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Abstract. In the present work, a consistent method for calculating the lift and drag forces from the 2-D airfoil
data for the dihedral or coned horizontal-axis wind turbines when using generalized lifting-line methods is de-
scribed. The generalized lifting-line methods refer to the models that discretize the blade radially into sections
and use 2-D airfoil data, for example, lifting-line (LL), actuator line (AL), blade element momentum (BEM) and
blade element vortex cylinder (BEVC) methods. A consistent interpretation of classic unsteady 2-D thin airfoil
theory results reveals that it is necessary to use both the relative flow information at one point on the chord
and the chordwise gradient of the flow direction to correctly determine the 2-D aerodynamic force and moment.
Equivalently, the magnitude of the force should be determined by the flow at the three-quarter-chord point, while
the force direction should be determined by the flow at the quarter-chord point. However, this aspect is generally
overlooked, and most implementations in generalized lifting-line methods use only the flow information at one
calculation point per section for simplicity. This simplification will not change the performance prediction of
planar rotors but will cause an error when applied to non-planar rotors. In this work this effect is investigated us-
ing the special case, where the wind turbine blade has only out-of-plane shapes (blade dihedral) and no in-plane
shapes (blade sweep), operating under steady-state conditions with uniform inflow applied perpendicular to the
rotor plane. The impact of the effect is investigated by comparing the predictions of the steady-state performance
of non-planar rotors from the consistent approach of the LL method with the simplified one-point approaches.
The results are verified using blade-geometry-resolving Reynolds-averaged Navier–Stokes (RANS) simulations.
The numerical investigations confirmed that the full method complying with the thin airfoil theory is necessary
to correctly determine the magnitude and direction of the sectional aerodynamic forces for non-planar rotors.
The aerodynamic loads of upwind- and downwind-coned blades that are calculated using the LL method, the
BEM method, the BEVC method and the AL method are compared for the simplified and the full method. Re-
sults using the full method, including different specific implementation schemes, are shown to agree significantly
better with fully resolved RANS than the often used simplified one-point approaches.

1 Introduction

With the scientific and engineering advancements in the de-
sign optimization and manufacturing of horizontal-axis wind
turbines (HAWTs), modern wind turbine blades are gener-
ally more flexible and may have more out-of-plane shapes
compared to conventional stiff machines. Also, research on
downwind turbines proposed for land-based low-rated-wind

applications (Madsen et al., 2020b) and the ultra-light con-
cept (Loth et al., 2012) involve wind turbine rotors with large
out-of-plane shapes. Correctly predicting the aerodynamic
loads on such non-planar rotors is important for the design
optimization and verification of these new concepts. How-
ever, it is computationally expensive to use accurate blade-
geometry-resolving Navier–Stokes simulations for aerody-
namic calculations, especially during the design optimiza-
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tion phase. Instead, low- to mid-fidelity generalized lifting-
line aerodynamic models that use 2-D airfoil data provided
by Navier–Stokes solvers or wind tunnel measurements are
widely used. The models range from the low-fidelity blade
element momentum (BEM) method (Madsen et al., 2020a)
and blade element vortex cylinder (BEVC) method (Li et al.,
2022) to the higher-fidelity lifting-line (LL) method (Phillips
and Snyder, 2000) and actuator line (AL) method (Sørensen
and Shen, 2002). The advantage of such models is that it
is not necessary to directly solve the Navier–Stokes equa-
tions for the whole flow domain and resolve the 3-D blade
geometry. In addition, the so-called engineering dynamic
stall model is usually applied to such generalized lifting-
line methods to account for unsteady 2-D effects. However,
the dynamic stall name of the model is misleading because
the model is also active for non-stalled conditions. There-
fore a more proper name for such models is unsteady 2-D
airfoil aerodynamic models. For example, in the Beddoes–
Leishman-type dynamic stall model (Hansen et al., 2004; Pir-
rung and Gaunaa, 2018) that is implemented in the HAWC2
code (Larsen and Hansen, 2007; Madsen et al., 2020a), the
following effects are modeled: unsteady attached flow, un-
steady flow separation (dynamic stall), non-circulatory lift
force and the effective pitch rate drag force.

According to unsteady 2-D thin airfoil aerodynamics, it
is necessary to use the flow information at both the quarter-
chord point and the three-quarter-chord point to correctly
determine the magnitude and direction of the lift and drag
forces (Bergami and Gaunaa, 2012; Pirrung and Gaunaa,
2018). However, this aspect is generally overlooked and is
often not a focus of engineering wind turbine aerodynamic
model descriptions (Schepers et al., 2021). For simplicity,
most implementations only use the flow information at one
calculation point per section. This simplification will not
change the performance prediction of planar rotors but will
cause an error for non-planar rotors. In this work, a special
case is focused on where the blade has only dihedral and no
sweep, operating under steady-state conditions with uniform
inflow applied perpendicular to the rotor plane. The present
work is not intending to propose a new correction since
it is already included in a Beddoes–Leishman-type model
(Hansen et al., 2004; Pirrung and Gaunaa, 2018). Instead,
the focus is to show the importance of this aspect of the un-
steady airfoil aerodynamic models even for steady-state com-
putations for any rotor models that use 2-D airfoil data. First,
the impact of the one-point simplification is investigated by
comparing the results from the LL method using a two-point
approach against results following the one-point simplifica-
tion for non-planar rotors. Furthermore, the results computed
from blade-geometry-resolving Reynolds-averaged Navier–
Stokes (RANS) simulations are used for comparison. The
numerical investigations showed that correctly determining
the magnitude and direction of the lift force is important
for non-planar rotors. Then, the corrections to the simpli-
fied one-point approaches are tested thoroughly. The aero-

dynamic loads of upwind- and downwind-coned blades are
calculated using the LL method, the AL method, the BEM
method and the BEVC method, both without and with the
correction. In addition, the analytical derivations and numer-
ical results in this work show that the total non-circulatory
force is negligible for such steady-state conditions.

The structure of the present work is as follows: the high-
lights from the unsteady 2-D thin airfoil theory are firstly
summarized in Sect. 2. This section also includes the inter-
pretation of these results in terms of what is necessary to be
included in generalized lifting-line methods. Then, the non-
circulatory forces of a pure dihedral blade under steady-state
operating conditions are derived in Sect. 3. Subsequently, the
corrections for the generalized lifting-line method that only
uses one chordwise calculation point are derived in Sect. 4.
Then, different aerodynamic models for the comparison are
described in Sect. 6. In Sect. 7, the setup of the numeri-
cal tests is described, and the results from different general-
ized lifting-line methods are compared together with the re-
sults from the blade-geometry-resolving RANS solver – both
without and with the corrections. Finally, the conclusions and
the future work are summarized in Sect. 8.

2 Highlights from unsteady 2-D thin airfoil
aerodynamics

Unsteady 2-D thin airfoil theory is of vital importance to cor-
rectly model the aerodynamics of wind turbine blades with
dihedral using generalized lifting-line methods. The reason is
related to the ideas underlying generalized lifting-line meth-
ods, which are considered to be the application of perturba-
tion theory (Van Dyke, 1975). The aerodynamics of the full
3-D system is considered to be the combination of an inner
and an outer problem. The inner problem is the unsteady 2-
D airfoil aerodynamics, and it has a relatively simple 2-D
geometry but a locally complex flow (as derived from the
Navier–Stokes equations). The outer problem is the 3-D rotor
and wake problem that has complex geometry but is assumed
to be irrotational flow everywhere except for the bound vor-
tex and the wake that originates from it. The full 3-D aerody-
namic problem is approximately solved by solving the two
problems together (Johnson, 2013). Analysis using unsteady
2-D thin airfoil theory reveals that this problem is driven by
the relative velocities that would have been there if the veloc-
ities induced by the 2-D airfoil and its wake were not present.
To find this situation for the inner problem, the 3-D flow (in-
cluding the 3-D induction minus the local 2-D induction),
the onset flow and the total motion at each blade section are
transformed into the 2-D airfoil section coordinate system,
where they are used to solve the inner problem (Li et al.,
2020). The results from the inner 2-D problem, which are
the sectional forces and the bound circulation, are used as
the input for solving the 3-D problem.
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Figure 1. Definitions of the coordinate system and positive direc-
tions used in the derivations of the unsteady 2-D thin airfoil theory.

In this section, some of the important conclusions and re-
sults from unsteady 2-D thin airfoil theory are briefly de-
scribed. These conclusions will be used to derive the non-
circulatory forces in Sect. 3 and are important to determine
the magnitude and direction of the lift force in Sect. 4. A de-
tailed derivation of 2-D unsteady thin airfoil theory, also in-
cluding the analysis of details behind a consistent evaluation
of unsteady drag, is shown in Gaunaa (2010). This previous
work also considers the effect of a deformable or morphable
camber line. But if the camber line shape is not changing over
time, the classical steady and unsteady 2-D thin airfoil results
are recovered. It is seen from the results of the analysis that
the local pressure difference anywhere on the thin airfoil is
determined from the undisturbed relative local flow veloci-
ties and their time history over the whole airfoil chord length.
It does not matter how the relative flow velocities (and their
time history) arise; if two situations have the same “input”,
the resulting pressure differences over the airfoil will be the
same. This information is crucial for the interpretation of the
thin airfoil results in the more general case, where the thin
airfoil framework results are to be used “inside” the frame-
work of the general lifting-line methods. More specifically, it
is the magnitude of the relative wind speed and the local nor-
mal flow velocity (the component of the relative flow velocity
in the direction locally normal to the chord line) that drives
the solution of the local pressure differences and thereby also
the integral airfoil section forces.

For the present work, the simplest representation of an un-
cambered airfoil, a flat plate, with a chord length of c = 2b
that is placed in a uniform flow with the free-stream velocity
of V is considered. The geometric flow angle θ is the an-
gle between the flow and the flat plate. The airfoil motion is
described by a heaving motion ẏ (positive upward, perpen-
dicular to the incoming flow), a pitching motion θ̇ about the
axis at ξ = ab (positive nose-up) and a horizontal motion of
ẋ (positive direction downwind). A sketch of the coordinate
system and the geometry of a flat plate to derive the unsteady
2-D thin airfoil theory is shown in Fig. 1.

