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Abstract. Annual energy production (AEP) is often the objective function in wind plant layout optimization
studies. The conventional method to compute AEP for a wind farm is to first evaluate power production for
each discrete wind direction and speed using either computational fluid dynamics simulations or engineering
wake models. The AEP is then calculated by weighted-averaging (based on the wind rose at the wind farm site)
the power produced across all wind directions and speeds. We propose a novel formulation for time-averaged
wake velocity that incorporates an analytical integral of a wake deficit model across every wind direction. This
approach computes the average flow field more efficiently, and layout optimization is an obvious application to
exploit this benefit. The clear advantage of this new approach is that the layout optimization produces solutions
with comparable AEP performance yet is completed 2 orders of magnitude faster. The analytical integral and the
use of a Fourier expansion to express the wind speed and wind direction frequency create a relatively smooth
solution space for the gradient-based optimizer to excel in comparison to the existing weighted-averaging power
calculation.

1 Introduction

The layout of a wind plant is a primary design element that
influences its performance. Optimizing the layout can be
thought of as a wake avoidance problem, wherein turbines
are placed such that they avoid the wakes from other turbines
as much as possible. Power losses from wake interactions
can be on the order of 10 %–20 % in wind farms (Barthelmie
et al., 2007, 2009). When turbines are placed within about 3
rotor diameters, these power losses can be as high as 40 %
(Stanley et al., 2019); even within 15 diameters, wake inter-
actions are non-negligible (Meyers and Meneveau, 2012).

In controls and optimization applications, the wake veloc-
ity deficit is approximated with low-fidelity analytical mod-
els. The classical top-hat model parameterizes the wake ex-
pansion rate and computes the wake deficit as a function of
downstream position (Jensen, 1983). Improvements on this

approach aim to replace the discrete boundaries of the top-
hat model with a continuous profile, such as the Jensen-
cosine (Tian et al., 2015, 2017) and Gaussian (Bastankhah
and Porté-Agel, 2014) models. More involved engineering
models such as the TurbOPark model (Nygaard et al., 2020)
account for wake combination and wake-added turbulence
more formally in their formulation. The curled wake model
is a mid-fidelity numerical model derived from the Reynolds-
averaged Navier–Stokes equations (Martínez-Tossas et al.,
2019, 2021). The trade-off to explicitly capturing more of
the flow physics is the added complexity, both in the cali-
bration of additional parameters and in computational cost.
These steady-state wake models are well-suited to estimate
wake velocity in simulations with a single wind direction.
However, computing average wake velocities or energy pro-
duction for different wind speeds and directions requires av-
eraging the results of multiple simulations. This process is
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cumbersome, especially with the more complex models like
the curled wake model.

Layout optimization studies leverage these low-fidelity
models to approximate the wake velocity within the wind
farm. Turbines are placed to minimize wake interactions and
thereby maximize annual energy production (AEP) of the
plant. Gradient-based optimization algorithms leverage the
derivative of the objective function to choose search direc-
tions for optimal solutions, while gradient-free optimization
only evaluates the objective function (thereby avoiding its
derivatives) and is useful for discontinuous and noisy func-
tions. Gradient-free algorithms are common practice in in-
dustry for small wind farms (Stanley et al., 2021), but they
scale poorly with additional degrees of freedom (Herbert-
Acero et al., 2014; Ning and Petch, 2016). Gradient-based
optimization, on the other hand, is more robust in systems
with a larger number of design variables. The simplest struc-
ture for the design variables is to assign the position of each
turbine independently (Feng and Shen, 2015; Gebraad et al.,
2017). A strategy to reduce the number of design variables is
to restrict the layout to a grid (González et al., 2017; Perez-
Moreno et al., 2018) or use a combination of placement along
the farm boundary and a grid on the interior (Stanley and
Ning, 2019). These approaches reduce the cost of the layout
optimization study, especially for larger wind farms. How-
ever, they restrict the freedom and flexibility of the wind
farm developer and produce simplistic layouts that can un-
derperform in practice. Research that addresses the calcula-
tion of AEP has focused on statistical methods to improve
the efficiency of estimating this quantity (King et al., 2020;
Padrón et al., 2019), or on defining the discrete inputs of the
wake model (such as the wind rose and power and thrust
curves) with analytical functions (Murcia et al., 2015). These
mathematical approaches are promising but leave room for a
physics-based framework to modify the formulation of AEP.

AEP is an integral quantity. The total power production
of a wind plant is calculated based on the wind speed flow-
ing through each turbine. For a single wind speed and direc-
tion, this procedure is straightforward. Figure 1 illustrates the
flow field around a single turbine, as is often studied in wake
modeling problems. The velocity contour plots represent the
weighted-averaged flow distribution based on the wind roses
shown below each respective contour plot. Figure 1a shows
the velocity distribution when the wind rose contains only
one predominant wind direction. If there is more than one
wind direction, the flow fields from each speed–direction bin
must be averaged with weights equal to their normalized fre-
quency as seen in Fig. 1b and c. For example, in Fig. 1b the
frequency of the 270◦ wind direction is greater than that for
225◦ (and the free-stream wind speed is held constant), and
so the velocity contour plot shows the wake directed hori-
zontally with a stronger velocity deficit compared with the
angled wake. This procedure is extended across every dis-
crete wind speed–direction bin with the contribution to the
sum weighed by the frequency of that bin. Figure 1c illus-

trates the averaged flow field and how the higher-frequency
wind directions manifest as more pronounced wake deficits
in the contour plot. The AEP of the wind plant is therefore a
numerical integral of the power as a function of wind speed
and direction:

AEP=
WD∑
i=1

WS∑
j=1

P
(
θ ′i ,U∞

(
θ ′i
)
j

)
fifj , (1)

where P is the total power of the wind farm as a function
of wind direction θ ′ and free-stream wind speed U∞, and
fi and fj are the frequency of each discrete wind direction
and speed, respectively.

