
Wind Energ. Sci., 7, 1289–1304, 2022
https://doi.org/10.5194/wes-7-1289-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Surrogate models for the blade element
momentum aerodynamic model using

non-intrusive polynomial chaos expansions

Rad Haghi and Curran Crawford
Department of Mechanical Engineering, Institute for Integrated Energy Systems,

University of Victoria, British Columbia, Canada

Correspondence: Rad Haghi (rhaghi@uvic.ca)

Received: 22 September 2021 – Discussion started: 1 November 2021
Revised: 29 April 2022 – Accepted: 9 June 2022 – Published: 27 June 2022

Abstract. In typical industrial practice based on IEC standards, wind turbine simulations are computed in the
time domain for each mean wind speed bin using a few unsteady wind seeds. Software such as FAST, BLADED,
or HAWC2 can be used to capture the unsteadiness and uncertainties of the wind in the simulations. The statistics
of these aeroelastic simulation outputs are extracted and used to calculate fatigue and extreme loads on the wind
turbine components. The minimum requirement of having six seeds does not guarantee an accurate estimation
of the overall statistics. One solution might be running more seeds; however, this will increase the computation
cost. Moreover, to move beyond blade element momentum (BEM)-based tools toward vortex/potential flow
formulations, a reduction in the computational cost associated with the unsteady flow and uncertainty handling
is required. This study illustrates the unsteady wind aerodynamic statistics’ stationary character based on the
standard turbulence models. This character is shown based on the output of National Renewable Energy Lab
(NREL) 5MW reference machine BEM simulations. Afterwards, we propose a non-intrusive polynomial chaos
expansion (PCE) to build a surrogate model of the loads’ statistics, the rotor thrust, and torque, at each time step,
to estimate the extreme statistics more accurately and efficiently.

1 Introduction

The process of calculating loads on wind turbine components
is one of the core parts of wind turbine aerodynamic and
structural design and optimization. In the last few decades,
international organizations have developed different aeroe-
lastic codes such as Fatigue, Aerodynamics, Structures, and
Turbulence (FAST) (Jonkman and Buhl, 2005), BLADED
(DNV GL, 2018), and HAWC2 (Larsen and Hansen, 2007)
to accurately calculate load time series based on the stan-
dardized or site-specific environmental conditions. Engineers
and researchers use wind turbine aeroelastic simulation out-
put statistics to calculate extreme and fatigue loads on wind
turbine structures and estimate the unsteady power. To take
into account the randomness in the unsteady wind, according
to IEC standards (IEC 61400-1, 2019), the simulation pro-
cess must use a semi-Monte Carlo (MC) method. Therefore,

a full simulation set should include a limited number of seeds
for generating multiple wind speed time series of 600 s.

In normal practice, for each mean wind speed, at least
six different seeded unsteady wind time series are required
as the minimum to take into account the uncertainties. This
limited number of unsteady simulations does not yield an
entirely accurate estimation of the statistics. Gradient-based
optimization algorithms may not deal with these inaccuracies
well. One option to solve this problem is running more seeds,
which will increase the computational cost. The increase in
computational cost will play a more critical role in our deci-
sion making if we want to move towards vortex (van Garrel,
2003) and potential flow codes for load calculations as they
require more computation resources inherently. An alterna-
tive approach to direct simulation is to use a surrogate model
that can provide us with an accurate statistical estimation set
based on a limited number of simulations.
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The origin of the surrogate model lies in uncertainty
quantification (UQ) analysis (Sudret, 2007). There are many
uncertainty quantification implementations in wind energy.
More specifically, surrogate models show much potential in
wind farm load estimation, wind turbine optimization, and
reliability analysis. Many researchers have investigated these
potentials. For example, Dimitrov et al. (2018), Schröder
et al. (2018), van den Bos et al. (2018), and Dimitrov (2019)
used surrogate models to estimate the loads on a wind tur-
bine based on the stochastic variables’ gross parameters such
as turbulence intensity, mean wind, or wind direction. Ashuri
et al. (2016), Murcia et al. (2018), and Schröder et al. (2020a)
used surrogate models for uncertainty propagation through
the wind turbine models. More recently, the surrogate mod-
els have been used for the wind turbines’ reliability assess-
ments (Slot et al., 2020; Schröder et al., 2020b). Also, Wang
et al. (2020) and Barlas et al. (2021) showed the application
of the surrogate model in wind turbine optimization. How-
ever, very few have looked at building a surrogate model of
the aerodynamic model of a wind turbine based on the ran-
dom phases as the input. Fluck and Crawford (2018) showed
an initial attempt to build a surrogate model based on in-
trusive polynomial chaos expansion (PCE) on simple lifting
line and blade element momentum (BEM) models (Fluck and
Crawford, 2016a, 2018). As they were quickly faced with
the curse of dimensionality, they showed it is possible to re-
duce the number of random variables in the unsteady wind
model of Veers (1988) significantly. Afterwards, they used
this reduced-dimension wind model to propagate stochastic-
ity through a simple lifting line (Fluck and Crawford, 2016b)
or BEM (Fluck and Crawford, 2018) model. However, with
intrusive PCE it is necessary to change the model imple-
mentation fundamentally to incorporate the random variables
(Sudret, 2007). This might work for a simple model, but
when we want to utilize commercially available aeroelastic
codes, this will be challenging or even impossible.

This paper’s goal is to build a non-intrusive PCE surro-
gate model of a deterministic aerodynamic model driven by
stochastic unsteady wind. This study’s implemented aero-
dynamic model takes wind time series as input and calcu-
lates thrust and torque on a National Renewable Energy Lab
(NREL) 5MW turbine rotor using BEM. The motivation is to
build a surrogate model based on a limited amount of simula-
tion data to estimate the statistics of the aerodynamic model
output at each time step of the time series quickly. Having
this surrogate model at hand helps us explore and experi-
ence the opportunities it can provide. This output guides fu-
ture research in the surrogate model realms for us in the long
run. The surrogate model investigation presented is an explo-
ration of the potential benefits and limitations of PCE-based
time-domain surrogate models to help researchers and prac-
titioners develop future surrogate modeling approaches.

