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Abstract. In this work, a computationally efficient engineering model for the aerodynamics of swept wind tur-
bine blades is proposed for the extended blade element momentum (BEM) formulation. The model is modified
based on a coupled near- and far-wake model, in which the near wake is assumed to be the first quarter rev-
olution of the non-expanding helical wake of the own blade. For the special case of in-plane trailed vorticity,
the original empirical equations determining the steady-state value of the near-wake induction are replaced by
the analytical results, which are in the form of incomplete elliptic integrals. For the general condition of heli-
cal trailed vorticities, the steady-state near-wake induction is approximated based on the results of the special
conditions and a correction factor. The factor is calculated using empirical equations with influence coefficient
tensors, to minimize the computational effort. These influence coefficient tensors are pre-calculated and are fit-
ted to the results from the numerical integration of the Biot–Savart law. With the indicial function approach, it
is not necessary to explicitly save the information of the vorticities that were trailed in the previous time steps.
This engineering approach is a combination of analytical results and numerical approximations, with low and
constant computational effort for each time step. The proposed model is practically applicable to time-marching
aero-servo-elastic simulations. The results of the swept blades with uniform inflow perpendicular to the rotor
calculated from the proposed model are compared with the results from a BEM code, a lifting-line solver and
a Navier–Stokes solver. The significantly improved agreement with the higher-fidelity models compared to the
BEM method highlights the performance of the proposed method.

1 Introduction

With the technological advancements in the design optimiza-
tion and manufacturing of horizontal-axis wind turbines,
the turbine blades are becoming increasingly flexible. Thus,
there could be significant in-plane and out-of-plane deforma-
tions due to the aeroelastic loads. In addition, there is an in-
creasing interest in the backward swept blades because of the
possibility to achieve passive load alleviation with geometric
bend–twist coupling (Liebst, 1986; Zuteck, 2002; Larwood
and Zutek, 2006; Larwood et al., 2014; Manolas et al., 2018).
The recent research by Barlas et al. (2021) is on the aeroe-
lastic design optimization of blade tip add-ons with curved
shapes. Higher-fidelity tools such as lifting-line solvers (LL)
and fully resolved Navier–Stokes solvers (often referred to

as computational fluid dynamics, CFD) are limited in the ap-
plication of design optimization and in repetitive aeroelastic
load calculations, due to their high computational cost.

In the spectrum of the lower-fidelity models, the most
commonly used blade element momentum (BEM) method
implicitly assumes a planar rotor with straight blades. If the
actuator disc (AD) is not planar, the induction deviates from
what the BEM model predicts as demonstrated by Madsen
and Rasmussen (1999) using a CFD model for computa-
tion of the AD flow. Further, the disc approach in the BEM
method has some fundamental shortcomings in the capabil-
ity to model response to turbulent inflow, stability and steep
load variations along the blade like partial pitch actuation.
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This led to the formulation of the coupled model (usu-
ally referred to as the near-wake model) by Madsen and
Rasmussen (2004), which is a hybrid model of a lifting-
line method and the BEM method. It combines the detailed
modeling of the local blade aerodynamics in the lifting-line
model using a simplified approach and the far-wake mod-
eling by the BEM method. The near wake is defined to be
the first quarter revolution of the trailed vorticity of the own
blade, which is modeled as non-expanding helical vortex fil-
aments. The near-wake induction is approximated using em-
pirical equations and correction factors. The indicial func-
tion approach is used so that the information of the vorticities
trailed from the previous time steps is not explicitly stored.
Then, the computational effort is relatively low and is inde-
pendent of the elapsed simulation time. The remaining trailed
vorticity of the wind turbine vortex system is defined as the
far wake and is modeled by a far-wake BEM model (Madsen
and Rasmussen, 2004). The near-wake model and the far-
wake model are coupled together with a coupling factor to
get the total induction (Andersen et al., 2010; Pirrung et al.,
2016).

Since the first version of the model in 2004, there have
been several improvements. Integration in the multibody
aeroelastic HAWC2 code is presented in Andersen et al.
(2010), and further developments of the model are presented
in Pirrung et al. (2014, 2016, 2017a). However, the model in
its latest version (Pirrung et al., 2017a) still assumes straight
blades and is not able to correctly model the aerodynamics
of the swept blades. This is the further development of the
model to be presented in the present work.

There has been previous work by Li et al. (2018) on this
topic, in which the good performance of the modified cou-
pled model on the prediction of the aerodynamic loads of
the swept blades is demonstrated. However, in that work,
the near-wake induction is calculated by directly integrating
the Biot–Savart law numerically. This approach is computa-
tionally expensive and is not suitable for the application to
aeroelastic simulations. In addition, the method of modeling
the curved bound vorticity influence on itself in that previ-
ous work was incomplete and limited to swept blades. The
updated method of modeling the influence of curved bound
vortex is described in detail later by Li et al. (2020).

In the present work, the background of the engineering
aerodynamic models for horizontal-axis wind turbines is first
briefly described. Then, the details of the near-wake model,
including the analytical solutions as well as the engineer-
ing approaches for a computationally efficient implementa-
tion, are described. Afterwards, the far-wake model and the
coupling method are briefly discussed. Finally, the aerody-
namic loads of the swept blades under the special condi-
tion of uniform inflow perpendicular to the rotor plane pre-
dicted by the proposed model are compared with the results
from a BEM code, a lifting-line solver and a CFD Reynolds-
averaged Navier–Stokes (RANS) solver.

2 Background: engineering aerodynamic models

For the application of aeroelastic simulations of wind tur-
bines, there are multiple low- and mid-fidelity engineering
aerodynamic models with different assumptions. An example
of a low-fidelity model is the polar grid implementation of
the blade element momentum (BEM) method with unsteady
aerodynamics (Madsen et al., 2020). For the computation of
the induction, the momentum part of BEM, the swept area
is assumed to be a planar surface and form an actuator disc
(AD). However, all computations of the aerodynamic forces
in the blade element part of BEM, as input to induction com-
putations, are carried out for the actual blade shapes taking
into account in-plane sweep and out-of-plane shape. The mo-
mentum theory and the angular momentum theory are ap-
plied to balance the out-of-plane loads as well as the in-plane
loads between the AD and the flow. The evaluation of induc-
tion is carried out at each time step on a stationary polar grid
covering the AD (Madsen et al., 2020). When the blade has
no prebend and it is straight, the version of the BEM method
that excludes the drag force in the momentum balancing is
equivalent to a vortex cylinder model that excludes the wake
rotation effect (Branlard and Gaunaa, 2015). It is also argued
by Branlard (2017) that the proper way of implementing the
BEM method should exclude the drag force during the mo-
mentum balancing from which the induced velocities are de-
termined. This means in the BEM method that the wake of
the rotor is equivalently modeled with non-expanding con-
centric vortex cylinders. This also implicitly shows that the
BEM method assumes the blades are straight and stay in the
rotor plane.

An example of the higher-fidelity model is the lifting-line
method, which models each blade of the rotor with a bound
vortex line. This is under the assumption that the bound vor-
ticity of a blade is concentrated into a line vortex at the
quarter-chord line. Vortices are trailed from the bound vor-
tex line, with the trailed vorticity strength equal to the span-
wise gradient of the bound vorticity. The trailed vortices are
modeled with helical vortex filaments and could possibly in-
clude the wake expansion effect. There is also shed vorticity
for the unsteady conditions. Compared to the BEM method,
the lifting-line method models the blade and the wake using
vortex line filament and helical vortex filaments instead of
using superposition of actuator discs and concentric vortex
cylinders. The assumption that the blades are straight and are
located in the rotor plane can be relaxed. In addition, the in-
fluence of the non-straight bound vortex on itself should also
be explicitly included (Li et al., 2020). With this bound vor-
ticity correction, the lifting-line method is able to correctly
model the influence of the blade sweep and dihedral.

The coupled near- and far-wake model is considered as a
hybrid of the aforementioned two methods. For the first quar-
ter revolution of the own wake of every blade, which corre-
sponds to the near wake, the model is similar to the lifting-
line method without wake expansion. In the modified cou-
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pled model by Pirrung et al. (2016), the bound vortex line lo-
cated at the quarter-chord line is assumed to be straight and
stays in the rotor plane. The trailed vorticity emanates from
it and forms the non-expanding helical wake with the rota-
tion of the blade. The remaining wake, including the own
wake of the blade after the first quarter revolution and also
the wake of other blades, is defined as the far wake. The far
wake is modeled by a far-wake BEM model (Madsen and
Rasmussen, 2004) that does not account for Prandtl’s tip-
loss correction. The idea is similar to using the vortex cylin-
der model as the far-wake model, in which the vortex cylin-
ders begin further downstream compared to the rotor plane.
The near-wake model and the far-wake model are coupled
together with a coupling factor (Andersen et al., 2010; Pir-
rung et al., 2016). The coupling factor is computed so that
the aerodynamic thrust of the whole rotor calculated from
the coupled model is comparable to that calculated from the
BEM method. The different ideas of modeling the blades
and the wake in the three different engineering aerodynamic
models are illustrated in Fig. 1.

In the modified coupled model proposed in the present
work, the assumption of straight blades in the original cou-
pled model is partially relaxed. The bound vortex can be
curved but is constrained to the rotor plane, which means the
blades can be swept forward or backwards. There are two
key features of the modified model, and they correspond to
two impacts of the blade sweep on the vortex system. The
first one is the influence of the curved bound vortex on it-
self, which has been described by Li et al. (2020). It has been
shown that the influence of the curved bound vortex should
be explicitly modeled for the generalized lifting-line meth-
ods that use 2-D airfoil data. The influence is modeled by
including the difference of the 3-D induction of the curved
bound vortex and the 2-D induction evaluated at the three-
quarter-chord point. The method is applicable to both the
modified coupled near- and far-wake model and the lifting-
line method. The second feature is the in-plane-shifted start-
ing position of the trailed vorticity due to the blade sweep,
which will be discussed in detail in this work. The calculation
points and the trailing points are located on the curved bound
vortex line, which is following the quarter-chord line of the
swept blade. The trailed vorticities emanate from the trailing
points and will then be shifted forward or backwards com-
pared to the calculation points due to the non-straight bound
vortex. The relatively shifted position of the trailed vorticity
compared to the straight blade will change the steady-state
near-wake induction.

The modified near-wake model is similar to the modified
lifting-line model for curved wind turbine blades that is la-
beled as the “LL-test” in Li et al. (2020). The calculation
points for the trailed vorticity induction are placed on the
quarter-chord line, which is also the (curved) bound vor-
tex line. This can be justified by the comparison of the re-
sults of swept blades from different versions of the lifting-
line methods with the Navier–Stokes solver, as performed

in Li et al. (2020). If the curved bound vortex influence is
explicitly modeled, the results from the lifting-line methods
are in good agreement with the higher-fidelity Navier–Stokes
solver. This is true irrespectively of the chordwise location
used for the calculation of the trailed vorticity induction (i.e.,
quarter-chord point or three-quarter-chord point).

3 Trailing function

The trailing function represents the induction due to an el-
ementary trailed vorticity arc, depending on its azimuthal
location relative to the blade. In a previous work (Li et al.,
2018), the trailing functions of the axial and the tangen-
tial induction of a counterclockwise-rotating swept blade
have been derived using the Biot–Savart law. In this section,
the trailing functions for a clockwise-rotating swept blade,
whose rotational vector is in the downwind direction, are de-
rived. The coordinate system and the geometry of the trailed
vortex are clarified in a consistent manner. In addition, the
steady-state near-wake induction is also defined, and the an-
alytical expressions for some special cases are derived in Ap-
pendix B1 and B2.

The coordinate system used in the present work is con-
sistent with the commonly used conventions for wind tur-
bine aerodynamics. In this work, we assume the blade has no
prebend, which means the out-of-plane component of the ge-
ometry is assumed to be zero. However, if prebend exists, the
projection of the blade main axis into the rotor plane should
be used to calculate the sweep geometry for the input of the
model proposed here. The origin of the coordinate system is
located at the rotational center of the rotor, and it is locally
defined for every blade and every section. The z axis is de-
fined from the rotational center to the calculation point of any
given section. The x axis is common for every blade and sec-
tion. It is parallel to the rotor axis, and it is positive in the up-
wind direction. The y axis is normal to both the x axis and z
axis, and its direction is defined so that a right-handed system
is found. For different sections, the corresponding coordinate
systems are rotated about the x axis, so that the calculation
point s is always located on the z axis. In Fig. 2, the front
view of a clockwise-rotating backward swept blade and its
trailed helical vortex are shown to illustrate the coordinate
system and the geometric variables.

The radius of the trailing point is denoted as r . The ra-
dius of the calculation point is rcp. The difference between
the radius of the calculation point and the trailing point is de-
noted as h. The value of h is positive when the calculation
point is further inboard compared to the trailing point, and
it is negative when the calculation point is further outboard
compared to the trailing point. The sweep angle is ψ , which
is defined as the difference between the azimuthal angle of
the calculation point and the trailing point. The value of ψ
is positive when the trailing point is azimuthally lagging be-
hind the calculation point, and it is negative when the trailing
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Figure 1. Illustration of the modeling of the blade and the wake in the three different engineering aerodynamic models. In the lifting-line
method (a), each blade is modeled by a bound vortex line, and the trailed vorticity is modeled with helical vortex filaments. In the generalized
actuator disc model, such as the BEM method (b), the blades are modeled by superposition of actuator discs with the aid of a tip correction
model. The vortices are trailed from the rotor plane and form concentric cylindrical vortex wakes. Only the tip vortex is shown in the figure.
In the coupled near- and far-wake model (c), the blades and the near wake are modeled similar to the lifting-line method while the far wake
is modeled similar to the BEM method.

Figure 2. The front view of a backward swept wind turbine blade
that is rotating clockwise with the rotational speed � and its trailed
vortex. The calculation point s is located on the z axis. Two condi-
tions are shown for this backward swept blade. Firstly, when the
trailing point v1 is further inboard compared to the calculation
point, the relative distance h1 and the sweep angle ψ1 are both
smaller than zero. Secondly, when the trailing point v2 is further
outboard, the relative distance h2 and the sweep angle ψ2 are both
larger than zero. The difference of the azimuthal angle of the ele-
mentary trailed vorticity ds with respect to the trailing point is β.
The position vector x is pointing from the elementary trailed vortex
ds to the calculation point s. Please note that the position vector x

and the elementary trailed vorticity ds shown in the sketch are their
projection into the rotor plane.

point is azimuthally leading ahead the calculation point. The
elementary trailed vortex filament ds is positive for trailed
vorticity with positive strength when pointing away from the
blade since the blade is rotating clockwise. The position vec-
tor x is pointing from the elementary trailed vortex filament
ds to the calculation point s. The azimuthal difference of the
elementary trailed vorticity with respect to the trailing point
is β, which corresponds to the azimuthal angle that the ele-
mentary trailed vorticity has traveled. The rotational speed of
the blade is �.