The inspiration for the FLOW Estimation and Rose Su-
perposition (FLOWERS) flow field model is to analytically
compute the average wake velocity given the frequency and
magnitude of the wind speed for every direction. Since the
average wake velocity is conceptualized similarly to AEP, ex-
tending the FLOWERS approach to calculating AEP would
be straightforward. We hypothesize that the analytical inte-
gration will considerably reduce the computational cost of
average wake velocity and AEP calculations compared to the
numerical integration.

In this paper, we first derive the equations for the time-
averaged wake velocity and a new formulation for AEP
in Sect. 2, including its application in the wind plant lay-
out optimization problem. In Sect. 3, the AEP calculations
from FLOWERS are compared to the numerical integra-
tion method, which is the standard approach in the NREL
FLORIS model (NREL, 2021). Finally, in Sect. 4, the per-
formance of the FLOWERS AEP in the optimization of wind
farm layouts is compared against the numerical integration-
based optimizer.

2 Mathematical formulation

2.1 Time-averaged wake speed

To derive a mathematical formulation for the time-averaged
flow distribution, we use the classical Jensen (top-hat) wake
deficit model (Jensen, 1983):

U (x,y)
U∞

= 1−
1−
√

1−CT

(kx+ 1)2 W (x,y), (2)

where x and y are the streamwise and spanwise positions,
respectively, normalized by the rotor radius with the origin
at the turbine location. In this coordinate frame, the wind is
coming from the negative x direction. We only consider the
2D plane at hub height such that wake deficit is not a function
of a vertical position z. CT is the thrust coefficient, which is
realistically a function of the local inflow speed; we simplify
it to be a function of the free-stream wind speed U∞ such
that it is uniform across all turbines in the wind farm but
still varies around the wind rose. U is the wake speed, k is
the wake expansion coefficient, and W (x,y) represents the
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Figure 1. (a, d) Velocity contour plot of flow through a wind turbine for a single wind direction. (b, e) Averaging effect of two wind
directions. (c, f) The annually averaged velocity flow field. Note that the wind roses (d–f) display the frequency of each wind direction with
a constant wind speed of 8 m s−1 for every direction.

Jensen wake region: W (x,y)= 1 if |y| ≤ kx+ 1 and x ≥ 0
and is zero elsewhere. This geometry is illustrated in Fig. 2a.

We transform Eq. (2) from Cartesian to polar coordinates
denoted by r and θ , where x = r cos(θ ) and y = r sin(θ ). We
allow the wind direction θ ′ to be variable in Eq. (3):

U (r,θ,θ ′)=U∞(θ ′)
[

1−
1−
√

1−CT (U∞(θ ′))
(kr cos(θ − θ ′)+ 1)2

W (r cos(θ − θ ′), r sin(θ − θ ′))
]
. (3)

To clarify, θ is the angular position in polar coordinates
where we wish to compute the average wake velocity, and
θ ′ is the wind direction defined within that coordinate frame.
We integrate across all wind directions θ ′ to compute the av-
erage wake speed at a given location (r,θ ). In doing so, we
weight each wind direction with its frequency f (θ ′), so the
weighted-averaged wind speed denoted by U (r,θ ) is written
as

U (r,θ )=
1

2π

π∫
−π

U∞(θ ′)f (θ ′)

[
1−

1−
√

1−CT (U∞(θ ′))
(kr cos(θ − θ ′)+ 1)2 W (r,θ,θ ′)

]
dθ ′. (4)

We define two new variables to simplify this expression. Let
u= θ − θ ′ be the angular position relative to the wind di-
rection. Also, the wake region W (r,θ,θ ′) is zero for θ out-
side of the wake region defined by θc: θ = θ ′± θc. In our
coordinate system, the wake geometry is defined by the line
sin(θc)= k cos(θc)+ 1/r , as shown in Fig. 2b. We solve this

equation for r > 1 since we are interested in the wake speed
at positions outside of the rotor area:

tan(θc)=

1
r
+ k

√
1+ k2−

(
1
r

)2

−
k
r
+

√
1+ k2−

(
1
r

)2
. (5)

We must include the interaction between multiple wakes for
this formulation to be useful in systems of several turbines.
The wake velocity deficit is defined as the difference between
the free-stream velocity and the wake velocity. Equation (4)
can be split into these two components. Then, we linearly su-
perimpose the deficits to form a relation for the total velocity
deficit caused by all turbines:

U (r,θ )=
1

2π

π∫
−π

U∞(θ ′)f (θ ′)dθ ′

−
1

2π

∑
i

θc∫
−θc

U∞ (θi − u)f (θi − u)

[
1−
√

1−CT (U∞ (θi − u))

(kri cos(u)+ 1)2

]
du, (6)

where ri and θi are the relative radius and polar angle with

respect to each turbine position (ri =
√

(x− xi)2
+ (y− yi)2

and tan(θi)= yi/xi , where xi and yi represent the posi-
tion of the center of the ith turbine). The relevant informa-
tion about the wind conditions is the wind direction θ ′, the
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Figure 2. (a) A schematic of the top-hat wake model in Cartesian coordinates with the wind aligned with the x direction. (b) The wake
region in polar coordinates, rotated by a wind direction θ ′, with the wake boundary defined by the angle θc.