Essentially, the fundamental output from the thin airfoil
analysis is the local unsteady pressure difference over the air-
foil and the leading edge suction force. At the leading edge
of an airfoil, there is generally a low pressure because the
air is accelerated around the relatively small leading edge ra-

Figure 2. Projection of the normal and tangential forces (N and T )
to the lift and drag forces (L and D) that are defined according to
a flow direction that has an angle of 1αr from the geometric flow
direction. The choice of the reference direction, which consequently
defines lift and drag, could be arbitrary as long as the same total
force Ftot is obtained.

dius. In thin airfoil theory the airfoil thickness, and along
with it the leading edge radius, tends to zero. This results in
the pressure tending to minus infinity at the leading edge1,
which has an effective area tending to zero. The leading edge
suction force can be considered the limit of the pressure act-
ing on the leading edge area as the leading edge radius tends
to zero. It acts in the airfoil tangential (−ξ ) direction, point-
ing from the trailing edge to the leading edge. The pressure
difference over the airfoil in the flat-airfoil case acts locally
normal to the airfoil surface, and therefore in this flat-airfoil
case only in the normal (ε) direction. Therefore, the integral
forces on the airfoil consist of the contributions from the nor-
mal force N and the tangential force T , which have the rela-
tionship of |T | � |N |. The force components usually used in
generalized lifting-line methods are lift and drag, which are
defined relative to a local flow direction and not relative to
the orientation of the airfoil. The corresponding lift and drag
forces are the projection of the normal and tangential force
according to the reference direction, which is explained in
the following and illustrated in Fig. 2.

2.1 The lift force magnitude

The lift force that is defined according to the effective flow
direction that deviates by an angle of1αr from the geometric
flow direction as shown in Fig. 2 can be derived by projecting
the normal and tangential forces.

L=N cos(θ +1αr)− T sin(θ +1αr) (1)

In the equation above, 1αr is the contribution from the
airfoil motion to the angle of attack, which is shown in more
detail in Sect. 2.2. In the derivation of thin airfoil theory, it
is assumed that the angles of attack are small. In addition,

1This corresponds to the singularity of the resulting bound vor-
ticity distributions at the leading edge of the thin airfoil.
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the relative velocities due to airfoil motion are significantly
smaller than the onset flow velocity. Under these assumptions
the detailed definition of the angle of attack is not important
for the evaluation of the lift force because |θ +1αr| � 1,
which together with |T | � |N | inserted into Eq. (1) leads to

L≈N. (2)

Using the expression for the normal force N derived in
Gaunaa (2010) the lift force for the oscillatory case is ob-
tained2.

L= 2πρb(V − ẋ)
[

(V − ẋ)θ − ẏ+
(

1
2
− a

)
bθ̇

]
C(k)︸ ︷︷ ︸

LC=LQSC(k)

+πρb2 [(V − ẋ)θ̇ − ẍθ − ÿ− abθ̈
]︸ ︷︷ ︸

LNC

, (3)

where C(k) is Theodorsen’s lift deficiency function
(Theodorsen, 1935), and k is the reduced frequency:

k =�b/V. (4)

The first term of the lift force is the circulatory lift force,
LC, which through Theodorsen’s lift deficiency function
takes the unsteady 2-D shed wake into account if temporal
variations in the quasi-steady lift, LQS, are present. If LQS

is constant, then C(k)= 1. The second lift term, LNC, is the
non-circulatory lift force, which always acts instantaneously
without any time lag.

2.1.1 Circulatory lift

To have a better understanding of the circulatory lift equa-
tion in Eq. (3) in the context of the generalized lifting-line
methods, it is convenient to express it as an explicit function
of the angle of attack. To determine the angle of attack more
precisely, it is necessary to firstly consider how it is defined.
The component of the relative flow velocity in the direction
perpendicular to the airfoil (ε direction) is usually termed the
upwash. The upwash at a chordwise position with the coor-
dinate of ξ is

w = (V − ẋ)θ − ẏ+ (ξ − ab)θ̇ . (5)

By setting ξ = 1
2b, the upwash at the three-quarter-chord

point is obtained.

w3/4 = (V − ẋ)θ − ẏ+ (
1
2
− a)bθ̇ (6)

Since an angle of attack is defined as the angle between
a flow direction and the chord line, in this case using the

2In the case where the forcing is arbitrary, the 2-D shed wake
effect can be modeled by a time-lag filter on the term (V − ẋ)θ −
ẏ+

(
1
2 − a

)
bθ̇ , as shown in Gaunaa (2010).

small-angle approximation, α3/4 ≈ w3/4/(V − ẋ), the circu-
latory lift in Eq. (3) can be written as

LC
= 2πρb(V − ẋ)w3/4C(k)=

1
2
ρ(V − ẋ)2c2πα3/4C(k). (7)

This means the magnitude of the circulatory lift is cor-
rectly determined by using the angle of attack at the three-
quarter-chord point. After furthermore noting that under the
thin airfoil approximations, the relative wind speed is equal
to (V − ẋ), the circulatory lift expression can be finally writ-
ten in terms of the 2-D lift airfoil data as

LC =
1
2
ρV 2

relcC
QS
L (α3/4)C(k). (8)

2.1.2 Non-circulatory lift

The non-circulatory lift in Eq. (3) is summarized as follows.

LNC
= πρb2 [(V − ẋ) θ̇ − ẍθ − ÿ− abθ̈

]
(9)

According to Eq. (9), the pitch rate of the airfoil θ̇ , the
pitching acceleration of the airfoil θ̈ , the heave acceleration
of the airfoil ÿ perpendicular to the flow and the streamwise
acceleration of the airfoil ẍ will all contribute to the non-
circulatory lift.

2.2 Lift force direction and 2-D drag

One of the key conclusions that can be drawn from a full un-
steady 2-D thin airfoil theory analysis regarding application
in generalized lifting-line methods is usually overlooked: a
consistent definition of the direction with which lift and drag
forces are defined. Even though the details may at first glance
seem overwhelmingly focused on unimportant details, the ef-
fect of skipping these details can in some cases lead to com-
pletely unphysical behaviors. This is shown by an example
in Appendix B.

As stated previously, the local angles of attack observed at
different locations on the chord line differ from each other
in the general unsteady case due to the pitching or torsional
motion of the blade. By use of Eq. (5), the angle of attack
observed in the chordwise position ξ can be determined.

α(ξ )=
w(ξ )

(V − ẋ)
=

(V − ẋ)θ − ẏ+ (ξ − ab)θ̇
(V − ẋ)

(10)

The result of the analysis will reveal that there is a special
significance of the quarter-chord point, ξ =− 1

2b, so the com-
plexity of performing a more general analysis is skipped, and
we consider directly the angle of attack at the quarter-chord
point.

α1/4 =
w
(
ξ =− 1

2b
)

(V − ẋ)
= α3/4−

bθ̇

(V − ẋ)
(11)

Using this angle of attack as the reference with which the
drag force is defined, which means applying α1/4 = θ +1αr
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in Fig. 2 together with the usual thin airfoil small-angle ap-
proximation, the corresponding drag force is

D1/4 =N sinα1/4− T cosα1/4 ≈Nα1/4− T (12)

The tangential force, which in the uncambered airfoil case
stems entirely from the leading edge suction force, is given
by Gaunaa (2010) for the flat-airfoil case as

T =
π

2
ρb
(
2(V − ẋ)α3/4C(k)− bθ̇

)2
. (13)

Inserting the results from Eqs. (2), (3), (11) and (13) into
Eq. (12), it can be shown that

D1/4 =−L
C1αi︸ ︷︷ ︸
Di

+LNCα1/4︸ ︷︷ ︸
DNC

−
1
2
πρb3θ̇2︸ ︷︷ ︸

Dpitchrate

, (14)

where 1αi can be considered to be the effective induced an-
gle of attack due to the unsteady 2-D wake

1αi =
LC
−LQS

2πρb(V − ẋ)2 . (15)

Each component of the drag force in Eq. (14) is described
briefly below.

2.2.1 Shed-wake-induced drag

The term Di in Eq. (14) is the induced drag force, which is
an effective drag that originates from the changed direction
of the circulatory lift force due to the induced velocity from
the shed vorticity in the wake after an unsteady airfoil. For
steady-state conditions, the bound circulation strength does
not change with time, which means that there is no shed-
wake-induced drag force. This is in agreement with the term
in Eq. (15) under the condition of LC

= LQC, which results
in zero induced unsteady 2-D drag.

2.2.2 Non-circulatory drag

In Eq. (14), the drag component of DNC is the effective drag
force due to the projection of the non-circulatory lift LNC.
It is seen that the direction of the non-circulatory force is
perpendicular to the chord.

2.2.3 Drag due to pitch rate

The last term Dpitchrate of the drag force is due to the pitch
rate and is in some sense a drag equivalent to the non-
circulatory lift term due to the pitch rate, πρb2(V − ẋ)θ̇ .
When the airfoil has a pitching motion, there will be a lin-
ear variation in upwash along the chord, which results in this
drag term. The magnitude of this drag component is propor-
tional to the square of the pitch rate θ̇ . For the airfoils with
low to moderate reduced frequency, this term is negligible.

2.2.4 Using a different reference direction for drag

In analogy with Eq. (12), the drag defined from the angle of
attack at the three-quarter-chord point turns out to be

D3/4 =N sinα3/4− T cosα3/4 ≈Nα3/4− T =D1/4

+L
bθ̇

(V − ẋ)
. (16)

For cases with non-negligible pitch rate, the differences
in the two different drag values, in Eqs. (14) and (16), can
be quite substantial. In some cases, it is even possible that
the contribution from the last term in the three-quarter-chord
reference-based drag can have a steady negative value, which
is counterintuitive. For this reason, it is suggested to use the
quarter-chord reference direction definition of the drag coef-
ficient in aeroelastic codes. Note that both situations reflect
the same physics and also exactly the same total force mag-
nitude and direction. As long as the reference directions are
handled correctly both methods give exactly the same correct
result. An example is illustrated with a vertical-axis wind tur-
bine (VAWT) operating in zero onset flow in Appendix B.

These important details about the drag are generally over-
looked but are important for the performance prediction of
dihedral blades, which is investigated in Sect. 4. It should
be emphasized that the considerations in this section are de-
rived from the thin airfoil theory, which does not include the
effects of steady 2-D profile drag. This extra drag component
from the 2-D airfoil polars has to be added to the contribu-
tions from the thin airfoil theory in the generalized lifting-
line methods.

2.3 Application of thin airfoil aerodynamics in an
aeroelastic context

When applying these results from thin airfoil aerodynamics
in an aeroelastic model, it might seem as if it needs to be
carefully considered whether components of the relative mo-
tion of the airfoil with respect to the surrounding air are due
to a change in flow speed (e.g., due to a gust) or due to a
motion of the airfoil itself.

