the global blockage effect upstream of a wind farm in the
different models is briefly compared in Sect. 3.4. The results
are summarized and discussed in Sect. 4.

2 Method

The Fehmarn Belt with the wind farms Nysted (abbreviated
NY herein) and Rødsand II (abbreviated RØ herein) has been
selected as the study area (Fig. 2). This area was chosen since
it offers the opportunity to study farm-to-farm effects be-
tween Nysted and Rødsand II and mast measurements, and
supervisory control and data acquisition (SCADA) control
system data for Rødsand II wind farm were available for
evaluation. Details on the two wind farms are given in Ta-
ble 1. Power, thrust and rotational speed curves of the two
wind turbine models are shown in Fig. 3. Note that the rotor
speed is only used for the PyWakeEllipSys RANS–AD sim-
ulations where it influences the shape of the thrust and tan-
gential force distributions, and it defines the magnitude of the
tangential force that induces wake rotation (see Sect. 2.2.1
for more details). The curve of the rotor speed in Fig. 3 is
simplified for the present analysis. In reality the Bonus wind
turbine shows a hysteresis behaviour between 5 and 7 m s−1:
approaching this region from lower wind speeds, the rotor
speed is kept at the minimum value of 11 rpm, while ap-
proaching from higher wind speeds the maximum value of
16.5 rpm is kept, as explained in Nygaard and Hansen (2016).
Thus, the linear interpolation between the two rotor speeds
between 7 and 8 m s−1, as used in this study, is a simplifi-
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Figure 1. Scales relevant for wind energy and targeted models with their associated resolution and computational costs. Taken from Porté-
Agel et al. (2020) in accordance with the Creative Commons Attribution (CC BY) license with modifications.

Table 1. Characteristics of simulated wind farms in Fig. 2.

Farm Centre lon. Centre lat. No. Hub Rotor Rotor
Turbines height diameter

(m) (m)

Nysted 11.713429 54.547488 72 Bonus-2.3 69 82.4
Rødsand II 11.543771 54.556882 90 SWT-1.3-93 68.5 93

cation. However, since we focus on Rødsand II and not on
Nysted for the detailed analysis of internal wakes, this will
not strongly influence the results. In addition, the effect of
wake rotation on the velocity deficit (which induces a small
wake deflection when combined with a wind shear) is small
under neutral conditions (van der Laan et al., 2015a). More
details on the available observations are given in Sect. 2.1;
the applied models and their setups are described in Sect. 2.2.

2.1 Measurements

Wind measurements with sonic anemometers at three heights
(Table 2) are available from a mast located at the western
side of Rødsand II (red dot in Fig. 2). Sonic anemometers
also measure air temperature, T , which is used to derive the

Obukhov length, L, based on Lange et al. (2004) in the fol-
lowing way:

L=
−T · (u∗)3

9.81 · 0.4 ·w′T ′
. (1)

This characterizes the stability conditions. Here, w′T ′ is the
covariance of vertical wind speed and temperature fluctua-
tions and u∗ is the friction velocity, which is derived from the
sonic signals. All values are taken from the measurements at
57 m height. Based on the derived value for L, stability is
classified according to Table 3, which has been taken from
Hansen et al. (2012).

In addition, 10 min SCADA data is available for all 90 tur-
bines of Rødsand II from January 2013 until the end of
June 2014. The SCADA data include electric power, rotor
speed, yaw position and nacelle wind speed. The SCADA
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Figure 2. The study area, Fehmarn Belt, with wind farms and mast
location. Panel (b) is a zoom of the dotted green area in (a). The
dot in the east refers to the WRF grid point used for the filtering in
Sect. 2.2.3. The solid and dashed rectangles A1 and A2 are used for
the analysis of the farm-to-farm wake effect in Fig. 15. Details of
the wind farms are given in Table 1.

Figure 3. Power (P , left axis), thrust curve (CT, right axis) and
rotor speed (�, rightmost axis) for the two turbine models of this
study. The shaded green area indicates the investigated wind speed
range in this study.

data has been quality controlled (Hansen et al., 2015). From
the SCADA data, the equivalent wind turbine wind speed
was derived from the 10 min values of the power com-
bined with the power curve below rated power. During Oc-
tober 2013, mast measurements were available 88 % of the
time and SCADA data were available 100 %. Therefore, this

Table 2. Available instruments and periods for the mast (red dot in
Fig. 2) and SCADA data of Rødsand II.

Instrument Heights Period
(m a.m.s.l.)

Sonic anemometer 15, 40, 57 Jun 2010–Jun 2015
SCADA (Rødsand II) n/a Jan 2013–Jun 2014

n/a: not applicable.

Table 3. Stability classification based on the Obukhov length,
L (m), derived from Eq. (1).

Stability classification Range (m)

Very stable 10≤ L < 50
Stable 50≤ L < 200
Near stable 200≤ L < 500
Neutral 500≤ |L|
Near unstable −500< L≤−200
Unstable −200< L≤−100
Very unstable −100< L≤−50

period has been chosen for this study. Since no SCADA data
for the turbines of Nysted were available, we assume for this
study that Nysted was online and operated with 100 % ca-
pacity during that period following the discussion in Hansen
et al. (2015).

2.2 Applied models and setups

Three different types of models are employed in this study.
The models and setups are described for the CFD–RANS
model from PyWakeEllipSys in Sect. 2.2.1, for the engi-
neering wake model suite PyWake in Sect. 2.2.2 and for the
mesoscale model WRF in Sect. 2.2.3.

2.2.1 CFD–RANS wake modelling using
PyWakeEllipSys

We apply the RANS model from PyWakeEllipSys v1.5.1
(PyWakeEllipSys, 2022), which is based on the EllipSys3D
CFD flow solver initially developed by Michelsen (1992) and
Sørensen (1995). EllipSys3D is an incompressible finite vol-
ume flow solver using a block-structured grid. PyWakeEllip-
Sys is developed to simulate the wind turbine interaction sub-
jected to an atmospheric inflow that can represent effects of
turbulence intensity (TI), atmospheric stability, ABL height
and Coriolis forces (van der Laan et al., 2021a). The inflow
models are all based on modified k–ε turbulence model clo-
sures.

The numerical domain represents an o-grid of about
160 km in diameter and has two nested refined inner regions,
as depicted in Fig. 4. The innermost region (dashed blue box
in Fig. 4) has uniform spacing in the horizontal directions us-
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Figure 4. Surface grid of RANS simulations where every 64th grid line is shown. Two inner regions are marked by the magenta and blue
dashed boxes. Wind farm layouts are shown as red dots. Panel (b) is a zoomed view of (a).

ing a cell size ofD/8, based on a grid refinement study from
van der Laan et al. (2015b), where D is the rotor diameter
of the Bonus-2.3 wind turbine. The outer refinement region
(dashed magenta box in Fig. 4) is used to resolve the wind
farm wake using a maximum horizontal spacing of 1D. The
first cell height is set to 1.5 m and grows initially to D/8 at
a height of 3D, and then continues to grow upwards until a
domain height of 25D is reached. In total 258 million cells
are used. A rough wall boundary condition (Sørensen et al.,
2007) is set as the ground and an inflow condition is used at
the top of the domain. The lateral boundaries are either in-
flow or outflow boundaries depending on the inflow wind di-
rection. The outflow boundary has an angle of 45◦, at which
all gradients normal to the boundary are assumed to be zero.