It is assumed that the near-wake part of the trailed vortic-
ity convects downstream with the velocity determined at the

blade. This is because the first quarter revolution of the wake
is generally very close to the rotor plane where it is emitted.
The in-plane and out-of-plane components of the flow veloc-
ity at the trailing points are vip and voop, respectively:

vip =�r + v
deform
ip + vind

ip , (1)

voop = U∞+ v
deform
oop + vind

oop, (2)

where the relative flow velocities from the induction and the
blade deformation are included in the velocity. They are de-
noted with the superscripts ind and deform, respectively.

The z component is the radial component of the veloc-
ity and is not considered in this study. This is because for
the swept blades, the radial velocity contributes to the large
in-plane component of the relative velocity seen by the 2-D
airfoil section. The contribution is also linearly proportional
to the sine of the sweep angle. Since for ordinary operation
conditions the flow angle is small, the influence of the radial
velocity on the flow angle and consequently on the lift and
drag force of the 2-D section is negligible.

The relative velocity V
tp
rel and the helix angle ϕ of the

trailed vorticity are determined by the velocity vector at the
trailing point on the blade.

V
tp
rel =

√
v2

oop+ v
2
ip (3)

ϕ = arctan
(
voop

vip

)
(4)

In the previous work by Pirrung et al. (2016) and later
by Li et al. (2018), the tangential speed �r due to rotation is
used as vip. The in-plane induced velocity is generally much
smaller than the tangential speed �r . When the in-plane de-
formation velocity vdeform

ip is small compared to �r , the re-
sults using either the full value for the in-plane velocity or
only �r will be similar.

Assuming both vip and voop are constant, the elapsed time
1t resulting from the trailed vorticity element ds traveling
an azimuthal angle of β is

1t =
rβ

vip
. (5)
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The x component of the position vector x that is point-
ing from the elementary trailed vorticity ds to the calculation
point s is

xx = voop1t =
voop

vip
rβ. (6)

The other components of the two vectors of x and ds that
are used to determine the induction function can be easily
determined. They are expressed as function of h, r , ψ , β and
ϕ as follows:

x =

 rβ tanϕ
r sin(β +ψ)

r −h− r cos(β +ψ)

 , (7)

ds = ds cosϕ

 − tanϕ
−cos(β +ψ)
−sin(β +ψ)

 . (8)

For the infinitesimally trailed vorticity element ds with
strength 10, the induced velocity at the blade section s due
to this trailed vortex element is calculated according to the 3-
D Biot–Savart law. The minus sign in the equation is due to
the definition of x that is pointing from the elementary trailed
vorticity to the calculation point.

dw =−
10

4π
x× ds

||x||3
(9)

The elementary axial and tangential induced velocity,
which are the x and y component of dw in Eq. (9), can be
derived as

dwx =−
10

4π
xydsz− xzdsy
||x||3

=
10ds cosϕ

4πr2

1− (1− h
r

)cos(β +ψ)[
1+ (1− h

r
)2− 2(1− h

r
)cos(β +ψ)+ (β tanϕ)2

] 3
2
,

(10)

dwy =−
10

4π
xxdsz− xzdsx
||x||3

=
10ds sinϕ

4πr2

1− h
r
− cos(β +ψ)−β sin(β +ψ)[

1+ (1− h
r

)2− 2(1− h
r

)cos(β +ψ)+ (β tanϕ)2
] 3

2
.

(11)

In the above equations, the length of the elementary trailed
vorticity arc is ds, which is determined using Eq. (12). The
variable β∗ is the generalized azimuthal angle, as proposed
in the work of Pirrung et al. (2017b). The projection of β∗

into the rotor plane will be the azimuthal angle β, as shown
in Eq. (13).

ds = V tp
reldt = rdβ

∗ (12)

dβ =
vipdt
r
= dβ∗ cosϕ (13)

Recall that the near-wake part of the trailed vorticity is
defined as the first quarter revolution of the wake of the own
blade. Thus, the integral of the trailing functions in Eqs. (10)
and (11) with the azimuthal angle β from 0 to π

2 is defined
as the steady-state value of the axial and the tangential near-
wake induction (denoted as Wx and Wy).

Wx =

β= π2∫
β=0

dwx (14)

Wy =

β= π2∫
β=0

dwy (15)

The value of Wx and Wy can be calculated by directly in-
tegrating the Biot–Savart law in Eqs. (10) and (11) numeri-
cally, such as in the previous work (Li et al., 2018). However,
the computationally heavy characteristic of this method is not
favorable for the purpose of time-marching aeroelastic sim-
ulations. Alternatively, the steady-state induction is approxi-
mated by applying corrections to the results of some special
conditions using empirical functions and pre-calculated in-
fluence coefficient tensors, which will be described in Sect. 5.
In addition, the indicial function method is used for the cal-
culation involving integration over time and the dynamic re-
sponse, which will be described in Sect. 4.

4 Indicial function method

The numerical implementation of the lifting-line method and
the coupled method requires the radial discretization of the
blade. If the blade is discretized into N sections, there will
be N calculation points and N +1 trailing points. The N +1
trailing points defineN line segments of bound vorticity, and
the trailed vorticities emanate from these trailing points. This
is a discretized approximation of the curved bound vortex
line and continuous trailed vortex sheets.

For the free-wake lifting-line method that is implemented
as a time-marching fashion for numerical computations, the
vortex wake system is evolving and its size is growing in
time. The information of the vorticities trailed and shed in
the previous time steps has to be explicitly stored. For ev-
ery single vortex element, there will be influence from all
other vortex elements on it. For each time step, the size of
the problem is of the order of O(N2

vor), where Nvor is the
number of vortex elements. There has been intensive work
to reduce the computational effort, and three approaches are
highlighted. Firstly, it is possible to trim the far wake, which
effectively decreases the size of Nvor (Boorsma et al., 2018).
Secondly, it is possible to use computationally efficient algo-
rithms that decrease the size of problem to O(Nvor logNvor),
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such as a particle-based method: vortex–particle or particle–
particle method (Rasmussen, 2011; Ramos García et al.,
2018). Thirdly, it is possible to use parallel computing with
graphics processing unit (GPU) to reduce the total compu-
tational time (Marten, 2020). However, the size of Nvor is
generally of the order of 103 to 105 larger than the num-
ber of sections N . This means the time-marching lifting-line
method is computationally heavy even after these modifica-
tions. Therefore, the method is not practical for the aeroe-
lastic simulation of the whole design load basis (DLB) of a
wind turbine, which corresponds to more than 200 h of real-
time simulation (Hansen et al., 2015; Boorsma et al., 2020).

In the near-wake model, the trailing functions in Eqs. (10)
and (11) are both approximated with the sum of two expo-
nential functions as shown in Eq. (16). The two components
are decaying with the increase of the generalized angle β∗,
following the exponential functions. The reason of using the
generalized azimuthal angle β∗ in Eq. (16) is to account for
the influence of the downwind convection velocity on the
near-wake trailed vorticity length (Pirrung et al., 2017b). The
two exponential terms represent the fast and slow response of
the indicial function, respectively. In Eq. (16), the parameters
of Ai and bi are related to the characteristics of the dynamic
response. According to Beddoes (1987), the parameters of
A1 = 1.359, A2 =−0.359, b1 = 1 and b2 = 4 are favorable
for straight blades. Since the focus of this work is mainly on
obtaining the correct steady-state induction for swept blades,
the same set of parameters are used.

dw̃ =
10r

4πh|h|
(A1e

−b1β
∗/8
+A2e

−b2β
∗/8)dβ∗ (16)

Assuming 8 is constant, the approximated near-wake in-
duction for a specific value of generalized azimuthal angle
β∗ is the integral of the trailing function in Eq. (16) from 0
to β∗.

W̃ (β∗)=

10r

4πh|h|
8

[
A1

b1
(1− e−b1β

∗/8)+
A2

b2
(1− e−b2β

∗/8)
]

(17)

When the value of β∗ approaches infinity, we have the ap-
proximated steady-state near-wake induction W̃ (β∗ =∞):

W̃ (β∗ =∞)=
10r

4πh|h|
8

(
A1

b1
+
A2

b2

)
. (18)

In Eq. (18), since the values of Ai and bi are constants and
the values of h and r are only dependent on the geometry, the
value of 8 can be interpreted as a normalized steady-state
near-wake induction for unit strength of trailed vorticity. It
will be used to represent the steady-state near-wake induction
in the following sections.

One of the important features of the near-wake model is
the use of exponential functions to approximate the trailing

function that is based on the Biot–Savart law. The approxi-
mated trailing function can then be integrated using the indi-
cial function approach instead of using direct numerical inte-
gration. With this approach, the information of the individual
trailed vortex elements emitted from the previous time steps
is implicitly stored. For every time step, it is only necessary
to calculate the decrement of the induction at the previous
time step and the increment of the induction at the current
time step.

X̃iw = X̃
i−1
w e−b11β

∗/8
+ D̃X10(1− e−b11β

∗/8), (19)

Ỹ iw = Ỹ
i−1
w e−b21β

∗/8
+ D̃Y10(1− e−b21β

∗/8), (20)

where

D̃X =
r

4πh|h|
A1

b1
8, (21)

D̃Y =
r

4πh|h|
A2

b2
8. (22)

The fast and slow response terms are calculated separately
and then summed together to get the complete near-wake in-
duction.

W̃ i
= X̃iw + Ỹ

i
w (23)

The problem is now of the order of O(N2) for each time
step, where the number of sectionsN is practically only 50 to
100 and is much smaller than Nvor. The computational effort
is low and remains constant for every time step. The indicial
function method could be interpreted in different ways, for
example, first-order low-pass filter, solution of the first-order
ordinary differential equation (ODE), convolution of the in-
duction function, Duhamel’s integral and exponential time
differencing (ETD).

4.1 Distinguish the analytical and approximated
induction

It could be confusing that the approximated value of the
steady-state near-wake induction in Eq. (18) corresponds to
β =∞ while the analytical value of the steady-state near-
wake induction in Eqs. (14) and (15) corresponds to β = π

2 .
For the analytical near-wake induction Wx and Wy that

are calculated directly from the Biot–Savart law in Eqs. (14)
and (15), the integration is from β = 0 to β = π

2 because it
corresponds to the first quarter revolution of the own wake.
Otherwise, if integrated from β = 0 to β =∞, the induction
will correspond to the whole helical wake of the own blade
until infinitely far downstream. For the integration from β =
π
2 onwards until infinity, the calculated induction belongs to
the far-wake part.

For the approximated induction in Eq. (17), the inte-
gral from zero to infinity corresponds to the steady-state
value of the approximated near-wake induction. Because it
is only to approximate the analytical near-wake induction in
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Eqs. (14) and (15) and does not include the far-wake part.
The relationship between the approximated and the analyti-
cal steady-state near-wake axial and tangential induction are
summarized in the following equations. The negative sign in
Eq. (15) is due to the definition of the positive direction of
the tangential induction.

Wx ≈ W̃x(β∗ =∞)=
10r

4πh|h|
8x

(
A1

b1
+
A2

b2

)
(24)

Wy ≈ W̃y(β∗ =∞)=−
10r

4πh|h|
8y

(
A1

b1
+
A2

b2

)
(25)

The difference between the analytical and the approxi-
mated near-wake induction is illustrated in Fig. 3. In the left
panel, the analytical trailing function and the approximated
trailing function are visually different. However, it is diffi-
cult to directly draw conclusions from it. In the right panel,
the integral of the trailing function representing the induction
for different size of the azimuthal angle is shown. It could
be observed that the steady-state value of the approximated
induction at β =∞ corresponds to the analytical near-wake
induction at β = π

2 . So, for the approximated induction func-
tion as shown in the right panel, the physical meaning of β
is not strictly the azimuthal angle. Instead, it is a measure of
the time that the vortex has been emanated from the trailing
point.

5 The steady-state value

The different methods of obtaining the normalized steady-
state near-wake induction 8, in the original implementation,
in the previous modifications and in the suggested modifica-
tion will be described in this section. For the suggested modi-
fication, details of the modified convective correction are de-
scribed. Then, the modified indicial functions are given. Fi-
nally, the algorithm of computing the induction from given
geometry and vorticity strength is summarized.

5.1 Original implementation

In the original implementation of the near-wake model
by Beddoes (1987) and further extension by Wang and Coton
(2001), only the axial induction is modeled. The value of 8
that represents the normalized steady-state axial induction is
determined using the empirical functions:

8=

−
π
4 (1+ h

2r ) ln(1− h
r

) if h/r > 0
ln(1− h

r
)

1.5+ln(1− h
2r )

if h/r < 0.
(26)

There are two major limitations when using the empirical
functions in Eq. (26) to approximate the near-wake induc-
tion. Firstly, when the value of h/r is close to 1, which cor-
responds to the influence of the vorticities trailed from the tip
region on the root region, the approximated steady-state re-
sult from these empirical equations will deviate significantly

from the analytical results. Secondly, in these empirical equa-
tions, the value of 8 is only dependent on the relative posi-
tion h/r but not dependent on the helix angle ϕ. These em-
pirical equations implicitly assume the trailed vorticity stays
in the rotor plane with zero helix angle. With the increase
of the helix angle, the approximated induction will gradually
deviate from the analytical results and the error from these
empirical equations will increase accordingly.

5.2 Previous modifications

There has been previous work by Pirrung et al. (2017a, b)
targeted at the two issues pointed out in the previous sec-
tion. Firstly, the root correction is introduced to correct the
value of 8 for the condition of h/r close to 1. It is discov-
ered by Pirrung et al. (2017a) that when the trailed vorticity
is in plane (ϕ = 0), there is a good agreement between the
analytical steady-state near-wake axial induction Wx and the
approximated value calculated using Eqs. (17) and (26) with
β = π

2 instead of β =∞ (here β∗ = β because ϕ = 0). Re-
call that the approximated steady-state near-wake induction
should correspond to β =∞ as described in Sect. 4.1, and
the root correction is to scale the value of 8 accordingly.

8C =
W̃ (β = π

2 )

W̃ (β =∞)
8

=8

A1
b1

(1− e−
π
2 b1/8)+ A2

b2
(1− e−

π
2 b2/8)

A1
b1
+
A2
b2

(27)

Secondly, the influence of the helix angle on the near-wake
induction is modeled by introducing the convective correc-
tion. The value of8 is adjusted with the correction to approx-
imate the steady-state induction for the general condition of
an arbitrary helix angle. The corrected value of 8∗ is from
a linear interpolation of the value for the special condition
of in-plane trailed vorticity (ϕ = 0) and the special condition
with straight trailed vorticity (ϕ = π

2 ). For the condition of
in-plane trailed vorticity, the value of 8C in Eq. (27) that is
has the root correction is used. For the condition of straight
trailed vorticity, the value of 8s is calculated from Eq. (28)
(Pirrung et al., 2017b, Eq. 7), which is an approximation of
the analytical induction of a semi-infinite line vortex.