As the surrogate models are inherently cheap to run, we
take this surrogate model through a Monte Carlo simulation
(MCS) a large number of times. The input of these MCSs

are the samples drawn from the uniform random variables.
The unsteady wind generator uses the same random variable
distribution to make sure the generated time series will match
a Gaussian process (Veers, 1988). This process is presented
in Fig. 1 schematically. By this method, we can reduce the
computational cost and time for the aerodynamic simulation
without compromising the validity of the results. One can
interpret this model as a tool to map the input distribution (in
this case, a uniform distribution of random seed phases) to
the output distribution (in this case, distribution of thrust and
torque on the rotor).

Fitting a surrogate model at each time step of 600 s of the
aerodynamic output times series, using the random phases
(Fig. 1), is computationally expensive and redundant to cur-
rent practice. Therefore, we start by showing that the aero-
dynamic simulation results based on Veer’s reduced model
(Fluck and Crawford, 2017) statistically converge. We also
show that the unsteady wind aerodynamic process’s statis-
tical properties are constant in time (stationary process).
Therefore, by keeping the computational effort the same, it is
possible to run more simulations while shortening the length
of the simulations. Furthermore, more simulations with the
same computational effort give us the chance to fit higher-
degree PCEs, which provides a more accurate estimation of
the statistics. We built four different PCE surrogate models
with four different polynomial degrees (degrees two to five)
to pick the best in terms of accuracy and computational cost
trade-off. These surrogate models have been used for MCSs
for a large number of runs (cheaply). The results of the MC
runs of the surrogate models are compared with 48 000 un-
steady wind aerodynamic simulation results. In this case, the
simulation results are the thrust and torque forces induced on
the NREL 5MW in an unsteady wind. We compare the results
by looking at the thrust and torque distribution from both
the deterministic and surrogate models. Finally, we show
how the extreme loads extracted from the MCS can converge
to the extreme loads from the results from 48 000 unsteady
wind aerodynamic simulation results.

This paper is organized as follows. Section 2 describes
the unsteady wind generation and aerodynamic model. Sec-
tions 3 and 4 explain the statistical elements and PCE method
used in the study. Next, in Sect. 5, we set out the approach to
tackle the challenge. Section 6 provides the BEM simulation
results, convergence of the sectional statistics the PCE fit on
the sectional statistics, and the emulation output. At the end
of the “Results” section, we discussed the accuracy and effi-
ciency of the surrogate models developed in this study. This
paper concludes in Sect. 7, reiterating the key findings of the
study and offering suggestions for fruitful future work in the
area of wind turbine surrogates.
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Figure 1. The common deterministic process of aerodynamic modeling vs. the suggested surrogate model method schematic flow chart.

2 Models

This section provides an overview of the unsteady wind gen-
eration basics and aerodynamic model used in this study.

2.1 Reduced Veers unsteady wind model

One famous unsteady wind model in the wind turbine com-
munity is the Veers model (Veers, 1988). The history of the
model goes back to the late 1980s, and it has a long record in
wind turbine load calculation practice. Very briefly, the Veers
unsteady wind model is inherently an inverse Fourier trans-
formation. The one-dimensional unsteady wind time series
at location P is generated via

u∞(tn)=
∑
m

√
Sme

i(ωmtn+2πξm). (1)

For this inverse Fourier transformation in Eq. (1), the fre-
quencies ωm are taken from the Kaimal spectrum (Fig. 1).
The random phases are based on the independent random
variable ξm drawn from a uniform distribution over [0,1].
Finally, the amplitude Sm is specified based on the power
spectrum at the frequencies ωm (Bossanyi et al., 2011).

In load calculation practice, the Veers’ model for the
unsteady wind is the method to generate turbulent boxes,
commonly implemented in TurbSim (Jonkman, 2009). The
method is briefly explained in Fluck and Crawford (2017)
and extensively in Veers (1988). To make the unsteady wind
in TurbSim, this method uses a large number of random
variables on the order of thousands as required by Jonkman
(2009). This large number of random variables pushes the
surrogate model problem into the curse of dimensionality
very quickly. Therefore, building a PCE surrogate model is
almost impossible. To tackle this issue, Fluck and Crawford
(2016b) showed that using only 10 uniformly distributed in-
dependent random variables with 10 frequencies logarithmi-
cally sampled from the Kaimal spectrum (Veers, 1988) is
enough for building unsteady wind time series. This reduced
Veers’ model generated unsteady wind that can capture the

same level of randomness and probability distribution as the
full model. This study used this reduced Veers model to gen-
erate unsteady wind time series. This method does not lead
to a model that fully replaces high-fidelity TurbSim outputs
but rather a surrogate model necessity to study trade-offs of
various accuracy and assumption aspects.

The randomness in the generated unsteady wind comes
from the 10 random variables, φj , in the ξ vector describ-
ing the frequency components’ phases 2πξm in the reduced
Veers model in Eq. (1) (Fluck and Crawford, 2017). Based on
the Veers method (Veers, 1988) and in TurbSim (Jonkman,
2009), the employed sampling method is a pseudo-random
number generator (pRNG) which is the basis of MCSs. How-
ever, the problem with this way of sampling for MCSs is the
lack of control over the random variables’ domain as it may
fill some voids in the domain and may leave some of it empty
(Niederreiter, 1992). Therefore, the random domain may not
be filled evenly for the same reason. For this study, a low-
discrepancy quasi-Monte-Carlo (QMC) sampling method,
namely the Sobol sequence (Sobol, 1967) is used to draw
samples from the random variables in this work to calcu-
late the PCE coefficients via the point collocation method.
The main reasons to select the Sobol sequence over other
sampling methods are the samples’ consistency and compu-
tational efficiency (Kucherenko et al., 2015). A custom ran-
dom wind generator based on the reduced Veers model used
these samples to generate unsteady wind fields.