We have chosen to employ two inflow models: a pure neu-
tral inflow following a logarithmic profile and a near-neutral
inflow including an ABL height and Coriolis forces. The
models are referred to as k–ε and k–ε ABLc in van der
Laan et al. (2021a), respectively, where more information
can be found. In the present work, we use RANS–ASL and
RANS–ABL to distinguish the k–ε and k–ε ABLc models,
respectively. The employed inflow profiles are depicted in
Fig. 5. The RANS–ASL model represents a neutral surface
layer and only has the roughness length as an input param-
eter, which we set as 9.33× 10−4 m to get a TI of 7 % at
hub height. The TI value of 7 % was chosen based on a
directional analysis of measured streamwise TI, from cup
anemometers of 48 m height at the Rødsand II mast for the
period November 2002–June 2005, i.e. before the installa-
tion of Rødsand II (Fig. 6). Differences in TI between sectors
are visible, reflecting landward and seaward sectors (Fig. 2).
For easterly wind, a streamwise TI of 10.4 % is estimated.

This value is likely influenced by the presence of Nysted.
The closest seaward sector, 120◦, has a streamwise TI of
about 7 %. Converting both streamwise TI values, TIu, to to-
tal TI using the approach by Panofsky and Dutton (1984),

TI=
√

1/3
(
1+ 0.82

+ 0.52)TIu, one arrives at 8 % and 6 %,
respectively. These values are very similar to the TI value of
7 % chosen in Hansen et al. (2015) for wind speeds around
8 m s−1; thus, 7 % has been chosen here for simplicity. A
slight sensitivity of the results to the chosen TI value can be
expected.

The friction velocity is used to scale the inflow profile to
get the desired hub height wind speed, and its value is found
by a one-dimensional precursor simulation that includes the
same numerical errors close to the wall as the 3D wind farm
simulation, although the shape of the resulting profile is very
similar to the analytical logarithmic profile. The use of one-
dimensional inflow precursor assures that the inflow is in full
balance with the three-dimensional domain, which is a re-
quirement to investigate small effects as wind farm block-
age. The RANS–ABL model represents an ABL height by
setting a maximum turbulence length scale, `max following
Apsley and Castro (1997). For small values of `max, a shal-
low ABL height is obtained and the resulting ABL profiles
resemble stable conditions, without the need for a tempera-
ture equation. We choose a roughness length of 5× 10−3 m
and set the Coriolis parameter to 1.187× 10−4 s−1 corre-
sponding to a latitude of 54.5◦. A pre-calculated ABL li-
brary using Rossby similarity (van der Laan et al., 2021b)
is used to find the geostrophic wind speed G and `max that
sets the desired turbulence intensity and wind speed at the
reference height of 69 m. Four wind speeds at hub height
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Figure 5. Inflow profiles for RANS simulations. Panels (e–h) are a zoomed view of (a–d), focused around wind turbine rotor areas, which
are depicted as black (Bonus-2.3) and grey (SWT-2.3-93) dashed lines. (a, e) Wind speed (WS); (b, f) wind direction (WD); (c, g) turbulence
intensity (TI); and (d, h) turbulence length scale (`).

Figure 6. Streamwise TI and mean wind speed at 48 m height for
different wind directions from measurements filtered for a wind
speed range of 9–12 m s−1.

are employed (WS69), namely 9, 10, 11 and 12 m s−1 (see
Sect. 2.3.1), and we findG= 11.3, 12.8, 14.3 and 15.8 m s−1

and `max = 38.3, 34.9, 32.3 and 30.3 m, respectively. The ob-
tained values of `max can be related to the Obukhov length as
L≈ `max/0.08, following Apsley and Castro (1997), which
gives a range of L≈ 380–480 m, resembling near stable con-
ditions as defined by Table 3. Figure 5f shows that the wind
veer over the rotor area is about 2◦.

The standard k–ε turbulence model underpredicts the
wake deficits due to an overestimation of the near wake tur-
bulence length scale (van der Laan and Andersen, 2018). The
issue has been mitigated by the addition of a local turbulence
length scale limiter, fP. The resulting k–ε–fP model has been
developed and validated for wind farm RANS simulations
under neutral surface layer conditions (van der Laan et al.,
2015b, a). In this work, we use the k–ε–fP model for the
RANS–ASL setup and we also couple the fP function with
the k–ε–ABL model for the RANS–ABL setup following
van der Laan et al. (2021a). The coupling with the RANS–
ABL requires more validation and may need to be revised.

PyWakeEllipSys employs an actuator disk model to repre-
sent wind turbine forces (Réthoré et al., 2014) and has several
methods to model the force distributions. We have chosen the
analytic force distribution model from Sørensen et al. (2019)
including tangential forces, and effects of shear and veer that
result in force distribution variations in the azimuthal direc-
tion. The shape of the force distributions is a function of the
thrust coefficient and tip speed ratio, and the magnitude of
the tangential force depends on the rotor speed and power
coefficient. Each actuator disk uses a polar grid with 32 cells
in both directions.

2.2.2 Engineering wake models

Three different rapid engineering wake models out of the
open source wind farm simulation tool PyWake v2.2.0 (Ped-
ersen et al., 2019) are applied in this study. The three wake
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Figure 7. (a) Nested WRF domains with the innermost domain capturing the study area of the Fehmarn Belt with the Nysted and Rødsand II
wind farms and (b) a vertical WRF grid with the lowest 14 mass levels and rotor areas covered by the two wind turbine models.

deficit models, NOJ (Jensen, 1983), BAS (Bastankhah and
Porté-Agel, 2014) and ZON (Zong and Porté-Agel, 2020),
differ in complexity: the NOJ model has been developed
for the far wake and represents the wake as a simple top-
hat wake. We apply a linear wake expansion constant of
k = 0.04, which corresponds to offshore conditions and has
been used in previous studies (Nygaard and Hansen, 2016).
In contrast, BAS assumes a Gaussian distribution for the
velocity deficit in the wake and has been derived assum-
ing conservation of mass and momentum. It is valid only
for the far wake, i.e. the region starting approximately 2–
4 rotor diameters downstream of the turbine when the ro-
tor geometry does not play a dominant role anymore, and
has been validated against wind-tunnel measurements and
large-eddy simulations with a linear wake expansion con-
stant of k = 0.03. The last model, ZON, simulates the wake
expansion as a function of local TI (with parameters as de-
scribed in Zong and Porté-Agel, 2020) and the approach of
Shapiro et al. (2018) is used for the wake width expansion.
All three wake models are combined with the same blockage
deficit model, namely the updated self-similar deficit (SSD)
model originally developed by Troldborg and Meyer Forsting
(2017). In the update two changes have been made, which
are documented in Pedersen et al. (2019): first, a linear fit is
used radially to avoid large lateral induction tails; and sec-
ond, the axial induction depends now on the CT and axial
coordinate. To account for the up- and downstream effect
of each turbine, an iterative approach is chosen to represent
the deficit caused by all wind turbines on all wind turbines
(“All2Alliterative”). Individual deficits are superimposed us-
ing a squared sum for NOJ and BAS or using a linear sum
for ZON. More details on the methods are available online at
https://topfarm.pages.windenergy.dtu.dk/PyWake/ (Pedersen
et al., 2019).

