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Abstract. Recent research suggests that atmospheric gravity waves can affect offshore wind-farm performance.
A fast wind-farm boundary layer model has been proposed to simulate the effects of these gravity waves on
wind-farm operation by Allaerts and Meyers (2019). The current work extends the applicability of that model
to free atmospheres in which wind and stability vary with altitude. We validate the model using reference cases
from literature on mountain waves. Analysis of a reference flow shows that internal gravity-wave resonance
caused by the atmospheric non-uniformity can prohibit perturbations in the atmospheric boundary layer (ABL)
at the wavelengths where it occurs. To determine the overall impact of the vertical variations in the atmospheric
conditions on wind-farm operation, we consider 1 year of operation of the Belgian–Dutch wind-farm cluster with
the extended model. We find that this impact on individual flow cases is often of the same order of magnitude as
the total flow perturbation. In 16.6 % of the analyzed flows, the relative difference in upstream velocity reduction
between uniform and non-uniform free atmospheres is more than 30 %. However, this impact is small when
averaged over all cases. This suggests that variations in the atmospheric conditions should be taken into account
when simulating wind-farm operation in specific atmospheric conditions.

1 Introduction

In recent years, it has been well documented that wind farms
form a blockage to the flow in and around them (Bleeg et al.,
2018), thereby displacing the atmospheric boundary layer
(ABL). Such displacements can propagate through the over-
lying inversion layer and free atmosphere as waves in stably
stratified atmospheres, conditions which frequently occur at
sea. As offshore wind farms in Europe increase in size and
installed capacity (WindEurope, 2018), improving the under-
standing and simulation of gravity-wave–wind-farm interac-
tion becomes crucial to optimizing turbine control and wind-
farm layout (see, e.g., Lanzilao and Meyers, 2021b).

Previous work on the interaction between gravity waves
and wind farms has assumed the free atmosphere to be uni-
formly stratified, with a constant background wind (Smith,
2010; Allaerts and Meyers, 2017, 2019). However, for waves
with a horizontal scale of a few kilometers, such as those

triggered by wind-farm blockage, vertical variations in the
atmospheric conditions can drastically influence the pressure
feedback they induce (Teixeira et al., 2013). Therefore, the
goal of this work is to determine how variations in the free
atmosphere’s properties with altitude affect the interaction
between gravity waves and the flow in the ABL and overall
wind-farm performance.

Allaerts and Meyers (2019) proposed a model focused on
the interaction between wind turbines and gravity waves.
Based on earlier work by Smith (2010), the model explic-
itly simulates the flow in the ABL as two height-averaged
horizontal layers and incorporates the free atmosphere as a
boundary condition. This boundary condition links variations
in ABL height to the pressure gradients induced by the cor-
responding gravity waves. In Fourier space, the relation be-
tween these height and pressure perturbations is defined by
the stratification coefficient 8̂. As the model is based on a
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three-layer representation of the atmosphere, it is called the
three-layer model (TLM).

Currently, the TLM can only describe uniformly stratified
free atmospheres, which places a strong restriction on the
atmospheric conditions that can be represented. This work
adapts the TLM for flow profiles that vary with altitude and
studies how these variations change the interaction between
the ABL flow and gravity waves. A common approach in
gravity-wave theory is to use a piecewise representation of
the upper atmosphere, where the profiles of the stratification
and the wind speed are split up in a discrete number of lay-
ers (Tolstoy, 1973; Gossard and Hooke, 1975; Baines, 1998;
Smith et al., 2002; Teixeira et al., 2013; Yu and Teixeira,
2015). We generalize this approach by allowing for an arbi-
trarily large number of layers so that any atmospheric profile
can be accurately analyzed.