2.2 Aerodynamic model

The aerodynamic model for this study is a BEM model
(Bossanyi et al., 2011) with frozen wake based on the work
of Lupton (2019). This non-linear BEM model is used to run
simulations on a NREL 5MW (Jonkman et al., 2009) rotor
to calculate thrust and torque on the rotor. For the simula-
tions, the rotor speed was kept constant based on the mean
wind speed of the simulations. Also, the pitch angle was
set according to the data provided in Jonkman et al. (2009).
There is no controller involved in the simulations. The un-
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steady wind defined in the previous section is set at 100 m
hub height and remains the same on the rotor. The Python
package for BEM is bemused (Lupton, 2019). The NREL
5MW model characteristics and properties are extracted from
Jonkman et al. (2009). The model employed in this study for
the simulations and surrogate model is essentially equivalent
to the NREL 5MW model in any wind turbine aerodynamic
code (e.g. FAST, BLADED, and HAWC) but is nicely for-
mulated in Python. The model and analysis code used in this
work has been previously verified against the NREL 5MW
full model using BLADED by Lupton (2015).

3 Statistical convergence metric

For this study, we want to investigate the null hypothesis
that cross-sectional statistics (statistics at each time step) of
a combination of a large number of aerodynamic simulation
outputs are similar. In other words, we want to investigate if
the statistical properties of the output at each time step con-
verge as a function of the number of simulations (station-
ary process) for the non-linear stochastically autocorrelated
system. Figure 2 presents a generic example of distributions
(histogram fits) at each time step for a set of realizations
of one random process. (The figure shows a schematic plot;
therefore, histograms and fitted distributions do not represent
the plotted trajectories.)

To show that the sectional statistics of a large number of
simulations are convergent, we need a metric to quantify the
difference between the distributions at each time step. There
are different metrics for this purpose (Basu et al., 2011); for
this study, we use Hellinger distance (Hellinger, 1909) as a
metric due to its ease of application and interpretation. The
Hellinger distance is the metric to quantify how similar two
probability distributions are to each other. The distance is
zero if they are the same and is one when the two distribu-
tions are disjointed. The Hellinger distance for two discrete
probability distributions P andQ, which have an equal num-
ber of bins, can be formulated as follows:

H (P,Q)=
1
√

2

√√√√ k∑
i=1

(
√
pi −
√
qi)2. (2)

In Eq. (2), pi and qi are the probabilities for P and Q at
every bin. In our case, to make the comparison fair, not only
the number of bins are the same, but also the bin width is
the same for both P and Q. This assures us that there is no
artificial distance reduction in the results.

In this study, we use Hellinger distance to show that the
cross-sectional statistics changes for a large number of sim-
ulations are minimal. Therefore, we can shorten the simula-
tions without losing the accuracy of the sectional statistics.
We also use the Hellinger distance as an error metric to com-
pare the accuracy of the MCS with the reference case. The
reason behind choosing this measure, instead of simply look-

Figure 2. A schematic drawing presenting possible distributions at
each time step based on a set of time trajectories for a quantity of
interest (QoI).

ing at the mean and standard deviation difference, is the dis-
tribution of the aerodynamic model output. As the next sec-
tion we will show, the distribution of the aerodynamic out-
put is a Weibull distribution. Therefore, comparing mean and
standard deviation would not provide us the full statistical
picture.

4 Polynomial chaos expansion fundamentals

Uncertainty propagation of mathematical models has been
the subject of many studies in the last 30 years. One method
to propagate uncertainty is using models of models, called
surrogate models. A surrogate model is a cheap-to-run ap-
proximation of the actual model (Kim and Boukouvala,
2020). Among surrogate models, the polynomial chaos ex-
pansion (PCE) has gained attention especially after the work
of Ghanem and Spanos (2003) and Xiu and Karniadakis
(2003). PCE is a method that uses a variable described by its
statistical distribution (random variable ξ ) and projects the
model onto a basis of polynomials. In this way, the uncer-
tainty can be propagated through the model with a limited
number of simulations (Tyson et al., 2015). In other words,
PCE is a technique to estimate the response of a mathemati-
cal or numerical model based on a series of orthogonal poly-
nomials, which are functions of a random variable ξ . The so-
lution is expanded and described in stochastic space spanned
by ξ and the associated polynomial basis.

The main reasons to use PCE instead of other surrogate
model methods are as follows: (a) with minimum compu-
tational effort, one can extract statistical moments directly
from PCEs; (b) PCEs are easy to integrate into determinis-
tic linear and non-linear mathematical models; and (c) one
can build a PCE surrogate model by treating the model as a
black box (Kaintura et al., 2018; Sudret, 2015) using a non-
intrusive formulation.

In order to illustrate the application of PCE surrogates,
assume Y (tn)=M(tn,ξ ), where tn is time step n, ξ is the
random variable vector, M(tn,ξ ) is our deterministic time
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marching mathematical model, and Y (tn) is the output of the
model at time step n. Therefore, the stochastic output of the
model Y (tn,ξ ) can be expanded as follows:

Y (tn,ξ )=
∞∑
i=1

yi(tn)9i(ξ ), (3)

where yi(tn) are PCE coefficients at each time step, and9i(ξ )
is a member of an orthogonal polynomial class. These poly-
nomials are orthogonal with respect to the probability space
of random variable ξ . The selection of the polynomial type
is a function of the probability distribution on the random
variable ξ . For example, if a random variable ξ has a normal
distribution, then a Hermite polynomial is selected (Xiu and
Karniadakis, 2002).

The polynomials do not necessarily need to be selected
from the specific polynomial family as long as they are
orthogonal polynomials. For instance, Fluck and Crawford
(2018) showed exponential components worked best for their
purposes. As the randomness in this study comes in the
form of a uniform distribution for wind frequency compo-
nent phases φj , the surrogate model is based on the Legen-
dre polynomials (Xiu and Karniadakis, 2003). In practice, the
PCE summation in Eq. (3) is truncated at a reasonably high
order p. The task of fitting the expansion in Eq. (3) is finding
the coefficients yi(t). There are two main approaches to solve
this problem.