To avoid this issue, it is chosen in Hansen et al. (2004)
to treat gusts as an instantaneous change in wind speed ev-
erywhere around the airfoil and then apply the Wagner func-
tion to approximate the unsteadiness due to the 2-D wake
induction. With this assumption, changes in airfoil motion in
the chordwise direction or in the direction perpendicular to
the chord have the exact same effect as gusts in those direc-
tions: changing the relative flow speed and angle of attack
seen by the airfoil. The error due to the assumption of the
gust affecting the complete flow field instantaneously is in-
vestigated in Buhl et al. (2005). For an oscillating inflow at
a reduced frequency of 0.25 (corresponding to a frequency
of 5.6 Hz at an airfoil section with 1 m chord and a relative
speed of 70 m s−1), this simplification causes a relative er-
ror in the force amplitude of roughly 3 % and a phase error
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of below 0.3◦. Due to this assumption it is not necessary to
differentiate if the relative velocity or angle of attack expe-
rienced at the airfoil is due to airfoil motion (including the
motion due to rotor rotation) or the incoming wind.

The only airfoil motion that remains to be treated individ-
ually is the torsion rate of the airfoil, which does not cause
a constant change in velocity along the chord (like the gusts
with the assumption described above or a translation of the
airfoil). Instead, the torsion rate causes a velocity that varies
linearly with the position on the chord. The torsion rate is
then the total rotation rate of the airfoil section about an axis
perpendicular to the cross-section, including influences from
rotor rotation, blade torsion and any movement of the sub-
structure that contributes to this rotation.

3 Non-circulatory lift of a pure dihedral blade

In this section, the focus is on the special case that the rotor
is non-planar, and the blades have no sweep. For this special
case, the blade pitch angle is set to be zero since pitching the
blade will result in blade in-plane geometries. The blades are
operating at steady-state, with uniform inflow applied per-
pendicular to the rotor plane, and the rotor has zero tilt and
no yaw error. The influence of the non-circulatory lift on such
a pure dihedral blade is derived analytically in this section.

3.1 Coordinate system and transformation matrix

Following the conventions in the HAWC2 code, the main
axis of the blade is chosen to be the half-chord line. The air-
foils are aligned perpendicular to this main axis. Since it is
necessary to perform the projection of the 3-D motion of the
blade section into the 2-D airfoil section for the analysis, it is
convenient to introduce different coordinate systems and the
corresponding transformation matrices between them. Three
coordinate systems, which are the blade coordinate system,
the sectional coordinate system and the local flow coordi-
nate system are used in the present work. The three different
coordinate systems and the relationship among them are il-
lustrated in Fig. 3.

It is assumed that the turbine has three identical blades.
The blade coordinate system is a rotating system following
a blade that is chosen for reference. For the blade coordinate
system, the yB axis follows the free-stream direction and is
defined as the axial direction. The zB axis is the “radial” di-
rection and is positive in the direction of increasing radius.
The xB axis is defined as the tangential direction. It is normal
to both the yB axis and zB axis, and its direction is defined
so that a right-handed system is found. The sectional coordi-
nate system is the blade coordinate system rotated around the
xB axis with the local dihedral angle κ so that the zS axis is
tangent to the main axis of this section and is positive in the
direction of increasing curved blade length. The local flow
coordinate system is the sectional coordinate system rotated
around the−zS axis with the local flow angle φ so that the xL

Figure 3. Illustration of the blade coordinate system B, the sec-
tional coordinate system S and the local flow coordinate system L
for a blade with only dihedral and no sweep. The sectional coor-
dinate system is the blade coordinate system rotated around its xB

axis with the local dihedral angle κ , as shown in the left panel. The
flow angle in the sectional coordinate system is φ. The local flow
coordinate system is the sectional coordinate system rotated around
its zS axis with −φ, as shown in the right panel.

axis is pointing to the local flow direction. There is only one
blade coordinate system for the whole blade, and each sec-
tion has its own sectional coordinate system and local flow
coordinate system.

The connection between the 3-D flow and motion pro-
jected into the local flow system and the unsteady 2-D air-
foil theory introduced in Sect. 2 is briefly described to shed
light on the connections between the 3-D problem and the 2-
D problem. The total 3-D flow velocity relative to the blade
V 3−D consists of the inflow; the total motion of the blade
section; and the 3-D wake induction minus the 2-D bound
vortex induction (Li et al., 2020), which is projected into the
local flow coordinate system. The key principle in connecting
the 3-D system to the inner 2-D airfoil theory framework is
that the relative inflow conditions (and their time derivative)
at all locations along the chord should be matched. This as-
sures that the loads from the inner 2-D framework match the
3-D aerodynamic situation. Consider for example the effec-
tive pitching motion in Sect. 3.3. The projection of V 3−D into
the local flow coordinate system is V rel, which corresponds
to (V − ẋ) in the 2-D theory in Eq. (3). The xL and yL axis
correspond to negative x axis and positive y axis of the 2-D
system as in Fig. 1, respectively. For the steady-state case of
a pure dihedral blade that is shown in Fig. 3, the mounting
point is the half-chord point, which corresponds to a = 0 in
Fig. 1; the geometric flow angle θ in the 2-D theory corre-
sponds to the value of (φ−β) as seen in the sectional coordi-
nate system in Fig. 3; and the total 3-D motion of the section
is only due to the rotation of the rotor, which has an angular
velocity of� and the corresponding centrifugal acceleration.

For a blade section, the position vector p, the angular ve-
locity vector � and the centrifugal acceleration vector a in
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the blade coordinate system B are as follows:

pB
=

0
y

z

 ,�B
=

0
�

0

 ,aB
=

 0
0
−�2z

 . (17)

The dihedral angle κ is defined using the main-axis ge-
ometry in the blade coordinate system and is defined to be
positive when the blade is tilting upwind.

κ =−arctan
dy
dz

(18)

The transformation matrix from the blade coordinate sys-
tem B to the sectional coordinate system S is determined by
the local dihedral angle κ .

TB→S =

1 0 0
0 cosκ sinκ
0 −sinκ cosκ

 (19)

For the airfoil section with the local flow angle of φ, the
transformation matrix from the sectional coordinate system
S to the local flow coordinate system L is

TS→L =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 . (20)

For a given transformation matrix, the reverse transforma-
tion matrix is equal to its transposed matrix. This is because
the transformation matrices are orthonormal.

3.2 Mid-chord acceleration

For the pure dihedral blade, the projection of the centrifugal
acceleration from the blade coordinate system into the local
flow coordinate system is obtained using the transformation
matrices in Eqs. (19) and (20).

aL
= TS→LTB→SaB

=

 �2z sinκ sinφ
−�2z sinκ cosφ
−�2zcosκ

 (21)

According to Eq. (21) the mid-chord point of the airfoil
section will have an effective acceleration relative to the lo-
cal flow direction. The effective mid-chord heave accelera-
tion is the y component of aL, and the corresponding non-
circulatory lift is obtained using Eq. (9).

LNC
heav =−πρb

2aL
y = πρb

2�2z sinκ cosφ (22)

There is also an effective streamwise acceleration that is
equal to the negative value of aL

x , and the corresponding non-
circulatory lift is derived using Eq. (9).

LNC
stream =−πρb

2(φ−β)�2z sinκ sinφ

= LNC
heav(φ−β) tanφ (23)

Since the term (φ−β) is small, the total non-circulatory lift
due to the projection of the centrifugal acceleration is then3

LNC
acc = L

NC
heav+L

NC
stream ≈ πρb

2�2z sinκ cosβ. (24)

3.3 Airfoil effective pitching motion

For non-planar rotors, the projection of the angular veloc-
ity into the 2-D airfoil section will also result in an effective
pitching motion of the airfoil if assuming the flow seen by
the airfoil is uniform. This is shown by projecting the angu-
lar velocity vector from the blade coordinate system into the
local flow coordinate system.

�L
= TS→LTB→S�B

=

−�cosκ sinφ
�cosκ cosφ
−�sinκ

 (25)

The airfoil pitch rate of the effective pitching motion is the
z component of �L.

θ̇ =�L
z =−�sinκ (26)

The existence of the effective pitch rate θ̇ seems counter-
intuitive since for this steady-state operating condition, the
geometric flow angle θ = (φ−β) is not varying with time.
This could be explained by the fact that the effective pitch-
ing motion is due to the assumption that the flow is uniform,
which is actually curvilinear as seen by the airfoil.

The resulting non-circulatory lift due to this effective
pitching motion is obtained using Eq. (9).

LNC
pitchrate = πρb

2Vrelθ̇ =−πρb
2Vrel�sinκ (27)

3.4 Total contribution of non-circulatory lift

The total non-circulatory lift is then the sum of the contribu-
tion of the mid-chord acceleration in Eq. (22) and the contri-
bution of the effective pitch rate in Eq. (27).

LNC
= LNC

acc+L
NC
pitchrate = πρb

2�sinκ (�zcosβ −Vrel) (28)

If assuming the flow angle φ is small, and the tangential
induced velocity is much smaller than the velocity due to ro-
tation, the following approximation is obtained:

�z≈ Vrel cosφ ≈ Vrel. (29)

In addition, if assuming the twist angle β is small, the to-
tal contribution of the non-circulatory lift for a pure dihedral
blade in steady-state operating conditions is then approxi-
mately zero.

LNC
≈ ρπb2�sinκ (�z−�z)= 0 (30)

3This can also be derived directly from Eq. (3) by applying the
small-angle assumption to θ : ÿ+ ẍθ ≈ ε̈.
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Since the non-circulatory lift is perpendicular to the airfoil,
there should be an effective non-circulatory drag DNC that
corresponds to the flow direction due to the projection of the
non-circulatory lift as shown in Sect. 2.2.2. However, since
LNC is approximately zero, this effective drag DNC is also
approximately zero.

In summary, for a pure dihedral blade operating under
steady-state conditions, the total non-circulatory lift and the
corresponding effective non-circulatory drag are negligible.
This conclusion is tested numerically in Sect. 7.1. Since a
VAWT is similar to a HAWT with a 90◦ cone when there is
no inflow, it is not surprising that the same conclusion has
been shown for a VAWT operating under steady-state condi-
tions in Pirrung and Gaunaa (2018) as well as in Appendix B.

It is important to note that the equations derived previously
in this section are only applicable to a pure dihedral blade
without sweep under steady-state operating conditions. For
unsteady cases, there could be net non-circulatory forces. As
a result, for the unsteady conditions, it is important to include
all the non-circulatory terms described in Sect. 2 for both the
lift and drag forces.