The simulations extend over the inner domain of the Py-
WakeEllipSys simulations (Fig. 4 dashed magenta area) but
use 750 equally spaced grid points in the east–west direction
and 375 equally spaced grid points in the north–south direc-
tion. This corresponds to a resolution of 59 m in the east–
west direction and 84 m in the north–south direction.

2.2.3 Mesoscale wake modelling using WRF

Mesoscale model simulations for different wind farm scenar-
ios have been conducted with WRF v4.2.2 with the settings
in Table 4. The WRF simulations are performed using three
nested domains with 18, 6 and 2 km horizontal resolution, re-
spectively (Fig. 7). In the vertical direction a non-equidistant
grid is used with a resolution of about 10 m within the rotor
area following the recommendations by Siedersleben et al.
(2020), Lee and Lundquist (2017) and Tomaszewski and
Lundquist (2020), and in total there are 14 levels below
250 m (Fig. 7b).

Wind farms effects are parameterized using both FIT
(Fitch et al., 2012) and EWP (Volker et al., 2015). FIT and
EWP differ mainly in two aspects: first, EWP accounts for a
sub-grid scale vertical wake expansion based on the concept
from Tennekes and Lumley (1972) as described in Volker
et al. (2015), while FIT does not include sub-grid scale ef-
fects. Second, only FIT considers wind farms as an explicit
source of turbulent kinetic energy (TKE), while EWP as-
sumes that TKE develops solely through shear production in
the wind farm wake. More details on their comparison can
be found in Fischereit et al. (2022). FIT is applied here in-
cluding the bug fix provided by Archer et al. (2020) with
the recommended TKE coefficient of 0.25. Both parameter-
izations require turbine positions, the turbine model as well
as thrust and power curves as inputs. Details on the turbine
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Table 4. WRF parameterization, boundary conditions and forcing data employed for the performed simulations. The wind farm parameteri-
zations EWP and FIT were only applied for some scenarios (see Table 7).

Category Subcategory Details (option number)

WRF Version 4.2.2

Time
Simulation length 5.5 d including 12 h spin-up

Time step 45 s (30 s for period 25 Oct 2013 12:00 LT–30 Oct 2013)

Output time step 10 min

Schemes

PBL MYNN (5)

surface layer MO (2)

Microphysics New Thompson et al. (2008) scheme (8)

Radiation RRTMG scheme (4)

Cumulus parameterization Kain–Fritsch scheme (1) on domain 1

Diffusion

Simple diffusion (1)
2D deformation (4)
6th order positive definite numerical diffusion (2) rates
of 0.06, 0.08 and 0.1 for domain 1, domain 2
and domain 3 vertical damping

Advection
Positive definite advection of moisture and scalars (1)
TKE advection turned on

Wind farm parameterization EWP (R0frac= 1.7)

FIT (TKE factor= 0.25)

Boundary and forcing data

Dynamical forcing ERA5 at pressure levels every 6 h

Land use data CORINE

Sea surface temperature OSTIA

Land surface model NOAH-LSM (2)

models are given in Table 1. The power and thrust curve of
the two turbine models are shown in Fig. 3.

2.3 Simulated scenarios

For WRF a 1-month period, October 2013, is simulated.
This period has been selected based on high availability of
mast measurements and Rødsand II SCADA data (Sect. 2.1).
The simulations are conducted as consecutive 5.5 d periods
with an overlap of 12 h that is disregarded as spin-up. This
method, which is similar to the method applied for the New
European Wind Atlas (Dörenkämper et al., 2020), has the ad-
vantage that model drifts are avoided due to the frequent new
initialization, but at the same time unnecessary computations
during spin-up are kept to a minimum. Each 5.5 d period took
roughly 6 h of simulation time on 64 CPUs.

In contrast to WRF, for PyWake and PyWakeEllipSys the
simulations do not represent the conditions in October 2013.
Instead a farm-to-farm flow case for eastern wind directions
is simulated to be able to study the wind farm wake effect

of Nysted on Rødsand II and compare the results against the
SCADA data available only for Rødsand II (Sect. 2.1). To
compare these flow case simulations with the real WRF sim-
ulations and real SCADA data, the WRF results and SCADA
data are filtered for the same conditions as the simulated flow
case. The details of the filtering are described in Sect. 2.3.2.

2.3.1 Selected flow case

The impact of wakes on power is largest just below rated
wind speed (Lundquist et al., 2019). Thus, a wind speed
range around 10 m s−1 has been selected for this study, which
is just below rated power for the SWT2.3-93 turbine of Rød-
sand II (Fig. 3).

To realize these conditions in PyWakeEllipSys, 10 differ-
ent wind directions between 62.5 and 112.5◦ with a 5◦ inter-
val and four different wind speeds between 9 and 12 m s−1

as shown in Table 5 are simulated for both inflow mod-
els (RANS–ABL and RANS–ASL; Sect. 2.2.1). As a post-
processing step, the flow variables are Gaussian averaged
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Table 5. Simulated flow cases with the high-resolution wake models in terms of wind speed (WS), wind direction (WD) and inflow turbulence
intensity (TI) at 69 m height. For scenario and wake model description see Sects. 2.2.1 and 2.2.2. ∗ RANS–ABL simulations are only
approximately neutral (for details see Sect. 2.2.1). Linear is abbreviated “lin”.

Model Name Stability TI69 WS69 WD69 Scenarios Wind turbine model

(%) (m s−1) (◦) Wake Block- Super- Wind
age pos. farm

PyWakeEllipSys
RANS–ABL Neutral∗

7

{62.5, 67.5, . . . , 112.5}
Actuator disk

RANS–ASL Neutral 9, 10, lin average {82.5, 97.5} RØ,

PyWake
NOJ

Neutral
11, 12 {0, 1, . . . , 360} NYRØ NOJ Squared All2All-

BAS lin average {82,98} BAS SSD sum iterative
ZON ZON Lin sum

(Gaumond et al., 2014) over the wind directions with a stan-
dard deviation of 5◦ and the resulting four wind directions
(82.5, 87.5, 92.5 and 97.5◦) are subsequently linearly aver-
aged over the different wind directions. Finally, the simula-
tions are averaged over the four wind speeds weighted ac-
cording to the simulated inflow wind speed from the filtered
WRF–NWF simulation (Sect. 2.3.2). The chosen value of the
standard deviation for the Gaussian averaging is based on the
work of Gaumond et al. (2014), where a smaller standard de-
viation (2.7◦) was estimated from net mast measurements,
but a larger standard deviation (4.5–7.4◦) was necessary in
order to fit the modelled power of the individual wind turbine
rows of the Horns Rev I wind farm with the measured power
that includes wind direction uncertainty. The latter is further
explained in van der Laan et al. (2015a) (also see Sect. 3.1.3),
where it is shown that the standard deviation increases lin-
early with the distance from the location at which the inflow
wind direction has been measured. Overall, the applied 5◦

standard deviation in the present work is a rough estimate
based on these previous works.