– For the intrusive approach, the model is projected on
the orthogonal polynomials using a Galerkin projection
(Ghanem et al., 2017). This approach requires build-
ing a detailed stochastic model from the deterministic
model governing equations. The intrusive approach was
used by Fluck and Crawford (2016b, 2018) to build a
surrogate model on lifting line and BEM models.

– The non-intrusive approach allows for calculating the
PCE coefficients from a series of deterministic model
evaluations. This approach considers the model as a
black box and does not require any model modification
(Sudret, 2007; Eldred et al., 2008). There are two sub-
categories to calculate the coefficients, namely simula-
tion methods and quadrature methods (Sudret, 2007).

The presented work uses the non-intrusive approach to cal-
culate the PCE coefficients. In the non-intrusive approach
category we primarily used a simulation method to calcu-
late the PCE coefficients. In mathematical form, the output
of the aerodynamic modelMaero(tn,ξ ) at time step n is thrust
Trt(tn) and torque Trq(tn). Therefore, one can re-write Eq. (3)
as follows:

Trt(tn,ξ )≈
m∑
i=1

Ti(tn)9i(ξ ), (4)

Trq(tn,ξ )≈
m∑
i=1

τi(tn)9i(ξ ), (5)

where the goal is to calculate the polynomial coefficients
Ti(tn) and τi(tn) at each time step. This surrogate model’s
input is the random variable ξ vector used in the reduced
Veers model to generate the unsteady wind. The surrogate
model’s output is the thrust and torque at a specific time step
for which the surrogate model is built. The main difference
between Eq. (3) and Eqs. (4) and (5) is the approximation
with finite polynomial series expansion as it is not feasible
to take into account an infinite number of polynomials. This
work’s surrogate model is built employing the Python tool-
box chaospy (Feinberg and Langtangen, 2015). chaospy
is a numerical tool for uncertainty quantification using dif-
ferent methods, including PCE. For this study, we used the
point collocation method to calculate the coefficients due to
the ease of implementation in the chaospy toolbox. This
method has been explained well in the literature (see Xiu
et al., 2002; Ghanem and Spanos, 2003; Sudret, 2007).

5 Surrogate modeling methodology

In this piece of work, whenever we talk about simulations,
we mean aerodynamic simulations in time using the BEM
aerodynamic model introduced above. The input of the aero-
dynamic simulations is what we call wind time series or un-
steady wind and is auto-correlated by construct. This wind
time series is generated based on the reduced Veers model
explained above.

This study starts with running an extensive set of simu-
lations based on the reduced Veers model at 12 m s−1 mean
wind speed, aerodynamic simulation model, and Sobol sam-
pling, explained previously. This wind speed is the rated
power wind speed for NREL 5MW. Afterwards, as we have
a large number of simulation outputs in our database, we can
show that the thrust and torque statistics with time are not
changing significantly. Therefore the statistical process prop-
erties at each time step (mean, standard deviation, etc.) would
be significantly similar to other time steps. Knowing the pro-
cess statistics stays the same in time, we conclude that only
building a single surrogate model, i.e. a single time step or a
few, would suffice for our purpose. The accuracy of the PCEs
depends on the polynomial degree. However, an increase in
the polynomial degree pushes the problem further toward
the curse of dimensionality. The number of required coef-
ficients to build the surrogate model and the required number
of simulations are presented in Table 1. Equation (6) presents
the formula to calculate the number of PCE coefficients. In
Eq. (6), M is the required number of coefficients, N is the
number of random variables, and P is the polynomial order.

M + 1=
(N +P )!
P !N !

(6)

The table shows we need a large number of simulations to
build an accurate PCE. According to the recommendation of
Hosder et al. (2012), twice the number of simulations (M +
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Table 1. The number of coefficients and required data points to cal-
culate the coefficients for 10 random variables and using the point
collocation method. This number of coefficients should be calcu-
lated for every time step. The last column demonstrates the simula-
tion (sims) length for the fitted PCEs as explained in Sect. 6.

Polynomial No. of No. of Sims. length to
degree coefficients+ 1 required fit PCEs [s]

simulations

1 11 22 163.6
2 66 132 27.3
3 268 536 6.7
4 1001 2002 1.8
5 3003 6006 0.6

1) can provide acceptable accuracy for the point collocation
method (Hosder et al., 2012). That recommendation is the
basis for the number of simulations in this study.

We want to limit the computational cost for a single aver-
age wind speed to 6 times 600 s simulations (in total 3600 s)
to be competitive with the standard practice in wind turbine
aerodynamic simulation. Combining a large number of sim-
ulations and 3600 s cumulative simulation length leads to a
large number of short simulations instead of a few long ones.
We kept the simulation’s cumulative length at 3600 s to make
this trade-off fair. This means that as the simulations’ length
decreases, the number of simulations increases. Sobol sam-
pling is the base of the unsteady wind generation and input
to the aerodynamic simulation setup. For every set of the re-
quired number of simulations in Table 1, the random phases
are drawn independently from the rest of the sets. For exam-
ple, for the second row of Table 1, when we need 132 simu-
lations, 132 unique samples of ξ are drawn from the random
domain. These ξ have not been used for other simulation sets.
By having a large number of data points at each time step,
we built a few surrogate models in time and compared the
results with the simulations’ reference case. For the sake of
accuracy, in this study, we do not build any surrogate model
based on first-degree polynomials.