wind speed U∞(θ ′), and the wind direction frequency f (θ ′).
Note that for simplicity a single average wind speed is
used for each wind direction. These quantities are speci-
fied for a particular location by the wind rose. In practice,
the wind rose is a discrete data set in which wind direc-
tions (and their associated average speeds and frequencies)
are binned. We define g(θ ′)= 1

2πU∞(θ ′)f (θ ′) and h(θ ′)=
1

2π

[
1−
√

1−CT (U∞(θ ′))
]
U∞(θ ′)f (θ ′). If we expand g(θ ′)

and h(θ ′) with Fourier series,

g(θ ′)=
c0

2
+

N∑
n=1

cn cos(nθ ′)+ dn sin(nθ ′), (7)

h(θ ′)=
a0

2
+

N∑
n=1

an cos(nθ ′)+ bn sin(nθ ′), (8)

then the wind rose is defined continuously rather than dis-
cretely. The Fourier coefficients a0, an, bn, c0, cn, and dn can
be easily found for a given g(θ ′), h(θ ′), and N . For a wind
rose with B wind direction bins, the maximum number of
terms in this discrete Fourier transform is N = ceiling(B/2),
where “ceiling” indicates that we round up to the nearest in-
teger. Also, we approximate the fraction in the second term
in the right-hand side of Eq. (6) using a second-order Taylor
expansion:

U (r,θ )=

π∫
−π

g(θ ′)dθ ′−
∑
i

θc∫
−θc

h (θi − u)

[
1

(kr + 1)2 +
kru2

(kr + 1)3

]
du. (9)

The first integral in the right-hand side of Eq. (9) represents
the weighted average of the free-stream velocity, denoted
by U∞ hereafter. Using Eq. (7),

U∞ =

π∫
−π

g(θ ′)dθ ′ =

π∫
−π

[
c0

2
+

N∑
n=1

cn cos(nθ ′)

+dn sin(nθ ′)
]

dθ ′ = c0π. (10)

The second integral on the right-hand side of Eq. (9) rep-
resents the average wake velocity deficit 1Ui(ri,θi). Using
Eq. (8),

1Ui (ri,θi)=

θc∫
−θc

[
a0

2
+

N∑
n=1

an cos(n (θi − u))

+bn sin(n (θi − u))]
[

1

(kri + 1)2 +
kriu

2

(kri + 1)3

]
du.

Solving the above integral yields

1Ui (ri,θi)=
a0θc

[
kri
(
θ2
c + 3

)
+ 3

]
3(kri + 1)3 +

N∑
n=1

2[an cos(nθi)+ bn sin(nθi)]

[n (kri + 1)]3[
sin(nθc)

{
n2
[
kri

(
θ2
c + 1

)
+ 1

]
− 2kri

}
+2nθckri cos(nθc)] . (11)

The time-averaged wake speed U (r,θ ) at a given loca-
tion (r,θ ) is the difference between the free-stream and the
wake-averaged velocity:

U (r,θ )= U∞−
∑
i

1Ui (ri,θi), (12)

where U∞ and 1Ui(ri,θi) can be found from Eqs. (10)
and (11), respectively.
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2.2 Annual energy production

The power P produced by a turbine is a function of the in-
coming wind speed:

P (U )=
1
2
CP(U )ρAU3, (13)

where ρ is the density of air (assumed to be constant), CP is
the power coefficient, A is the swept area of the rotor, and
U is the speed at the location of the center of the turbine
when it is not present. The average turbine power would
be P (U )= 1

2ρACP(U )U3. However, the integral to compute
this average is intractable in our formulation. The power co-
efficient is dependent on the local wind speed, but U is not
known as a function of wind direction prior to the integration;
to obtain it, we would need to calculate the wake speed in-
dependently for each wind direction, which negates the pur-
pose of the FLOWERS approach. Also, including the non-
linear U3 term in the integral introduces complications with
the wake superposition and the definition of the independent
wake regions. We make two simplifications to compensate:
CP is calibrated as a function of the average wake speed U
(which for each turbine is a constant across all wind direc-
tions), and we substitute U

3
into Eq. (13) instead of evaluat-

ing U3. Therefore, the AEP for a given turbine is

AEP
(
U
)
∝ CP

(
U
)
U

3
. (14)

2.3 Layout optimization problem

We apply this novel formulation of time-averaged wake ve-
locity and AEP to the wind plant layout optimization prob-
lem. For M turbines in a wind plant, there are 2M design
variables to independently specify the position of each tur-
bine in 2D space. The objective function is the total AEP
of the plant, which we aim to maximize. The turbines are
constrained within a specified boundary with a minimum
separation of 2 rotor diameters. Gradient-based optimiza-
tion is performed with the sequential least squares program-
ming (SLSQP) algorithm. This optimizer solves a minimiza-
tion problem, so we technically minimize −AEP:

minxi ,yi −AEP
(
xi,yi,U∞(θ ′),f (θ ′)

)
subject to boundary constraints

Sij ≥ 2D,
(15)

where xi and yi are the center of the turbine i in Cartesian
coordinates, and Sij represents the separation between the
centers of turbines i and j .