The setup of the simulated flow cases for PyWake is sim-
ilar to the setup of PyWakeEllipSys. For PyWake 360 simu-
lations with a 1◦ interval and four different wind speeds be-
tween 9 and 12 m s−1 as shown in Table 5 are performed.
As for PyWakeEllipSys, a Gaussian filter for wind direction
is applied to the PyWake results with a standard deviation of
5◦. Afterwards the results are linearly averaged over the wind
directions between 82 and 98◦. The results are finally aver-
aged over the four wind speeds weighted according to the
simulated inflow wind speed from the filtered WRF–NWF
simulation (Sect. 2.3.2).

To derive both the intra- and farm-to-farm effect, two dif-
ferent wind farm configurations are simulated with PyWake
and PyWakeEllipSys (Table 5). In the first configuration,
named NYRØ, the actual situation is simulated with both
Nysted and Rødsand II present. In the second configuration,
named RØ, only the Rødsand II wind farm is included. Us-
ing RØ in combination with NYRØ allows isolation of the
effect of Nysted on Rødsand II for the different models. De-
pending on the chosen wake model and wind farm configura-

tion, each PyWake simulation, i.e. for all wind speed and di-
rections, takes about 1–2 h to complete on 32 CPUs. The Py-
WakeEllipSys simulations took about 1–2 h using 985 CPUs
for each wind direction, wind speed, inflow model and wind
farm case. The relatively high computational cost is caused
by the strict convergence requirement in order to resolve
wind farm induction and the large number of cells (258 mil-
lion) that is partly used to capture the wind farm wakes.

2.3.2 Filtering methods

To make the 1-month WRF simulations comparable to the
flow case simulated by PyWake and PyWakeEllipSys, WRF
results for October 2013 have to be filtered for neutral
conditions, eastern wind direction and wind speeds around
10 m s−1.

Neutral conditions are detected using the Obukhov length
as described in Sect. 2.1. For filtering to the wind speed range
of interest (9–12 m s−1), the wind speed measurements at the
Rødsand II mast cannot be used, since they are affected by
the wake of Rødsand II and Nysted and thus do not repre-
sent free stream velocities. Instead, the wind speed filtering is
based on the WRF simulation without wind farms (NWF; Ta-
ble 7) for which an upstream grid point from Nysted (Fig. 2)
is used to detect the inflow conditions. Due to infrequent
joint occurrence of easterly wind with flow in the wind speed
range of interest during October 2013 (Fig. 8a), only very
few 10 min samples could be identified. For filtering the wind
direction, two different approaches, named f1 and f2, respec-
tively, have been tested (Table 6). In f1 the wind direction
filter is based on the WRF–NWF simulation at the WRF in-
flow grid point (Fig. 2). In f2 the filtering is based on ob-
served wind direction at the Rødsand II mast, which repre-
sents more closely the conditions represented by the SCADA
data of Rødsand II (Sect. 2.1). Two different methods are ap-
plied, since the WRF–NWF simulations indicated a wind di-
rection change from the inflow to Nysted to the outflow of
Rødsand II (Fig. 8b).

The described filtering for stability, wind speed and wind
direction is applied to both SCADA data and the WRF results
to identify N 10 min periods (Table 6), which are compara-
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Table 6. Details on filter methods 1 and 2 and corresponding available number of 10 min periods, average inflow wind direction (WD) and
average inflow wind speed (WS). The subscript “in” refers to the WRF inflow grid point, which is depicted along with the other locations in
Fig. 2.

Method Wind direction filter Number of WD69,in WS69,in
periods (N ) (◦) (m s−1)

f1 80≤WD60,in ≤ 100◦ for NWF at inflow grid point 7 93 10.2
f2 80≤WD57 ≤ 100◦ for mast at Rødsand II 19 112 9.7

Table 7. Periods and scenarios covered by the WRF simulations.

Period Parameterized WFP Name
wind farm

1–30 October 2013

Not applicable NWF

Rødsand II
EWP (Volker et al., 2015) RØ–EWP

FIT (Fitch et al., 2012; Archer et al., 2020) RØ–FIT

Nysted, Rødsand II
EWP (Volker et al., 2015) NYRØ–EWP

FIT (Fitch et al., 2012; Archer et al., 2020) NYRØ–FIT

Figure 8. (a) Wake affected measured wind rose at the Rødsand II mast at 57 m height for October 2013 and (b) for NWF inflow wind
direction at Nysted inflow grid point versus wind direction close to the mast. For locations see Fig. 2.

ble to the simulated flow cases for PyWake and PyWakeEl-
lipSys. Using the inflow wind speed for WRF–NWF for each
10 min period, the two closest simulated PyWake and PyWa-
keEllipSys inflow cases, i.e. rounded up (called WSfl,u be-
low) and rounded down (called WSfl,l below), respectively,
are identified and a weighted average WSfl,ave of the two
corresponding simulations is calculated. The weight is cal-
culated from w = 1−(WS69,in,i−WSfl,l), where WS69,in,i is
the WRF–NWF wind speed at the WRF inflow grid point
(Fig. 2) for each period i. Using these weights, the average
weighted flow case wind speed corresponding to the 10 min
periods is then derived from

WSfl,ave =

N∑
i=1

(
WSfl,l ·w+WSfl,u · (1−w)

)
N

. (2)

The WRF results and SCADA data for the identified 10 min
periods are linearly averaged. The corresponding inflow wind
speed for the two filter methods are listed in Table 6.

As for PyWake and PyWakeEllipSys, for WRF also
NYRØ and RØ wind farm scenarios are simulated, which
include Nysted and Rødsand II, and Rødsand II only, respec-
tively. In addition, a third simulation, NWF, without any wind
farm, is performed.
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Figure 9. Time series of wind speed (WS, a) and wind direction (WD, b) at 57 m height for October 2013 for sonic mast measurements
(black), and WRF results interpolated to the mast location for the NYRØ scenario for EWP (dotted orange) and FIT (dashed blue). The
vertical arrows mark the time stamps t of the two filter methods f1 (red) and f2 (olive) according to Table 6. See Tables 6 and 7 for the
abbreviations.

3 Results

The analysis of this study is split into two parts. First, the full
1-month WRF simulations are evaluated against mast mea-
surements in Sect. 3.1. Second, the filtered WRF simulations
and SCADA data are used to evaluate and compare the sim-
ulation results of the different wake models for intra-farm
wakes (Sect. 3.2), farm-to-farm wakes (Sect. 3.3) and global
blockage (Sect. 3.4).

3.1 Evaluation of WRF with mast measurements

The WRF simulations are compared against sonic measure-
ments at the Rødsand II mast for October 2013 in Fig. 9 for
both wind speed (WS) and wind direction (WD). In general,
the time series for both WS and WD for FIT and EWP agree
well with the sonic measurements with a few exceptions. The
good visual agreement is confirmed by the high correlation
coefficient of 0.88 for WS and 0.91 for WD (Fig. 10).

The simulation results gradually improve from NWF to
NYRØ–EWP and NYRØ–FIT due to accounting for the wind
farm effect (Fig. 10). The WS bias decreases from 1.06 m s−1

for NWF to 0.73 m s−1 for EWP and 0.52 m s−1 for FIT
(Fig. 10a–c). The WD bias reduces from 8.47◦ for NWF
to 7.86◦ for EWP and 7.84◦ for FIT. Thus, FIT clearly per-
forms best for simulating WS at the mast, and the improve-
ments for WD compared with NWF are similar for EWP and
FIT. Looking at the black binned line in Fig. 10a–c, repre-
senting mean and standard deviations, it becomes clear that
compared with NWF, both EWP and FIT show the largest
improvements around 8–13 m s−1, where the thrust is high
(Fig. 3).