Another approach to calculate the coefficients is Gaus-
sian quadrature (GQ). This method has been extensively ex-
plained in the literature (e.g. Le Maître and Knio, 2010).
There are also extensions to GQ referred to as sparse Gaus-
sian quadrature (SGQ) methods that seek to reduce the
number of simulations required to fit the surrogate (e.g.
Smolyak). Our tests show that for a standard GQ method with
10 random variables and polynomial orders 2, 3, and 4, we
need 59 049, 1 048 576, and 9 765 625 evaluation points, re-
spectively. On the other hand, the Smolyak sparse approach
for GQ (Le Maître and Knio, 2010; Smolyak, 1963) will re-
duce the number of evaluation points drastically. We tested
the SGQ method for polynomial orders of 2, 3, and 4 with
10 uniform random variables and the Smolyak sparse ap-
proach for SGQ. The number of the required evaluations

for each polynomial order is 221, 1581, and 8761, respec-
tively. We ran the evaluations for the SGQ method, calculated
the weights, and built the polynomials. However, the results
were not as promising as expected. The results from the SGQ
method are shown and briefly discussed in Sect. 6.4

For a stationary input (reduced Veers model), the sample
statistics of output converges at the rate of 1/

√
n, where n

is the number of data points (in this case, 48 000 data points
at a one-time instance). Consequently, it is possible to esti-
mate the statistical parameters of the output distribution by
different methods. One possible approach is using the maxi-
mum likelihood estimator (Rao, 2008). A question that then
arises is why we go through the complication of building
a surrogate model. The research goal we present here is to
build a surrogate model of an aerodynamic model, whether
the aerodynamic model is simple or complex, with the model
capable of resolving the form of the performance statistics,
as an alternative to maximum likelihood estimation meth-
ods. We chose an aerodynamic model that is easy to simu-
late while complex enough to capture the inherent non-linear
behaviour. Hence, the specific aerodynamic example model
does not compromise the validity of the method we introduce
here to later more complex aeroelastic simulations with, for
example, FAST or BLADED.

6 Results

This section presents the results of our numerical experi-
ments. We start by looking at the Hellinger distance of a large
number of aerodynamic simulation output, thrust, and torque
values and show that the distance does not change signifi-
cantly. Therefore, the sectional statistics are almost the same
across time steps. Afterwards, based on that conclusion, we
built a number of surrogate models for polynomial orders of
2 to 5 from a limited number of simulations and show the
statistics match the reference case. Finally, we show how ex-
tracted extreme thrust and torque are comparable with the
reference case.

6.1 Sectional statistical convergence

As mentioned before, in Sect. 5, we started by running a
broad set of reference simulations. For this case, we ran
48 000 simulations for a 12 m s−1 wind speed and turbu-
lence intensity of 0.16. The wind generator code took 48 000
samples from a 10-dimensional uniform distribution domain
based on the quasi-random sampling method. Each sample is
a 10 by 1 vector of ξ j , and we have 48 000 of them. A total
of 48 000 wind speed time histories were generated, and sim-
ulations on the aerodynamic models run with a time step of
0.1 s for 630 s (in total 6300 time steps per simulation), with
a 30 s transient period. We discarded the transient period for
all the processes in this study.

This simulation setup builds a database for the investiga-
tion and shows that the process distributions at each time step
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change are insignificant. Initially, we started calculating the
histogram at each time step with identical binning for all of
them. Afterwards, using the Hellinger distance formulation,
each histogram’s distance to the other histograms (5999 other
histograms) was calculated and stored in a matrix. Each row
of this matrix shows the histogram difference at one time step
compared to the other ones. Therefore, this is a symmetric
matrix with zeros on the diagonal. What is important is the
maximum of all of the data in the matrix; in Fig. 3a and b,
we show the max of the Hellinger distance at each time step
for the aerodynamic model simulation outputs. The Hellinger
distance is a normalized metric, and the distances are shown
in the percentage. The plot shows a comparison of all the
18 million possible combinations to calculate the Hellinger
distance for each model output. For the simulation outputs
(thrust and torque), the distributions’ difference does not ex-
ceed 2.21 %. This shows a sound coherence in the statistics
at each time step. Therefore, we can conclude that building a
surrogate model on a limited number of time steps, or even
one time step, is enough, and it is not necessary to create a
surrogate model on every time step as predicted by the aero-
dynamic model form.

6.2 PCE surrogate model construction

We use the same simulation setup as explained above for the
reference case to run the specified number of simulations in
Table 1. These simulations are input for building the surro-
gate models. The number of samples drawn from the 10-
dimensional uniform random space is equal to the number
of simulations in Table 1. The employed sampling method is
Sobol as tests show it provides a better convergence for the
PCE.

Referring to Fig. 3 and the discussion in Sect. 6.1, the
changes in statistical properties at each time step are mini-
mal. Therefore, one surrogate model that can accurately em-
ulate the sectional statistics of the aerodynamic simulations’
output would suffice. Knowing this means building surrogate
models is more feasible from a computational cost perspec-
tive.

As explained in Sect. 5, we fit surrogate models at every
time step of a large set of short simulations instead of a few
long ones for increasing polynomials of order P . The num-
ber of simulations is based on the polynomial order as shown
in Table 1. The length of the simulations that the surrogate
model is built on is the last column in Table 1 to keep the cu-
mulative length of the simulations at 3600 s. Although it was
unnecessary, for polynomial degrees 3 to 5, we built surro-
gate models at every time step of the whole 10 s worth of sim-
ulations to have an acceptable sample size for direct compar-
ison. The chaospy (Feinberg and Langtangen, 2015) tool-
box was used to perform the task of building these surrogate
models.

Figure 4 compares the descriptive statistics (first quartile
Q1, second quartileQ2, and third quartileQ3) for both thrust

and torque from the reference case with 48 000 simulation
outputs and 48 000 MCSs of the surrogate model built at each
time step. The results in Fig. 4 show the PCE fits for four
polynomial degrees; P on each plot indicates the polynomial
degree. As the polynomial degree increases from P = 2 to
P = 4, the fit to the reference case improves, as is expected.
However, it seems there is more error in the mean value and
quantiles when we move from P = 4 to P = 5 for both thrust
and torque. This increase in the error is explained further in
Sect. 6.3 and Fig. 6. We calculate the average difference for
the MCS and reference case over time for Q1, Q2, and Q3
from Fig. 4 for polynomials P = 4 and P = 5. This is pre-
sented in Table 2.

6.3 Surrogate model MCS

PCE surrogate models were constructed in the previous sec-
tion. Those surrogates can now be exercised via MCS to
quickly provide output-sampled statistics without actually
running further simulations. We initially ranked the surro-
gate models constructed for each time step based on their
mean values and standard deviations for each polynomial or-
der separately to choose a single PCE surrogate model for
the MCS carried out next. As the surrogate models are con-
structed as PCEs, mean and standard deviation extraction is
a simple step from the PCE coefficients (Owen et al., 2017).
After ranking the surrogate models, we selected the middle
mean surrogate model from the ranked succession for each
polynomial order. That provided us four surrogate models
for thrust and four surrogate models for torque, one per poly-
nomial order.