The primary benefits of FLOWERS lie in its suitability
to drive layout optimization as a wake avoidance problem,
despite the fact that simplifications made to develop FLOW-
ERS might induce some errors in the predicted magnitude of
AEP. The optimizer relies on the objective function to pro-
vide a quantitative metric to compare possible solutions; in

this case with gradient-based optimization, the ratio of the
objective function evaluated for two different solutions is of
importance. In other words, the objective function’s output it-
self is not necessarily critical as long as the mapping between
inputs and outputs in the function remains consistent. If we
think of the layout optimization problem as a wake avoidance
problem, then the objective function must be able to approx-
imate wake magnitudes and downstream influence to mini-
mize their interactions. Turbines aligned with predominant
wind directions and turbines with close spacing will reduce
AEP in the FLOWERS optimization, just as it will in the nu-
merical integration-based optimization. Wake avoidance can
be achieved despite a less accurate estimate of AEP because
the factors that cause positive or negative changes to AEP
are still present. The gradient throughout the optimization
space will be different because the objective functions are
not identical. However, with a sufficiently strict convergence
criterion, we predict that the FLOWERS optimization will
still find a similar quality solution to the numerical integra-
tion technique. A more accurate AEP estimate can be added
as a final post-processing step once the layout optimization
is complete.

3 AEP comparison

3.1 Example cases

We start by comparing the AEP estimates for an illustrative
test case of three turbines aligned with a predominant wind
direction. The AEP for the numerical integration approach
is computed using the Jensen wake deficit model with the
same nominal (i.e., based on ambient turbulence intensity
and excluding wake-added turbulence) wake expansion co-
efficient as in FLOWERS (k = 0.05). The rotor diameter is
D = 126 m throughout this paper based on the NREL 5 MW
turbine (Jonkman et al., 2009). Figure 3 illustrates the wind
rose and farm layout for this case and the flow fields gener-
ated from the FLOWERS and Jensen models.

The FLOWERS AEP is 2.9 % lower than the result from
the numerical integration approach. Substantial wakes only
exist for three discrete wind directions in this example, so
the profile of U versus θ ′ is mostly uniform except for a
sharp decrease in these aligned orientations. As a result, the
difference between U

3
and U3 contributes to this small dis-

crepancy. Also, the aligned placement of the turbines leads
to strong wake deficits. In FLOWERS, we neglect local
wind conditions when computing the wake velocity and in-
stead normalize the velocity deficit by the global free-stream
velocity and assume a uniform CP and CT across all tur-
bines; the Jensen numerical integration implementation, on
the other hand, normalizes the velocity deficit with and com-
putes CP and CT as a function of the local wind velocity.
When the magnitude of the wake velocity deficit is pro-
nounced, these assumptions in the FLOWERS formulation
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Figure 3. Annually averaged flow field comparison for three turbines aligned with the predominant wind direction with 6D spacing. The
free-stream wind speed is a constant 8 m s−1 (a). The number of wind direction bins B used in (c) is B = 72, and the number of Fourier
coefficients used to plot results in (b) is N = 37.

Figure 4. Flow field comparison for a 60-turbine wind farm with 6D spacing with a realistic wind rose (corresponding to an offshore site
in the northwest US) (a). Again, the number of wind direction bins B in the numerical method (c) is B = 72 , and the number of Fourier
coefficients in FLOWERS (b) is N = 37.

become more noticeable. Despite the differences in model-
ing assumptions, the AEP estimates match closely.

For a more realistic wind rose, the discrepancies in AEP
between FLOWERS and the Jensen numerical integration
approach are more substantial. We consider a larger wind
farm of 60 turbines with 6D spacing in the streamwise and
spanwise directions and an offshore wind rose sampled from
the WIND Toolkit (Draxl et al., 2015) with higher average
free-stream wind speeds than those considered in the pre-
vious example. Figure 4 displays the resulting flow fields
from the FLOWERS and Jensen integration models. The
AEP computed with FLOWERS is about 17 % lower than
that from the Jensen model. This greater difference between
the two approaches in this case can be attributed to the as-
sumption that CT and CP do not depend on the local flow
velocity at each turbine, which breaks down for larger wind
farms with more heterogeneity in the flow velocity. Including
the local flow velocity in the FLOWERS formulation is part
of future work.

One important feature of the FLOWERS solution is its
smoothness. Despite using the discrete top-hat model, the
flow field in Fig. 3b is continuous. The Fourier transform
of the wind rose information and the analytical integration
results in a smooth solution. On the other hand, the numer-

ical integration in the conventional approach relies on dis-
crete wind direction bins. The contour plot in Fig. 3c clearly
illustrates the discrete boundaries of the wakes for the three
dominant wind directions.

3.2 Generalized case

We now examine the differences in AEP between FLOWERS
and the Jensen numerical integration more broadly. A total of
40 randomized test cases were generated. A random number
of turbines between 4 and 50 was chosen for each. The lay-
out of the turbines is randomized within a square boundary
of side length 25D, and a minimum separation of 4D be-
tween the turbines is enforced. Each wind rose is randomly
selected from the WIND Toolkit. Figure 5 displays the num-
ber of turbines and annual average wind speed for each case.

We compare the computation time and percent difference
in AEP between the two methods in Fig. 6. The FLOWERS
AEP computation is on average about 18 times faster than
the Jensen numerical integration. This difference scales with
the size of the wind farm, in part because FLOWERS is only
computing the velocity through each turbine at a single point
instead of an array of points on the rotor area (25 points per
rotor in the conventional wake model).

Wind Energ. Sci., 7, 1137–1151, 2022 https://doi.org/10.5194/wes-7-1137-2022
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Figure 5. A total of 40 test cases with random layouts and random wind roses to compare AEP more generally.

Figure 6. Comparison of computational cost and relative difference in AEP between FLOWERS and Jensen for the randomized cases.