The wind farm effect for the entire October 2013 at the
mast can be derived by subtracting the WS bias of NWF from

the WS bias of EWP or FIT, respectively. Doing so indicates
a wind farm effect at 57 m height, i.e. 12 m below hub height,
of 0.33 m s−1 for EWP and 0.54 m s−1 for FIT. These rather
small wind farm effects can be explained by the location of
the mast at the west of Rødsand II (Fig. 2), and the relatively
frequent wind direction for October 2013 from the south-
west (Fig. 8), when the mast is not much influenced by the
wake of the farm, but only by global blockage. Performing
the same analysis filtered for eastern wind directions (90±
10◦) at the RØ mast, but without filtering for wind speed,
indicates a considerably larger wind farm effect based on
127 10 min values: WSbias,NWF = 1.04 m s−1, WSbias,EWP =

0.32 m s−1 and WSbias,FIT =−0.14 m s−1, which amounts to
a wind farm effect of 0.73 m s−1 for EWP and 1.2 m s−1

for FIT at 57 m height that can be largely attributed to the
wake effect of the farms. Selecting a non-wake-affected sec-
tor between 260 and 30◦ for comparison shows that the bias
is strongly reduced for the NWF scenario: WSbias,NWF =

−0.02 m s−1, WSbias,EWP =−0.17 m s−1 and WSbias,FIT =

−0.28 m s−1, which would correspond to a wind farm effect
of−0.15 m s−1 for EWP and−0.25 m s−1 for FIT. The larger
biases for EWP and FIT compared with NWF for the non-
wake-affected sector can be partly attributed to the interpo-
lation of wake-affected and non-wake-affected points to the
mast location.

3.2 Comparison of intra-farm wake modelling

3.2.1 Comparison of filter methods

To compare the flow cases modelled with PyWakeEllipSys
and Pywake against the real WRF simulation and SCADA
data for October, two different filter methods were proposed
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Figure 10. Scatter plot of measured (a–c) wind speed (WS) and (d–f) wind direction (WD) at 57 m height against WRF simulations, namely
(a, d) NWF, (b, e) NYRØ–EWP and (c, f) NYRØ–FIT (Table 7) for October 2013.

(Table 6). The two methods are compared in Fig. 11 for dif-
ferent south–north transects at different locations within the
area of the wind farms in the east–west direction with (a) be-
ing the easternmost transect and (f) being the westernmost
transect. Normalized relative coordinates are used by trans-
forming the original coordinates x using

xrel,n =
x− xref,t

D
, (3)

where xref,t is the location of the easternmost turbine of Rød-
sand II and D is the rotor diameter of the Rødsand II turbine
model SWT-2.3-93 (Table 1). For readability, only the sim-
ulation results for WRF–NWF, WRF–FIT and RANS–ABL
are shown; the simulation results for other simulations are
shown in Figs. 12 and 13. Solid lines indicate results accord-
ing to f1, whereas dashed lines refer to f2 (Table 6). Equiv-
alent wind speed derived from SCADA data for the turbines
close to the transect and filtered according to f1 and f2 are
shown as cyan and green error bars, respectively, with mean
(dots) and standard deviation over all periods (whiskers).

The WRF–NWF simulations show that while the two fil-
tering methods agree well for the transects 144 and 122D
between Nysted and Rødsand II, they disagree for the in-
flow transect to Nysted (230D) and especially for the south-
ern part of the transects in the area of Rødsand II (35, 13,
−9D). In accordance with the smaller average wind speed
in f2 (Table 6), all f2 results are shifted towards smaller val-
ues. The simulations also reflect the average inflow direc-
tions for f1 and f2 (Table 6) in that the maximal wind speed

deficits for f2 are shifted northwards compared with f1 and
the RANS–ABL results.

While the inflow direction agrees better between models
for f1, f2-filtered SCADA data agree better with RANS–ABL
compared with f1: the average RMSE for f1 is 1.1 m s−1,
while it is 0.4 m s−1 for f2. This is because for f2 the filtering
uses the wind direction measurements at the Rødsand II mast,
which is closer to Rødsand II than the inflow to Nysted for
f1. The analysis of wind directions to the east and west of the
two farms for WRF–NWF indicate wind direction changes
over the domain (Fig. 8b). This could be related to coastal
effects from the land area to the north of the farms but de-
serves further analysis. However, it indicates that even in this
relatively small area of about 20 km, wind directions cannot
simply be assumed to be unified across the area. This indi-
cates that flow case simulations, like those performed with
PyWake and PyWakeEllipSys in this study, need to be han-
dled with care as the area of interest increases and when
coastal effects could play a role.

The comparison of f1 and f2 indicates that both filtering
methods have advantages and disadvantages: f1 represents
better the inflow conditions of the simulated flow cases for
PyWake and PyWakeEllipSys, while f2 compares better with
the equivalent wind speed from SCADA. Thus, depending on
the target analysis either method is used below.

3.2.2 Comparison of models

To facilitate the comparison between the real WRF simula-
tions and the flow cases simulated with the other models as
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Figure 11. North–south transects for wind speed at hub height for different models at different locations in the east–west direction as
indicated by the olive line in each subplot and the transect name in the title in normalized coordinates as explained in the text. All simulations
are for NYRØ. For abbreviations see Tables 5 and 7, and see Table 6 for the f1 and f2 methods.

described in Sect. 2.3.1, the results are normalized with a no-
wind-farm scenario. For WRF–FIT and WRF–EWP, WRF–
NWF is used to do so. For the PyWake and PyWakeEllipSys
simulations, the easternmost wind speed is used, which is
not influenced by the presence of the wind farms. The nor-
malized results are shown for the same transects as in Fig. 11
for the two filter methods in Figs. 12 and 13, respectively.
The figures show the simulation results of all applied models
abbreviated in accordance with Tables 5 and 7.

For both filter methods, the transect 230D (Figs. 12a
and 13a) show a global blockage effect of Nysted for the
WRF and PyWakeEllipSys simulations. This will be dis-
cussed further in Sect. 3.4.

Transects 144, 35 and 13D (Figs. 12b–e and 13b–e, re-
spectively) are taken within or just outside the farms. As ex-
pected due to the coarse resolution, WRF–EWP and WRF–
FIT cannot resolve the internal variability within the farms
with large deficits of up to 5 m s−1 very close to the individ-

ual turbines. However, especially WRF–FIT compares very
well to the baseline deficit of RANS–ASL and RANS–ABL,
i.e. the wind speed deficit in between the turbines, for all tran-
sects for f1 (Fig. 12). This is also true for f2 (Fig. 13), except
that the maximum deficit is shifted northward in WRF due to
the average wind direction being more southerly (Table 6) as
discussed in Sect. 3.2.1. In contrast to FIT, EWP underesti-
mates wind speed deficits when compared with both RANS–
ASL and RANS–ABL. The equivalent wind speeds derived
from SCADA data indicate that both RANS and WRF–FIT
results are reasonable. This is true especially for f2 (Fig. 13),
which better represents the actual situation close to Rød-
sand II as discussed in Sect. 3.2.1.