4 One-point lifting-line correction

According to the conclusions from the unsteady 2-D thin
airfoil theory described in Sect. 2, the generalized lifting-
line method should be implemented using the flow informa-
tion at two chordwise locations: the magnitude of the quasi-
steady lift should be determined using the angle of attack at
the three-quarter-chord point, and the direction of the quasi-
steady lift should be determined using the flow angle at the
quarter-chord point. This approach is labeled as 2P in the
present work. This means the projection of the quasi-steady
lift and drag coefficients into the sectional coordinate system,
as usually done in much of the BEM literature, should have
the following form4:

CQS
x = C

QS
L (α3/4) sinφ1/4−C

QS
D (α3/4)cosφ1/4 (31)

CQS
y = C

QS
L (α3/4)cosφ1/4+C

QS
D (α3/4) sinφ1/4, (32)

where

φ1/4 = α1/4+β. (33)

The generalized lifting-line methods are usually imple-
mented as the one-point approach that only utilizes the flow
information at one chordwise location per section for sim-
plicity. This simplification will not change the performance
prediction of planar rotors because the flow angle is constant

4It is argued by some researchers that the drag force should
be excluded during the convergence calculation but should be in-
cluded when calculating the aerodynamic loads after the conver-
gence, which can be considered to be the post-processing of the
converged results.

along the chord for planar rotors under steady-state condi-
tions. This can be shown using Eq. (26) with the condition
of κ = 0; there is no effective pitching motion of the airfoil.
However, for an airfoil section of a non-planar rotor, there
exists an effective pitching motion even in steady-state con-
ditions, as shown in Sect. 3.3. So the simplified one-point ap-
proach will result in an error in the performance prediction
of non-planar rotors.

However, with the known effective pitch rate θ̇ , the flow
angle at the quarter-chord point and the three-quarter-chord
point can be inferred from each other, or from the known flow
angle at an arbitrary chordwise location. For example, the
difference between the flow angle at the quarter-chord point
and at the three-quarter-chord point can be approximated us-
ing Eq. (5).

φ3/4−φ1/4 = α3/4−α1/4 = arcsin
w3/4

Vrel,3/4

− arcsin
w1/4

Vrel,1/4
≈

θ̇ c

2Vrel
(34)

The difference between the magnitude of the relative ve-
locity at the three-quarter-chord point (Vrel,3/4) and at the
quarter-chord point (Vrel,1/4) is a secondary effect, which is
shown numerically in Sect. 7.2. In the following sections, the
magnitude of the relative velocity Vrel along the chord is as-
sumed to be constant, unless otherwise stated. For the special
case that a pure dihedral blade is operating under a steady-
state condition, Eq. (34) can be simplified using Eq. (26).

α3/4−α1/4 ≈−
�c sinκ

2Vrel
(35)

4.1 One-point approach using the quarter-chord point

One of the common one-point implementations of the gen-
eralized lifting-line method is placing the calculation point
at the quarter-chord point for each section. The flow infor-
mation at the quarter-chord point is used to determine both
the magnitude and direction of the lift force. This simplified
approach is labeled as QC in the present work. An example
of this is the most common implementation of the lifting-
line (LL) method (Phillips and Snyder, 2000). For a dihedral
blade, the directions of the lift and drag forces from this sim-
plified one-point approach are correct, but the magnitude of
the forces will be wrong. The correction to this implemen-
tation is using the approximated angle of attack at the three-
quarter-chord point in Eq. (36) instead of the angle of attack
at the quarter-chord point to obtain the quasi-steady aerody-
namic coefficients from the 2-D airfoil data. This corrected
approach is labeled as QC-corr.

α̃3/4 ≈ α1/4+
θ̇ c

2Vrel
(36)
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4.2 One-point approach using the three-quarter-chord
point

Another commonly used one-point approach of the general-
ized lifting-line methods is placing the calculation point at
the three-quarter-chord point, such as the BEM method im-
plemented in the HAWC2 code. This implementation uses
the flow information at the three-quarter-chord point for both
the magnitude and direction of the lift force. This simpli-
fied approach is labeled as 3QC. Then, the magnitudes of the
circulatory lift and drag coefficients are correctly calculated,
but the direction of the lift force is erroneous, which will re-
sult in an additional effective drag force. Then, the calculated
tangential load will have an offset if the blade has dihedral,
which will result in an error in the aerodynamic power pre-
diction.

One possible method of applying the correction is using
the angle of attack at the three-quarter-chord point and the
pitch rate θ̇ to approximate the angle of attack at the quarter-
chord point as in Eq. (37). Then, the approximated value of
α̃1/4 should be used in Eq. (33) to determine the directions of
the lift and drag.

α̃1/4 ≈ α3/4−
θ̇ c

2Vrel
(37)

Alternatively, it is possible to include an additional pitch
rate drag force in the flow direction at the three-quarter-
chord point by modifying the quasi-steady drag coefficient in
Eqs. (31) and (32). This formulation of the one-point lifting-
line correction is implemented in the Beddoes–Leishman-
type dynamic stall model in HAWC2 code version 12.5 and
later (Pirrung and Gaunaa, 2018). This corrected approach is
labeled as 3QC-corr.

C̃
QS
D = C

QS
D (α3/4)+CQS

L (α3/4)(α3/4− α̃1/4)

= C
QS
D (α3/4)+

θ̇ c

2Vrel
C

QS
L (α3/4) (38)

Both implementations should give almost identical results
when the difference between α3/4 and α̃1/4 is small.

4.3 Generalized one-point correction

Apart from the two most common choices of the calculation
point described previously, other definitions of the calcula-
tion point are possible. The general correction for the one-
point approach of the generalized lifting-line methods that
use an arbitrary chordwise location as the calculation point
is given. When placing the calculation point at the x-chord
point, which means the distance from the leading edge to the
calculation point is xc, there should be corrections to both the
magnitude and direction of the lift force. This can be done by
approximating the angle of attack at both the quarter-chord
point and the three-quarter-chord point from the angle of at-

Table 1. Details of different approaches of the generalized lifting-
line method that are investigated in the present work. The differ-
ences are the chordwise locations where the flow information is
used to determine the sectional force magnitude and force direction.
The correction methods for different approaches are also listed.

Name Force Force Correction
magnitude direction method

2P 3/4 chord 1/4 chord –
QC 1/4 chord 1/4 chord –
QC-corr 1/4 chord 1/4 chord Eq. (36)
3QC 3/4 chord 3/4 chord –
3QC-corr 3/4 chord 3/4 chord Eq. (38)

tack at the x-chord point together with the pitch rate θ̇ ac-
cording to Eq. (5).

α̃3/4 = αx +

(
3
4
− x

)
θ̇ c

Vrel
(39)

α̃1/4 = αx +

(
1
4
− x

)
θ̇ c

Vrel
(40)

The approximated angle of attack α̃3/4 should be used in
Eqs. (31) and (32) to obtain the quasi-steady lift and drag co-
efficient from the airfoil data. The approximated angle α̃1/4
should be used in Eq. (33) to determine the direction of the
lift and drag forces.

Details of different approaches that are investigated in the
present work are summarized in Table 1.

5 Blade geometries for comparison

The blades used for the numerical tests in the present work
are based on the IEA-10.0-198 10 MW reference wind tur-
bine (RWT) (Bortolotti et al., 2019). Two different blades
are used, which are the baseline straight blade and an upwind
dihedral blade. The baseline straight blade is modified by re-
moving the prebend and sweep of the original blade of the
RWT so that the main axis of the half-chord line is aligned
into a straight line. The upwind dihedral blade is modified
from the baseline straight blade so that the half-chord line
has out-of-plane shapes. The geometry of the upwind dihe-
dral blade is identical to the W-1 blade in a previous study (Li
et al., 2022). The blade has the same radius as the straight
blade but is bending upwind from 50 % of radius until the
blade tip. The dihedral magnitude is 10 % at the blade tip,
and the tip dihedral angle is 20◦.

In the present work, the test cases are mostly using the
baseline straight blade with zero coning, 15◦ upwind coning
and 15◦ downwind coning. In addition, selected results are
presented for an extreme case, represented by the upwind di-
hedral blade W-1 with added 15◦ of upwind coning. For the
different cases, the main axes of the blades used for the com-
parison are illustrated in Fig. 4. For the rotor with straight
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blades and without coning, the radius is 99 m, of which the
hub radius is 2.8 m.

6 The aerodynamic models for comparison

In this section, the different aerodynamic models with differ-
ent numerical fidelities used for comparison are described.
The highest-fidelity model used for the comparison is based
on blade-geometry-resolving RANS simulations. The gener-
alized lifting-line methods with different fidelities are com-
pared, which are the actuator line (AL) method, the lifting-
line (LL) method, the BEVC method and the BEM method.
The airfoil data used in all generalized lifting-line methods in
the present work are the same, and they were generated with
2-D fully turbulent RANS computations (Bortolotti et al.,
2019).

6.1 Fully resolved Navier–Stokes simulations

For the numerical simulations that are used as a reference in
the present study, the three-dimensional computational fluid
dynamics (CFD) solver EllipSys3D (Michelsen, 1992, 1994;
Sørensen, 1995) was used. EllipSys3D solves the incom-
pressible Navier–Stokes equations based on a finite-volume
discretization, using structured meshes and a multi-block
strategy. A RANS turbulence modeling approach was em-
ployed in the present study, relying on the k−ω shear stress
transport (SST) model (Menter, 1994). For these fully re-
solved simulations, body-fitted grids were built around the
surface of each of the studied blade geometries, and a wall
boundary condition was imposed. Each surface grid was gen-
erated using the open-access Parametric Geometry Library
(PGL) (Zahle, 2019). The resolution of the surface grids was
256× 128 (corresponding to the chordwise direction and the
spanwise direction, respectively). Starting from those surface
meshes, hyperbolic volume grids were generated with the in-
house tool Hypgrid (Sørensen, 1998). A total of 256 cells
were generated when marching to the outer limit of the CFD
domain, which is located at approximately 11 radii from
the surface grid. A boundary layer clustering with an initial
cell height of 1× 10−6 m was used, in order to target wall-
resolved simulations. Each of the resulting volume meshes
had a total of 14.2 million cells. The flow was assumed to
be fully turbulent, and an inlet–outlet approach was followed
for the boundary conditions of the outer domain. Throughout
this document, the body-fitted RANS simulations described
here are referred to as fully resolved CFD, or simply CFD. In
order to illustrate the mesh topology, Fig. 5 shows a super-
position of the grid for the straight blade variants with cone
angles of 0 and 15◦ (upwind).