8s = 0.788
∣∣∣∣hr
∣∣∣∣ (28)

8∗ = k88s+ (1− k8)8C (29)

The weight k8 is calculated from the parameter of h/r and
ϕ with empirical functions. The empirical functions rely on
two pre-calculated influence coefficient matrices that are fit-
ted to the results from direct numerical integration. The two
matrices correspond to positive and negative value of h/r
respectively. The empirical functions are in the form of com-
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Figure 3. Illustration of the difference between the analytical and the approximated normalized trailing functions (a) and the corresponding
induction functions (b). The parameters for the illustration are h/r = 0.5, ψ = 10◦ and ϕ = 5◦. The approximated steady-state near-wake
induction is when β =∞ and corresponds to the analytical near-wake induction at β = π

2 .

posite functions as in Eq. (30).

k8 = fϕ

(
f h
r

(
h

r

)
,ϕ

)
(30)

This approach has a very low computational cost, which is
crucial for the efficiency of the coupled near- and far-wake
model. The approximated steady-state axial induction of a
straight blade after these corrections has a reasonably good
accuracy. In addition, the near-wake part of the tangential in-
duction is included in the modification. It is argued by Pir-
rung et al. (2016) that the same value of8 can be used for the
tangential induction of straight blades and will have accept-
able accuracy for a small value of |h/r|. This is confirmed by
the analytical derivations in Appendix B1.1. For the detailed
description of the modified method and the pre-calculated in-
fluence coefficient matrices, the reader is referred to Pirrung
et al. (2016, 2017b).

5.3 Suggested modification

Recall the procedures to approximate the steady-state near-
wake induction in the previous modifications by Pirrung et
al. (2016). Firstly, the steady-state induction of the special
conditions of in-plane and straight trailed vorticity is approx-
imated. Secondly, the approximated steady-state induction
for an arbitrary helix angle ϕ is obtained by applying cor-
rections to these two special conditions. In the modification
suggested in the present work, the blade sweep is considered
and the definition of the convective correction is adjusted.
In addition, different equations are used to approximate the
axial induction and the tangential induction.

Firstly, for the special condition of zero helix angle (in-
plane trailed vorticity), modification is needed to get the cor-
rect steady-state results for the swept blades. In the original
empirical equation of 8 and also the previous modification

of root correction, the blade is assumed to be straight. When
the blade is swept instead of being straight, the results from
the previous methods will have offsets. One possible solution
is to obtain another empirical function of 8 that includes the
additional variable of blade sweep angle ψ . Alternatively, for
this special condition of in-plane trailed vorticity, the values
of Wx and Wy in Eqs. (14) and (15) are derived analytically
to be in the form of incomplete elliptic integrals; see Ap-
pendix B1. In addition, the steady-state axial and tangential
induction of the special condition of straight trailed vorticity
(ϕ = π

2 ) are also derived; see Appendix B2. This means the
value of8 for both the axial and the tangential induction can
be directly calculated from the analytical equations for these
two special conditions. The previous empirical equations in
Eq. (26) and the root correction in Eq. (27) are then not nec-
essary.

Secondly, the idea of convective correction for the gen-
eral case of an arbitrary helix angle is used, but the definition
is adjusted. The convective correction is now defined as the
function to obtain the steady-state induction from the spe-
cial condition of in-plane trailed vorticity (ϕ = 0) and pos-
sibly also the special condition of straight trailed vorticity
(ϕ = π

2 ). Since the steady-state induction could be repre-
sented by the value of8 as shown in Eq. (18), the convective
correction has the form in Eq. (31). There will be separate
convective correction functions for the axial and the tangen-
tial induction.

8∗
(
h

r
,ψ,ϕ

)
= fconv

(
k8,8ip,8ss

)
, (31)

where, in turn,

k8 = fk8

(
h

r
,ψ,ϕ

)
. (32)
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5.4 Prerequisites of the modified convective correction

In the previous modifications by Pirrung et al. (2017b), the
empirical equations for the convective correction are depen-
dent on two variables: the relative position h/r and the helix
angle ϕ. For the current modification, there is one more de-
sign variable that is the sweep angleψ . As a result, the proce-
dure to obtain the influence coefficient tensors involves one
more degree of freedom, which is then more complicated and
requires careful considerations. Three prerequisites, which
are the definition of the equivalent relative position, the nor-
malization of the sweep angle and the determination of the
feasible design space, are proposed for the ease of obtaining
the influence coefficient tensors.

5.4.1 Equivalent relative position

The relative position h/r is introduced by Beddoes (1987) to
represent the geometric relative position of the trailing point
and the calculation point. It is defined as the ratio of the ra-
dial distance of the trailing point and the calculation point
(r − rcp) over the radius of the trailing point r , which has
been explained in Sect. 3. For the simplicity of the notation,
the relative position h/r is denoted as h̃ in the following of
this work. When the trailing point is further outboard com-
pared to the calculation point, h̃ is positive with the value
between 0 and 1. Instead, when the trailing point is further
inboard compared to the calculation point, the value of h̃ is
negative and is not bounded. The unbounded negative value
of h̃ can cause unnecessary difficulties when obtaining the
influence coefficient tensors. In the previous work of Pirrung
et al. (2017b), the data fitting for negative value of h̃ was
performed for the range of [−4,0). However, it is difficult
to argue what the range of negative h̃ should be to cover the
design space and how many grid points are needed to ensure
sufficiently good results.

In order to solve this problem, the equivalent relative po-
sition ĥ is introduced in Eq. (33) and is bounded between
−1 and 1. When h̃ > 0, its equivalent value is itself. When
h̃ < 0, the equivalent relative position is the opposite number
of the value of h̃ when switching the location of the calcula-
tion point and the trailing point.

ĥ=

{
h/r if h/r > 0
h
h−r

if h/r < 0
(33)

5.4.2 Normalization of sweep angle

Another procedure to ease the process of obtaining the influ-
ence coefficient tensors is to normalize the sweep angle ψ .
For the induction function in Eqs. (10) and (11), the blade
sweep is described by the sweep angle ψ , which is defined
as the azimuthal difference between the calculation point and
the trailing point. For a specific swept blade and when the
trailing point is further outboard compared to the calculation

Figure 4. Illustration of the variation of the range of the sweep
angleψ with the increase of the relative position ĥ for a swept blade.
The calculation point s is further inboard compared to the trailing
point and is not changed. When the trailing point is changing from
v1 to v2 and then to v3, the value of ĥ and the sweep angle ψ are
increasing.

point (ĥ > 0), the range of ψ will generally increase with the
increase of ĥ. This is illustrated in Fig. 4 for the same cal-
culation point but with different trailing points. When ĥ < 0,
there will be a similar dependency of the range of ψ on the
value of ˆ|h|.

The spread of the realistic points in the 2-D plot of ψ
against ĥ will expand with the increase of ˆ|h|. This will in-
troduce difficulties when obtaining the influence coefficient
tensors through data fitting. Practically, the data fitting is per-
formed on a sampling mesh grid with uniform spacing for
each of the design variables and is intended to cover the
whole design space. There are three design variables of ĥ,
ψ and ϕ which correspond to a cuboid space. Because of
the dependency of the sweep angle ψ on the equivalent rel-
ative position ĥ, the realistic design space inside this cuboid
design space will be highly skewed. There will be many sam-
pling grid points that correspond to unrealistic conditions. If
directly using the uniformly spaced mesh grid within this de-
sign space, the data fitting will aim to minimize the error for
both realistic and unrealistic conditions. This is harmful to
the quality of the fitted results, especially when the weight
on the unrealistic conditions, which is measured by the num-
ber of sampling grid points that are unrealistic, is too large.

In addition, when the value of ˆ|h| is close to zero, the fea-
sible range of ψ is also small, so that the realistic conditions
are clustered together into a small space inside the cuboid
space for the data fitting. This means there will be an insuffi-
cient number of sampling points in this region, and the fitted
data can not sufficiently represent the features of the blade
sweep. Then, it will be difficult to correctly approximate the
steady-state induction using these fitted influence coefficients
for a small value of ˆ|h|. Furthermore, the data fitting for a
small value of ˆ|h| is important for the calculation of the in-
duction on the blade, because it represents the influence of
the trailed vorticity on the neighboring sections.

As a result, it is favorable to normalize the sweep angle
to spread the realistic design space more evenly inside the
cubic parameter space for data fitting and also to proactively
enlarge the spread of the realistic conditions for a small value
of ˆ|h|. The proposed method of normalizing the sweep angle
ψ is dividing it by ĥ. The normalized sweep angle ψ̃ can be
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Figure 5. The parameterization of the swept blade with sweep ratio
r̄s, sweep magnitude 1d and tip sweep angle 3tip (Li et al., 2018).

considered as a measure of the blade local curvature.

ψ̃ =
ψ

ĥ
(34)

5.4.3 Range of feasible designs

Since the data fitting is practically performed in a cuboid pa-
rameter space, it is necessary to determine the range of each
variable. For the value of ˆ|h|, the range is (0,1). For the he-
lix angle, the range is from 0 to π

2 . It is difficult to directly
determine the range of the normalized sweep angle ψ̃ .

To obtain the range of the normalized sweep angle, an ini-
tial numerical study is performed by calculating the value of
ĥ and ψ̃ for a large variety of swept blades. The planform of
the swept blades used in the numerical test is obtained from
a quadratic Bézier curve which is parameterized with sweep
ratio r̄s, sweep magnitude 1d , and tip sweep angle 3tip and
is illustrated in Fig. 5. The quadratic Bézier curve is mod-
ified so that the exponent is able to be changed and is not
necessarily two. Then, another parameter, which is the expo-
nent factor, is introduced so that the main axis is able to have
more variety of local curvatures.

The purpose of this preliminary study is to determine the
range and also the Pareto front of the design variables. So,
the range of the geometric variables for this numerical study
is chosen to represent the blades with relatively large sweep.
The range of the sweep ratio is from 0.25 to 0.75. The ratio
of the sweep magnitude over the sweep ratio is set to vary be-
tween 0.2 and 1. So, the swept magnitude 1d is from 20 %
to 100 % of the value of sweep ratio r̄s. The tip sweep angle
3tip is varying from 25 to 57◦. The exponent of the Bézier
curve is varying from 1.5 to 2.5. The blade for the test has a
hub radius equal to 2 % of the rotor radius, which is relatively
small when compared to typical wind turbines. The blade is
discretized into 50 to 300 sections using cosine spacing. The
numerical test is performed for both backward swept blades
and forward swept blades. Since the scatter plot of the real-
istic value of (ĥ, ψ̃) is approximately symmetric with respect
to the two Cartesian coordinate axes of ĥ= 0 and ψ̃ = 0,
only the first quadrant is shown in Fig. 6.

The range of ĥ is firstly investigated. From the figure, the
minimum possible value of ĥ is around 1.4× 10−5, and the
maximum value is approximately 0.98. This gives guidelines
to the range of ĥ for the data fitting.

Secondly, according to the scatter plot in Fig. 6, it is pos-
sible to have a trapezoid region of the design variables of

Figure 6. The scatter plot of the realistic conditions of the normal-
ized sweep angle ψ̃ against the equivalent relative position ĥ in the
first quadrant.

ĥ and ψ̃ instead of a rectangular region for the first quad-
rant. This can reduce the ratio of the unrealistic conditions
inside the design space, which is beneficial for the data fit-
ting. The trapezoid region for the first quadrant is determined
with the four corner points ofA : (0,0), B : (1,0), C : (1,0.5)
andD : (0,1.5). It is possible to introduce another variable ψ̂
to represent the blade sweep, so that it is possible to have a
rectangular space of (ĥ, ψ̂) that corresponds to this trapezoid
design space. For the other quadrants, the trapezoid region is
symmetric with the two Cartesian coordinate axes of ĥ= 0
and ψ̃ = 0. The relationship between ψ̃ and ψ̂ is given by

ψ̂ =
ψ̃

1.5− ˆ|h|
=

ψ

1.5ĥ− ĥ ˆ|h|
. (35)

5.5 Modified convective correction

In this section, the modified convective correction is de-
scribed in detail. The idea is similar to the method of cal-
culating the corrected value of 8∗ using empirical equations
and influence coefficient matrices by Pirrung et al. (2017b).

5.5.1 The base trailing function and base induction

For the trailing functions of dwx and dwy in Eqs. (10) and
(11), there are trigonometric functions of sine and cosine
which are not favorable for the analytical derivation and will
also impose difficulties to the practical implementation. This
is because when calculating the ratio of the two values that
contains sine or cosine, the issue of dividing by zero could
occur. As a result, the two new trailing functions of dwI
and dwII are introduced; they are denoted as the base trail-
ing functions. The trailing functions of dwx and dwy could
be considered as the projections of the base trailing function
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dwI and dwII with the helix angle ϕ.

dwI =
dwx
cosϕ

(36)

dwII =
dwy
sinϕ

(37)

The steady-state value of the near-wake base induction
corresponds to the integral of the base trailing functions in
Eqs. (36) and (37) with the azimuthal angle β from 0 to π

2 .

WI =

β= π2∫
β=0

dwI =
Wx

cosϕ
(38)

WII =

β= π2∫
β=0

dwII =
Wy

sinϕ
(39)

The normalized base axial and tangential inductions are
also introduced; they are defined similar to the normalized
axial and tangential induction in Eqs. (24) and (25).

8x =8I cosϕ (40)
8y =8II sinϕ (41)

For the special condition of in-plane trailed vorticity (ϕ =
0) and straight trailed vorticity (ϕ = π

2 ), the normalized base
induction of 8ip and 8ss are derived analytically in Ap-
pendix B1 and B2.

If the shape of the blade does not change (or the change
is within a threshold) between two time steps, only the helix
angle ϕ will change during the convergence calculation. So
that the corresponding values of 8ip and 8ss do not need to
be recalculated but can be stored and reused instead.

5.5.2 The three-layer composite function

The convective correction is an empirical composite function
of three independent variables which corresponds to three
layers. These empirical functions are based on polynomial
functions and rational functions. The composite functions are
designed so that there is only one independent variable for
each layer. Then, an optimum approach will be letting the
helix angle ϕ be the final layer in the composite functions.

For a given combination of the three design variables
(ĥ, ψ̂,ϕ), the computation will begin from the influence coef-
ficient tensor and the normalized sweep ψ̂ , which is the first
layer. The results from the first layer will be the influence co-
efficients for the second layer, which is only the function of
ĥ. The results from the second layer will be the coefficients
for the third layer, which is only the function of ϕ. In this
final layer, the factor of k8 for the convective correction is
then computed. If the geometry is not changed, only the final
layer associated with the helix angle ϕ needs to be recalcu-
lated during the iterations. The calculated coefficients from

the first two layers of the composite function associated with
the blade geometry can be saved and reused.