We should note that the implementation of the Jensen nu-
merical integration in FLORIS Version 2 is non-vectorized
(i.e., calculations are mostly performed through for-loops
instead of vector operations). Comparisons in computation
time with a vectorized code such as PyWake would likely
show a smaller discrepancy (Pedersen et al., 2019). However,
the code implementation of FLOWERS is not fully vector-
ized either, so it is a fair comparison of FLOWERS to the
Jensen numerical integration to showcase the performance
of our newly developed model.

The discrepancy in AEP between the two methods is more
pronounced in these randomized cases. The free-stream wind
speed is not held constant here as it was in the first exam-
ple. More variations in U across different wind directions
and across the wind farm result in more error between the
two methods due to the approximations built into the FLOW-
ERS formulation. The common characteristics of the cases
with percent difference greater than 20 % are a free-stream
wind speed consistently less than 5 m s−1 and a small num-
ber of predominant wind directions. The average difference
between FLOWERS and the Jensen integration is 13 %.

This difference in AEP between the two methods is not
necessarily a fatal flaw. FLOWERS is likely not a reliable
prediction of AEP for a wind farm, but it is difficult to expect
a highly accurate and precise estimate of AEP from a low-
fidelity wake model anyway. However, as we will illustrate
shortly, it is still possible to use the FLOWERS AEP in the
layout optimization problem. In fact, the FLOWERS AEP
calculation is better suited for layout optimization problems

than the numerical integration method. More precise AEP
estimates can always be generated as a final post-processing
step after the layout optimization is complete.

3.3 Improving computational efficiency

Before addressing the utility of the FLOWERS formulation
in the layout optimization problem, we can explore how to
further improve the computational time. For the Jensen nu-
merical integration method, a common approach to reduce
the cost of calculating AEP is to reduce the number of wind
speed–direction bins, thereby reducing the number of simu-
lations that must be run. Figure 7a illustrates how the compu-
tational time of the AEP calculation is roughly proportional
to the number of bins. Each bin adds an identical set of func-
tion calls and operations to the summing process, so the cost
scales linearly. The data presented here are for a seven-by-
three grid of turbines with 5D spacing in all directions and
five wind roses randomly sampled from the WIND Toolkit.

The trade-off of sparse sampling of the wind rose is that
the AEP from numerical integration is highly sensitive to the
number of bins chosen. The AEP varies by as much as 40 %
as we reduce the number of wind direction bins from 72 to 9.
To reduce the computational cost by a factor of 2, AEP fluc-
tuates by about 2 %; to reduce the cost by a factor of 5, AEP
changes up to 10 %. The sensitivity manifests as both over-
estimates and underestimates of AEP, so it is not possible to
assume a conservative underestimate of AEP, for example.
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Figure 7. The effect of the resolution of wind direction bins in the Jensen model (a) and number of Fourier modes in FLOWERS (b) on
cost (top panels) and accuracy (bottom panels) of the AEP calculations. Each colored line represents one of five sampled wind roses. AEP
is computed for a seven-by-three grid of turbines with a spacing of 5D. Values are normalized in each plot by the highest-resolution data
point. For context, computation times are on the order of seconds.

The equivalent idea in the FLOWERS formulation is to
reduce the number of Fourier series modes. Each term in the
discrete Fourier series is a single arithmetic expression, so
the cost should also scale linearly with the number of terms.
Figure 7b illustrates that the computational time for FLOW-
ERS is proportional to the number of Fourier modes included
in the solution. The lowest-frequency modes are used. In con-
trast to the Jensen numerical integration method, the AEP
for FLOWERS is less sensitive to the number of Fourier
modes. For all five wind roses, AEP remains virtually un-
changed when using half of the maximum number of terms,
and within 1 % when using only five terms. The Fourier
transform is well-suited to approximate the wind speed and
frequency data for each discrete wind direction and is a com-
mon tool to represent complex signals in a compact format.
Reducing the number of wind direction bins is less success-
ful because the decrease in resolution is indiscriminate: data
are aggregated in uniform bins and averaged without con-
sidering the important features of the signal. Another useful
feature of the Fourier expansion is that reducing the number
of modes does not change the smoothness of the superim-
posed signal. A single Fourier mode is still a continuous si-
nusoidal function. On the other hand, reducing the number of
wind direction bins directly causes a more discrete numerical
integral. The more coarse the wind direction, speed, and fre-
quency data are, the more sensitive the AEP calculation be-

comes. This has significant implications for the quality and
robustness of layout optimization solutions.

With better understanding of the low sensitivity of AEP
accuracy to the number of Fourier terms in FLOWERS, we
have the opportunity to further reduce the computational
cost. To hone in on the appropriate number of Fourier terms
to use, we return to the 40 randomized test cases from
Sect. 3.2. Table 1 compares the percent difference in AEP
and the ratio of computation time between the Jensen nu-
merical integration and FLOWERS with the maximum num-
ber of Fourier terms (N = 37) and a truncated Fourier series
(N = 5). The mean and standard deviation of the AEP dif-
ference between FLOWERS and Jensen remain virtually un-
changed. Only the FLOWERS AEP is computed differently
between these two cases, which indicates that the FLOWERS
AEP is insensitive to the number of Fourier modes included
in the solution. The advantage is that the FLOWERS solution
with five Fourier terms is about 110 times faster to compute
than the Jensen numerical integration.

We therefore recommend using this truncated FLOWERS
solution. By using only one-eighth of the Fourier terms, there
is a reduction in cost of roughly a factor of 6 with virtually no
trade-off in accuracy. There is no reason to use the extended
Fourier series if it increases the computational cost of the
FLOWERS solution with no benefit to accuracy.