Next, we took the selected surrogate models through
MCSs of the surrogate models 106 times. Essentially, we
took random samples from our 10-dimensional random do-
mains 106 times and inserted those in the PCEs (Eqs. 4
and 5). The MCS outputs are then used to check the sur-
rogate model’s accuracy. One can argue that this method is
cherry-picking the surrogate models. This argument is valid
for the low-order (P = 2,3) polynomial surrogate models.
However, from Fig. 4 we know these polynomials are not ac-
curate regardless of which one we choose. This inaccuracy is
more visible in Fig. 6. For polynomials of orders 4 and 5, re-
ferring to Fig. 4, the polynomial selection procedure induces
an insignificant effect on the statistics.

To verify the surrogate models’ accuracy, we use the
Hellinger distance explained in Sect. 5. This time, the
Hellinger distance shows the difference between the surro-
gate model’s 106 MCS outputs per polynomial order with the
reference case at every time step. This procedure provides a
vector of Hellinger distances for each polynomial degree, in
which the vector’s length is the same as the number of time
steps in the simulations. As Hellinger distance is sensitive
to binning, the bins are identical for each polynomial order
surrogate model. The same bins were used to calculate the
reference simulations’ histograms at each time step. Figure 5
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Figure 3. Maximum Hellinger distance for thrust and torque at each time step. The upper and lower bounds for the extreme of the Hellinger
distance are indicated.

shows the average Hellinger distance changes within a nar-
row band for each polynomial degree. For the order 4 and 5
polynomials, we calculate the average of the Hellinger dis-
tances over 600 s. The averaged Hellinger distance presented
in Table 2 serves as an error metric for the surrogate models.

Afterwards, we compare the histogram of those with one
arbitrary time step of the reference case of 48 000 simula-
tions. For each polynomial degree, regardless of the refer-
ence case time-step location in the time series, the difference
between the reference case and the MCS only depends on
the polynomial order. In other words, the difference between
the MCS result histogram and the reference case histogram
was only dependent on the polynomial degree and not the
position of the time step in the time series as expected for a
stationary process. Figure 6 compares the histogram of 106

MCS for the middle mean ranked surrogate model to the ref-
erence case at one arbitrary time step for four polynomial
degrees.

Figure 6 shows how the surrogate models match the sim-
ulations’ output histograms. It is visible that the polynomial
orders P = 3 and P = 4 can cover the non-linearity in the re-
sults, while the second-order polynomial cannot. Polynomial
order P = 5 does not work well for both thrust and torque.
Although we met the rule of thumb for the number of sim-
ulations as mentioned in Table 1, this shows an under fit for
P = 5. This means more simulations are required to make
the fit feasible. Both Figs. 5 and 6 show that P = 4 provides
an acceptable accuracy for the surrogate models. Therefore,
further tests on the surrogate models with P = 5 appear un-
necessary. From Figs. 5 and 6 we can conclude that the PCE
surrogate model with polynomial order P = 4 is accurate
enough to emulate the aerodynamic model with an accept-
able accuracy while covering its non-linearity.

Another metric to show the accuracy of the surrogate
model is normalized root mean square error (NRMSE), also
known as L2 norm error. The NRMSE is calculated for every
time step for the first 10 s by running MCS for the surrogate

model P = 4 for the same input as the reference case simu-
lations. This means we use the same samples we took from
the 10−D random variables to generate the unsteady wind
and then calculate the 48 000 reference case to run the sur-
rogate model MCS. Figure 7 shows the error against time.
As expected and visible from Fig. 4 the NRMSE is higher
for torque and lower for thrust. In both cases, the maximum
NRMSE is less than 10 %. This error is deemed acceptable as
the surrogate model aims to provide overall accurate statis-
tics and not point-to-point accuracy in the estimation and is
necessarily a trade-off between speed and accuracy in the in-
tended applications. Recall from Eqs. (4) and (5) that the
PCE method is formulated as an expansion over the space
formed by polynomials which are functions of random vari-
ables. The simulation method of fitting the PCE coefficients
is essentially performing a statistical fit across the summative
set of simulation results rather than optimizing the surrogate
fit to a specific simulation. The NRMSE comparison here is
therefore perhaps unfair to the intent of the PCE model, the
earlier comparisons of MCS histograms and Hellinger dis-
tances being more appropriate metrics for the proposed PCE
surrogate model approach.

Figures 5, 6, and 7 show the PCE surrogate model has suc-
ceeded with the samples from the 10−D uniform distribution
and converts them to an approximate Weibull distribution for
both thrust and torque. This result highlights the ability of
the PCE surrogate in this study to deal with the inherent non-
linearity of the combination of unsteady wind generation and
aerodynamic model together.

6.4 SGQ PCE results

As mentioned in Sect. 5, we also calculated the coefficients
for the PCE using the SGQ method for the polynomial or-
ders 2, 3, and 4. We used the same procedure described in
the previous sections to run the simulations, build the sur-
rogate models (using chaospy), and select the surrogate
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Figure 4. TheQ1,Q2, andQ3 comparison from the reference case (48 000 simulations) and extracted values from PCEs for both thrust and
torque. The number of simulations used to build the PCEs and polynomial degree P are mentioned on the plots. The cumulative data length
of 3600 s sufficient to build surrogates is shown with the vertical line.
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Figure 5. Hellinger distance between the different polynomial order surrogate models for 1 million MCSs of the selected thrust and torque
surrogates and the 48 000 reference case simulations at every time step.

Figure 6. Thrust and torque surrogate models with 1 million MCSs vs. the reference case histogram.

models. This results in six surrogate models (three for thrust
and three for torque). We checked the accuracy of the sur-
rogate models in the same manner as explained in the previ-
ous section. We ran 106 MCS on the six selected surrogate
models and compared the histograms of the results with the
histogram from one arbitrary time step from the reference
case of 48 000 simulations. The results of the investigation
are presented in Fig. 8.