Following the aforementioned description, the function of
the convective correction is a triple composite function that
has the form as in Eq. (42).

k8 = fϕ

(
f
ĥ

(
f
ψ̂

(
ψ̂
)
, ĥ
)
,ϕ
)

(42)

The influence coefficient tensors for the axial and the tan-
gential induction are different and will be described sepa-
rately. In addition, the whole design space is divided into sev-
eral sub-spaces with their own influence coefficients, which
is for the ease of data fitting. The empirical functions for both
the axial and tangential normalized base induction and for all
the regions are the same and are as follows:

k8 =
a
ĥ,1ϕ

4
+ a

ĥ, 2ϕ
3
+ a

ĥ, 3ϕ
2
+ a

ĥ, 4ϕ+ 1

a
ĥ, 5ϕ

3+ a
ĥ,6ϕ

2+ a
ĥ,7ϕ+ 1

, (43)

a
ĥ, i
= a

ψ̂, i, 1
ˆ|h|5+ a

ψ̂, i, 2
ˆ|h|4+ a

ψ̂, i, 3
ˆ|h|3+ a

ψ̂, i, 4
ˆ|h|2

+ a
ψ̂, i, 5

ˆ|h| + a
ψ̂, i, 6,

(44)

a
ψ̂, i, j

= Ii, j, 1ψ̂
4
+ Ii, j, 2ψ̂

3
+ Ii, j, 3ψ̂

2
+ Ii, j, 4ψ̂+

Ii, j, 5. (45)

5.5.3 Influence coefficients for axial induction

For the approximation of the normalized axial induction 8I,
which is defined in Eq. (24), the whole parameter space is
divided into three regions, each with its own influence coef-
ficient tensor. The definition of the three regions for the pa-
rameter space of (ĥ, ψ̂) and the corresponding influence co-
efficients for the axial induction are summarized in Table 1.

The first region corresponds to the first and fourth quad-
rant of the design space of (ĥ, ψ̂). This is when the calcu-
lation point is further inboard compared to the trailing point
(ĥ > 0) for both the condition of backward sweep (ψ̂ > 0)
and also forward sweep (ψ̂ < 0). The influence coefficient
tensor is Ia1. The value of 8∗I is calculated from the convec-
tive correction factor k8I and the normalized induction8I, ip.

8∗I = k8I8I, ip, (46)

where 8I,ip is calculated using Eq. (B6).
The second region corresponds to the third quadrant of the

design space of (ĥ, ψ̂). This is when the calculation point is
further outboard compared to the trailing point for the for-
ward swept blades. The influence coefficient tensor is Ia2.
The value of 8∗I is also calculated with Eq. (46).

The third region corresponds to the second quadrant of the
design space of (ĥ, ψ̂). This is when the calculation point is
further outboard compared to the trailing point for the back-
ward swept blades. The influence coefficient tensor is Ia3.
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Table 1. The definition of the three regions for the parameter space of the equivalent relative position ĥ, the normalized sweep angle ψ̂ and
the corresponding influence coefficients for the axial induction. The equation of the convective correction and the maximum relative error of
the fitted induction are also listed.

Name Range Range Influence Convective Maximum
of ĥ of ψ̂ coefficient correction equation relative error

Region a1 (0, 1) [−1, 1] Ia1 Eq. (46) 0.78 %
Region a2 (−1, 0) [−1, 0] Ia2 Eq. (46) 1.10 %
Region a3 (−1, 0) [0, 1] Ia3 Eq. (47) 1.34 %

The convective correction in this region is the linear interpo-
lation between 8I, ip and 8I, ss with the weight of k8I .

8∗I = k8I8I, ip+ (1− k8I )8I, ss, (47)

where 8I, ip is calculated using Eq. (B6) and 8I, ss is calcu-
lated using Eq. (B22).

The influence coefficient tensors of Ia1, Ia2 and Ia3 with
double-precision floating-point numbers are in the online
supplement (Li et al., 2021). In addition, a version with re-
duced digits is in Appendix D1.

5.5.4 Influence coefficients for tangential induction

For the approximation of the normalized tangential induc-
tion 8II, the whole parameter space of (ĥ, ψ̂) is divided into
two regions, each with its own influence coefficient tensor.
The definition of the two regions for the parameter space of
(ĥ, ψ̂) and the corresponding influence coefficients for the
tangential induction are summarized in Table 2.

The first region corresponds to the first and fourth quadrant
of the design space of (ĥ, ψ̂). This corresponds to when the
calculation point is further inboard compared to the trailing
point and for both the condition of backward sweep (ψ̂ > 0)
and also forward sweep (ψ̂ < 0). The influence coefficient
tensor is It1. The value of 8∗II is calculated from the convec-
tive correction factor k8II and the normalized base induction
8II, ip.

8∗II = k8II8II, ip, (48)

where 8II, ip is calculated using Eq. (B7).
The second region corresponds to the second and third

quadrant of the design space of (ĥ, ψ̂). This corresponds to
when the calculation point is further outboard compared to
the trailing point and for both the condition of backward
sweep (ψ̂ > 0) and also forward sweep (ψ̂ < 0). The influ-
ence coefficient tensor is It2. The value of the corrected 8∗II
is also calculated with Eq. (48).

As for the axial induction, the influence coefficient ten-
sors of It1 and It2 for the tangential induction with double-
precision floating-point numbers are in the online supple-
ment. In addition, a version with reduced digits is in Ap-
pendix D2.

5.5.5 Quality of the fitted influence coefficients

The quality of the fitted influence coefficients for the modi-
fied convective correction described in Sect. 5.5 is tested nu-
merically in this section. The numerical test is performed on
a mesh grid with very fine resolution. The results of the base
induction defined in Eqs. (38) and (39) calculated from the
numerical integration of the Biot–Savart law are compared
with the results calculated from the convective correction.
The relative error is defined in Eq. (49).

ε =

∣∣∣∣∣W − W̃W
∣∣∣∣∣× 100%=

∣∣∣∣8−8∗8

∣∣∣∣× 100% (49)

The numerical integration is calculated using the Runge–
Kutta algorithm with Dormand–Prince method implemented
in the ode45 function in MATLAB version 2020a (Shampine
and Reichelt, 1997). The relative and absolute error tol-
erances of the numerical solver are set to 1× 10−9 and
1× 10−13, respectively. For the numerical test, the range of
the helix angle is from 0 to 89.8◦ with the spacing of 0.05◦.
The range of ψ̂ is from−1 to 1 with the spacing of 1×10−3.
The range of ˆ|h| is from 1× 10−5 to 0.99. The spacing is
1×10−5 for ˆ|h| between 1×10−5 and 2×10−4, and the spac-
ing is 2× 10−4 for ˆ|h| between 2× 10−4 and 0.99. For each
region, the maximum relative error that is defined in Eq. (49)
is calculated and is summarized in Table 1 and 2. In total, for
both the axial and the tangential induction, each test corre-
sponds to 3.57× 1010 different conditions.

It can be seen that for both the axial and the tangential in-
duction, the results calculated using the convective correction
method with the fitted influence coefficient tensors have rel-
atively high accuracy. In addition, for both the base axial and
tangential induction, and for all regions, the relative error is
always zero when ϕ = 0. This is because of the well-chosen
empirical function in Eq. (43).

5.5.6 When the parameter is outside the range

The user of the coupled model should bear in mind that the
model has its limitations with a certain range of validity. The
data fitting was performed on a relatively large range, which
is intended to cover most of the swept blades. However, it
is possible that the input value is outside of the range of va-
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Table 2. The definition of the two regions for the parameter space of the equivalent relative position ĥ, the normalized sweep angle ψ̂ and
the corresponding influence coefficients for the tangential induction. The equation of the convective correction and the maximum relative
error of the fitted induction are also listed.

Name Range Range Influence Convective Maximum
of ĥ of ψ̂ coefficient correction equation relative error

Region t1 (0, 1) [−1, 1] It1 Eq. (48) 0.54 %
Region t2 (−1, 0) [−1, 1] It2 Eq. (48) 0.95 %

lidity. As a result, it is necessary to put a limit to the input
parameters for the model to avoid catastrophic failure of the
model. The range of the input variables and the correspond-
ing physical representation are explained. Then, the limits on
the input variables and their effects are described.

For the helix angle ϕ, the data fitting and the tests are per-
formed on the range of [0,89.8◦]. When the value of ϕ is
less than zero, it corresponds to the trailed vorticity convects
upstream. Since the trailing functions in Eqs. (36) and (37)
are even functions of the helix angle ϕ, the absolute value of
ϕ should be used when ϕ is less than zero. When the value
of |ϕ| is greater than 89.8◦, it is almost equivalent to having
straight trailed vorticity (|ϕ| = 90◦). So, it is possible to put
an upper boundary of 89.8◦ to the helix angle. For example,
for the standstill condition with 90◦ helix angle, the value
of WI and WII is calculated with ϕ = 89.8◦. But when cal-
culating Wx and Wy from WI and WII, the value of ϕ = 90◦

is used. The limiting of the helix angle will only introduce
negligible error.

For the normalized relative position ĥ, the numerical test
in Sect. 5.5.5 has been performed for ∗ ˆ|h| ∈ [1×10−5,0.99].
For ˆ|h|> 0.99, it corresponds to the influence of the blade
tip on the part of the blade that is within 1 % of radius. This
range can only be reached if the user extends the blade un-
til the rotational center, since the hub radius is mostly larger
than 2 % of the rotor radius. The aerodynamic load at this re-
gion is not important, so the value of ˆ|h| should be simply set
to the upper limit of 0.99. For ˆ|h|< 1× 10−5, it corresponds
to the influence of the trailing vorticity on the neighboring
sections when the discretization of the blade is very fine us-
ing cosine spacing with more than 300 sections. So, it is rec-
ommended to limit the number of sections to be no greater
than 250.

For the normalized sweep ψ̂ , the numerical test in
Sect. 5.5.5 has been performed for ψ̂ ∈ [−1,1]. For the pa-
rameter study in Sect. 5.4.3, the blades with a maximum
sweep angle of 57◦ are within this range. So, if the blade
is smooth, the blade with forward or backward sweep of less
than 57◦ should be within the validity range. If the blade has
a higher sweep angle, it is also possible that the condition
is still within the validity range because there is some mar-
gin as shown in Fig. 6. However, if the blade has significant
sweep, it is possible the normalized sweep is outside the va-
lidity range. In addition, if the blade main axis has kinks (i.e.,

non-continuous derivative), it is possible that there is a very
high value of ψ̂ around these regions. Both conditions can
cause uncertain performance of the model, so the value of ψ̂
should be limited to the bound of [−1,1]. In addition, since
both conditions require attention from the user, a warning
message should be printed by the computer program.

5.6 The modified indicial function

The indicial function described in Sect. 4 is also modified
so the modified convective correction can be applied. Firstly,
since the normalized inductions of 8x and 8y have trigono-
metric functions of cosine and sine, their value could reach
zero. If the normalized induction 8 that is used in the expo-
nent terms in Eqs. (19) and (20) is close to zero, the indicial
function will have very poor numerical performance. As a
result, the base normalized induction should be used in the
exponent terms instead. Secondly, the dynamic responses of
the axial and tangential induction are assumed to be simi-
lar. Then, the normalized axial base induction 8I defined in
Eq. (40) is used in the exponential terms in both the axial and
the tangential indicial function. In addition, a lower limit of
0.01 is applied to the value of 8I to avoid the response that
is too fast when the value of 8I is close to zero.

For the axial induction, the modified indicial functions are

W̃ i
x = X̃

i
w, x + Ỹ

i
w, x, (50)

X̃iw, x = X̃
i−1
w, xe

−b11β
∗/8I + D̃X, x10(1− e−b11β

∗/8I ),
(51)

Ỹ iw, x = Ỹ
i−1
w, xe

−b21β
∗/8I + D̃Y,x10(1− e−b21β

∗/8I ), (52)

where

D̃X, x =
r

4πh|h|
A1

b1
8x =

r

4πh|h|
A1

b1
8I cosϕ, (53)

D̃Y, x =
r

4πh|h|
A2

b2
8x =

r

4πh|h|
A2

b2
8I cosϕ. (54)

For the tangential induction, the modified indicial func-
tions are

W̃ i
y = X̃

i
w, y + Ỹ

i
w, y, (55)

X̃iw, y = X̃
i−1
w, ye

−b11β
∗/8I + D̃X, y10(1− e−b11β

∗/8I ),
(56)
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Ỹ iw, y = Ỹ
i−1
w, ye

−b21β
∗/8I + D̃Y, y10(1− e−b21β

∗/8I ), (57)

where

D̃X, y =−
r

4πh|h|
A1

b1
8y =−

r

4πh|h|
A1

b1
8II sinϕ, (58)

D̃Y, y =−
r

4πh|h|
A2

b2
8y =−

r

4πh|h|
A2

b2
8II sinϕ. (59)

5.7 Algorithm of computing induction using convective
correction

The algorithm of computing the axial and tangential near-
wake induction using the convective correction is summa-
rized in this section. The algorithm corresponds to the cal-
culation from the dynamic bound vorticity strength 0dyn to
the near-wake induction W in the diagram by Pirrung et al.
(2017a, Fig. 3).

6 Far-wake model and coupling method

The basis for the far-wake model is the BEM model imple-
mented in the HAWC2 code (Madsen et al., 2020) without
tip-loss correction. The effect of increased induced velocity
towards the blade tip due to the trailed vorticity induction
is already included in the near-wake model. Recall that the

near wake is defined as the first quarter revolution of the non-
expanding helical trailed vorticity of the own blade.

The far-wake axial induction is calculated as a function of
the scaled thrust coefficient (Andersen et al., 2010; Pirrung
et al., 2016). The scaling of the thrust coefficient is based on
a coupling factor that is calculated from the axial induction
from the near-wake model and the reference axial induction.
This reference axial induction is computed as in the regular
BEM method in the HAWC2 code, which includes the tip-
loss correction (Andersen et al., 2010; Pirrung et al., 2016).
The aim of the coupling factor is that the thrust of the rotor
calculated from the coupled near- and far-wake model is at
a similar level as that from the reference BEM model. The
scaling factor is calculated from the rotor-averaged axial in-
duction with the weight of the annulus area, and it is applied
to the far-wake axial and tangential induction. The scaling
factor is set to be less than one to avoid exaggerated axial
induction.

For the case of straight blades, previous studies have il-
lustrated that the coupling factor is able to be automatically
adjusted during the computation. Indeed, the dynamic re-
sponse of the coupled model shows improved agreement
with higher-fidelity models and experiments, when compared
to the BEM method (Pirrung et al., 2017a; Schepers et al.,
2021). However, the current method of coupling the near-
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and far-wake model is implicitly based on the assumption
that the blade is straight and the rotor is planar. This is be-
cause in the reference BEM, a relationship between the ax-
ial induction and the thrust coefficient that is fitted to actua-
tor disc simulations is used (Madsen et al., 2020). When the
blade is swept, the relationship between the axial induction
and the thrust coefficient should differ from the case of the
straight blade, especially near the blade tip. If using the same
coupling method, the total thrust coefficient could have large
deviations compared to the straight blade. This means that
the current coupling method is not strictly suitable for the
rotors with swept blades.

For the application of the steady-state aerodynamic load
calculation of swept blades under uniform inflow that is per-
pendicular to the rotor plane, it is also possible to fix the cou-
pling factor equal to that of the baseline straight blade. As
will be described in Sect. 8.1, the influence of blade sweep
on the far wake should be small. As a result, it is reasonable
to assume the far wake of the swept blade begins from the
same position as that of the straight blades, which means us-
ing the same coupling factor. However, the method of fixing
the coupling factor is not applicable to the dynamic response
calculation. The results of the coupled method with both au-
tomatically adjusted coupling factor and the fixed coupling
factor will be shown in Sect. 8.