It is well known that variations in the atmospheric state can
cause wave reflection, which might lead to internal gravity-
wave resonance (Gill, 1982). Using the extended TLM, we
examine how this resonance affects the pressure feedback on
the ABL. Extensive research has been performed on inter-
nal gravity-wave resonance, with most of it focusing on flow
around topographies, mountain waves, and the effect on the
free atmosphere (Teixeira, 2014). As a result, the vertical dis-
placement is simply given by the shape of the topography, not
by a change in ABL height. In wind farms, this is different:
the displacement is given by a change in ABL depth due to
wind-farm blockage, in which the induced gravity waves can
play an active role. We therefore set up a qualitative analy-
sis of the feedback loop between ABL flow perturbations and
the associated resonant gravity-wave feedback. Finally, in or-
der to estimate the overall effect of vertical variations in the
atmospheric conditions, 1 year of operation of the Belgian–
Dutch wind-farm cluster is simulated.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews how gravity waves and the ABL flow interact
and how the TLM models ABL flow. In Sect. 3, the analytical
expressions for the stratification coefficients for non-uniform
atmospheres are derived. To evaluate these, a method for
solving the wave equation has to be developed, which is done
in Sect. 3.2. Section 4 uses the developed method to analyze
the effect of variations in the wind and stability in the free
atmosphere on wind-farm operation. Finally, the paper con-
cludes with a summary and suggestions for further research
in Sect. 5.

2 Gravity-wave interaction with wind farms

Wind farms form a blockage to the ABL flowing through and
around them, thereby pushing the inversion layer, and the
free atmosphere above, upwards. These displacements can
trigger gravity waves, which may influence the ABL flow by
inducing pressure gradients. The first part of this section dis-
cusses these induced pressures, while the second part gives

an overview of how the TLM models ABL flow and how it
incorporates gravity-wave effects.

2.1 Pressure feedback induced by gravity waves

The vertical displacement ηt of the capping inversion topping
the ABL leads to two types of atmospheric gravity waves.
The first type, called inversion gravity waves, propagate hor-
izontally along the inversion layer, similar to surface water
waves. Due to the strong stratification in the inversion layer,
any vertical displacement ηt of the inversion layer will be
counteracted by the buoyancy-generated changes in pressure
p′1 (Gill, 1982; Smith, 2010):

p′1
ρ
= g′ηt , (1)

where ρ is the unperturbed density, and g′ = g1θ/θ is the
reduced gravity, determined by the potential temperature θ
and the inversion strength 1θ .

The second type of waves propagates vertically through
the free atmosphere above the capping inversion if it is sta-
bly stratified, as is usually the case. The free atmosphere
perceives ηt similarly to large-scale topographies, and in-
ternal gravity waves are generated (Smith, 2010). In return,
the internal gravity waves also induce pressure gradients on
the ABL. This pressure feedback is easily expressed by us-
ing double Fourier transforms in the horizontal directions
(i.e., (x,y)→ (k, l)) of the displacement and the pressure.
For each wavenumber (k, l), the perturbation in the free at-
mosphere is a plane wave, with the vertical velocity given by
Nappo (2012):

w′(x,y,z)=−ı�η̂t exp[ı(kx+ ly+mz)], (2)

where �=−κ ·u=−(uk+ vl) is the intrinsic frequency
of the gravity waves, with u and v the x and y compo-
nents of the background velocity, and where m is the vertical
wavenumber of the internal gravity waves. For each separate
wavenumber (k, l), the pressure perturbation p̂′2 of the plane
wave is proportional to the ABL displacement η̂t , with the re-
lation determined by the stratification coefficients 8̂ (Smith,
2010):

p̂′2
ρ
= 8̂η̂t . (3)

For uniform free atmospheres, these coefficients are given by
Smith (2010):

8̂=
ı
(
N2
g −�

2
)

m
, (4)

where Ng =
√
g
θ

dθ
dz is the Brunt–Väisälä frequency, which is

constant with height in the uniform case. Further, m can be
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found using the dispersion relation (Gill, 1982):

m2
=

(
k2
+ l2

)(N2
g

�2 − 1

)
. (5)

If �2 <N2
g , then m2 is positive, and the waves propagate

vertically. If �2 >N2
g , then m2 is negative, and the waves

become evanescent. To find8, the sign ofm has to be known.
For propagating waves (m2 > 0), the sign ofm is determined
by the radiation condition, which states that the energy flux
of a wave, which is directed along ∂�

∂m
, should be upwards,

away from the perturbation (Baines, 1998). It then follows
that sign(m)=−sign(�). For evanescent waves (m2 < 0),
the positive root has to be chosen for the perturbation to die
out with altitude (Smith, 1980).