6.2 Lifting-line method

The lifting-line module in the aerodynamic solver MIRAS
(Ramos-García et al., 2016) is used for comparison. The nu-

merical lifting-line (LL) solver is implemented as a free-
wake vortex method in a time-marching fashion. The curved
bound vortex influence is modeled by including the differ-
ence between the 3-D bound vortex induction and the 2-D
bound vortex induction evaluated at the three-quarter-chord
point (Li et al., 2020). It should be emphasized that the in-
duced velocity vector due to the curved bound vortex is as-
sumed to be constant along the chord. For the simulations,
each time step corresponds to 1.5◦ of azimuthal rotation.
Each simulation is calculated for 20 000 time steps, which
corresponds to 83.3 revolutions. The vortex core size is cho-
sen to be 0.1 % of the local chord length. Each blade of
the rotor is discretized radially into 50 sections with cosine
spacing. Both one-point and two-point approaches of the LL
method are implemented.

6.2.1 Two-point approach

The two-point approach in the LL method refers to the ex-
plicit calculation of the flow information at both the quarter-
and the three-quarter-chord point and is labeled as LL-2P.
This approach aligns with the conclusions from the unsteady
2-D thin airfoil theory, as previously described in Sect. 2.
The angle of attack at the three-quarter-chord point is used
to determine the magnitude of the lift and drag coefficients,
whereas the angle of attack at the quarter-chord point is used
to determine the direction of lift and drag.

6.2.2 One-point approach

The one-point approaches only use the flow information at a
single chordwise location for each section. Two variants of
the one-point approach, which are representative of the most
common implementations, are used for the comparison. The
first one uses only the quarter-chord point as the calculation
point (labeled as LL-QC); the second one uses only the three-
quarter-chord point (labeled as LL-3QC). The corrections
previously described in Sect. 4.1 and 4.2 are implemented for
each of the one-point LL methods, respectively. Results cor-
rected accordingly are subsequently labeled as LL-QC-corr
and LL-3QC-corr. For LL-3QC-corr, the correction is imple-
mented by including the additional pitch rate drag force as
presented in Eq. (38). An overview of different implementa-
tions has been summarized in Table 1.

6.3 BEM method

The blade element momentum (BEM) method implemented
in the HAWC2 code is the one-point approach that only
uses the three-quarter-chord point as the calculation point
(Madsen et al., 2020a). The one-point lifting-line correc-
tion that is implemented as an additional effective pitch rate
drag force described in Sect. 4.2 is already included in the
Beddoes–Leishman-type dynamic stall model (Hansen et al.,
2004; Pirrung and Gaunaa, 2018) in HAWC2. For the steady-
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Figure 4. Side view of the main axes of the blades used for different cases of the comparison. The blades from left to right are the baseline
straight blade with zero cone angle, 15◦ upwind coning, 15◦ downwind coning and the upwind dihedral blade W-1 with added 15◦ of upwind
coning.

Figure 5. Detail of the surface mesh for the straight variants used in
the fully resolved CFD simulations, showing two of the blades. Two
different configurations are included, accounting for a cone angle of
0 and 15◦. For the zero-cone-angle case, the topology of the volume
mesh is shown through arbitrary cross-sectional cuts along the span.
The free-stream velocity vector is U0. For clarity, only every eighth
grid line is shown.

state case, the non-circulatory force has negligible influence,
which is shown analytically in Sect. 3 and numerically in
Sect. 7.1. As a result, the HAWC2 BEM with the dynamic
stall model enabled is labeled as BEM-3QC-corr and is sim-
ilar to the one-point approach of the LL method with the
calculation point placed at the three-quarter-chord line and
with the correction (LL-3QC-corr). The HAWC2 BEM that
directly uses the quasi-steady aerodynamics is labeled as
BEM-3QC and is similar to the one-point approach of the LL
method with the calculation point placed at the three-quarter-
chord line but without the correction (LL-3QC).

6.4 BEVC method

The blade element vortex cylinder (BEVC) method is the
combination of the blade element theory and the vortex cylin-
der model. It has been shown in a previous work (Li et al.,
2022) that the distributed loads of dihedral blades predicted
by the BEVC model agree significantly better with higher-
fidelity LL and fully resolved CFD than BEM results. In that
previous work, it was described that the unsteady airfoil aero-
dynamic effects are included in the numerical tests, which is
actually done by enabling the Beddoes–Leishman-type dy-
namic stall model when implemented in the HAWC2 code.
This means the steady-state results in that previous work al-
ready included the one-point lifting-line correction described
in Sect. 4. Similar to the HAWC2 BEM module, the BEVC
method implemented in HAWC2 also uses the three-quarter-
chord point as the calculation point. In the present work, the
results with and without the correction are labeled as BEVC-
3QC-corr and BEVC-3QC, which are compared to show the
importance of the effect.

6.5 Actuator line simulations

Consistent with the fully resolved CFD computations, the
actuator line (AL) simulations also used the EllipSys3D
flow solver5 with the same numerical setup as the fully
resolved simulations described in Sect. 6.1. However, in-
stead of employing a body-fitted rotor mesh, the AL

5Even if the described simulations are based on a CFD solver,
they are simply referred to as AL in this document – keeping the
CFD abbreviation for the fully resolved computations.
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(Sørensen and Shen, 2002) distributes the sectional blade
forces – computed from 2-D airfoil polars – over a Cartesian
box mesh by a three-dimensional Gaussian kernel. This base
formulation is enhanced by including the computationally ef-
ficient smearing correction described by Meyer Forsting et al.
(2019a, b, 2020). Such a correction renders the AL equiv-
alent to a lifting-line, as proven by Meyer Forsting et al.
(2019a) and Martínez-Tossas and Meneveau (2019). Without
the correction, the AL acts as a LL with a viscous core. In
the present work, the smearing correction is partially assum-
ing the rotor to be planar due to the underlying assumptions
in the near-wake model (Pirrung et al., 2016).

The numerical domain discretization follows a verified ap-
proach (Meyer Forsting et al., 2017; Troldborg et al., 2009)
and consists of a box with 50R (R = 99 m) edge lengths that
contains a rectangular, uniformly spaced refined mesh with
3.2R side lengths in the cross-flow and 3.9R in the stream-
wise direction. The rotor is placed in the domain center,
with the refined mesh starting 1.6R upstream, as illustrated
in Fig. 6. The latter thus surrounds the AL and has a grid
spacing of 1x = R/80 to resolve the flow features of inter-
est. The full volume mesh has 75 million cells. The domain
boundaries off the main flow direction are of the symmetry
type, whereas the inflow and outflow faces obey Dirichlet
and Neumann conditions, respectively. To ensure the blade
tip remains well inside a single grid cell during each time
step, 1t = 0.0117 s. The smearing or kernel length scale
is twice the grid size as recommended by Troldborg et al.
(2009) to guarantee numerical stability, and the blade is dis-
cretized into 100 aerodynamic sections between root and tip.
The one-rotation averaged sectional blade forces are con-
verged down to a residual of 1× 10−5.

In the AL method, the velocity is only calculated on the
actuator line itself. Considering the equivalence between the
AL and the LL method for straight blades without coning,
the AL method before the one-point correction is similar to
the LL method that only uses the quarter-chord locations in
the load computations (LL-QC) and is labeled as AL-QC.
Similarly, the AL method following the one-point correction
should be equivalent to LL-QC-corr, which is labeled as AL-
QC-corr.

7 Results

In this section, various numerical tests are performed to in-
vestigate the different assumptions outlined in the previ-
ous sections and also to evaluate the performance of the
one-point lifting-line correction for different aerodynamic
models. Firstly, the impact of non-circulatory forces under
steady-state conditions is tested using the LL method in
Sect. 7.1. Then, the impact of the variation in the relative ve-
locity magnitude along the chord is investigated numerically
in Sect. 7.2. Afterwards, the one-point lifting-line correction
is tested for different implementations of the LL method in

Figure 6. Actuator line numerical box domain with a structured
mesh and uniform spacing around the rotor at its center. Only every
eighth grid point is shown.

Sect. 7.3, for the BEM method in Sect. 7.4, for the BEVC
method in Sect. 7.5 and for the AL method in Sect. 7.6.

For all test cases, the pitch angle is zero, and the rotor is
operating under uniform inflow of 8 ms−1 that is perpendic-
ular to the rotor plane. The rotational speed of the rotor is
constant at 0.855 rads−1. For the cases with zero cone angle,
the radius is 99 m, and the tip speed ratio is 10.58. At this op-
erational condition, the thrust coefficient of the unconed ro-
tor with baseline straight blades is 0.90, and the rotor power
coefficient is 0.46, as predicted using the BEM method.

The initial assessment of the performance of the different
numerical methods relies on the study of the sectional aero-
dynamic load distributions. In order to ensure the quality of
the comparison among different blade geometries involved in
the present study, it is important to define the loads in a con-
sistent manner. The loads are defined as force per unit radius,
which is the same definition used in the previous work (Li
et al., 2022). The sectional aerodynamic loads that are cal-
culated from the 2-D airfoil data and projected into the rotor
coordinate system should correspond to force per unit curved
blade length. The loads with the definition of force per unit
radius are obtained by multiplying the curved blade length
correction factor ds/dr (Madsen et al., 2020a). For the coned
straight blade case, the correction factor is equal to the secant
of the cone angle. For the dihedral blade with added coning,
the correction factor is equal to the secant of the sum of the
cone angle and the local dihedral angle (Li et al., 2022).
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7.1 The non-circular force at steady state

It is shown analytically in Sect. 3.4 that the total non-
circulatory lift of a pure dihedral blade operating under
steady-state conditions under uniform inflow perpendicular
to the rotor plane is approximately zero. In addition, it is
shown in Sect. 2.2.3 that there is a non-circulatory drag force
due to the pitch rate caused by the effective pitch rate of the
airfoil. It was analyzed that the contribution is also negli-
gible for low- to moderate-reduced-frequency cases. In this
section, these two conclusions are tested numerically. This
is done by comparing the aerodynamic loads of a pure dihe-
dral blade calculated from the two-point approach of the LL
method without non-circulatory forces (LL-2P), with non-
circulatory lift (LL-2P-NC1), and with both non-circulatory
lift and non-circulatory pitch rate drag (LL-2P-NC2). As has
been described previously, the non-circulatory lift is per-
pendicular to the airfoil, so there will be an effective non-
circulatory drag in the flow direction due to the projection
of the non-circulatory lift, which is included in both LL-2P-
NC1 and LL-2P-NC2. The extreme case of the upwind dihe-
dral blade W-1 with additional 15◦ of upwind coning is used
here to amplify the influence of blade dihedral on the non-
circulatory forces. The axial and tangential loads predicted
by the two-point LL approach, both with and without the
non-circulatory forces, are compared in Fig. 7. In addition,
the fully resolved CFD results are included for reference.