7 Models used for comparison

In order to assess the performance of the proposed cou-
pled near- and far-wake model, the results from two higher-
fidelity aerodynamic models are used for the comparison.
In particular, a version of the lifting-line method imple-
mented in the MIRAS code (Ramos-García et al., 2016; Li
et al., 2020) and the in-house Navier–Stokes solver Ellip-
Sys3D (Michelsen, 1992, 1994; Sørensen, 1995) are used.

In the lifting-line method used for comparison, the bound
vorticity is represented by the concentrated lifting line that is
located at the quarter-chord line of the blade. This is where
the trailed vortices emanate from and will form the helical
vortex wake system. The induced velocity due to the trailed
vorticities is evaluated at the quarter-chord line, with a pos-
sible contribution from the shed vorticity in the unsteady
case. The influence of the curved bound vortex is modeled
by adding the difference of the induced velocity due to the 3-
D bound vorticity and an imaginary 2-D bound vorticity (in-
finitely long line vortex) evaluated at the three-quarter-chord
point to the induction of the blade section. This implemen-
tation of the lifting-line method is labeled as the LL-test in
the previous work of Li et al. (2020). The coupled near- and
far-wake model proposed in the present work is considered
as an approximation of this implementation of the lifting-
line method. So, the result from this lifting-line method is a
benchmark of how the proposed coupled method performs.

In addition, the coupled method is not expected to perform
better than the lifting-line method.

Apart from the lifting-line method, the results from a rotor-
resolved Navier–Stokes solver were also used for compari-
son. The in-house finite-volume code EllipSys3D solves the
incompressible Navier–Stokes equation on a structured grid.
Several approaches are available in EllipSys3D for dealing
with turbulence. In the present study, the RANS formula-
tion in combination with the k-ω SST turbulence model was
used (Menter, 1994).

The modified coupled near- and far-wake model is im-
plemented in a test version of the in-house aero-servo-
elastic simulation tool HAWC2 based on the release version
12.8 (Larsen and Hansen, 2007). The modifications of the
near-wake model proposed in this work as well as the influ-
ence of curved bound vortex proposed by Li et al. (2020) are
implemented. The implementations of the far-wake model,
the coupling method and the iteration relaxation method are
identical with the previous work by Pirrung et al. (2017a).

The BEM method implemented in the HAWC2 code ver-
sion 12.8 is also used for the comparison (Madsen et al.,
2020). The BEM method is the most commonly used
low-fidelity aerodynamic model. The result from the BEM
method is considered as a baseline and is to illustrate the im-
provements of the proposed coupled method compared to it.

8 Results

In this section, the aerodynamic loads calculated from differ-
ent models are compared. The blades are assumed to be stiff,
which means the effect of elastic deformation is not included.

8.1 The consistent definition of the loads

In the previous work of Li et al. (2018), the aerodynamic
loads calculated from the BEM method and an early ver-
sion of the coupled model are compared with the results from
CFD. In that previous work, the out-of-plane loads from the
coupled model and the BEM method have similar trends but
are very different from the prediction from CFD. In that pre-
vious work, it was argued that the wrong pattern of the out-
of-plane load offset is due to the insufficient far-wake BEM
model in the coupled model. Since the BEM method pre-
dicts the wrong pattern, the error is inherited to the coupled
method because a far-wake BEM model is used.

The previous argument is erroneous and will be illustrated
using the vortex theory. It has been described in Sect. 2 that
the BEM method without tip correction is equivalent to mod-
eling the wake with concentric vortex cylinders that begin at
the rotor plane. So, the far-wake BEM method with scaled
inductions can be considered as having the vortex cylinders
begin further downstream compared to the rotor plane. The
influence of the blade sweep on the vortex wake is the in-
plane shifted position of where the trailed vorticity begins.
This means the influence of the blade sweep on the wake
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is mainly on the part of the wake that is close to the rotor
plane, so the influence on the stream-wise location where the
far-wake vortex cylinders begin is very small. As a result,
the corresponding influence of the far-wake reflected on the
loads should not be that pronounced to have such big offsets
as shown in the previous work of Li et al. (2018).

Instead, the reason is discovered to be the inconsistent def-
inition of the loads. Recall the procedures to obtain the aero-
dynamic loads in the lifting-line-like methods that rely on
2-D airfoil data, such as the BEM method, the lifting-line
method and the coupled near- and far-wake model. For each
blade section, the 3-D velocity at the calculation point con-
sists of the induced velocity, the blade motion, and the onset
flow and is projected into the 2-D airfoil section. After sub-
tracting the 2-D bound vorticity induction at this section, the
angle of attack and the relative velocity are calculated from
the velocity triangle. Then, the 2-D lift and drag force can be
calculated and are projected with respect to the rotor plane
to obtain the in-plane and out-of-plane loads. The resulting
aerodynamic loads should correspond to force per unit length
of curved blade length, since they are from the 2-D aerody-
namic loads. If we want to have other definitions of the load,
we have to multiply the load with the corresponding scaling
factor. For example, to get the loads with the definition of
force per unit radius, the factor ds

dr , which is the ratio of the
local elementary increase of curved blade length over the ele-
mentary increase of radius, should be applied (Madsen et al.,
2020).

In this work, the in-plane and out-of-plane loads are de-
fined as force per unit length of z coordinate, which corre-
sponds to the radius of the straight blade. So, the factor ds

dz ,
which is the ratio of the local elementary increase of curved
blade length over the elementary increase of z coordinate,
should be applied. In this work, the aerodynamic loads cal-
culated from CFD is also with the same definition. The post-
processing of the CFD results is done by performing planar
cuts that are perpendicular to the z axis and then integrating
the pressure and viscous force along the cut contour. The re-
sults were averaged over the last 350 iterations, in order to
provide mean values for the loads of the inboard part of the
blade (where shedding is expected).

8.2 The blades for comparison

The wind turbine blades that are used for the comparison
are modified based on the IEA-10.0–198 10 MW reference
wind turbine (RWT) (Bortolotti et al., 2019). The baseline
straight blade is modified by aligning the half-chord line to
a straight main axis. The rotor diameter is 198 m, of which
the hub radius is 2.8 m and the blade length is 96.2 m. For
the swept blades, the planform is obtained from a modified
Bézier curve which is parameterized with sweep ratio r̄s,
sweep magnitude 1d and tip sweep angle 3tip, which has
been illustrated in Fig. 5. For a clean comparison, the pre-
bend as well as the blade cone are removed for all blades.

Table 3. The parameters of the planforms of four backward swept
blades (Li et al., 2018).

Name Sweep Sweep Tip sweep
ratio r̄s magnitude 1d angle 3tip

Blade-1 50 % 10 % 20◦

Blade-2 50 % 10 % 40◦

Blade-3 25 % 5 % 20◦

Blade-4 25 % 5 % 40◦

The airfoils are aligned perpendicular to the curved main
axis of the half-chord line. The chord and twist distribution
of the swept blade remains the same as the baseline blade,
for the sections with the same z coordinate. For the base-
line straight blade, the z coordinate is equivalent to the radial
position. For the swept blade, the length in the z coordinate
remains the same as the baseline straight blade. The actual
radius of the swept blade is increased compared to the base-
line straight blade. The backward swept blades used in this
study have the same parameters as Blade-1 to Blade-4 in the
previous work of Li et al. (2018). The parameters of the four
backward swept blades used for the comparison in this work
are summarized in Table 3. The sketch of the geometry of
the backward swept blades and the baseline straight blade is
shown in Fig. 7. In addition, four forward swept blades with
the name of Blade-5 to Blade-8 that have the same param-
eters as the backward swept blades Blade-1 to Blade-4 but
with different direction of sweep are introduced.

The operational condition is the same as the in previous
work by Li et al. (2020), with uniform inflow of 8 ms−1 per-
pendicular to the rotor. The rotor is operating at rotational
speed of 0.855 rads−1, which corresponds to a tip speed ra-
tio of 10.58 for the rotor with baseline straight blades. The
blades are not pitched, so the main axis of the swept blades
and the straight blade will always stay in the rotor plane. At
this operational condition, the thrust coefficient of the rotor
with baseline straight blades is 0.90 and the rotor power co-
efficient is 0.46, which are predicted by the BEM method. At
a radius of 70 m, the angle of attack predicted by the BEM
method is 5.76◦.

8.3 Description of the simulation setup

A set of rotor-resolved meshes were used for the CFD sim-
ulations, each of them corresponding to a different blade ge-
ometry. They were generated in two consecutive steps, which
were fully scripted in order to ensure a similar resulting
grid quality. Firstly, a structured mesh of the blade surface
was generated with the openly available Parametric Geom-
etry Library (PGL) tool (Zahle, 2019). A total of 128 cells
were used in the spanwise direction, and the chordwise di-
rection was discretized with 256 cells (with 8 of them ly-
ing on the trailing edge). Secondly, the surface mesh was
radially extruded with the hyperbolic mesh generator Hyp-
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Figure 7. The top view of the backward swept blades Blade-1 to Blade-4 together with the baseline straight blade.

Grid (Sørensen, 1998) to create a volume grid. A total of
256 cells were used in this process, and the resulting outer
domain was located at approximately 11 rotor diameters. A
boundary layer clustering was taken into account, with an
imposed first cell height of 1× 10−6 m. The resulting vol-
ume mesh accounted for a total of 14.2 million cells. An in-
let/outlet strategy was followed for the boundary conditions
of the outer limit of the CFD domain, and the flow was as-
sumed to be fully turbulent.

For the lifting-line method, each time step corresponds to
1.5◦ of azimuthal angle, and each simulation is calculated
for 20 000 time steps, which correspond to 83.3 revolutions.
The vortex core size is 0.1 % of the local chord length. Each
blade is discretized radially into 50 sections with cosine spac-
ing. The airfoil data are from 2-D fully turbulent CFD re-
sults (Bortolotti et al., 2019). The first row of trailed vortici-
ties begins from the lifting line that is located at the quarter-
chord line.

For the modified coupled near- and far-wake model and the
BEM method implemented in the HAWC2 code, each time
step corresponds to 0.01 s and each simulation is calculated
for 600 s. Each blade is discretized radially into 80 sections.
The same set of airfoil data that is from the 2-D fully tur-
bulent CFD result is used. For the computation of the swept
blades, the coupling factor is either automatically adjusted or
fixed to the value of the baseline straight blade, as described
in Sect. 6. Both results for the swept blades will be shown.

8.4 Results for baseline geometry

Firstly, the loads of the baseline straight blade calculated
from the BEM method, the modified coupled model (NW),
the lifting-line method (LL) and the Navier–Stokes solver
(CFD) are compared in Fig. 8. To be noted, the loads plot-
ted from all four models correspond to aerodynamic force
per unit length of the z coordinate (equals to radius for the
straight blade).

For the out-of-plane loads, the results from all the models
have good agreement. At the z coordinate of 80 m that cor-
responds to approximately 80 % span, the relative difference
of the out-of-plane load from the BEM method is 1.6 % and
0.2 % compared to CFD and LL. At the same spanwise loca-
tion, the relative difference of the out-of-plane load from the
coupled method is 1.1 % and 0.4 % compared to CFD and
LL. For the in-plane loads, the results have some small dif-

ferences but are still similar. At the z coordinate of 80 m, the
relative difference of the in-plane load from the BEM method
is 6.8 % and 0.8 % compared to CFD and LL. And the rela-
tive difference of the in-plane load from the coupled method
is 4.3 % and 1.6 % compared to CFD and LL at the same
spanwise location.

The differences between the CFD and LL are assumed
to be related to the 2-D airfoil aerodynamic coefficients re-
trieved from the lookup table involved in the lifting-line ap-
proach. This source of disagreement is also to be consid-
ered for BEM and for the coupled method. The relative dif-
ference of the loads calculated from BEM and the coupled
method compared to the loads from LL is relatively small.
This means both the BEM and the coupled method can be
used in the design optimization of a straight blade with ac-
ceptable accuracy.

8.5 Results for backward swept blades

The steady-state results of the swept blades are also calcu-
lated from the BEM method, the modified coupled model,
the lifting-line models and the CFD. In order to clearly show
the influence of the backward sweep on the loads, the differ-
ence between the loads of the backward swept blade Blade-1
with respect to the baseline straight blade is shown in Fig. 9.
It is calculated by subtracting corresponding sectional loads
at the same z coordinate. The aerodynamic load F on each
blade section consists of the out-of-plane force Fx and the
in-plane forces Fy and Fz. They are defined to be positive
when aligned with negative x, positive y and positive z co-
ordinate, and the definition of the coordinate system is illus-
trated in Fig. 7. The loads are defined as force per unit length
of z coordinate. The out-of-plane load Fx and the in-plane
load component Fy (referred to as in-plane load for abbrevi-
ation) are used for the comparison for the swept blades. In
this study, the focus is on the influence of blade sweep on the
loads. The root region that has z coordinate less than 20 m is
experiencing separation and is not the focus of this study.

For both the out-of-plane and in-plane load of the back-
ward swept blade, the results from the coupled method of ei-
ther automatically adjusted or fixed coupling factor are very
similar. For the offset of the out-of-plane load, the result from
the coupled method is in good agreement with the lifting-line
method. The results are also in harmony with the result from
CFD. For the inboard part of the swept blade in which the
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Figure 8. Comparison of out-of-plane load (a) and in-plane load (b) of the baseline straight blade calculated from the Navier–Stokes solver
(CFD), the lifting-line method (LL), the proposed coupled method (NW) and the blade element momentum method (BEM).

Figure 9. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the backward swept Blade-1 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).

main axis is still straight, the out-of-plane load of the swept
blade is almost identical to that of the baseline straight blade.
When moving towards the blade tip, the out-of-plane load of
the swept blade is lower compared to the baseline straight
blade until approximately halfway until the blade tip. Then,
when moving further towards the tip, the load of the swept
blade is higher compared to the baseline straight blade until
almost all the way until the blade tip. This pattern was also
observed in the previous work (Li et al., 2020). For the offset
of the in-plane load, the result from the coupled method is
also in good agreement with the lifting-line method. Both
methods can correctly predict the spanwise pattern of in-
plane load redistribution of the swept blade, which is similar
to the pattern seen for the out-of-plane load. Both methods
underestimate the decrease of the load of the swept blade
compared to CFD near z coordinate of 60 m. In general, the
results from the lifting-line method and the coupled method
are in good agreement with CFD.

The BEM method is not able to correctly predict this pat-
tern of the radial redistribution of the loads. For the out-of-
plane load, it predicts a maximum increase of the load near
the blade tip of approximately 100 Nm−1, while LL and CFD
predict more than 340 Nm−1 of load increase. In addition,
the BEM method is not able to predict the approximately
80 Nm−1 decrease of the out-of-plane load at near z coor-
dinate of 65 m, as seen in the prediction by LL and CFD. For
the in-plane load, the BEM method predicts that the loads of
the swept blade and the straight blade are almost identical
along the span.