2.2 Three-layer model

The TLM is based on earlier work by Smith (2010), who
first analyzed the impact of gravity waves on wind-farm op-
eration. It represents the ABL as being neutrally stable and
capped by an inversion layer, with the flow above being sta-
bly stratified. Although stably stratified atmospheres have of-
ten been modeled this way (Klemp and Lilly, 1975; Durran,
1990; Vosper, 2004; Smith, 2007; Sachsperger et al., 2015),
Smith (2010) was the first to apply such a model to wind-
farm operation. His model assumes that the flow in the ABL
does not vary with height so that the perturbed variables can
be replaced by their height averages. As a result, horizontal
flow divergence and convergence will lead to changes in the
ABL height. Another assumption is that the ABL flow is as-
sumed to be hydrostatic. The inversion layer is modeled as
a zeroth-order jump in potential temperature 1θ at the top
of the ABL, and the free atmosphere above is assumed to be
uniformly stratified.

The TLM improves on the model by Smith in several
ways, the most important of which is to divide the ABL in
two separate layers. The resulting lower and an upper layer
are denoted by subscripts 1 and 2, respectively. The two lay-
ers are separated by a pliant surface, similar to the interface
between the ABL and the free atmosphere. The wind-farm
forcing terms are added in the momentum equations for the
lower layer while only affecting the upper layer through in-
teraction through the pliant surface. For this reason, the lower
layer is also called the wind-farm layer. The resulting ap-
proximation of the ABL is visualized in Fig. 1. The flow in
the two layers is governed by the following two-dimensional
depth-averaged linearized momentum and continuum equa-
tions (Allaerts and Meyers, 2019):

uj,1
∂u′i,1

∂xj
+

1
ρ

∂
(
g′+8

)
∗ ηt

∂xi
= fcεij3u

′

j,1

+ νt,1
∂2u′i,1

∂xj∂xj
+
Dij

H1
12

1u
′

j −
Cij

H1
u′j,1+

Fi

H1
(6)

Figure 1. Schematic representation of the three-layer model. Figure
from Allaerts and Meyers (2019), reproduced with permission.

uj,2
∂u′i,2

∂xj
+

1
ρ

∂
(
g′+8

)
∗ ηt

∂xi
= fcεij3u

′

j,2

+ νt,2
∂2u′i,2

∂xj∂xj
−
Dij

H1
12

1u
′

j (7)

uj,1
∂η1

∂xj
+H1

∂u′j,1

∂xj
= 0 (8)

uj,2
∂η2

∂xj
+H2

∂u′j,2

∂xj
= 0. (9)

The atmospheric base state is governed by the mean depth-
averaged wind speeds ui,1 and ui,2 (with i = 1,2) and the
layer heights H1 and H2 of the wind farm and upper layer,
respectively, and u′i,1, u′i,2, η1, and η2 represent the pertur-
bations to this reference state. The total inversion layer dis-
placement ηt is given by the sum of η1 and η2. Following
Allaerts and Meyers (2019), H1 is taken to be twice the
hub height of the turbines throughout this work. Further,
12

1u
′

j = u
′

j,2− u
′

j,1 is the perturbation of the velocity differ-
ence between the wind farm and the upper layer, linked to
the perturbation of the friction at the interface by the ma-
trix Dij . Similarly, the matrix Cij relates the perturbation of
the friction at the ground to the velocity perturbations in the
lower layer. Finally, fc is the Coriolis parameter, and Fi is
the wind-turbine-forcing term.