The results for the two RANS methods (Sect. 2.2.1) give
pretty similar results. This is because the RANS–ABL model
is employed with a relatively large ABL height resembling
near-neutral conditions and the resulting inflow can be ap-
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Figure 12. Wind speed transects at hub height for the different models in the north–south direction at different locations as indicated by
the olive line in each subplot. The coordinates are relative to the coordinates of the easternmost turbine of Rødsand II and normalized with
the rotor diameter of the Rødsand II turbine model SWT-2.3-93 (Table 1). All simulations are for NYRØ and normalized with a no-wind-
farm (NWF) scenario. For abbreviations see Tables 5 and 7. WRF results and SCADA data are filtered according to the f1 method (Table 6).
FIT and, if applicable, SCADA data are shown in each subplot to facilitate comparison of the different simulations.

proximated by an atmospheric surface layer, as used by the
RANS–ASL model.

The peak deficits of all applied wake models in PyWake,
ZON, NOJ and BAS agree relatively well with the peak
deficits for PyWakeEllipSys (transects 144, 35 and 13D).
However, the baseline deficits in PyWake are smaller com-
pared with RANS and for ZON and NOJ comparable to
those of WRF–EWP. In addition, the deficits are narrower
in the south–north direction around the borders of the farm
compared with the RANS results, especially for the transects
downwind for Nysted (Fig. 12c–f). Downstream of the farms,
the flow recovery for PyWake is very rapid, especially for
BAS. Thus, the inflow to Rødsand II is not much reduced
for BAS compared with the free-stream inflow to Nysted.

This indicates that the chosen wake models in PyWake can
represent the peak wind speed deficits within one wind farm
well, but underestimate the effect of farm-to-farm wakes with
different magnitudes as will be discussed in more detail in
Sect. 3.3.

3.3 Comparison of farm-to-farm wake modelling

To isolate the effect of Nysted on Rødsand II, the difference
between NYRØ and RØ, i.e. a simulation without Nysted, is
investigated. Here only the results for f1 are presented, since
the inflow conditions for those simulations agree better with
the inflow conditions of the PyWake and PyWakeEllipSys
simulations than the results for f2.
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Figure 13. The same as Fig. 12 but for filter method f2.

Figure 14 shows spatially the relative wind speed dif-
ference at hub height between NYRØ and RØ for the dif-
ferent models. As expected from the intra-farm analysis in
Sect. 3.2.2, WRF–FIT results agree very well with the high-
fidelity RANS results (Fig. 14b–d). WRF–EWP underesti-
mates the wind speed reduction due to the presence of Nysted
compared with RANS. While PyWake results (Fig. 14e–g)
show strong deficits behind individual turbines, the wakes are
very narrow and the influence on Rødsand II is much smaller
compared with the results of the other models, as already ex-
pected from the analysis in Sect. 3.2.2. Out of the three inves-
tigated deficit models in PyWake, ZON shows the strongest
farm-to-farm effect, which is, however, still smaller than the
influence based on RANS and WRF.

The impact of Nysted on the flow extends beyond Rød-
sand II for EWP, FIT, RANS–ASL and RANS–ABL as in-
dicated by reduced wind speeds west of Rødsand II. Com-

paring RANS–ASL and RANS–ABL, RANS–ABL shows
slightly longer and stronger wakes. This is expected, since
simulated inflow profile corresponds to slightly stable con-
ditions, where wakes are generally longer (Cañadillas et al.,
2020).

To quantify the impact of Nysted on Rødsand II, the wind
speed and power reduction in the area of Rødsand II is
shown in histograms in Fig. 15. In all subplots the differ-
ence between NYRØ and RØ are shown for f1 for differ-
ent deficit classes as simulated over the brown area A1 in
Fig. 2. Figure 15a and c show absolute differences for wind
speed and power, respectively, between NYRØ and RØ and,
Fig. 15b and d show normalized difference with the results
for RØ. Power has been derived from the power curve for an
SWT2.3-93 turbine (Fig. 3), the turbine type used for Rød-
sand II.
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Figure 14. Relative difference in hub height wind speed (WS) between NYRØ and RØ different wake models for filter method f1. For
abbreviations see Tables 5 and 7.

Figure 15. Histogram of reduction in (a, b) wind speed (WS) and (c, d) power (P ) at hub height in the area of Rødsand II (solid rectangle
around Rødsand II in Fig. 2) due to the presence of Nysted in terms of (a, c) absolute differences and (b, d) relative differences.

Median reductions in available wind speed resource for
Rødsand II due to the presence of Nysted for the flow case
of easterly wind around 10 m s−1 are about 0.3 m s−1 or be-
tween 50 and 150 kW for EWP, FIT and RANS. This corre-
sponds to a relative reduction in available wind resources of
3 %–4 % or equivalently to 6 %–12 % reduction in power out-

put compared with a scenario with a stand-alone Rødsand II
wind farm without Nysted wind farm being present.

As expected from the previous analysis according to the
PyWake simulations, the influence of Nysted on Rødsand II
is much smaller for a flow case of around 10 m s−1 (median
around 0.3 % reduction in wind resources or up to 0.8 % re-
duction in power output). ZON, being the most complex en-
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gineering wake model used in this study, shows the largest
reductions out of the three chosen wake models. Since the
high-fidelity RANS and WRF simulations agreed better with
SCADA data in Sect. 3.2.2, one can conclude that the chosen
PyWake models in the current setup are not suited to study
farm-to-farm wakes.

Comparing the WRF simulations with the PyWakeEllip-
Sys simulations in more detail indicates that the median wind
speed reductions due to the presence of Nysted for EWP and
FIT lie in between those for RANS–ASL and RANS–ABL.
Thus, concerning estimating median farm-to-farm wake ef-
fects, both EWP and FIT provide reasonable results. Since
power is more sensitive to wind speed deviations due to the
cubed relationship between wind speed and power, for power
FIT performs better than EWP when compared with the two
RANS simulations.

WRF and RANS reduction distributions have a long tail
ranging up to 15 % reduction in available wind resources or
equivalently up to 35 % reduction in power output due to
the presence of Nysted. In terms of looking at the full dis-
tributions, FIT visually agrees better with RANS–ABL than
EWP. The RANS–ASL results are shifted to smaller reduc-
tions compared with RANS–ABL, which is expected due
to the pure neutral stratification used in RANS–ASL com-
pared with RANS–ABL, where near-neutral conditions are
employed.

To better understand the wake recovery of the different
wake models, west–east cross sections with averaged wind
speed deficit in the north–south direction over the dashed
area in Fig. 2 are shown in Fig. 16 for both NYRØ (solid
lines) and RØ (dotted lines) for the different wake models
(colours). Wind speed deficits at hub height with respect to
a no-wind-farm (NWF) scenario are shown. As before, the
NWF scenario for RANS and PyWake corresponds to the
easternmost grid points, which are undisturbed by the pres-
ence of the farms, and for EWP and FIT to the WRF–NWF
simulation.

The cross section highlights again the strong intra-farm
variability in RANS–ASL, RANS–ABL, NOJ, ZON and
BAS that cannot be captured with FIT and EWP due to the
coarser resolution. It shows also that the ZON and NOJ re-
sults compare better with the RANS results for Nysted than
BAS, since they can capture an accumulated wind speed
deficit from east to west in Nysted. However, compared with
RANS, all PyWake models recover fast and show a much
smaller reduction in the Rødsand II area.