It can be seen from the figure that the loads from the LL
method with or without the non-circulatory force are almost
identical and are in good agreement with the results from the
fully resolved CFD solver. To clearly show the magnitude of
the non-circulatory forces, the difference in the loads calcu-
lated from LL-2P-NC1 and LL-2P-NC2 with respect to the
results from LL-2P is calculated. The difference generally
increases when moving from the blade tip to the blade root
but is negligible. For the spanwise position between a radius
of 40 m (of the unconed blade) to the blade tip, the differ-
ence compared to the LL-2P method is within 2 Nm−1 for
the axial load and is within 5 Nm−1 for the tangential load.
For the radius of 20 m (of the unconed blade), the difference
is within 2 Nm−1 for the axial load and is within 12 Nm−1

for the tangential load. It should be emphasized that the to-
tal non-circulatory force may not be negligible for unsteady
cases.

7.2 The variation in relative velocity magnitude

For the generalized lifting-line methods, there are two proce-
dures that involve the magnitude of the relative velocity for
the calculation. The first one is the calculation of the quasi-
steady bound circulation strength, which is related to the con-
vergence calculation.

0 =
1
2
VrelcC

QS
L (α3/4) (41)

Table 2. The four different choices of the chordwise location for
the magnitude of the relative velocity to use for the calculation of
the bound circulation strength and the magnitude of the lift and drag
force in the two-point approach of the lifting-line method.

Name Bound circulation Magnitude of lift
strength and drag

Case 1 1/4 chord 1/4 chord
Case 2 1/4 chord 3/4 chord
Case 3 3/4 chord 1/4 chord
Case 4 3/4 chord 3/4 chord

The second one is during the calculation of the lift and
drag forces, which is to compute the aerodynamic loads
on the blades. This procedure is performed after the con-
vergence calculation and can be considered to be the post-
processing of the converged results.

LQS
=

1
2
ρV 2

relcC
QS
L (α3/4) (42)

DQS
=

1
2
ρV 2

relcC
QS
D (α3/4) (43)

There is no clear indication from unsteady thin airfoil the-
ory at which chordwise location to extract the relative veloc-
ities for any of these two procedures. For the one-point ap-
proach, it is natural to use the relative velocity at the calcula-
tion point for both procedures. For the two-point approach, it
is possible to choose the relative velocity at either the quarter-
chord point or at the three-quarter-chord point for both pro-
cedures. In total, there are four possible combinations, which
are summarized in Table 2.

From an intuitive point of view, Case 3 appears as the most
correct one because the angle of attack at the three-quarter-
chord point is used to determine the lift coefficient, and the
flow at the quarter-chord point is used to determine the lift
and drag direction. The difference between these four com-
binations is tested numerically by comparing the loads calcu-
lated using different implementations of LL-2P. For this nu-
merical test, the extreme case with the upwind dihedral blade
W-1 with 15◦ of additional upwind coning is used. To clearly
show the difference between different implementations, the
difference in the loads of the other three methods compared
to the intuitively most correct method (Case 3) is plotted in
Fig. 8.

It can be seen that the difference in the loads calculated
using different methods is extremely small compared to the
full loads as shown in Fig. 7 and is thus negligible. For ex-
ample, at the spanwise location that corresponds to the 70 m
radius of the unconed blade, the maximum difference is less
than 0.2 % for the axial load and is less than 0.4 % for the
tangential load. It is then confirmed numerically that the vari-
ation in the relative velocity magnitude along the chord for
the calculation of bound circulation and the magnitude of lift
and drag forces is a secondary effect. Then, for the two-point
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Figure 7. Comparison of axial load (a) and tangential load (b) of the upwind dihedral blade W-1 with additional 15◦ of upwind coning
calculated from the fully resolved CFD and the two-point approach of the LL method without non-circulatory force (LL-2P), with non-
circulatory lift (LL-2P-NC1), and with both non-circulatory lift and the non-circulatory pitch rate drag (LL-2P-NC2).

Figure 8. Comparison of the difference in axial load (a) and tangential load (b) of the upwind dihedral blade W-1 with 15◦ of additional
upwind coning calculated using the three different methods compared to the intuitive correct method (Case 3) from the two-point LL methods.

approach, the choice of the relative velocity for the two pro-
cedures can be arbitrary. The conclusion can also justify that
the one-point approach directly uses the relative velocity at
the calculation point for both procedures.

7.3 One-point lifting-line corrections

The correction to the generalized one-point lifting-line
method described in Sect. 4 is tested numerically using the
LL method in this section. The straight blade with 15◦ of
cone upwind or downwind is used here. In addition, the case
of the straight blade without coning is also included for ref-
erence to show the influence of blade coning.

The two-point approach of the LL method (LL-2P)6 is
used as the reference method since it coincides with the con-
clusions from the unsteady 2-D thin airfoil theory. In addi-
tion, the fully resolved CFD results are included for refer-

6The LL-2P method in the following sections corresponds to
Case 3 in Table 2.

ence. Two different simplified one-point approaches of the
LL method (LL-QC and LL-3QC), with the calculation point
at either the quarter- or three-quarter-chord line, are com-
pared. As is described in Sect. 4.1 and 4.2, the two methods
calculate the wrong magnitude of the lift force and apply the
lift force in the wrong direction, respectively. The previous
two methods with the corrections are LL-QC-corr and LL-
3QC-corr. The numerical tests are performed by comparing
the aerodynamic loads calculated from these different imple-
mentations of the LL methods as well as the fully resolved
CFD.

7.3.1 Straight blade without coning

Firstly, the axial and tangential loads of the straight blade
without coning calculated from different implementations of
the LL method are calculated and are plotted together with
the fully resolved CFD results in Fig. 9.

It can be seen from the figure that the loads from all LL
methods give very similar results for both axial and tangen-
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Figure 9. Comparison of axial load (a) and tangential load (b) of the straight blade without coning calculated from different LL methods
and the fully resolved CFD.

tial loads. The results in the figures are almost on top of each
other. The loads predicted by the LL methods are also in good
agreement with the CFD results. At the near-root region (i.e.,
up to an approximate radius of 20 m), clear differences be-
tween the CFD solution and the rest of the methods were
observed. These discrepancies are related to the separation
in the near-root region predicted by the CFD solver. This ef-
fect has a relatively low influence on the integrated loads and
is not the subject of the present investigation.

7.3.2 Upwind-coned case

The axial and tangential loads of the straight blade with 15◦

of upwind coning are calculated from different implementa-
tions of the LL method and are plotted together with the fully
resolved CFD results in Fig. 10.

It can be seen from the figure that for the axial load, all
LL methods except LL-QC give very similar results and are
in good agreement with the fully resolved CFD. The axial
load is overestimated by LL-QC. For the tangential load, the
LL-3QC method predicts a somewhat lower value compared
to the other LL methods, while the other methods show only
small differences and are in good agreement with the fully
resolved CFD. To better illustrate the effect of blade con-
ing predicted by different LL methods, the difference in the
loads of the coned straight blade with respect to the baseline
straight blade without coning is plotted in Fig. 11.

For the LL-QC method, the decrement of the axial load is
significantly underestimated compared to the predictions by
the LL-2P. This is expected since the magnitude of the lift is
not correctly calculated using the LL-QC method. After ap-
plying the correction, the axial load from LL-QC-corr agrees
significantly better with LL-2P. For the tangential load, the
result from LL-QC is in reasonably good agreement with the
other methods as despite the magnitude of the lift force hav-
ing an offset, the lift force is applied in the correct direction.

For the LL-3QC method, the calculated axial load is in
good agreement with the result from LL-2P because the mag-
nitude of the lift force is correctly calculated. The tangential
load calculated from LL-3QC is underestimated compared to
LL-2P. This is because the lift force is not applied to the cor-
rect direction in LL-3QC. After applying the correction, the
tangential load predicted by LL-3QC-corr is in good agree-
ment with LL-2P.

7.3.3 Downwind-coned case

For the straight blade with 15◦ of downwind coning, the axial
and tangential loads calculated from different LL methods
and the fully resolved CFD are plotted in Fig. 12.

It can be seen from the figure that similar to the case of up-
wind coning, all LL methods except LL-QC predict almost
identical axial loads and are similar to the prediction by the
fully resolved CFD. The LL-QC method underestimates the
axial load compared to other LL methods. For the tangential
load, LL-3QC predicts a significantly higher load compared
to the predictions by other LL methods, which only show
a small difference between each other and are similar to the
fully resolved CFD result. Similar to the upwind-coning case,
the difference in the loads of the downwind-coning straight
blade with respect to the straight blade without coning calcu-
lated from different LL methods and the fully resolved CFD
is plotted in Fig. 13 for a detailed comparison.

For the LL-QC method, the axial load is underestimated
and shows a relatively large difference compared to the
load calculated using LL-2P. As has been explained for the
upwind-coned case, the reason is that the magnitude of the
lift is not correctly calculated using LL-QC. On the other
hand, the tangential load calculated from LL-QC is slightly
overestimated compared to the LL-2P method, but they are
still in reasonably good agreement. The reason is, as has been
explained for the upwind-coning case, that the lift force is
applied in the correct direction despite the magnitude of the
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Figure 10. Comparison of axial load (a) and tangential load (b) of the straight blade with 15◦ of upwind coning calculated from different
LL methods and the fully resolved CFD.

Figure 11. Comparison of the difference in the axial load (a) and tangential load (b) of the straight blade with 15◦ of upwind coning
compared to the straight blade with zero cone angle, calculated from different implementations of the LL method and the fully resolved
CFD.

calculated lift force having some offsets. After applying the
correction, the axial load from LL-QC-corr is now in good
agreement with LL-2P. The tangential load predicted by LL-
QC-corr is also in improved agreement with LL-2P.

For the LL-3QC method, the axial load is in good agree-
ment with LL-2P since the magnitude of the lift is cor-
rectly modeled. However, LL-3QC especially overestimates
the tangential load compared to LL-2P. As has been ex-
plained for the upwind-coning case, this is because the lift
force is not applied to the correct direction and results in an
additional effective drag force. After applying the correction,
the tangential load calculated from LL-3QC-corr is in signif-
icantly improved agreement with LL-2P.