In Eqs. (6)–(9), the pressure has been substituted using the
equations discussed in Sect. 2.1. As the ABL is assumed to be
hydrostatic, the pressure perturbation is equal to the pressure
induced by the gravity waves generated by the changes in
ABL height ηt = η1+ η2:

p′

ρ
=
(
g′+8

)
∗ ηt , (10)

where ∗ is the convolution operator. In this way, the TLM
incorporates the gravity-wave effects through a pressure
boundary condition, which is determined by the stratification
coefficients 8. These coefficients do not depend on the val-
ues of ηt or p′ and can thus be calculated separately from the
set of Eqs. (6) to (9). To avoid the computationally expen-
sive convolution, the TLM is solved using a spectral method
with a Fourier–Galerkin discretization (Allaerts and Meyers,
2019). Finally, we note that the hydrostatic assumption in
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the boundary layer ( ∂p
∂z
= 0) is only reasonable as long as

pressure effects within the ABL are negligible compared to
those of the gravity waves. In particular in cases where a cap-
ping inversion is absent, we have noticed that this assump-
tion may not be valid, which can lead to unphysical pertur-
bations. Therefore, in the current work, we will only consider
atmospheric cases with a capping inversion. Extension of the
boundary layer (Eqs. 6 and 7) to include hydrodynamic ef-
fects is a topic of further research.

The turbines are represented individually using an actua-
tor disk model. To incorporate their interactions, the TLM is
coupled with a wake model, which in this work is a Gaus-
sian wake model coupled with linear superposition of veloc-
ity deficits (Bastankhah and Porté-Agel, 2014; Niayifar and
Porté-Agel, 2016). The forces fi,k for each individual tur-
bine k are written as a first-order Taylor expansion around
the background inflow velocity ufs in order to incorporate
the effect of the velocity perturbation (Allaerts and Meyers,
2019):

fi,k(ufs)= fi,k(ufs)+ J
f,k
i (u′fs), (11)

where J f,ki is the Jacobian of fi,k . The background inflow
velocity is taken to be the mean wind speed in the wind-farm
layer, while the velocity perturbation is evaluated at a dis-
tance of 10 D upstream of the farm, where D is the diameter
of the turbines. Finally, the turbine forces are filtered on the
numerical grid with a Gaussian filter (Allaerts and Meyers,
2019):

Fi =

Lx∫
0

Ly∫
0

G(x− x′,y− y′)

Nt∑
k

fi,kδ(x− xk,y− yk)dx′dy′, (12)

where Lx ×Ly is the size of the domain, (xk,yk) denotes
the positions of the turbines, and G(x− x′,y− y′) is a 2D
Gaussian kernel (Allaerts and Meyers, 2019):

G(x,y)=
1
πL2 exp

(
−
x2
+ y2

L2

)
. (13)

We use a filter length of L= 1km.

3 Extension to vertically non-uniform free
atmospheres

In reality, the free atmosphere is not uniform, and the strati-
fication strength and wind speed can strongly depend on alti-
tude. This will of course impact internal gravity-wave prop-
agation through the atmosphere and thus the pressure feed-
back of these waves in the ABL. Currently, the TLM does
not incorporate this as the simplified version of the internal

wave equation on which Eq. (4) is based is only valid for uni-
formly stratified free atmospheres with a constant wind ve-
locity. This section derives expressions for the stratification
coefficients for vertically non-uniform atmospheres, where
both the stratification strength and wind speed can vary.