Comparing the RANS results with EWP and FIT shows
again the better agreement between RANS and FIT for both
farms. Overall FIT results lie in between RANS–ABL and
RANS–ASL for NYRØ (solid lines) and are therefore con-
sidered to well suited to study farm-to-farm effects. EWP
shows smaller deficits than RANS in Rødsand II and the re-
sults lie in between ZON and BAS. Thus, EWP agrees more
with the engineering wake models than with RANS–CFD.

Comparing the results for NYRØ (solid lines) and
RØ (dotted lines) indicates again that the effect of Nysted on
Rødsand II is minimal for BAS (barely visible at the eastern
part of Rødsand II) and increases over NOJ to ZON. In con-
trast, substantial differences in available wind resources of
about between 1 m s−1 at the inflow to Rødsand II and about
0.25 m s−1 towards the outflow of Rødsand II exist for RANS
and WRF. Thus, in addition to a distribution of resource re-
ductions due to the presence of Nysted (Fig. 15), the reduc-
tions differ spatially with larger reductions close to Nysted.
This is expected, since Nysted’s influence is strongest close
to the farm itself. However, even far west of Rødsand II, the
NYRØ and RØ scenarios differ in wind speed, meaning the
effect of Nysted on the flow still can be seen at the western
edge of the figure, i.e. 27.5 km downstream of Nysted.

To quantify this difference in long-distance wakes, wind
speed deficits with respect to a no-wind-farm scenario are
quantified for NYRØ and RØ 10 km downstream of Rød-
sand II in Table 8. This distance has been chosen since it is
still relatively undisturbed from the island of Fehmarn, which
affects the WRF results further downstream (dashed area in
Fig. 2) and is not considered in the PyWake and PyWakeEl-
lipSys simulations. For WRF, a weighted average based on
the distance of the closest two grid points is used, while for
PyWake and PyWakeEllipSys the closest grid point is cho-
sen, which is close enough due to the high resolution of those
simulations.

Comparing the wind speed deficit 10 km downwind of
Rødsand II (Table 8) indicates that BAS shows almost no
wind speed deficit (0.05 m s−1 or about 0.5 %). NOJ still
shows deficits about 0.1 m s−1 or about 1 %, while ZON,
EWP, FIT and RANS still show deficits of 0.2–0.6 m s−1

(2 %–6 %). Comparing the difference between NYRØ and
RØ at the same location based on two significant digits,
no difference for NOJ and BAS is visible underlining the
rapid wake recovery of these two models. ZON still shows
a difference due to the presence of Nysted of 0.5 % 10 km
downstream, i.e. half of the difference for RANS and WRF
(0.1 m s−1 or 1 %).

This shows that wind resources are affected by wind farms
more than 25 km away according to the RANS and WRF
simulations. Thus, farm-to-farm wakes are important to con-
sider for more than 25 km for wind speed ranges just below
rated wind speed even for neutral conditions. This agrees
relatively well with the flight measurements presented in
Cañadillas et al. (2020), although with some uncertainty,
since they only show snapshots for three neutral and unstable
cases.

3.4 Comparison of global blockage effect modelling

The main focus of this study is the comparison of wake mod-
elling for different classes of models. However, it also gives
the opportunity to look at the modelling of global block-
age effect ahead of Rødsand II and Nysted. To do so, the
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Figure 16. West–east cross section of wind speed deficit with respect to a no-wind-farm (NWF) scenario averaged in the north–south
direction over the pink area A2 in Fig. 2 for the f1 filter method. NWF corresponds to RANS and PyWake for the easternmost grid points
and to EWP and FIT for the NWF simulation. The arrow indicates the wind direction (WD). Solid lines correspond to the scenario NYRØ,
while dotted lines correspond to the scenario RØ. For abbreviations see Tables 5 and 7.

Table 8. Wind speed deficit at the closed grid point (for PyWake and PyWakeEllipSys) and interpolated (for WRF) for each model to 10 km
east of Rødsand II (dashed grey line in Fig. 16) for the different wake models. All results are averaged in the north–south direction over the
pink area A2 in Fig. 2.

EWP FIT RANS–ASL RANS–ABL NOJ ZON BAS

NYRØ −0.35 (−3.52 %) −0.46 (−4.67 %) −0.46 (−4.55 %) −0.60 (−5.93 %) −0.10 (−0.95 %) −0.21 (−2.03 %) −0.05 (−0.45 %)
RØ −0.24 (−2.42 %) −0.35 (−3.59 %) −0.38 (−3.81 %) −0.45 (−4.47 %) −0.09 (−0.90 %) −0.16 (−1.57 %) −0.04 (−0.43 %)
NYRØ–RØ −0.11 (−1.10 %) −0.11 (−1.08,%) −0.07 (−0.74 %) −0.15 (−1.46 %) −0.00 (−0.04 %) −0.05 (−0.46 %) −0.00 (−0.02 %)

wind speed deficit with respect to a no-wind-farm scenario
is investigated at a distance of before 5 rotor diameters up-
stream of each farm. Due to the different turbine types of
the two farms (Table 1), this is 412 m upstream for Nysted
and 465 m for Rødsand II and is shown as dashed light blue
lines in Fig. 16. As for the analysis of the long-distance wake
effect, WRF results are calculated from an average of the
closest grid points weighted by distance to the point of inter-
est, while for PyWake and PyWakeEllipSys the closest grid
points in the east–west direction are used. To investigate the
global blockage effect of Nysted the NYRØ scenario is used,
whereas for Rødsand II the RØ scenario is used, since in
NYRØ also the wake effect of Nysted is present. The results
for the different models are summarized in Table 9.

The global blockage model selected for PyWake, SSD
(Sect. 2.2.2), shows the smallest blockage effect (< 1 %), fol-
lowed by the RANS simulations (between 0.3 % and 0.4 %)
and WRF simulations (between 0.9 % and 2.3 %). Consistent
across all models, the blockage effect is smaller for Rød-
sand II than for Nysted. This could be due to the different
shape or being an artefact of the chosen average area. Based
on the very few existing blockage measurements, negligible
blockage is expected for neutral and unstable conditions as
shown in Schneemann et al. (2021) from scanning lidar mea-

surements. In stable conditions the global blockage effect can
amount to 2 %–6 % (Schneemann et al., 2021). The global
blockage effect for WRF is likely overestimated, since a
wake-affected grid point and a non-wake-affected grid point
are averaged here to extract the results at a location similar to
that for PyWake and PyWakeEllipSys. Due to the coarse res-
olution of WRF, which assumes the same wind speed for the
entire 2 by 2 km area, this result is very much grid dependent
and could change for a slightly different WRF grid. Thus,
these results should be treated qualitatively and not quantita-
tively.