The results of the other backward swept blades are shown
in Appendix C1. For all four backward swept blades, the per-
formance of the modified coupled model with either fixed
or automatically adjusted coupling factor is almost as good
as the lifting-line method, and both are in good agreement
with CFD. In addition, an early version of the modified cou-
pled method that has slightly lower accuracy and a smaller
range of validity has been intensively used for the aeroe-
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lastic design optimization and load calculation of backward
swept blade tips by Barlas et al. (2021). In that work, the
proposed method with automatically adjusted coupling fac-
tor performed well for the optimization and had generally
good agreement with higher-fidelity models. This means the
suggested coupled model with the current far-wake model
and the automatically adjusted coupling factor is applicable
to backward swept blades if special care is taken by the user.
The coupled method has similar performance to the lifting-
line method, which means it is favorable for the load calcu-
lation and design optimization of swept blades. Instead, the
BEM method is not able to correctly predict the influence
of the blade sweep on the loads. The poor performance of
the BEM method is as expected because the influence of the
curved bound vortex and the shifted starting position of the
trailed vorticity are not modeled. The results also indicate
that the BEM method is not suitable for the design optimiza-
tion of blades with noticeable backward sweep.

8.6 Results for forward swept blades

The difference between the loads of the forward swept blade
Blade-5 with respect to the baseline straight blade is shown
in Fig. 10. As for the backward swept blades, the loads are
with the definition of force per unit length of z coordinate.

For the coupled method with fixed coupling factor, the re-
sults of both out-of-plane load and in-plane load are in good
agreement with the higher-fidelity lifting-line method and
CFD. However, for the coupled method with automatically
adjusted coupling factor, the loads have significant offsets
compared to the higher-fidelity models. This means the cur-
rent coupling method is not capable of correctly adjusting the
coupling factor automatically.

Similar to the backward swept blade cases, the BEM
method is not able to predict the radial redistribution of the
loads but predicts an increase of the load compared to the
baseline straight blade near the blade tip. For the in-plane
load, the BEM method predicts that the in-plane loads of the
swept blade and the straight blade are almost identical along
the span.

The results of other forward swept blades are shown in
Appendix C2. As seen for the backward swept blades, for all
four forward swept blades, the performance of the modified
coupled model with fixed coupling factor is almost as good
as the lifting-line method, and both are in good agreement
with CFD. The BEM method, on the other hand, is not able
to correctly predict the influence of the blade forward sweep
on the loads. The loads predicted by the coupled method with
automatically adjusted coupling factor show significant off-
sets compared to higher-fidelity models and should thus not
be used. This means that for forward swept blades, the cur-
rent coupled method is only applicable to steady-state load
calculation with fixed coupling factor. As a result, the current
coupled method is not applicable to the aeroelastic calcula-
tion of forward swept blades.

8.7 Integrated aerodynamic loads

The integrated aerodynamic rotor loads, which are the aero-
dynamic power and thrust from different models, are com-
pared in this section. Please note that when comparing the
integrated aerodynamic loads, errors in the distributed loads
may cancel out. So, it is important to bear in mind that the
performance of the different aerodynamic models is not fully
represented by their abilities to predict the total aerodynamic
power or thrust of the rotor. The aerodynamic force on each
blade section is F , which is defined as force per unit length
of z coordinate; see the coordinate system defined in Fig. 7.
The position where the force is applied on the blade section
is given by the vector p. For simplicity, we use the half-chord
point coordinate as p. The contribution of the sectional air-
foil aerodynamic moment (calculated from Cm) to the aero-
dynamic momentum of the rotor is also neglected. Then, the
distributed sectional aerodynamic moment from each blade
section is

M = p×F =

0
y

z

×
−FxFy
Fz

=
yFz− zFy−zFx

yFx

 . (60)

The negative x component of the aerodynamic moment M

is the contribution to aerodynamic torque. Then, the aero-
dynamic power of the rotor is the integrated contribution of
−Mx of all NB blades at rotational speed of �:

P =NB�

ztip∫
0

(
zFy − yFz

)
dz. (61)

According to Eq. (61), there is contribution of the force Fz
to the aerodynamic power. Since the force component in the
z-axis direction was not obtained during the post-processing
of the CFD results in the present study, the aerodynamic
power from the CFD solver is not included in this section.
The lifting-line (LL) method serves as the higher-fidelity
model for the comparison. The LL method also uses the same
airfoil data as the BEM method and the proposed coupled
method, which makes the comparison straightforward.

The aerodynamic thrust of the rotor is the total contribu-
tion of the out-of-plane force of all NB blades:

T =NB

ztip∫
0

Fxdz. (62)

The aerodynamic power and thrust of the rotor with base-
line straight blades as well as the rotors with swept blades
predicted by the LL method, the BEM method and the cou-
pled method with fixed coupling factor are calculated. It is
difficult to directly draw conclusions from the absolute val-
ues of power and thrust. To better illustrate and compare the
integral effects of the blade sweep represented by the aero-
dynamic power and thrust predicted using different methods,
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Figure 10. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the forward swept Blade-5 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).

Table 4. The aerodynamic power (in kW) of the baseline straight
blade and the relative difference in aerodynamic power (in %) of
the different swept blades with respect to the baseline blades calcu-
lated using different aerodynamic models. The operational condi-
tion has a uniform wind speed of 8 m s−1 and a rotational speed of
0.855 rad s−1.

Name LL BEM NW-fixed
coupling factor

Baseline 4551.4 4450.8 4472.1
Blade-1 3.30 % 1.17 % 2.83 %
Blade-2 2.51 % 1.16 % 3.27 %
Blade-3 1.72 % 0.36 % 1.90 %
Blade-4 1.61 % 0.35 % 1.86 %
Blade-5 − 3.57 % − 0.46 % − 2.07 %
Blade-6 − 4.60 % − 0.34 % − 2.92 %
Blade-7 − 2.50 % − 0.07 % − 1.73 %
Blade-8 − 2.71 % − 0.06 % − 2.34 %

the relative difference of the aerodynamic power and thrust
with respect to the baseline rotor from each method are cal-
culated and are summarized in Tables 4 and 5.

For the aerodynamic power, the magnitude of the relative
difference predicted by the BEM method is underestimated
compared to the prediction by LL for all blades. Compared to
the BEM method, the relative change of power predicted by
the proposed coupled method with fixed coupling factor is in
significantly improved agreement with the predictions by LL.
For backward swept blades, the maximum error of predicted
increment is 0.76 %, which is smaller than the prediction of
1.36 % by the BEM. For forward swept blades, the maximum
error of predicted decrement is 1.68 %, which is smaller than
the prediction of 2.65 % by the BEM.

For the aerodynamic thrust, the predictions by the BEM
method still have acceptable agreement with the predictions

Table 5. The aerodynamic thrust (in kN) of the baseline straight
blade and the relative difference in aerodynamic thrust (in %) of
the different swept blades with respect to the baseline blades calcu-
lated using different aerodynamic models. The operational condi-
tion has a uniform wind speed of 8 m s−1 and a rotational speed of
0.855 rad s−1.

Name LL BEM NW-fixed
coupling factor

Baseline 1097.4 1084.0 1088.2
Blade-1 0.43 % 0.29 % 0.46 %
Blade-2 − 0.19 % − 0.18 % 0.10 %
Blade-3 − 0.03 % − 0.19 % 0.08 %
Blade-4 − 0.02 % − 0.26 % 0.00 %
Blade-5 0.09 % 0.34 % 0.08 %
Blade-6 − 0.84 % − 0.17 % − 0.79 %
Blade-7 − 0.56 % − 0.19 % − 0.55 %
Blade-8 − 0.78 % − 0.28 % − 0.86 %

by LL. The offset in the predicted the aerodynamic thrust by
BEM is smaller compared to the offset in the predicted aero-
dynamic power. For all blades except for Blade-2, the predic-
tions by the coupled method with fixed coupling factor is in
improved agreement with LL compared to the BEM method.
The maximum difference of the change of thrust predicted
by the coupled method and the LL is 0.11 % for all blades
except Blade-2, which has an offset of 0.29 %. In compari-
son, the maximum difference predicted by the BEM method
is 0.67 %.

In summary, the proposed coupled method with fixed cou-
pling factor is in better agreement with higher-fidelity models
compared to the ordinary BEM method, for both backwards
and forward swept blades.
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8.8 Computational effort

The computational effort to obtain the steady-state results
that are used in the present work, measured in CPU time,
are summarized in this section. The CFD computations using
EllipSys3D were performed on the Jess high-performance
computing (HPC) cluster, in which each node has 20 cores
running at 2.8 GHz. All the CFD simulations of the present
work required a wall clock time of approximately 3.5 h when
using 216 cores. The lifting-line (LL) computations using
the MIRAS code were performed on the Sophia HPC clus-
ter, in which each node has 32 cores running at 2.9 GHz.
Each of the LL simulations in the present work required a
wall clock time of approximately 100 h when using 32 cores.
The computational time for the LL method in the MIRAS
code in this study is high, because the settings were cho-
sen to achieve the highest possible fidelity irrespective of the
computational cost. Therefore, the MIRAS computational ef-
fort should not be directly compared to the CFD simulation
that uses EllipSys3D. Settings that increased the computa-
tional effort are small time steps, not using far-wake cut-
off, etc. The computational time is expected to be largely
decreased if efforts are dedicated to improving the simula-
tion setup. When using large time steps, the LL method in
the MIRAS code with the same cluster setup can be con-
verged with a wall clock time of approximately 10 min. And
for an aeroelastic simulation of 600 s, the computation using
the same cluster requires a wall clock time of approximately
12 h. However, this is beyond the scope of the present work.
The computations in the HAWC2 code were performed on
a single core of a 2018 workstation at 4.8 GHz. The simula-
tions were performed with structural properties included and
with large stiffness to approximate stiff structures for 600 s
to reach steady state. The simulations require a wall clock
time of approximately 520 and 750 s for the BEM method
and the proposed coupled method, respectively. The compu-
tational effort of the coupled method is similar to the BEM
method because the stiff structural properties are used so that
the blade geometry does not need to be updated during the
calculation. In addition, since the operational condition be-
tween two time steps is very similar, it is not necessary to
perform sub-iterations. However, for an aeroelastic simula-
tion with the flexibility of the system enabled and assessing
highly dynamic load cases (e.g., turbulent inflow), prelimi-
nary assessments by the authors indicate that the additional
computational cost due to the coupled method remains below
100 % compared to the aeroelastic simulation using the BEM
method. For a stand-alone version of the BEM method, one
steady-state computation takes much less than 1 s on a single
CPU core. For the coupled method, one steady-state compu-
tation takes less than 1 s on a single CPU core if using an ef-
ficient algorithm to calculate the incomplete elliptic integrals
as in the present work. However, the computational time can
be extended to approximately 10 s if using an inefficient al-
gorithm, such as direct numerical integration.

9 Conclusions and future work

A computationally efficient modified coupled near- and far-
wake engineering aerodynamic model for the swept wind
turbine blades is proposed. The core of the modifications in
this work is to obtain the steady-state induction of the near
wake, which is defined as the first quarter revolution of the
helical trailed vorticity of the own blade. To achieve this, an
engineering approach that combines analytical solutions and
approximations based on pre-calculated influence coefficient
tensors is proposed. The far-wake model is currently based
on a far-wake BEM method. The near- and far-wake model
are coupled with a coupling factor that is to scale the far-
wake induction, so that the thrust of the whole rotor is similar
to that calculated from the BEM method. For the calculation
of the steady-state condition with the uniform inflow applied
perpendicular to the rotor plane, a fixed coupling factor that
is determined according to the baseline straight blade can be
applied.

The modified model is used to calculate the steady-state
loads of the baseline straight blade, four backward swept
blades and four forward swept blades that are modified based
on the IEA-10.0-198 10 MW reference wind turbine. The
influence of the blade sweep on the loads predicted by the
proposed method is shown to have good agreement with the
prediction from higher-fidelity models, which are a version
of the lifting-line solver and a Navier–Stokes solver. The
numerical comparison shows that the BEM method is not
able to correctly model the influence of blade sweep and
has large discrepancies with the results from the two higher-
fidelity models. The improvement of the proposed coupled
method over the BEM method is significant, and the results
from the proposed method have similar performance to the
lifting-line method. The proposed method is computation-
ally efficient and favorable for the application of wind tur-
bine aero-servo-elastic simulations and design optimization.
The method shows improved agreement with higher-fidelity
models compared to the conventional BEM method when
the model is carefully used. However, the current coupling
method is not suitable for aeroelastic calculation of forward
swept blades. Further work on the far-wake model and the
coupling method is needed for the method to be confidently
used in the aeroelastic simulations for general swept blades.

There are several future works needed to further improve
the model. Firstly, it is favorable to also have the parame-
ters representing the dynamics of the indicial functions fitted
to numerical results. This can improve the dynamic response
of the coupled model. The dynamic response of swept blades
from the coupled model should also be compared with results
from higher-fidelity models. Secondly, using the method of
fixing the coupling factor for forward swept blades reflects
the limitation of the current far-wake BEM model. It may be
favorable to use the vortex cylinder model as the far-wake
model instead. If so, a new method to couple the near-wake
model and the far-wake model with a new definition of the
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coupling factor is needed. Thirdly, it could be useful to have
the model further modified for the application of blades with
both in-plane and out-of-plane shapes. This will also require
the use of the vortex cylinder model as the far-wake model,
which has the potential to model the aerodynamic effects
of the blade out-of-plane shapes. Finally, it is beneficial to
investigate further possible improvements to the lifting-line
method for the application of curved wind turbine blades.
Then, the coupled near- and far-wake model can be improved
according to it. One example is the modeling of the radial
viscous drag force, especially for the swept blades.

Appendix A: Nomenclature

a
ĥ
, a
ψ̂

intermediate coefficients for the con-
vective correction

A1, A2, b1, b2 coefficients for the indicial functions
1d sweep magnitude
D̃X, D̃Y factors for the fast and slow response in

the indicial function
F aerodynamic load on the blade section,

defined as force per unit length of z co-
ordinate; see the coordinate system de-
fined in Fig. 7

G indefinite integral of the normalized in-
duction function

h distance between calculation point and
trailing point

h̃ relative position
ĥ equivalent relative position
I influence coefficient tensor
k8 convective correction factor
NB number of blades
r radius of the trailing point
rcp radius of the calculation point
r̄s sweep ratio
ds elementary trailed vortex filament
1t elapsed time
U∞ wind speed
V

tp
rel relative velocity of the trailing point
voop out-of-plane velocity
vip in-plane velocity
dwx , dwy elementary axial and tangential in-

duced velocity
Wx , Wy axial and tangential near-wake induced

velocity

W̃x , W̃y approximated axial and tangential near-
wake induced velocity

W normalized near-wake induced velocity
x relative position vector, pointing from

the elementary trailed vorticity to the
calculation point

X̃w, Ỹw fast and slow response term of the nor-
malized induced velocity

Greek letters
β azimuthal angle of trailed vorticity
β∗ generalized azimuthal angle
1β∗ change of generalized azimuthal angle

in a time step
10 trailed vorticity strength
ε relative error
3tip tip sweep angle
ϕ helix angle
8 normalized steady-state near-wake in-

duction
ψ sweep angle
ψ̃ normalized sweep angle
ψ̂ modified normalized sweep angle
� rotor speed
Subscripts
I the base value of the axial induction
II the base value of the tangential induc-

tion
x in the axial direction
y in the tangential direction
X the fast response term
Y the slow response term
ip in plane
oop out of plane
s straight vortex
ss stand-still condition
C with the root correction
i, j indices of the coefficients
Superscripts
∗ the value after convective correction
i at time step i
tp trailing point
a axial direction
t tangential direction
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Appendix B: The analytical solution of trailed
functions

The analytical solutions for the two special conditions of in-
plane trailed vorticity and straight trailed vorticity are de-
rived. They correspond to the lower and upper limit of the
helix pitch angle ϕ, which are 0 and π

2 .