In summary, all of the corrected methods have consistently
good performance for either upwind or downwind dihedral
cases. The performances of LL-QC-corr and LL-3QC-corr
are almost identical to LL-2P, and all of them are categorized
as the full model since they align with the conclusions from
unsteady 2-D airfoil theory. The important aspect is to use

a correction such that the modeling effectively mimics the
behaviors according to the thin airfoil theory.

7.4 BEM method

The importance of consistently using the 2-D airfoil data
when using the BEM method to calculate the loads of the
dihedral blades is tested in this section. Again, the focus is
on the special case of a pure dihedral blade without sweep
under steady-state operating conditions. The blades for the
test are the straight blade with 15◦ of upwind coning and 15◦

of downwind coning. In addition, the results of the straight
blade without coning are also included as the reference. The
axial and tangential loads calculated from BEM with and
without the correction (by enabling or disabling the dynamic
stall model) are labeled as BEM-3QC-corr and BEM-3QC
and are compared in Fig. 14.

The axial loads of the upwind-coned blade and the
downwind-coned blade have small differences and are lower
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Figure 12. Comparison of axial load (a) and tangential load (b) of the straight blade with 15◦ of downwind coning calculated from different
implementations of the LL method and the fully resolved CFD.

Figure 13. Comparison of the difference in the axial load (a) and tangential load (b) of the straight blade with 15◦ of downwind coning
compared to the straight blade with zero cone angle calculated from different implementations of the LL method and the fully resolved CFD.

compared to the blade without coning. For either an upwind-
or downwind-coned blade, the axial loads show only a neg-
ligible difference with and without the correction. For the
tangential load of the coned blades, when including the one-
point correction, the results show a relatively large difference
compared to using only the quasi-steady aerodynamics. This
means that when using the BEM method that only uses three-
quarter-chord information and without the correction for a
dihedral blade operating under steady-state conditions under
uniform inflow, if directly using the quasi-steady aerodynam-
ics, the thrust force is correctly calculated, but there will be a
visible error for the predicted aerodynamic power. This con-
clusion can be generalized to unsteady cases as well. As a
result, we recommend the use of the BEM module with the
unsteady 2-D airfoil model7 enabled, even for steady-state
calculations. In the unsteady 2-D airfoil model, the general-

7Such as the Beddoes–Leishman-type dynamic stall model in
HAWC2.

ized one-point lifting-line correction described in Sect. 4.3
should be included.

A peculiar phenomenon that can be seen in Fig. 14 is that
the tangential load of the upwind-coned blade with the cor-
rection is very similar to the tangential load of the downwind-
coned blade without the correction. Analogously, the tangen-
tial load of the upwind-coned blade without the correction is
very similar to the tangential load of the downwind-coned
blade with the correction. This shows that the BEM method
is not able to correctly model the influence of blade dihedral
on the 3-D wake and consequently on the aerodynamic loads.

7.5 BEVC method

The importance of the one-point lifting-line correction when
using the BEVC method to calculate the loads of the dihedral
blades is shown in this section. The blades for the test are also
the straight blade with 15◦ of upwind coning, with 15◦ of
downwind coning, and without coning. The results from the
two-point approach of the LL method (LL-2P), which have
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Figure 14. Comparison of axial load (a) and tangential load (b) of the straight blade without coning, with 15◦ of upwind coning and with
15◦ of downwind coning (labeled as Cone −15◦) calculated from the BEM method with and without the one-point lifting-line correction
(labeled as BEM-3QC-corr and BEM-3QC). The results of the straight blade without coning are also included for reference.

shown to be in good agreement with the high-fidelity fully re-
solved CFD for these test cases in Sect. 7.3, are used for the
comparison. The BEM results with the one-point correction
enabled (BEM-3QC-corr) are also included in the compari-
son to highlight the performance of the BEVC model. The
BEVC method with and without the one-point correction (by
enabling or disabling the dynamic stall model) is labeled as
BEVC-3QC-corr and BEVC-3QC. For the case of 15◦ of up-
wind coning, the difference in the axial and tangential loads
compared to the straight blade without coning from different
methods is shown in Fig. 15.

For the axial load, the BEVC results with and without the
correction are almost identical. This conclusion is the same
as for the LL-3QC and the BEM-3QC. The difference in ax-
ial loads predicted from BEVC-3QC and BEVC-3QC-corr is
in good agreement with the LL-2P. For the tangential load,
BEVC-3QC-corr predicts very similar results as the LL-2P.
However, if the one-point correction is not included, BEVC-
3QC underestimates the tangential loads compared to the
predictions by LL-2P. In comparison, BEM-3QC-corr pre-
dicts a relatively large difference compared to LL-2P for both
axial and tangential loads. This is as expected because the
BEM method, even with the one-point correction, is not able
to correctly predict the influence of blade out-of-plane geom-
etry on the loads.

For the 15◦ downwind-coning case, the difference in the
axial and tangential loads compared to the straight blade
without coning from different methods is shown in Fig. 16.

For the axial load, as for the upwind-coned case, BEVC-
3QC and BEVC-3QC-corr have almost identical results and
are in good agreement with LL-2P. For the tangential load,
BEVC-3QC-corr predicts similar results as the LL-2P. When
directly using the quasi-steady airfoil data without the one-
point correction, BEVC-3QC overestimates the tangential
load. In comparison, BEM-3QC-corr is not able to correctly

predict the influence of blade coning on the axial or tangen-
tial loads as expected.

7.6 Actuator line method

The actuator line (AL) used in this study is a straight line.
This is equivalent to having a straight bound vortex. So, the
blades used for the comparison in this section are aligned to
a straight quarter-chord line instead of aligned to a straight
half-chord line as in the previous sections. The axial load
and tangential load of the straight blade with zero cone an-
gle and with 15◦ of upwind and downwind coning calculated
from the AL method without and with the correction (labeled
as AL-QC and AL-QC-corr) are compared with results from
LL-2P. For the case of a straight blade with 15◦ of upwind
coning, the difference in the axial and tangential loads com-
pared to the straight blade without coning is shown in Fig. 17.

It can be seen from the figure that the axial load predicted
by the AL method without the correction is overestimated
compared to LL-2P. This behavior is similar to LL-QC. The
tangential load from the AL method is slightly overestimated.
After the correction, the axial load from AL-QC-corr is in
significantly improved agreement with the result from LL-2P.
For the tangential load, the shape of the result from AL-QC-
corr is in improved agreement with the result from LL-2P.
However, for both axial and tangential loads, the results pre-
dicted by the AL-QC-corr method are slightly overestimated
compared to LL-2P. This could be related to the smearing
correction in the AL method that assumes the calculation
point and the trailing point are both in the rotor plane (Pir-
rung et al., 2016) instead of following the actual blade dihe-
dral geometry.

For the case of 15◦ of downwind coning, the difference in
the axial and tangential loads compared to the straight blade
without coning is shown in Fig. 18.
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Figure 15. Comparison of the difference in axial load (a) and tangential load (b) of the straight blade with 15◦ of upwind coning with respect
to the straight blade without coning calculated from LL-2P, BEVC with and without the correction (BEVC-3QC-corr, BEVC-3QC), and the
BEM method with the correction (BEM-3QC-corr).

Figure 16. Comparison of the difference in axial load (a) and tangential load (b) of the straight blade with 15◦ of downwind coning compared
to the straight blade without coning calculated from LL-2P, BEVC with and without the correction (BEVC-3QC-corr, BEVC-3QC), and the
BEM method with the correction (BEM-3QC-corr).

The AL method without the correction (AL-QC) underes-
timates the axial load, and the behavior is similar to LL-QC.
The tangential load predicted by AL is slightly overestimated
compared to LL-2P. After including the one-point correction,
the results from AL-QC-corr are in improved agreement with
results from LL-2P, for both axial and tangential loads.

7.7 Integrated aerodynamic loads

In addition to the distributed loads that are compared in
Sect. 7.3 to 7.6, the importance of the one-point correction
for the prediction of the integrated aerodynamic loads (thrust
and power) is investigated in this section. The aerodynamic
thrust and power in the present work are defined according to
the following simplifications, where the forces are assumed
to be applied at the main axis, and the contribution of airfoil

moment (calculated from Cm) to power is neglected.

T =NB

R∫
0

Fadr (44)

P :=NB

R∫
0

rFtdr, (45)

where the axial force Fa and the tangential force Ft are with
the definition of force per unit radius.

The thrust and power of the rotor with an unconed straight
blade as well as the upwind- and downwind-coned straight
blades calculated from different aerodynamic models are
compared. To better show the influence, the relative differ-
ence in thrust and power of the coned rotor with respect to
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Figure 17. Comparison of the difference in axial load (a) and tangential load (b) of the straight blade with 15◦ of upwind coning compared to
the straight blade without coning calculated from LL-2P, AL without the one-point correction (AL-QC) and AL with the one-point correction
(AL-QC-corr).

Figure 18. Comparison of the difference in axial load (a) and tangential load (b) of the straight blade with 15◦ of downwind coning
compared to the straight blade without coning calculated from LL-2P, AL without the one-point correction (AL-QC) and AL with the
one-point correction (AL-QC-corr).

the planar rotor with straight blades is defined as follows:

εT =
Tcone− Tstr

Tstr
× 100% (46)

εP =
Pcone−Pstr

Pstr
× 100%. (47)

The results from different models are summarized in
Fig. 19 for the 15◦ upwind-coned case and in Fig. 20 for the
15◦ downwind-coned case.

For all the one-point approaches of the generalized lifting-
line method in this comparison, if the one-point correction
is applied, the predicted thrust and power of non-planar ro-
tors have reasonably good agreement with the two-point LL
method (LL-2P) and the fully resolved CFD. This conclusion
also applies to the BEM method. However, if the one-point
correction is excluded, and the quasi-steady polars are used
directly, the results will have significant errors in either the

predicted thrust or power or both, depending on the choice of
the calculation point.

It can also be concluded from the results that the BEVC
method does not result in significant improvement compared
to the BEM method when predicting the integral thrust and
power of the coned rotor with straight blades. This is because
the influence of the dihedral on the distributed loads is par-
tially canceled out when calculating the power and thrust of
the whole rotor. In contrast, the improvement of BEVC over
BEM when predicting thrust and power is significant when
computing the rotors with curved dihedral blades as shown
in the previous work (Li et al., 2022).