4 Discussion and conclusion

Simulations for the two neighbouring wind farms, Nysted
and Rødsand II, in the Fehmarn Belt area are performed with
models of different complexity, fidelity, scale and computa-
tional costs. The results are compared for the simulation of
intra-farm and farm-to-farm wakes as well as for the simula-
tion of wake recovery and global blockage effect both against
each other and against SCADA data. The model complex-
ity ranges from mesoscale model simulations with two dif-
ferent wind farm parameterizations (WRF–EWP and WRF–
FIT), over high-resolution CFD–RANS model simulations

Wind Energ. Sci., 7, 1069–1091, 2022 https://doi.org/10.5194/wes-7-1069-2022



J. Fischereit et al.: Wakes as seen by different models 1087

Table 9. Wind speed deficit 5 rotor diameter ahead of Nysted (for NYRØ) and 5 rotor diameter ahead of Rødsand II (for RØ) for the different
wake models. Results are taken from the closed grid points for PyWake and PyWakeEllipSys and are interpolated to 5 rotor diameter for
WRF. All results are averaged in the north–south direction over the dashed pink area A2 in Fig. 2.

WP FIT RANS–ASL RANS–ABL NOJ ZON BAS

Nysted −0.12 (−1.19 %) −0.24 (−2.28 %) −0.04 (−0.39 %) −0.04 (−0.39 %) −0.01 (−0.08 %) −0.02 (−0.21 %) −0.01 (−0.08 %)
Rødsand II −0.09 (−0.88 %) −0.19 (−1.81 %) −0.03 (−0.29 %) −0.03 (−0.32 %) −0.01 (−0.07 %) −0.02 (−0.17 %) −0.01 (−0.07 %)

equipped with an actuator disk model using PyWakeEllip-
Sys employing two different inflow models (RANS–ASL
and RANS–ABL) and three rapid engineering wake models
included in the PyWake suite (NOJ, ZON and BAS).

The analysis of the real WRF simulations for a 1-month
period in October 2013 indicated that the WRF model can
well represent the meteorological conditions for that period.
Compared with wind farm wake influenced mast measure-
ments of wind speed, FIT (WS bias: 0.52 m s−1) performs
better than EWP (WS bias: 0.73 m s−1); however, EWP still
improves the evaluation compared to a simulation without
wind farms.

Comparing the filtered WRF results to a farm-to-farm flow
case that has been simulated with PyWake and PyWakeEllip-
Sys shows that, as expected from the coarse mesoscale reso-
lution, FIT and EWP cannot capture peak wind speed deficits
downstream of individual turbines. However, especially FIT
compares well with the baseline wind speed deficit sim-
ulated by PyWakeEllipSys. EWP underestimates the wind
speed deficits compared with the RANS simulations. How-
ever, both EWP and FIT can well estimate median wind re-
source reductions due to the presence of an upstream farm.
Expected median reductions in power output are better rep-
resented in FIT than in EWP when compared with RANS.

The engineering wake models in the PyWake suite agree
reasonably well with the RANS simulations within Nysted
and at its outflow. However, all engineering models simulate
a much more rapid wind deficit recovery downstream of the
wind farms and thus a one order of magnitude smaller farm-
to-farm wake effect. Considering the agreement of WRF
and PyWakeEllipSys and their agreement with the SCADA
data, all considered engineering wake models likely underes-
timate the wind farm wake effect. Thus, the results of these
wake models should not be trusted when farm-to-farm wakes
are an issue, although they can well represent intra-farm
wakes. However, using a more sophisticated deficit model,
like ZON, can improve the prediction of a farm-to-farm ef-
fect compared with simpler models. However, all rapid en-
gineering wake models are only as good as their calibration
data sets. Future work could consider farm-to-farm calibra-
tion data sets in addition to intra-farm calibration data sets to
improve their capability.

The analysis of the long-distance wakes showed that even
in neutral conditions, the effect of an upstream farm can still
amount to a wind resource reduction of 1 % 25 km down-
stream. This is consistent for both RANS and WRF simu-

lations and indicates that farm-to-farm effects should not be
neglected for wind resource planning offshore.

The study also shows challenges when comparing ideal-
ized flow cases with real data: the NWF simulations indicated
that wind direction over the study area is likely influenced by
coastal effects. This leads to spatial variability in the flow, es-
pecially with respect to wind direction over this 40 km area of
interest. More measurements are required to verify this wind
direction variability across the domain of the two wind farms.
However, this still indicates that for offshore farms close to
the coast, uniform inflow flow cases cannot capture the vari-
ability due to local effects downstream. Thus, for more ac-
curate high-resolution wind simulations, these effects should
be accounted for when applying high-resolution models in
the future.

The flow case selected for this study represents a situation
with strong influence of wakes, since a wind speed range just
below rated wind speed has been chosen. The results could
be extended by considering other wind speed ranges to gen-
erate a more complete picture. The selection of the simula-
tion period was constrained by the available measurements.
However, due to the infrequent occurrence of easterly flow,
only very few relevant time stamps could be identified. Thus,
the results contain some uncertainty. Other periods as well as
the evaluation of wind farm pairs with other layouts should
be investigated in further studies to confirm the results from
this study.

In this study, we applied a TKE factor of 0.25 in the
FIT parameterization (Table 4) following the recommenda-
tions of Archer et al. (2020). Based on our simulations, this
seems to be a reasonable choice as the FIT simulations agree
well with the RANS simulations. However, since we only
tested this coefficient and focused only on the evaluation of
wind speed deficit, we cannot conclude that 0.25 is the best
choice in all conditions. Larsén and Fischereit (2021), for in-
stance, compared WRF–FIT simulations against flight mea-
surements and found that for their simulation a TKE factor
of 1 was more appropriate. Thus, more studies are needed to
derive the best TKE factor.

A resolution of 2 km was applied in this study, which is a
typical resolution of mesoscale models for wind energy ap-
plications according to the review by Fischereit et al. (2022).
We showed that baseline intra-farm wakes can be captured
reasonably well with this resolution. A higher resolution of,
for example, 1 km could be tested to see whether the agree-
ment improves even more.

https://doi.org/10.5194/wes-7-1069-2022 Wind Energ. Sci., 7, 1069–1091, 2022



1088 J. Fischereit et al.: Wakes as seen by different models

Considering the two main aims of this study, we can con-
clude that baseline intra-farm wind speed variability, i.e. the
wind speed deficit in between turbines, can be captured rea-
sonably well with the Fitch et al. (2012) wind farm param-
eterization using a resolution of 2 km, while EWP underes-
timates wind speed deficits. The considered RANS model,
PyWakeEllipSys, can simulate wind farm wakes and long-
distance wakes well, but even for relatively small areas off-
shore uniform inflow conditions are not always met near
the coast. Thus, if long-distance wakes are of interest, ef-
fects of terrain and roughness should be considered in future
PyWakeEllipSys simulations for coastal areas to provide a
more realistic picture, following, for instance, the approach
in van der Laan et al. (2017). However, mesoscale phenom-
ena, like sea breezes, cannot be accounted for in CFD–RANS
models, which is the strength of using mesoscale models
like WRF. All considered engineering wake models from
the PyWake suite underestimate the wind farm wake effect,
although with different magnitudes. The most complex of
the engineering deficit models applied here, ZON, provides
the best option to account for a farm-to-farm effect among
the tested rapid models. However, it still underestimates the
median wind resource reduction, due to an upwind farm,
by about 50 %. Therefore, overall, the higher computational
costs of PyWakeEllipSys and WRF pay off in terms of accu-
racy for farm-to-farm wake modelling compared with rapid
models like PyWake.
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