B1 In-plane trailed vorticity

For the special condition of in-plane trailed vorticity (ϕ = 0),
the elementary trailed vortex length ds is then

ds = rdβ∗ = rdβ. (B1)

Inserting Eq. (B1) together with the condition of ϕ = 0 into
the base trailing function in Eqs. (36) and (37), we have the
base trailing function for the condition of in-plane trailed vor-
ticity. Here the subscript of ip represent in-plane trailed vor-
ticity.

dwI, ip =
10

4πr
1− (1− h

r
)cos(β +ψ)[

1+ (1− h
r

)2− 2(1− h
r

)cos(β +ψ)
] 3

2
dβ (B2)

dwII, ip =
10

4πr
1− h

r
− cos(β +ψ)−β sin(β +ψ)[

1+ (1− h
r

)2− 2(1− h
r

)cos(β +ψ)
] 3

2
dβ (B3)

The integrals of the base induction functions in Eqs. (38)
and (39) with β from 0 to π

2 , which corresponds to the near-
wake steady-state induction, are as follows.

WI, ip =
10r

4πh|h|

π
2∫

0

h|h|

r2

1− (1− h
r

)cos(β +ψ)[
1+ (1− h

r
)2− 2(1− h

r
)cos(β +ψ)

] 3
2

dβ (B4)

WII, ip =
10r

4πh|h|

π
2∫

0

h|h|

r2

1− h
r
− cos(β +ψ)−β sin(β +ψ)[

1+ (1− h
r

)2− 2(1− h
r

)cos(β +ψ)
] 3

2
dβ (B5)

For the simplicity of the notation, the steady-state base in-
ductions are normalized and are as follows.

W I, ip =
WI, ip
10r

4πh|h|

=8I, ip

(
A1

b1
+
A2

b2

)
(B6)

W II, ip =
WII, ip
10r

4πh|h|

=−8II, ip

(
A1

b1
+
A2

b2

)
(B7)

The indefinite integrals corresponding to the definite in-
tegral of W I, ip and W II, ip are denoted as GI, ip and GII, ip.

The two indefinite integrals are derived to be in the form of
incomplete elliptic integrals.

GI, ip(
h

r
,ψ,β)=

(h
r

)2

2− h
r

E

(
β +ψ

2
|
−4(1− h

r
)

(h
r

)2

)

+
h

r
F

(
β +ψ

2
|
−4(1− h

r
)

(h
r

)2

)
+

2
∣∣h
r

∣∣ (1− h
r

)

2− h
r

sin(β +ψ)√
1+ (1− h

r
)2− 2(1− h

r
)cos(β +ψ)

+C (B8)

GII, ip(
h

r
,ψ,β)=

−
(h
r

)2

(1− h
r

)(2− h
r

)
E

(
β +ψ

2
|
−4(1− h

r
)

(h
r

)2

)

−

h
r

1− h
r

F

(
β +ψ

2
|
−4(1− h

r
)

(h
r

)2

)

+

h|h|

r2

(
β

1− h
r

− 2 sin(β+ψ)
(2− h

r
) h
r

)
√

1+ (1− h
r

)2− 2(1− h
r

)cos(β +ψ)
+C (B9)

In Eqs. (B8) and (B9), F (x |m) and E(x |m) are the in-
complete elliptic integrals of the first and the second kind,
which are defined as follows:

F (x |m)=

x∫
0

1√
1− msin2(x)

dx, (B10)

E(x |m)=

x∫
0

√
1− msin2(x)dx. (B11)

The advantage of the derived analytical equations in the
form of elliptic integrals over the original form is because
of the existence of fast approximation methods, such as the
work by Bulirsch (1965) and Fukushima (2012). With these
computationally efficient estimations, results with high ac-
curacy can be obtained with a small fraction of the compu-
tational cost compared to using direct numerical integration
with the Euler method or Runge–Kutta methods.

The analytical steady-state results for the special condition
of in-plane trailed vorticity can then be calculated with low
computational efforts. The normalized steady-state value of
the base near-wake induction is

W I, ip =GI, ip

(
h

r
,ψ,

π

2

)
−GI, ip

(
h

r
,ψ,0

)
, (B12)

W II, ip =GII, ip

(
h

r
,ψ,

π

2

)
−GII, ip

(
h

r
,ψ,0

)
. (B13)
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To be noted, for this special condition of in-plane trailed
vorticity, the near wake, which is the first quarter revolution
of the wake of the own blade, is equivalent to one-quarter of
a vortex ring.

The reason of defining the first quarter revolution as near
wake possibly originates from the introduction of the near-
wake model by Beddoes (1987), which was for the appli-
cation of helicopter aerodynamics. The ordinary helicopters
are equipped with four blades, and one blade will encounter
the wake of the previous blade with about 90◦ of azimuthal
angle. The definition of the near-wake part can be adjusted
to other values. For the ordinary wind turbines which are
equipped with three blades, the reader may argue that the
definition could then be adjusted to 120◦. If so, the steady-
state value of the newly defined near-wake induction could
be calculated using Eqs. (B12) and (B13), with the integral
calculated until 2

3π . And, of course, the influence coefficient
tensors for the convective correction in Sect. 5 need to be up-
dated accordingly. However, it is not possible to argue that
using the value of 120◦ is more physical compared to using
the value of 90◦ as in the current implementation. The defini-
tion of the near wake should not be connected to the number
of blades. Instead, it is only an arbitrary split of the vortex
wake domain and should ensure the near-wake part contains
the near-wake effects. For example, the changed trailed vor-
ticity starting position due to blade sweep should be in the
near-wake part. In a test that is not reported in this work, the
results from the coupled method with either definition of the
near wake are very similar.

B1.1 Relationship between inductions

Comparing the steady-state value of the axial and tangential
near-wake base induction in Eqs. (B12) and (B13), the rela-
tionship between them is as follows.

W II, ip

(
h

r
,ψ

)
=

1

1− h
r

(
−W I, ip

(
h

r
,ψ

)

+
h|h|

r2
π

2
√

1+ (1− h
r

)2− 2(1− h
r

) sinψ

 (B14)

It has been proposed by Pirrung et al. (2016) to use the
same value of 8 for the axial and tangential induction. With
the new definition of 8 explained in Sect. 4, it is equivalent
to assume WI, ip and −WII, ip are equal (the negative sign is
inherited from the definition of the coordinate system). Ac-
cording to Pirrung et al. (2016), this assumption introduces
only a small error for straight blades when

∣∣h
r

∣∣ is small but
will gradually deviate from the analytical results with the in-
crease of

∣∣h
r

∣∣. This conclusion can also be obtained analyti-
cally according to Eq. (B14). For the straight blade, the value
of ψ is zero, and Eq. (B14) is simplified as follows:

W II, ip

(
h

r
,ψ = 0

)
=

1

1− h
r

(
−W I, ip

(
h

r
,ψ = 0

)
+
π

2
h

r

)
. (B15)

According to Eq. (B15), when the value of
∣∣h
r

∣∣ is small,
WI, ip is approximately equal to −WII, ip.

B2 Straight trailed vorticity

For the special condition of straight trailed vorticity (ϕ = π
2 ),

the base trailing function could be expressed using the rela-
tionship of ds = rdβ∗. To be noted, now dβ = dβ cosϕ = 0.

dwI, ss =
10r

4πh|h|
h|h|

r2

1− (1− h
r

)cosψ[
1+ (1− h

r
)2− 2(1− h

r
)cosψ +β∗2

] 3
2

dβ∗ (B16)

dwII, ss =
10r

4πh|h|
h|h|

r2

1− h
r
− cosψ[

1+ (1− h
r

)2− 2(1− h
r

)cosψ +β∗2
] 3

2
dβ∗ (B17)

Integrating the base trailing function in Eqs. (B16) and
(B17) with β from 0 to π

2 is equivalent to integrating with
β∗ from 0 to infinity.

WI, ss =

β= π2∫
β=0

dwI, ss =
10r

4πh|h|

∞∫
0

h|h|

r2

1− (1− h
r

)cosψ[
1+ (1− h

r
)2− 2(1− h

r
)cosψ +β∗2

] 3
2

dβ∗ (B18)

WII, ss =

β= π2∫
β=0

dwII, ss =
10r

4πh|h|

∞∫
0

h|h|

r2

1− h
r
− cosψ[

1+ (1− h
r

)2− 2(1− h
r

)cosψ +β∗2
] 3

2
dβ∗ (B19)

The definite integrals are derived as follows. They corre-
spond to the base induction of a semi-infinite line vortex.

WI, ss =
10r

4πh|h|
h|h|

r2

1− (1− h
r

)cosψ

1+ (1− h
r

)2− 2(1− h
r

)cosψ
(B20)

WII, ss =
10r

4πh|h|
h|h|

r2

1− h
r
− cosψ

1+ (1− h
r

)2− 2(1− h
r

)cosψ
(B21)

So, the normalized based axial and tangential inductions
for this special condition of straight trailed vorticity are

8I, ss =
1

A1
b1
+
A2
b2

h|h|

r2

1− (1− h
r

)cosψ

1+ (1− h
r

)2− 2(1− h
r

)cosψ
, (B22)

8II, ss =
−1

A1
b1
+

A2
b2

h|h|

r2

1− h
r
− cosψ

1+ (1− h
r

)2− 2(1− h
r

)cosψ
. (B23)
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The derived analytical equations are further analyzed.
Firstly, for the condition of ϕ = π

2 , the steady-state values
of the axial and tangential induction will have the following
value:

Wx, ss =WI, ss cosϕ = 0, (B24)
Wy, ss =WII, ss sinϕ =WII, ss. (B25)

Secondly, the relationship between the normalized base in-
duction of 8I, ss and 8II, ss is derived as follows.

8I, ss

8II, ss
=−

1− (1− h
r

)cosψ

1− h
r
− cosψ

(B26)

For the special condition that the blade is straight without
sweep, which means ψ = 0, the two normalized base induc-
tions are equal. This corresponds to using the same base axial
and tangential induction of 8s for the straight blade as in the
previous work of Pirrung et al. (2017b).

Appendix C: Results of the distributed load

C1 Backward swept blades

The difference of the loads of the backward swept blades
(Blade-2 to Blade-4) compared to the baseline straight blade.

Figure C1. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the backward swept Blade-2 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).
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Figure C2. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the backward swept Blade-3 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).

Figure C3. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the backward swept Blade-4 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).
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C2 Forward swept blades

The difference of the loads of the forward swept blades
(Blade-6 to Blade-8) compared to the baseline straight blade.

Figure C4. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the forward swept Blade-6 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).

Figure C5. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the forward swept Blade-6 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).
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Figure C6. Comparison of the difference between the out-of-plane load (a) and the in-plane load (b) of the forward swept Blade-8 with
respect to the baseline blade calculated from the Navier–Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method
(NW) and the blade element momentum method (BEM).

Appendix D: Influence coefficient tensor

The influence coefficient tensor in double-precision floating-
point format with full digits can be found in the online sup-
plement (Li et al., 2021). The coefficients shown here are
rounded to six to eight decimals with slightly reduced accu-
racy. The relative error of the convective correction with the
full digits and the reduced digits using the following coeffi-
cients is summarized in the following table.

Table D1. The relative error of the convective correction using the
influence coefficients with full digits or reduced digits.

Name Influence Maximum error Maximum error with
coefficient using full digits reduced digits

Region a1 Ia1 0.78 % 0.78 %
Region a2 Ia2 1.10 % 1.10 %
Region a3 Ia3 1.34 % 1.43 %
Region t1 It1 0.54 % 0.54 %
Region t2 It2 0.95 % 0.96 %

D1 Influence coefficient tensors for axial induction

Ia1(1, :, :)=
- 30.2629953 −44.0123379 −4.8091034 6.6816625 −1.8728117
209.4691684 342.2487285 96.4620698 −5.7254494 13.6705749
−290.1750741 −466.0937921 −181.7678232 −53.0768773 −33.3088719

83.8736848 110.3440879 43.9267968 26.7977770 16.8236210
172.3498017 197.0336475 40.8145840 2.7259789 7.9637918
−287.1461269 −409.7263812 −148.6834315 −57.3376482 −33.2609586

84.2660443 106.2805603 41.6369816 27.4446775 16.7602353


(D1)

Ia1(2, :, :)=
53.1550561 82.7950371 11.8470979 −2.5812529 12.4529125
−418.9619277 −741.0768866 −285.1483971 −79.7753292 −72.2472370
587.9307272 1017.3608691 491.3189773 241.8729167 142.5305922
−137.1825739 −200.3207669 −107.8391565 −95.5704421 −70.4028947
−375.7864254 −416.3134514 −191.2711984 −97.3931617 −40.4700946
603.2260980 873.7974991 406.5491994 252.9426783 135.4379812
−140.6835481 −188.9546718 −101.1232811 −98.1065552 −69.6831846


(D2)

Ia1(3, :, :)=
−24.4634404 −49.1773459 −15.2835165 −18.7602840 −20.2094150
257.8948363 528.3100345 298.1358374 186.0849450 109.0304987
−371.0131449 −740.4358281 −483.9445448 −364.1513924 −200.5487163

45.2643636 72.7402636 72.2423835 128.0351116 106.8599904
267.5458324 277.6881446 258.8159075 168.7618522 57.0927392
−408.5386036 −612.6519838 −409.0961438 −368.8174390 −185.3398947

51.0719807 61.6212110 65.5878879 130.9154917 105.4798178


(D3)

Ia1(4, :, :)=
0.9777967 8.7243693 9.2512766 19.2782525 11.0076639
−47.3025925 −129.3430362 −116.4275187 −117.7402703 −57.1884276
73.7522569 195.6121511 195.7705625 212.9970038 108.3347082
9.3193829 8.5832630 −23.5309335 −81.8175506 −71.0052089
−67.4079250 −56.4117165 −114.5683550 −71.9868045 −25.8741364
98.6913683 149.3325565 169.7441677 210.0891275 97.6306099
5.8410702 13.0063375 −20.9015181 −82.9690385 −70.1169804


(D4)

Ia1(5, :, :)=
0.3905372 0.0863371 0.0809883 −1.8632991 −0.3010930
0.5059303 5.3663399 6.7255071 13.3051729 5.0750717
−2.5363161 −14.3742774 −19.8092364 −30.4294738 −13.6991207
−0.1478574 8.1063946 19.9638191 31.0576061 21.0751565
4.9304429 −1.0082621 10.6365516 3.2151968 3.0734356
−8.4771690 −7.3161932 −17.9411512 −29.4501544 −10.7083398
0.6641002 7.4457629 19.5451515 31.2496327 20.9271491