Wind Energ. Sci., 7, 1137–1151, 2022 https://doi.org/10.5194/wes-7-1137-2022



M. J. LoCascio et al.: FLOWERS: an integral approach to engineering wake models 1145

Figure 8. The wind rose used for the layout optimization studies performed in Sect. 4. The resolution of the wind direction bins varies from
1◦ (a) to 5◦ (b) to 40◦ (c). The wind speed is a constant 8 m s−1.

Table 1. Influence of number of Fourier modes in the FLOWERS
solution for the 40 randomized AEP test cases.

FLOWERS Fourier terms N = 37 N = 5

AEP mean difference 12.94 % 12.93 %
AEP SD difference 14.76 % 14.72 %
Mean computation time ratio 18.4 114.4

4 Optimization comparison

Consider nine turbines placed within a square boundary of
side length 12D. The wind is coming from the left, with a
fixed speed of 8 m s−1. We compare two optimizations with
different objective functions: one with the FLOWERS AEP
and the other with the Jensen numerical integration AEP. All
other inputs and parameters in the optimization are identi-
cal: initial layout of the wind plant; wind direction, speed,
and frequency distribution; wake expansion coefficient; and
convergence threshold. Figure 8 shows this wind rose with
three different resolutions: 1 , 5, and 40◦ wind direction bins.
These different resolutions are used in the following studies.

The AEP that drives the gradient-based optimization is dif-
ferent between both optimizers. However, we wish to com-
pare the quality of the optimal solutions for both without con-
founding the differences in AEP discussed in Sect. 3. In this
section, we use the numerical integration method to compute
the AEP produced by the initial and final layouts of both
optimizers for a straightforward comparison. The objective
function of the FLOWERS optimizer still uses the FLOW-
ERS AEP formulated in Sect. 2.2, but the AEP that we are
reporting here is computed in the same fashion as the Jensen
numerical integration AEP. The metric to compare the qual-
ity of optimal solutions is AEP gain:

GAEP =
AEPopt−AEPinit

AEPinit
∗ 100%, (16)

where AEPinit is the AEP of the initial layout and AEPopt is
the AEP of the final solution.

4.1 FLOWERS and Jensen

The first comparison is against the Jensen numerical integra-
tion model. The 5◦ wind direction bins (i.e.,B = 72) are used
for the Jensen model (see Fig. 8b), and N = 5 Fourier terms
are used for FLOWERS.

Figure 9 shows the results of the optimization for a ran-
domized initial layout of the wind plant. The pattern of tur-
bine placement is qualitatively different between the FLOW-
ERS and Jensen optimizers. The Jensen optimization focuses
on maximizing the streamwise spacing of the turbines by
placing all turbines on either the leading or lagging edge of
the wind farm’s boundary. One reason why the Jensen opti-
mizer favors this type of solution is that wake-added turbu-
lence is included in the modeling framework, so maximizing
the streamwise spacing of the turbines improves the wake
recovery for downstream turbines. We have neglected wake-
added turbulence in the FLOWERS formulation to present
the simplest form of this new model, but we compare against
the Jensen numerical integration that includes wake-added
turbulence because we expect this effect to be modeled in
most wake modeling codes. On the other hand, the FLOW-
ERS solution focuses on the spanwise spacing of the tur-
bines, placing them such that eight turbines are unaligned
with respect to the predominant wind direction from the left.
As expected, the FLOWERS optimization is performed faster
than Jensen by a time factor of about 26 (851 s versus 31.9 s).
The FLOWERS solution actually achieves a more optimal
AEP gain of 14.3 % versus 12.9 % for Jensen.

To investigate this result more generally, we consider nine
additional multistart cases with randomized initial conditions
(10 in total). Figure 10 displays the computation time and
AEP gain for these 10 cases. The previous example from
Fig. 9 corresponds to Case 4 here. On average, FLOWERS is
about 48 times faster than the Jensen optimizer. Also, FLOW-
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Figure 9. The optimal layouts for the FLOWERS and Jensen optimizers (B = 72). The FLOWERS solution required 31.9 s and achieved an
AEP gain of 14.3 %. The Jensen solution required 851 s and achieved 12.9 % AEP gain. The black dots denote the initial layout.

Figure 10. A comparison of cost and performance for 10 cases with randomized initial conditions. Five Fourier modes are used for the
FLOWERS solution, and 72 wind direction bins are used for the Jensen numerical integration. FLOWERS is on average about 48 times
faster than Jensen and achieves an AEP gain that is 1.5 % higher.

ERS achieves an AEP gain that is on average 1.5 % higher
than Jensen.

The superior performance of FLOWERS compared to the
Jensen optimizer connects back to the smooth nature of the
formulation. The FLOWERS optimization space is smooth
and continuous because of the Fourier transform and analyt-
ical integration. On the other hand, the Jensen optimization
space is coarse because of the discrete model and numeri-
cal integration. The gradient-based optimizer thrives in the
smoother optimization space of FLOWERS. More refined
adjustments of the turbine positions are possible, and the op-
timizer is less likely to become stuck in local optimal solu-
tions in the smooth landscape. In the discrete space of the
Jensen optimization, it is more difficult for the optimizer to
explore the optimization space with equivalent precision and
efficiency.