The results in Fig. 8 show the SGQ method is less ac-
curate than the point collocation method used in the previ-
ous section. Although the SGQ method requires more eval-
uation points than the point collocation method, the under-
performance of the SGQ method is consistent for all the
polynomial orders. As the initial accuracy test for the SGQ
method did not provide comparable results with the point
collocation method, we did not pursue further investigation
of the SGQ method in this study. This finding is in line
with the literature that shows point collocation typically out-

performs the SGQ in accuracy and efficiency (Eldred and
Burkardt, 2009).

The Hellinger distance in Fig. 9a and b shows the differ-
ence between the SGQ surrogate model’s 106 MCS outputs
per polynomial order and the reference case at every time
step. The Hellinger distance is much larger than what we
showed in Fig. 5 using the point collocation method to build
the surrogate models.

6.5 Surrogate model efficiency

Building the surrogate models aims to emulate the output of
the actual model in an accurate and computationally efficient
fashion. To inspect success in this respect, we start with com-
putation time required to run 2002, 6006, and reference case
48 000 aerodynamic simulations of 600 s. The previous sec-
tion shows that we do not need the 600 s length simulations
to build the surrogate models. Based on what we showed in
Sect. 6.3, the required time to run 1 s simulations (10 time
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Table 2. The average Hellinger distance for polynomials P = 4 and P = 5 and the quantile value difference with respect to the reference
case.

Case No. of aero- Avg. Hellinger distance Thrust 1 million MCSs Torque 1 million MCSs
dynamic (thrust, torque) [%] vs. 48 000 sims Q1, vs. 48 000 sims Q1,

sims Q2, and Q3 [%] Q2, and Q3 [%]

Sims for PCE P = 4 2002 5.6, 5.0 0.90, 0.05, 0.50 4.94, 2.44, 0.21
Sims for PCE P = 5 6006 8.7, 6.1 3.36, 1.03, 2.42 14.12, 6.22, 1.10

Figure 7. Surrogate model P = 4 NRMSEs for both thrust and
torque with respect to the reference case.

steps) and build one surrogate model is provided. The com-
putational time in Table 3 includes the unsteady wind gener-
ation. Additionally, we record the time required to build one
surrogate model. The time to build one surrogate model for
both thrust and torque is similar, and the average is provided
here. As IEC standards (IEC 61400-1, 2019) ask for at least
six aerodynamic simulations per average wind speed, we reg-
ister the time for that set of aerodynamic simulations also.
We perform aerodynamic simulations and surrogate model
building on Compute Canada WestGrid clusters. The CPU
time for the aerodynamic simulations and building the surro-
gate models is presented in Table 3.

The computational time to build one surrogate model is
long for P = 5. This is due to employing the point collo-
cation method to calculate the PCE coefficients. The point
collocation method is inherently a regression method, us-
ing least squares to minimize the error (Feinberg and Lang-
tangen, 2015). For a more complex aeroelastic model, the
simulation times would be increased, potentially substan-
tially, shifting the balance of computational time from PCE
construction toward aeroelastic simulations. Of course, the
aeroelastic simulations may be parallelized on available com-
puting infrastructure.

After building the surrogate models, we ran large sets of
MCSs for the PCE surrogate models with the polynomial or-

der 4 (as it is the most accurate one) and tracked the required
time to run the MCSs. All the MCSs were performed on
Compute Canada WestGrid clusters. The computation time
for the MCSs is shown in Table 4. As the computational time
difference between thrust and torque is insignificant, the one
which took longer is mentioned here.

The number of time steps in the reference case is 288 mil-
lion (6000 time steps multiplied by 48 000 aerodynamic sim-
ulations). Therefore, to have a fair comparison we can com-
pare computational time for the reference case in Table 3
with 288 million MCSs in Table 4. Adding up the compu-
tational time required for the surrogate model input simula-
tions and building the surrogate model, still the MCS is more
efficient by a big margin.

The ease of running MCSs provides the ability to have
more samples from the random domain. More samples from
the random domain cover more of the statistical domain and
capture the extreme loads more efficiently than running time
marching aerodynamic simulations and extrapolation. Fig-
ures 10 and 11 present the comparison between different
MCS set sizes and the reference case aerodynamic simula-
tions, maximum, 99th percentile P99, 95th percentile P95,
and 90th percentile P90. The maximum load and the per-
centiles extracted from the P = 4 surrogate models run for
both thrust and torque are shown in relation to the number of
MCSs.

According to IEC standards (IEC 61400-1, 2019), the
maximum load needs to be calculated based on the mean of
the max (mean-max) of at least six seeds of unsteady wind
aerodynamic simulations per average wind speed. Therefore,
we randomly grouped the reference case simulations (48 000
simulations) into 8000 unique groups to have a fair compar-
ison with the common practice. Afterwards, the mean of the
max per group, as well as the 90th percentile P99, 95th per-
centile P95, and 90th percentile P90 of each group, is calcu-
lated. These data are presented in Figs. 10 and 11 as clouds
of dots for both thrust and torque.

To extract the maximum value that matches the full refer-
ence case aerodynamic simulations, we need to run a large
number of MCSs. Figures 10 and 11 show for the PCE or-
der 4 the maximum thrust and torque from the MCS matches
the reference case around almost 1000 MCSs. Looking at
P99, P95, and P90 for both surrogate models, the convergence
happen at around the same number of MCSs. Figures 10 and
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Figure 8. Thrust and torque surrogate models based on SGQ with 1 million MCSs vs. the reference case histogram.

Figure 9. Hellinger distance between the different polynomial order surrogate models for 1 million MCSs of the selected thrust and torque
SGQ surrogates and the 48 000 reference case simulations at every time step.
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Table 3. The computational time required to run aerodynamic simulations, building the surrogate models, and the average Hellinger distance.