(D5)
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Ia1(6, :, :)=
−0.0507499 0.0558777 0.0317971 −0.0089532 0.0002913
0.1286709 −0.3151871 0.0018811 0.0985785 −0.0865264
−0.0172141 0.6809711 −0.1988941 −0.2182092 0.2773425
−0.1313101 −0.5705022 0.2361800 0.2094688 −0.6421827
−0.1675725 0.2054625 −0.3660916 0.3618960 −0.0859911
0.4346966 −0.1987679 0.6714691 −0.8470430 0.2767341
−0.1938734 −0.5281251 0.2743414 0.1859921 −0.6412762


(D6)

Ia2(1, :, :)=
14.1443428 −3.4200336 −8.6632766 −3.2512917 1.6673927
−14.3379998 −42.4526269 44.8844649 1.8129803 2.9789316
−34.0068718 143.5109416 −83.6124141 6.9214482 −16.4443492
12.7301783 −60.5729910 23.6875815 3.0630625 10.5710667
−11.7085861 −20.3817370 10.6563746 15.1727425 4.6042797

9.3462571 69.2676499 −32.9332761 −20.4817802 −14.2982153
9.3111198 −53.6979766 17.2284326 8.9936123 9.3346192


(D7)

Ia2(2, :, :)=
−39.3288761 17.7574352 18.7182283 10.1844694 −8.5144460
47.6559011 80.3132512 −106.3400261 −10.1038357 6.3197326
72.4404153 −333.6400291 221.1504756 −30.6689736 27.4295624
−21.8083886 117.2183132 −47.3949105 0.7193395 −19.6817720
54.9226623 26.9319933 −35.3166109 −35.3811073 −8.2273724
−68.9432298 −109.4456982 85.0824950 35.4281485 26.4170866
−7.2598922 91.9682848 −28.2137310 −13.8716215 −17.0665052


(D8)

Ia2(3, :, :)=
39.2147049 −29.0669181 −9.4187881 −11.5897887 13.0003672
−54.9123080 −30.4177512 74.2365320 18.2797806 −25.9860317
−51.2327615 243.2741899 −184.7819962 34.7735741 0.3193281
12.0319589 −53.5018994 12.2342678 −5.4489537 6.8592144
−83.1932889 19.0080018 32.4884520 33.5003977 −0.2699424
118.5264133 −9.2291737 −51.9070516 −23.4928839 −3.5990547
−8.9078459 −20.0167245 −9.2091721 7.7736824 4.9798854


(D9)

Ia2(4, :, :)=
−16.6247282 17.1322393 0.6646976 3.7853652 −7.1490439
26.6945298 −9.4634984 −20.9011874 −5.9400662 20.8141528
11.6620329 −62.4467128 72.6537901 −27.6371035 −14.4197743
−2.5014749 1.9771639 −5.1332573 17.6369316 −0.9305895
52.4970277 −35.2171443 −16.6820337 −12.2574820 5.4664956
−79.6740851 64.2142021 22.5005971 −5.9624868 −9.9836695
10.2663768 −16.9965935 4.9866977 12.5326197 −0.3982437


(D10)

Ia2(5, :, :)=
2.1680909 −1.9325002 −1.4598676 0.9013355 1.0045864
−3.6267041 1.3746512 7.1708105 −3.3173219 −4.3791033
−1.4309188 8.1720898 −20.9017965 14.7674750 3.2422534
1.6288906 −3.7561081 13.0588432 −15.3645870 3.5123401
−12.2546955 11.8229409 6.7489696 0.7852945 −1.5344478
19.8474127 −19.7529300 −16.9628675 10.8830814 1.1630907
−1.5910305 0.6576136 11.2469182 −14.6630860 3.4684830


(D11)

Ia2(6, :, :)=
0.2486922 −0.8554398 1.0648231 −0.4566182 −0.0001123
−0.7408567 2.4571284 −3.0863117 1.1621515 0.1275147
1.1255059 −3.7190413 5.3021715 −2.7304257 0.1847216
−0.9427155 3.2675639 −5.3772642 3.5408975 −1.1829603
0.2071953 −0.2041765 −1.6546668 −0.0699594 0.1263416
−0.5694562 −1.2096613 6.0023983 −1.8571029 0.1871016
−0.6754359 2.9189806 −5.2705428 3.5298212 −1.1843152


(D12)

Ia3(1, :, :)=
9.11665188 29.79222047 43.86616973 32.40470861 11.09564270
−26.09418131 −155.76996750 −205.31734409 −95.53860789 −49.42888125
17.18011985 321.09112364 440.56740600 134.73797533 79.23027899
1.78046701 −235.24443181 −354.35998617 −100.81604882 −45.41461529
−27.27974290 −160.15698589 −194.90945090 −60.95849006 −26.56400855
55.19661745 429.90429486 542.61100878 160.40424204 77.17323077
−2.99560189 −249.51706273 −368.53902302 −104.58605057 −44.83785553


(D13)

Ia3(2, :, :)=
−28.19478766 −88.29006039 −135.04025383 −112.21215802 −44.11700442
66.96477017 379.25990135 508.07689753 283.97781693 176.57597505
17.66091431 −634.74312353 −945.13710121 −312.12785403 −248.40124366
−82.78952352 402.54894986 750.61182255 222.12300396 125.19654785
71.21588008 400.15306970 479.60405330 159.55305390 88.70259352
−107.50498855 −986.13956564 −1267.70442454 −391.90258276 −243.62046718
−66.59092597 449.80615250 796.55179975 234.22262799 123.53525679


(D14)

Ia3(3, :, :)=
32.04325775 94.31136564 151.89716069 145.88015244 65.69149913
−41.92639331 −289.17519494 −453.44136049 −340.49327439 −229.24935079
−170.30486123 215.16871649 648.01599624 302.01030822 259.55461252
245.82143715 11.51095552 −482.77494741 −196.51499653 −96.26782702
−48.71461830 −325.02218908 −426.10623881 −172.15231906 −102.70304777
−13.09916989 644.38829988 1029.98579041 395.51384357 257.36267246
224.39180264 −48.81548796 −539.49667228 −211.33054661 −94.66534389


(D15)

Ia3(4, :, :)=
−16.73843958 −44.56433162 −75.42026032 −85.39941222 −43.76287003
−14.70745503 44.77891622 172.30670573 200.56405072 128.25861363
233.25304850 271.12617385 −101.20880449 −163.39550356 −94.03984994
−264.95000244 −365.04228466 22.89248374 90.84475815 0.62328159
−9.84311242 69.08022171 158.74599828 97.55666592 47.05250048
140.04161225 26.26812272 −309.83694548 −214.97805164 −95.91885365
−251.04680957 −327.70311499 56.48247681 99.70072067 0.14671554


(D16)

Ia3(5, :, :)=
4.50261103 10.40079158 16.02776422 19.92248023 11.41551847
19.08956817 27.19876620 −18.83043604 −48.79174767 −26.44677059
−115.15085794 −212.28073597 −71.37815649 31.05294396 2.57760514
116.42073298 226.69126139 97.46889829 −5.07507500 17.02834139
18.31219088 23.89526985 −12.19577177 −22.95750203 −6.20474382
−89.27812582 −147.60473128 −19.25411563 44.26364549 3.53714562
111.92063809 215.18207328 87.51679466 −7.88527165 16.94297940


(D17)

https://doi.org/10.5194/wes-7-129-2022 Wind Energ. Sci., 7, 129–160, 2022



158 A. Li et al.: A computationally efficient engineering aerodynamic model for swept wind turbine blades

Ia3(6, :, :)=
−0.73071849 −1.65270094 −1.33216874 −0.59618790 −0.32276422
−3.32244087 −6.71096091 −3.48162012 0.37331021 0.62710277
17.37007235 41.01276696 31.35433242 7.45124387 0.42793410
−16.30032357 −41.58074598 −35.61364526 −10.36033165 −1.61111293
−3.69169305 −8.37718404 −5.83095458 −0.95126151 0.05345689
14.65722437 34.56697920 26.41672645 6.42924353 0.81554890
−15.69702678 −40.06982556 −34.29089544 −9.92025766 −1.56710772


(D18)

D2 Influence coefficient tensors for tangential induction

It1(1, :, :)=
−10.950183 −8.461191 4.898831 −0.274851 −2.163785
73.495139 91.960394 21.537951 17.291370 12.936439
−110.228670 −151.928768 −61.034637 −54.434259 −25.629843

42.002623 53.451397 19.189837 25.672729 13.793905
56.614278 56.724787 19.428838 17.362819 8.835412
−114.732203 −131.581665 −53.717208 −57.978611 −26.616543

43.141667 51.648530 19.382676 26.443906 14.043129


(D19)

It1(2, :, :)=
23.949901 14.778852 −11.888094 2.752459 8.202003
−172.382067 −223.146941 −82.226496 −64.009011 −46.870889
261.465264 389.567442 216.370674 174.558054 90.985548
−90.416434 −132.858435 −82.922090 −88.970970 −54.008049
−137.165438 −142.967414 −89.290104 −69.621141 −28.857329
277.999420 331.402610 192.070864 189.634603 90.450645
−94.163160 −127.374361 −81.733697 −92.222698 −54.397761


(D20)

It1(3, :, :)=
−16.458425 −5.233017 6.562594 −10.476138 −11.684835
133.610420 180.884019 114.983093 103.098665 64.356335
−207.804511 −344.267998 −282.408473 −238.886879 −123.527042

60.831235 109.376515 119.761288 131.154016 81.095594
112.486039 123.270583 129.753159 91.206345 34.958736
−227.936935 −288.904927 −256.603938 −251.524286 −117.483340

65.084160 103.807907 117.344461 134.914057 80.907908


(D21)

It1(4, :, :)=
3.712240 −1.698233 0.689174 9.357443 5.915291
−37.247274 −53.083017 −63.043242 −66.669945 −34.242303
61.592618 120.349330 152.800477 144.112769 68.456084
−13.907175 −39.307187 −77.574138 −93.356087 −55.044777
−35.216502 −39.157094 −69.722510 −43.639326 −17.534227
72.268870 99.566991 142.017545 145.864151 62.263219
−16.012744 −37.054272 −76.259003 −94.838522 −54.602871


(D22)

It1(5, :, :)=
−0.255738 0.571123 −0.194635 −1.438571 −0.295277
2.643824 3.613584 8.299555 10.505772 3.820332
−5.306676 −13.998280 −24.701326 −25.716357 −10.470962
1.663405 9.461890 20.835279 25.597187 14.453228
3.583366 1.928772 10.154802 4.368168 1.977129
−8.286969 −10.041223 −23.923139 −25.670827 −7.835865
2.184772 9.070745 20.557907 25.805052 14.333351


(D23)

It1(6, :, :)=
−0.055049 0.035890 0.032544 −0.000811 0.000342
0.145594 −0.246526 −0.007581 0.068080 −0.091463
−0.068985 0.542979 −0.215523 −0.162468 0.306337
−0.080029 −0.460504 0.256993 0.150341 −0.705551
−0.171522 0.270405 −0.379745 0.352277 −0.090620
0.400601 −0.349407 0.632882 −0.772935 0.305331
−0.148020 −0.414416 0.299683 0.122614 −0.704614

 (D24)

It2(1, :, :)=
−5.7258055 4.6742091 3.9009208 −3.6012671 1.6494929
22.2232546 −36.6333746 5.7078416 6.8000797 −8.0609420
−12.3848827 67.0809077 −58.2052203 6.0215690 18.9447639
−13.8146709 −28.7098857 63.3541108 −15.2928387 −14.8005194
−1.9457799 −21.0008695 36.6230667 −6.9262636 −5.9263411
12.2705756 50.2206921 −106.6422066 23.5785134 20.4626135
−18.7356724 −24.7651457 70.5192355 −17.3834529 −15.7073488


(D25)

It2(2, :, :)=
10.3949253 −1.7986434 −13.5540153 6.0950126 −5.2899093
−50.4535447 68.6347658 −5.9411855 −1.4965935 23.5785440
29.8238964 −130.9277484 124.4186812 −47.2728909 −48.6232937
39.5765002 32.8957644 −136.0211033 66.2260029 31.8846485
0.6015098 42.7988005 −89.0992084 31.0752719 15.4963826
−25.5482064 −82.3969757 250.9121459 −97.9814698 −50.0053027
50.8318678 22.3567994 −154.2821458 72.4640619 34.1845044


(D26)

It2(3, :, :)=
−2.5395506 −13.1033176 18.0894175 −1.4842956 5.2035291
31.8741772 −24.6952234 −7.2920794 −21.9824970 −21.7548434
−11.7055962 52.6048792 −77.0772833 89.8101815 36.1605500
−50.7802429 30.2485514 89.8583938 −102.6158206 −11.9793828

0.9231891 −17.8464718 73.4366291 −47.5554496 −12.4124918
28.6677816 −3.4839939 −196.3401020 143.0821824 33.8401851
−59.2778989 40.9278679 106.2721634 −109.4699299 −13.9627139


(D27)

It2(4, :, :)=
−3.5396780 13.7008953 −10.3989969 −2.2204264 −1.4992357
−1.7337036 −12.3340251 8.6906327 25.7705289 5.6675673
−9.9735983 20.0932861 10.2548742 −69.4769647 −2.4577836
30.6922787 −43.8152447 −20.2337737 73.5698952 −12.7866025
0.3073784 −8.1967548 −23.8569770 31.5902276 2.1205812
−18.4228389 52.2703527 60.1799648 −93.0749226 0.9251449
32.7731899 −48.8178908 −26.2751530 76.9444402 −12.1444514


(D28)

It2(5, :, :)=
1.5827856 −3.5265698 1.7437259 1.3796397 −0.0692422
−2.6055764 5.2706415 −0.4417942 −9.7260849 0.5830398
5.7375263 −9.6398019 −1.0522954 22.6003694 −4.4651553
−6.8976806 10.1399490 4.4808343 −23.3338246 7.8224448
−0.2557835 5.0101740 3.7705422 −8.6121159 1.0503852
4.2707170 −18.8232433 −11.0601730 25.6977633 −6.1702348
−6.7868106 11.1837059 5.2291191 −24.0665130 7.7724456


(D29)

It2(6, :, :)=
−0.0679784 −0.0541334 0.1144018 −0.1140784 0.0014493
0.1998278 0.2681714 −0.2238743 0.3689901 −0.0702087
−0.2359921 −0.5382265 0.3799151 −0.9913595 0.5354574
0.0606999 0.4776227 −0.2504437 0.8046238 −0.7737097
−0.1206340 −0.2412165 −0.3751788 0.1596029 −0.0669662
0.2997150 0.5702797 1.3827055 −0.4581764 0.5331981
−0.0108322 0.4032303 −0.2316729 0.8488675 −0.7734641

 (D30)
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the calculation of the convective correction. In addition, a version
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