To test the effect of wind rose resolution on the optimiza-
tion performance, we use B = 360 wind direction bins for

the Jensen numerical integration, as seen in Fig. 8a; we main-
tain N = 5 Fourier terms for FLOWERS. Figure 11 displays
the computation time and AEP gain for these 10 new cases.
FLOWERS is now about 680 times faster than the Jensen
optimization on average; the relative improvement in com-
putation time is due to the Jensen numerical integration AEP
calculation covering 5 times more wind direction bins. The
average AEP gain in FLOWERS is about 1.7 % higher than
that for Jensen. The particular AEP gains that are achieved by
each optimizer in this limited sample size of 10 cases are sen-
sitive to the initial layout of the wind farm. Regardless, the
overall result is that there is a negligible change in the qual-
ity of the solution that the Jensen optimizer achieves with a
higher-resolution wind rose.

We should note that the 10 randomized initial layouts
tested here represent a limited sample size for a multistart
study. The results still allow for a comprehensive discus-
sion of the differences between the FLOWERS and Jensen
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Figure 11. A multistart study, now for the Jensen model with B = 360 wind direction bins. The Jensen optimization now takes about
680 times longer than FLOWERS and achieves an AEP gain that is 1.7 % lower.

Figure 12. The optimal layouts for the FLOWERS and Gauss optimizers (with B = 360 wind direction bins). The FLOWERS solution
required 50.2 s and achieved an AEP gain of 7.3 %. The Gauss solution required 10 800 s and achieved 7.4 % AEP gain. The black dots
denote the initial layout.

models. Future work could expand on the scope of the mul-
tistart experiments to investigate whether FLOWERS con-
verges to more consistent solutions than Jensen and also
whether FLOWERS converges to a solution in fewer itera-
tions than Jensen.

4.2 FLOWERS and Gauss

Comparing FLOWERS to a smoother wake model, in this
case the Gaussian wake model (Bastankhah and Porté-Agel,
2014),

U (x,y)
U∞

=

(
1−

√
1−

CT

8(kx+ ε)2

)
exp

(
−

y2

2(kx+ ε)2

)
, (17)

further highlights the characteristics of the FLOWERS
method relative to the numerical integration approach. In-
stead of discrete boundaries of the wake in the top-hat model,
the Gaussian model is smooth in space. However, as a trade-

off for the improved detail of the Gaussian profile, the cost
of a function evaluation is higher. We use a sum-of-squares
wake deficit superposition for the Gaussian wakes. Every
other parameter of the optimization study is the same as
the previous experiment, including 1◦ wind direction bins
(i.e., B = 360).

The results of one of the optimization studies are shown
in Fig. 12. The Gauss optimal solution is smooth – without
the discrete boundaries of the Jensen model – and the lay-
outs are qualitatively more similar to FLOWERS with most
turbines placed in angled rows. The similarity of these solu-
tions suggests that the optimization spaces are similar despite
using different wake models and AEP calculations. The sim-
ilarity is not merely qualitative: the AEP gain for FLOWERS
is 7.3 % and Gauss is 7.4 %. The fact that the FLOWERS
gain is 0.1 % lower than that for Gauss is not necessarily a
sign that the FLOWERS optimization is subpar but rather a
byproduct of the many local optima. There are many possi-
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Figure 13. Multistart experiment for FLOWERS against the Gauss model with B = 360 wind direction bins. FLOWERS is about 470 times
faster than Gauss on average, and the AEP gain between the two optimizers is within 0.5 % on average.

ble layouts that satisfy the spacing constraints and achieve
similar AEP performance, so the solutions given here likely
represent local optima, not a global optimum. Since the two
optimizations evaluate different objective functions and oper-
ate in different solution landscapes, they cannot be expected
to arrive at identical solutions. Finding a global optimum in
this unrealistic test case would require a stricter convergence
criterion. We note that a more realistic wind rose would likely
not enable so many local optima in the solution space, so this
artifact should not be as pronounced in practice.

The trade-off for improved performance by using the
Gauss numerical integration is in computational cost. The
Gaussian optimization took 10 800 s (3 h), while the FLOW-
ERS optimization only required 50.2 s. This is an improve-
ment by a factor of 216 for FLOWERS.

Figure 13 displays the results for the 10 multistart cases.
Figure 12 is Case 1 in these plots. On average, the Gauss
optimization takes 470 times longer than FLOWERS. The
average AEP gain in FLOWERS is 0.5 % higher than Gauss.
The takeaway from this small difference in AEP gain is that
FLOWERS and Gauss produce comparable solutions, not
that FLOWERS is better at finding a more optimal solution.
A stricter convergence criterion would force the optimizers
to search longer for the global solution, which would likely
cause these AEP gains to grow even more similar.

This experiment suggests that the smoothness of the Gaus-
sian model compared with the Jensen model is the most
likely explanation for the improved performance. While the
number of wind direction bins is unchanged, the flow field for
each simulation is smoother with the Gaussian model. When
a turbine’s position is adjusted, there is no binary switch be-
tween being within the wake or outside of it; this discrete
change in wake velocity would cause the AEP to be sensi-
tive to slight perturbations in the turbine positions. On the
other hand, in the Gaussian model, a small change in tur-
bine position results in a similarly small change in the wake
deficit because of the smooth profile. This continuity pro-

duces a smoother solution space, which enables the optimizer
to move along more subtle gradients and achieve more opti-
mal solutions than the Jensen optimizer.