3.1 Gravity waves in vertically non-uniform flows

The internal gravity-wave equation in vertically non-uniform
atmospheres with continuous background velocities is (Teix-
eira, 2014)[

D2

Dt2

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
−

D
Dt
∂2

∂z2

(
D
Dt

)
+N2

g

(
∂2

∂x2 +
∂2

∂y2

)]
w′ = 0,

(14)

where D
Dt is the inertial derivative, which for steady systems

simplifies to D
Dt = ui

∂
∂xi

, and wherew′ is the vertical velocity
perturbation of the wave. For plane waves, the solution for
this equation can be written as (Teixeira, 2014):

w′(x,y,z)=W (z)exp[ı(kx+ ly)]. (15)

Equation (14) then reduces to the Helmholtz equation (Gill,
1982):

d2

dz2W (z)+m2W (z)= 0, (16)

where m2 is given by

m2
= (k2

+ l2)
(
N2
g

�2 − 1
)
−�−1 d2�

dz2 . (17)

It is important to note that m2 is not a constant as it depends
on the altitude throughNg(z) and�(z). The above derivation
is only valid if the vertical background velocities are con-
tinuous. In points where the background velocities or their
derivatives to altitude have a discontinuity, w′ itself can be
discontinuous, as is elaborated in Sect. 3.2.2.

The relation between w′ and p′ is given by[
D
Dt
∂

∂z
−

(
∂u

∂z

∂

∂x
+
∂v

∂z

∂

∂y

)]
w′ =

(
∂2

∂x2+
∂2

∂y2

)
p′

ρ
. (18)

For plane waves, this relation is

p̂′

ρ
=

ı

k2+ l2

(
�

dW
dz
−

d�
dz
W

)
. (19)

Using W (H )=−ı�η̂t (cf. Eq. 2), the definition of the strat-
ification coefficient then leads to

8̂=

[
�

k2+ l2

(
�

W

dW
dz
−

d�
dz

)]∣∣∣∣
z=H

. (20)

It is easily verified that the above equation and the expres-
sion for m2 (Eq. 17) simplify to Eqs. (4) and (5) if the free
atmosphere is uniformly stratified.
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3.2 Piecewise methods

To evaluate the expression for the stratification coefficients
derived in the previous section, the Helmholtz equation for
vertically non-uniform atmospheres has to be solved. This
is no longer trivial as the vertical wavenumber now varies
with altitude. In earlier studies, one of the main approaches
to solving the Helmholtz equation has been the so-called
piecewise or multilayer methods (Tolstoy, 1973; Gossard
and Hooke, 1975; Baines, 1998; Smith et al., 2002; Teix-
eira, 2014; Pütz et al., 2019). These techniques are based on
modeling the continuously varying atmosphere as a discrete
set of layers, in which the flow’s properties allow for easy
computation of the internal wave field. This approach is also
commonly used in acoustics, where it is called the fast field
program (FFP) method (Salomons, 2001). To avoid confu-
sion with the lower and upper layers of the TLM, the layers
used by piecewise methods are called sublayers from now
on.

3.2.1 General principle

The basic principle of piecewise methods is to represent
the atmosphere as a discrete number of sublayers (Tolstoy,
1973; Gossard and Hooke, 1975; Baines, 1998). In these
sublayers, the atmosphere’s properties should vary in such
a way that solutions to the Helmholtz equation are easily
found while still approximating the actual profiles. By in-
creasing the number of sublayers, most aspects of the real
flow’s behavior can be accurately simulated. A suitable ap-
proach is to use sublayers in whichm2 has simple profiles for
which analytic solutions can be found. In this work, the at-
mosphere is approximated in a piecewise-uniform fashion so
that m2 is piecewise-constant and given in each sublayer by
Eq. (5). The internal wave field in each sublayer is a super-
position of exponential functions, corresponding to upwards-
and downwards-traveling waves.

The main advantage of this method is that realistic wave
patterns can be obtained with a relatively small number of
sublayers. Within a sublayer, only 2 degrees of freedom
have to be determined. Another advantage compared to other
methods such as Wentzel–Kramers–Brillouin (WKB) theory
is that piecewise methods can account for wave reflection,
although they cannot incorporate weakly non-linear effects
(Gill, 1982).

As the number of sublayers has to be limited for com-
putational reasons, not all of the atmosphere can be ap-
proximated. An appropriate height Hn has to be chosen,
above which the atmosphere is considered uniform so that
W (z > Hn) is an exponential function. In general, the piece-
wise method can be summarized by the following equations

(Tolstoy, 1973; Pütz et al., 2019):

m2(z)≈ m̃2(z),



m2
0, H < z < H1
...