For the comparison of the AL method with the LL-2P
method, the blades are aligned with the quarter-chord line
instead of aligned with the half-chord line. The rotor thrust
and power predicted by the AL method with and without the
correction and also the LL-2P are summarized in Fig. 21.
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Figure 19. The relative difference in thrust and power of the rotor with straight blade with 15◦ of upwind coning compared to the zero-cone-
angle case.

Figure 20. The relative difference in thrust and power of the rotor with straight blade with 15◦ of downwind coning compared to the
zero-cone-angle case.

For the AL method without the one-point correction (AL-
QC), the thrust is overestimated for the upwind-coned case
and is underestimated for the downwind-coned case. The
thrust predicted by the AL method with the correction (AL-
QC-corr) is in better agreement with LL-2P for both upwind-
and downwind-coned cases. The power predicted by AL-QC
is overestimated compared to LL-2P for both upwind- and
downwind-coned cases. After the correction, the power of
the downwind-coned case is in improved agreement with LL-
2P but is not improved for the upwind-coned case. As is de-
scribed in Sect. 7.6, this could be related to the current smear-
ing correction method in the AL model, and future work is
needed.

It is worth mentioning that the power and thrust of the
cases with coned straight blades that are aligned to a straight
half-chord line in Figs. 19 and 20 have relatively large differ-
ences from the cases with the straight blades with the same
cone angle but aligned to a straight quarter-chord line as in
Fig. 21. The difference is approximately 1.3 % in thrust and
approximately 3.3 % in power, for both upwind and down-
wind cases. For the zero-cone-angle cases, the results of both
blades are almost identical. For the coned cases, the blades
with the two different methods of blade alignment are oper-
ating at different angles of attack. For example, at the span-
wise location of 40 m, the angle of attack of the quarter-
chord-aligned blade is 0.2◦ smaller compared to the half-
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Figure 21. The relative difference in thrust and power of the rotor with 15◦ upwind- and downwind-coned straight blade aligned to the
quarter-chord line compared to the rotor with the same straight blade without coning predicted by the LL-2P method, the AL method without
the correction (AL-QC) and the AL method with the correction (AL-QC-corr).

chord-aligned blade for the 15◦ upwind-coned case and is
0.2◦ larger for the 15◦ downwind-coned case.

The numerical tests in this section are performed on the
straight blades with 15◦ of upwind and downwind coning,
which have significantly non-planar shapes. For the same
straight blade under the same operating conditions but with a
smaller cone angle, the offset of power and thrust predicted
using different generalized one-point lifting-line methods
can be approximated from the results in Figs. 19 and 20. Be-
cause for the special condition that the blade has only out-of-
plane dihedral and no sweep, the pitch rate of the effective
airfoil pitching motion θ̇ is proportional to the cone angle κ
as shown in Eq. (26), with the small-angle approximation.
And for the blade sections that are operating at the linear
region, the offset of lift and drag and consequently of the ax-
ial and tangential loads is then also approximately linearly
proportional to the cone angle. For example, for the same
straight blade that is aligned to the half-chord line and has
5◦ of upwind coning, the relative error in power predicted by
LL-3QC is inferred to be approximately 2 %.

8 Conclusions and future work

The present work describes a method where the use of key re-
sults from the 2-D unsteady thin airfoil theory results in im-
proved performance of generalized lifting-line methods for
non-planar rotors. The conclusions from the unsteady 2-D
thin airfoil theory, which are that the magnitude of the quasi-
steady lift should be determined by the flow at the three-
quarter-chord point, and the direction of the quasi-steady
lift should be determined by the flow at the quarter-chord
point, are highlighted. The impact of the simplification that
using only one calculation point and directly using quasi-
steady 2-D airfoil data as usually implemented in generalized

lifting-line models is investigated. The generalized correc-
tion for such a one-point approach is given. The numerical
results from the lifting-line (LL) method, the actuator line
(AL) method, the blade element momentum (BEM) method
and the blade element vortex cylinder (BEVC) method are
compared with and without the correction. The results from
fully resolved RANS are also included for reference. The
results show a large offset on the prediction of the aerody-
namic performance of non-planar rotors when only using the
quasi-steady aerodynamics and excluding the one-point cor-
rections. The one-point approaches with the correction are
in significantly better agreement with high-fidelity CFD re-
sults than without the corrections, for both the distributed
loads and the rotor thrust and power. It is noted that the ef-
fect of the corrections is modeled correctly by a consistently
implemented 2-D airfoil aerodynamic model, such as the
Beddoes–Leishman-type model in HAWC2. For this reason,
it is suggested to keep such models active also for the simu-
lation of steady-state HAWT rotors with dihedral blades.

There are several future works that are of great interest.
Firstly, the comparison of the prediction of the unsteady
loads using the two-point approach and the one-point ap-
proach of the lifting-line method is interesting. Secondly, the
impact of correctly determining the magnitude and direction
of the lift force for the curved blade with both sweep and
dihedral should be investigated. Thirdly, future work on the
actuator line model is necessary for the model to correctly
predict the loads of blades with complex shapes. An updated
smearing correction for actuator lines with curved shapes is
an example.
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Appendix A: Nomenclature

a Non-dimensioned pitching axis location
a Centrifugal acceleration vector
b Half-chord length
c Chord length
C(k) Theodorsen lift deficiency function
CL Lift coefficient
CD Drag coefficient
Cm Moment coefficient
D Drag force
Fa Axial force, with the definition of force per

unit length radius
Ft Tangential force, with the definition of force per

unit length radius
Ftot 2-D total force
k Reduced frequency
L Lift force
N 2-D normal force
NB Number of blades
p Position vector of the calculation point
P Aerodynamic power of the rotor
R Radius of the rotor
T 2-D tangential force, aerodynamic thrust of the rotor
T Transformation matrix
U0 Free-wind speed
V Free-stream speed
V 3−D Total 3-D velocity vector
Vrel Relative velocity
w Upwash
ẋ Streamwise motion of the airfoil
ẍ Streamwise acceleration of the airfoil
ẏ Heave motion of the airfoil
ÿ Heave acceleration of the airfoil

Greek letters
α Angle of attack
α̃ Approximated angle of attack
1αr The difference between the reference angle and

the geometric flow angle
0 Bound vorticity strength
ε Relative difference
ε Normal coordinate of the 2-D airfoil
θ 2-D geometric flow angle
θ̇ Airfoil pitch rate
θ̈ Airfoil pitching acceleration
κ Dihedral angle
ξ Chordwise coordinate of the 2-D airfoil
ρ Density of air
φ Sectional flow angle
� Rotor speed
� Rotational velocity vector

Subscripts
1/4 At the quarter-chord point
3/4 At the three-quarter-chord point
a In the axial direction
t In the tangential direction
r Relative value
i Induced value
str Straight blade
cone Coned blade
heav Due to heaving motion
stream Due to streamwise acceleration
acc Due to acceleration
pitchrate Due to pitch rate

Superscripts
B In blade coordinate system
C Circulatory part
L In local flow coordinate system
NC Non-circulatory part
QS Quasi-steady
S In sectional coordinate system

Appendix B: An extreme example: VAWT operating in
zero onset flow

In this section, in order to shed light on the aspect that is
described in Sect. 2.2.4, the extreme case where ideal 2-
D thin airfoil sections are mounted on a spinning vertical-
axis wind turbine (VAWT) operating with zero onset ve-
locity is investigated. The airfoils are set at an angle such
that a constant outward lift is generated due to the rela-
tive wind speed from the rotation of the VAWT. Please note
that (V − ẋ)= Vrel =�R, where � and R are the angular
speed and radius of the VAWT, respectively. In this case, the
flow situation as observed from the airfoil section does not
change over time, causing the induced drag term to vanish.
In addition, there is no streamwise acceleration ẍ or pitch-
ing acceleration θ̈ of the airfoil. The steady situation does
have a constant and nonzero pitch rate and heave accelera-
tion θ̇ =−� and ÿ =−�2R. When evaluating the terms in
the non-circulatory lift in Eq. (3), it is seen that the pitch rate
term exactly cancels out the heave acceleration term, such
that the total lift contains only the circulatory part. Due to
the steady nature of the setup, the circulatory lift is equal to
the quasi-steady lift, which in turn is freely adjustable by set-
ting the constant angle of the airfoil on the VAWT. Turning
now to the drag, it can be seen that all terms in the quarter-
chord reference drag in Eq. (14) vanish, resulting in a thin
airfoil quarter-chord drag of exactly zero. This is in agree-
ment with the steady-state 2-D thin airfoil drag of zero fol-
lowing d’Alembert’s paradox. If evaluating instead the three-
quarter-chord reference drag value obtained from Eq. (16),

D3/4,VAWT = L
bθ̇

(V − ẋ)
=−L

c

2R
. (B1)

In non-dimensional coefficients this corresponds to a 2-
D drag coefficient of CD,3/4,VAWT =−CLc/(2R). As men-
tioned above, the mounting angle of the airfoil on the spin-
ning VAWT can be freely adjusted to obtain lift coefficients
of either positive or negative signs as desired. This also
means that in this case the correct value of the three-quarter-
chord reference drag may even be a constant negative value.
As stated in Sect. 2.2.4, this situation describes the same
physics as well as the same force magnitude and direction no
matter what reference is used to define the drag force. It is the
change in reference direction that makes the three-quarter-
chord reference drag value seem counterintuitive. For this
reason, it is suggested to use the quarter-chord reference di-
rection definition of the drag coefficient in aeroelastic codes.
Figure B1 shows schematically the two implementations de-
scribed previously.

As the last point in this section it should be mentioned
that applying the erroneous definition of the direction of the
forces in the VAWT case will lead to an effective drag er-
ror in the magnitude. For example, for the case of using
the three-quarter-chord reference direction but usingD1/4 in-
stead ofD3/4, there will be an effective drag error as given by
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Figure B1. Illustration of two correct methods of defining the di-
rection of the lift and drag forces for a VAWT. (a) Correctly using
D1/4 and relative direction at the quarter-chord point. (b) Correctly
using D3/4 (< 0) and relative direction at the three-quarter-chord
point. The total force vector in the two cases is identical.

Eq. (B1). It can be illustrated in Fig. B1b that the erroneous
total force will be L instead of Ftot. For this reason an erro-
neously implemented model may show that it is possible for
a VAWT to produce positive aerodynamic power even with-
out an onset flow, as also observed by Pirrung and Gaunaa
(2018).
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