While the quality of solutions between FLOWERS and the
Gauss optimizer is comparable, there is no contest in terms of
cost. The FLOWERS optimization is 2 orders of magnitude
faster than the Gauss optimizer and can produce optimal so-
lutions with equivalent performance. Moreover, we are only
comparing the results for a wind plant with nine turbines. As
illustrated in Fig. 6a, the computational cost scales with the
number of turbines more sharply with the numerical integra-
tion approach. It is possible that this factor of 470 could grow
to a factor of 1000 or more for a larger wind farm.

We have demonstrated that the FLOWERS AEP is insen-
sitive to the number of Fourier series terms and have used
the truncated series to achieve similar performance to the
Gauss optimization. We also previously showed that the AEP
calculated from numerical integration is extremely sensitive
to the resolution of the wind direction bins. For a fair and
comprehensive comparison, the Gauss optimization should
be performed with a limited number of wind direction bins to
mimic the reduction in cost that was implemented in FLOW-
ERS. To match N = 5 Fourier terms, B = 9 wind direction
bins are now used in the Gaussian optimization, as seen in
Fig. 8c. The results in this case are shown in Fig. 14. The re-
duction in wind rose resolution brings the cost of the Gaus-
sian optimization down significantly such that the FLOW-
ERS optimizer is only about 5 times faster on average. How-
ever, the AEP gain of the optimal solutions for this Gaussian
optimizer with a coarse wind rose is poor. The AEP gain for
FLOWERS is 7.5 % higher than Gauss on average, which is
an improvement of a factor of 2.7. This experiment proves
that the Gaussian optimizer cannot achieve greater computa-
tional efficiency by manipulating the resolution of the wind
rose without substantially impacting the quality of its solu-
tions.
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Figure 14. The 10 randomized cases for FLOWERS against the Gauss model with B = 9 wind direction bins. FLOWERS is only about
5 times faster than Gauss now, on average. The average AEP gain for FLOWERS is about 12 %, but only about 4.5 % for Gauss.

5 Potential model improvements

As we have demonstrated, FLOWERS is able to match the
performance of conventional layout optimization methods
despite simplifications in its formulation. The discrepancies
in AEP estimates between FLOWERS and the Jensen and
Gauss numerical integrations did not inhibit its application
to the optimization problem. However, we could enhance the
accuracy of FLOWERS by improving the following.

– Power integral. We introduced a simplification to make
the integration of turbine power tractable by computing
AEP as a function ofU

3
rather thanU3. We would reex-

amine the integration of Eq. (13) to avoid this simplifi-
cation, which introduces errors when wind speed varies
across different wind directions.

– Coefficient of power. CP is currently defined as a func-
tion of the average wake velocity, making it a constant.
We aim to incorporate CP as a function of the wake ve-
locity for each wind direction such that average power
is computed exactly: P (U )= 1

2ρACP(U )U3.

– Local flow conditions. We can define the wake veloc-
ity deficit relative to the local flow velocity rather than
the free stream, which will better capture the influ-
ence of upstream turbines and development of the flow
as it moves through the wind farm. This improvement
will require an iterative approach and is particularly ex-
pected to improve results in aligned cases such as the
ones discussed in Sect. 3.1.

– Gaussian model. We currently integrate a classical top-
hat wake deficit model. We expect that the AEP esti-
mates would be more accurate by integrating a Gaussian
wake model instead.

6 Conclusions

The objective of this paper was to develop a novel analyt-
ical formulation of annually averaged wake velocity to use
in a layout optimization problem and demonstrate its effect
on reducing the computational cost of these studies. We de-
rived the equations for the analytical integration of the top-
hat wake deficit model. The wind speed and wind direction
frequency distributions were expressed as a Fourier series to
facilitate the integration.

The annually averaged wake velocity was used to compute
AEP. We approximated the average power by using the aver-
age wake speed cubed rather than an average of the cube of
the wake speed, which introduces error when there are pro-
nounced wakes or the wind speed varies significantly across
different wind directions. Also, the local wind speed’s effect
on turbine power production and thrust was not accounted
for. These simplifications introduced error that led to the AEP
computed in FLOWERS differing from the Jensen numerical
integration approach by about 13 %.

Fortunately, these limitations in the accuracy of the
FLOWERS AEP do not preclude its use in the optimization
problem. The FLOWERS optimizer built around the Jensen
wake model finds optimal wind plant layouts with AEP com-
parable to an optimizer that numerically integrates a Gaus-
sian wake model. This finding is unexpected but promising
because it implies that the mathematical formulation behind
FLOWERS compensates for a more simplistic wake model to
achieve similar results to a more sophisticated wake model.
The clear advantage of FLOWERS, then, is the robust lay-
out optimization performance while achieving a reduction in
computational cost of 2 orders of magnitude. We believe that
this improvement in computation time will scale better with
wind farms containing more than the nine turbines studied
here.

This achievement could translate to the difference between
running an optimization study in 10 min versus 5 d, or be-
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tween running the study on a personal laptop versus a high-
performance computer cluster. This technique could open
the door for other areas of research in layout optimization,
including optimization under uncertainty, by making these
studies more accessible and less costly. Moreover, the new
conceptualization of the wake velocity deficit could inspire
brand new areas of research in wake modeling and wind plant
control and optimization.

This paper serves as a foundation for future work on the
FLOWERS formulation. Since the motivation of this ap-
proach was to improve computational cost, one avenue to
explore is further optimization of the FLOWERS code. Wind
plant layout and yaw steering co-design is a popular area of
research, and another potential application for FLOWERS if
yaw deflection models could be included in the formulation.
Future work will also focus on studying the effects of super-
position methods and model uncertainty in the FLOWERS
formulation. We also plan to validate the performance of the
FLOWERS optimal solutions with high-fidelity simulations.
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