...

m2
j , Hj < z < Hj+1
...

...

m2
n, Hn < z

(21)

W (z)≈ W̃ (z),



W0(z)=W0+ exp(ım0z)+W0− exp(−ım0z), H < z < H1

.

.

.

.

.

.
Wj (z)=Wj+ exp(ımj z)+Wj− exp(−ımj z), Hj < z < Hj+1

.

.

.

.

.

.
Wn(z)=Wn+ exp(ımnz)+Wn− exp(−ımnz), Hn < z

, (22)

whereHj denotes the altitudes of the interfaces between sub-
layers, and n is the number of interfaces between the sub-
layers. The values for the 2(n+ 1) coefficients Wj±, which
determine the internal gravity-wave field, depend on addi-
tional conditions at the boundaries and sublayer interfaces,
which are discussed in Sect. 3.2.2. The atmospheric vari-
ables are evaluated in the middle of each sublayer so that
m̃2
j = [m(Hj +1Hj/2)]2. This results in second-order con-

vergence when approximating continuously varying atmo-
spheres, as shown in Appendix A. Once the coefficientsWj±

have been determined, Eq. (20) for the stratification coeffi-
cients can be evaluated as

8̂=
�0

k2+ l2

(
�0ım0

W0+−W0−

W0++W0−
−

d�0

dz

)
. (23)

3.2.2 Boundary and sublayer interface conditions

The values of the coefficientsWj± are determined by the dis-
placement of the inversion layer, the boundary conditions im-
posed at the interfaces between the sublayers, and the radia-
tion condition. The stratification coefficients are calculated in
Fourier components by evaluating the response to a change
in ABL height ηt . For each wavenumber k, l, the relation be-
tween η(z)= η̂(z)exp ı(kx+ ly) andW (z) is given by Nappo
(2012):

D
Dt
η(z)=−ı�η̂(z)exp ı(kx+ ly)

=W (z)exp ı(kx+ ly) . (24)

This leads to a boundary condition for W0(H ):

−ı�0η̂t =W0+ exp(ım0z)+W0− exp(−ım0z). (25)

This relation is already incorporated in Eq. (20). The dis-
placement η and the pressure perturbation p′ have to be con-
tinuous over the interfaces between sublayers (Gossard and
Hooke, 1975; Klemp and Lilly, 1975; Gill, 1982; Baines,
1998; Smith et al., 2002; Vosper, 2004). For each interface
at z=Hj between the sublayers j − 1 and j , this leads to
two conditions that Gossard and Hooke (1975) call the kine-
matic and dynamic conditions, respectively:

ηj−1
(
Hj
)
= ηj

(
Hj
)

(26)
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p′j−1
(
Hj
)
= p′j

(
Hj
)
. (27)

Combining Eqs. (24) and (19) allows the kinematic and dy-
namic conditions to be written in terms of W (z):

Wj−1

�j−1

∣∣∣∣
z=Hj

=
Wj

�j

∣∣∣∣
z=Hj

(28)(
�j−1

dWj−1

dz
−

d�j−1

dz
Wj−1

)∣∣∣∣
z=Hj

=

(
�j

dWj

dz
−

d�j
dz

Wj

)∣∣∣∣
z=Hj

. (29)

Pütz et al. (2019) argue that if the background velocities
change continuously with altitude, the kinematic and dy-
namic interface conditions should be replaced by conditions
ensuring that the vertical velocity is continuous:

Wj−1
∣∣
z=Hj
= Wj

∣∣
z=Hj

(30)

dWj−1

dz

∣∣∣∣
z=Hj

=
dWj

dz

∣∣∣∣
z=Hj

(31)

since evaluating� and its derivative evaluated at the center of
each sublayer in Eqs. (28) and (29), as the use of a constant
wavenumber implies, results in a discontinuous profile for
W . As Pütz et al. (2019) found, these discontinuities cause
the piecewise method to converge to a different solution than
when solving Eq. (16) with a simple finite-difference solver.
However, the physical reasoning behind the kinematic and
dynamic boundary conditions is generally valid, indicating
that they should always be used. The difference between the
setup of Pütz et al. (2019) and the older literature is solved
if in Eqs. (28) and (29) not only Wj−1 and Wj are evaluated
at z=Hj , but �j−1 and �j as well. While in the piecewise-
constant method m2

j should be taken at the center of each
layer and held constant throughout, the background veloci-
ties and their derivatives should be evaluated at the interfaces
when setting up the interface conditions. If changes in back-
ground velocity within layers is taken into account in this
way, the kinematic and dynamic matching conditions will au-
tomatically simplify to those proposed by Pütz et al. (2019)
when appropriate.

Above the highest sublayer, the atmosphere is assumed to
be uniformly stratified. This results in the same situation as
discussed in Sect. 2.1, with the upper boundary condition de-
termining the sign of m in the propagating regime. For the
propagating and evanescent regimes, respectively, the root is
chosen so that the radiation condition is satisfied or that the
perturbation dies out with altitude.

Combined with the radiation condition applied at height
Hn, Eqs. (25), (28), and (29) provide 2(n+1) relations, which
is enough to solve for Wj±. As the equations are linear, and
the kinematic and dynamic equations at each interface only
involve the wave fields in the adjacent sublayers, the system
of equations for each wavenumber can be solved as a banded

matrix of size 2(n+1) with a bandwidth of 5. Solving the sys-
tem has a computational complexity of O(n). The total com-
putation for a single profile ofm2(z) with n= 100, including
the building of the matrix, takes roughly 0.4s on a personal
laptop with 16 GB of RAM and an Intel core i7 2.60 GHz,
using scipy routines sped up with the numba package (Lam
et al., 2015; Virtanen et al., 2020). To determine the pressure
boundary condition in the TLM, the stratification coefficients
for all the different wavenumbers have to be calculated, lead-
ing to a total complexity of O

(
NxNyn

)
. Finally, we empha-

size that all stratification coefficients can be precomputed as
their values do not depend on the solution of the TLM. Once
identified, the values of 8̂ can be used in Eq. (10) to set the
pressure boundary condition in the TLM.

3.2.3 Inversion and critical layers

If there are inversion layers in the free atmosphere, these
can be modeled by discontinuities in θ corresponding to the
inversion strengths 1θ . This can be incorporated in piece-
wise methods by adding g′ = g1θ

θ
to the right-hand side of

Eq. (27) (Baines, 1998).
As the wind can vary, the situation can arise where ug =
−vgk/l so that the intrinsic frequency �= 0. In a refer-
ence frame moving with the wind speed, the frequency of
the waves is then zero, and the mean flow is no longer per-
turbed. It is clear from Eq. (17) that this corresponds to a
singularity. The height at which this occurs is called a crit-
ical level, and exactly what happens is hard to predict with
linear theory. In general, the wave disappears, and the energy
it carried is absorbed by the mean flow (Gossard and Hooke,
1975; Gill, 1982; Baines, 1998). Therefore, critical levels are
modeled as fully absorbing sublayers, as is commonly done
in the literature (Smith et al., 2002; Wells and Vosper, 2010).
This is implemented by applying the radiation condition at
interface j when� changes sign across interface j+1 or be-
comes zero in sublayer j+1. Since there is no difference for
the flow below the critical level between wave energy being
absorbed aloft or just radiating outward indefinitely, this is
equivalent for our purposes.

3.3 Verification

To verify the implementation of the piecewise-constant
method, it was compared to a second-order finite-difference
(FD) code with a central difference scheme on various con-
tinuously varying background velocities and buoyancy fre-
quencies. The piecewise method consistently outperformed
the FD code, achieving second-order convergence as ex-
pected through the proof in Appendix A and having small
errors even at coarse grids.