Case No. of Simulation Computation Time required to build
aerodynamic length time one surrogate model

sims

Sims for PCE P = 4 2002 1 s 10 s 1 min 2 s
Sims for PCE P = 5 6006 1 s 31 s 15 min 54 s
Common practice 6 600 s 18.62 s n/a
Reference case 48 000 600 s 41 h 55 min 48 s n/a

n/a – not applicable.

Table 4. Computational time to run MCSs on the surrogate models
with polynomial order 4.

No. of MCSs Surrogate model P = 4

10, 100, 1000 < 0.1 s
10 000 < 0.25 s
48 000 0.85 s
100 000 1.70 s
1 million 30.84 s
10 million 5 min 51 s
100 million 55 min 33 s
288 million 2 h 40 min 1 s
500 million 4 h 46 min 36 s

Figure 10. Maximum load and percentile comparison between the
aerodynamic simulation reference case, the MCSs, and group aero-
dynamic simulations for thrust.

11 show that after 1 or 100 000 MCSs the percentiles are
close to the reference case. Interestingly, the mean-max out-
put from the grouped aerodynamic simulations has a wide
distribution. This shows the inaccuracy of looking at a small
number of simulations to calculate the extreme loads. This
distribution is smaller for the percentile data; however, it
is not comparable with the convergence of MCS outputs.
Also, looking at the grouped simulation output, and com-

Figure 11. Maximum load and percentile comparison between the
aerodynamic simulation reference case, the MCSs, and group aero-
dynamic simulations for torque.

pared to the standard practice (mean-max) and P99, illus-
trates the conservative design approach of the IEC standards
(IEC 61400-1, 2019).

Referring to the computational time required to build the
surrogate model and then run the MCS, these plots show
promising results to extract accurate extreme loads from the
surrogate models in a computationally efficient manner. Here
again, it is emphasized that the utility of the proposed PCE-
based surrogate, with MCSs of the constructed surrogate and
examination of the statistical load distributions, is the key
contribution of the work. The point-to-point accuracy of the
model for a single run of the surrogate, as discussed earlier,
is not the focus of the surrogate, but rather our focus is the
overall computational costs and accuracy in spread of load-
ing conditions.

7 Conclusion

This paper’s aim is to build a non-intrusive surrogate model
of time marching aerodynamic simulations. The form of the
surrogate model used in this paper is a PCE. In Sect. 5, we
explained the aerodynamic model used for this study. Then,
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we briefly described the method that we are using to build
the PCEs. One major challenge with the building of the sur-
rogate models is the curse of dimensionality, which we tried
to tackle by using a reduced Veers model.

We showed how by increasing the number of simulations,
the results’ statistics converge and do not change in time. As
a result, building a few accurate surrogate models, or even
one, for a small length of time would suffice for our pur-
pose. In other words, time does not have any meaning in
the sectional statistics. Therefore, to build an accurate surro-
gate model, we can significantly reduce the simulation length
while increasing the number of simulations. In the results
section, we showed the surrogate model using a fourth-order
polynomial built on 2002 simulations with a length of 2 s
gives us sufficiently accurate results in large MC runs to ob-
tain output statistics. Afterwards, we demonstrate the surro-
gate model’s efficiency by comparing the computational time
required to run the aerodynamic simulations and build the
surrogate model with the required time for running MCSs
to have accurate statistics. Also, we show that the high per-
centile values extracted from the MCSs match the reference
case with a relatively low number of MCSs, and thus the
model is computationally efficient.

The BEM-based aerodynamic model approach is well
known in the literature and research. We choose 30 s tran-
sient time for the simulations to ensure they do not include
any transition results. As the model is a less complex BEM
which is quick to run, this is not a challenge. However, for fu-
ture work with actual aeroelastic codes (e.g. FAST), a smart
way to deal with initialization time is essential; otherwise, in-
creasing the number of simulations and the model complex-
ity would be very expensive. For example, if the required ini-
tialization time is 60 s (default in FAST), and we want to in-
crease the number of simulations from six 600 s simulations
(minimum requirement according to IEC 61400-1, 2019) to
6006 2 s simulations, we are not doing any good in terms
of computational cost. Aeroelastic and longer wakes will be
studied for this challenge, and a blended or common initial-
ization period will be trialed.

Another challenge is the practical application of this sur-
rogate model. The surrogate model that we built in this study
is one or a few time steps, each inherently the same due to
the statistical similarity. If we want to build one time se-
ries from this surrogate model, we have to sample the 10-
dimensional random domain for the number of time steps to
have a time series to post-process. For example, suppose we
want to have a 600 s time series of thrust or torque with the
time step of 0.1 s for the aerodynamic model that we devel-
oped in this study. In that case, we need to take 6000 sam-
ples from the 10-dimensional uniform distribution random
domain and run MCSs for each. However, this would pro-
vide us with 6000 thrust and torque values, which will miss
the auto-correlation, which is inherent in the generated un-
steady wind, in the results. This drawback is crucial if we, for
instance, want to calculate fatigue loads from the surrogate

model. This challenge will require a surrogate form capable
of resolving the correlation between time steps. Fluck and
Crawford (2018) did this previously for intrusive PCEs of an
aerodynamic model; however, as mentioned before, that can
get very complicated for more advanced models.

Using non-conventional polynomials, such as what Fluck
and Crawford (2018) did, might result in a more efficient
polynomial that requires fewer simulations to build the sur-
rogate model. Finally, we want to implement the method on
commercial wind turbine simulation packages such as FAST
to test the approach in future work. It is important to again
note, however, that the physics model used in the current
work is equivalent to FAST, just conveniently formulated in
Python for our surrogate model development efforts. The no-
tion of the “reduced Veers model” worked for the aerody-
namic simulations we used in this study. However, this re-
duced model would not be efficient and sufficient to move to-
wards commercial wind turbine packages. Therefore, a new
approach to reduce the data in a “turbulence box” (Jonkman,
2009) spatially and temporally would be necessary. Simi-
lar work has been done in Guo and Ganapathysubramanian
(2017) and will be explored together with expansions of the
methods investigated by Fluck and Crawford (2017) using
velocity increments across the wind field.
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