We also reproduced results from Wells and Vosper (2010),
who calculated the linear gravity response for an idealized
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atmosphere to a small 2D ridge, described by

h=
hr

(x/Lr )2
+ 1

, (32)

where hr = 10m and Lr = 10km. These values were cho-
sen so that the effects of non-linearity would remain small
(Wells and Vosper, 2010). The vertical velocity perturbation
was computed on a 1000 km long domain with 2048 grid
points; a 1D version of the grid that is used in Sect. 4; and
up to a height of 20 km with a grid spacing of 125 m, which
is comparable to what is used in Sect. 4.3. The idealized
background velocity and Brunt–Väisäla frequency profiles,
as well as the gravity-wave response, are shown in Fig. 2. The
contour plots agree fairly well with those obtained by Wells
and Vosper (2010), indicating that the piecewise method is
correctly implemented and suited to this application. This
test case is further discussed in Sect. 4.

Wells and Vosper (2010) also analyzed the hydrostatic
drag response to the same ridge for atmospheres with a two-
layer buoyancy-frequency structure. This is a classic test
case, and similar setups have been discussed by Gill (1982),
Leutbecher (2001), and Teixeira and Argaín (2020), among
others. Wells and Vosper (2010) considered a case where the
background wind u(z) is constant and one where it is given
by

u(z)= u0+ u1 sin
(
πz

2zi

)
, (33)

where zi = 10km. In the constant wind case, the drag is com-
puted for a range of u0. In the case with vertical wind shear,
it is computed for a range of u1, with u0 kept at 5 m s−1.
In reproducing their results, we used a step profile for the
Brunt–Väisäla frequency:

Ng(z)=
{
N1, z < zi
N2, z > zi

, (34)

where N1 = 0.01, and N2 = 0.02s−1. Our results, obtained
on the same grid as above with our method adapted to the
hydrostatic regime, and those obtained by Wells and Vosper
(2010) and Leutbecher (2001) for the constant wind case are
shown in Fig. 3. Again, the good agreement indicates that
the multilayer method performs well. An overview of all the
upper-atmospheric profiles used for verification is given in
Table 1.

4 Effects of vertically varying wind and stability

By using the piecewise-constant method developed in
Sect. 3.2 to evaluate the stratification coefficients, the TLM
can now take the variation in the stratification strength and
wind speed with altitude into account. The impact of this
non-uniformity on the interaction between gravity waves and
wind farms is now analyzed in three ways. In Sect. 4.1, the

impact of atmospheric profile variations on the stratification
coefficients is analyzed by comparing 8̂ for the idealized at-
mosphere used in Sect. 3.3 to the 8̂ for a uniform upper at-
mosphere. The physical phenomenon causing the differences
is identified as internal gravity-wave interference.

We further investigate how this influences the interaction
between wind farms and gravity waves. To this end, Sect. 4.2
discusses an example case of ABL flow with a uniform upper
atmosphere from Allaerts and Meyers (2019). By combining
this case with the atmospheric profiles analyzed in previous
sections, we investigate the effect of vertical variations in the
atmospheric conditions on wind-farm–gravity-wave interac-
tion. Finally, Sect. 4.3 presents a case study that estimates
the overall impact of such variations by simulating 1 year of
operation of the Belgian–Dutch offshore wind-farm cluster.

4.1 Stratification coefficients

To determine the effects of vertical non-uniformity on the
pressure feedback of internal gravity waves, the stratification
coefficients are calculated for the upper atmosphere used by
Wells and Vosper (2010), shown in Fig. 2. The same grid
as in Sect. 3.3 is used. The coefficients 8̂ are calculated for
both the original non-uniform and a uniform atmosphere.
The latter was obtained by height-averaging the profiles of
the velocity and the Brunt–Väisäla frequency, resulting in
U = 20.1ms−1 andNg = 0.0113s−1. Figure 4 shows the re-
sults. Only k < 1km−1 is shown so that the important details
are clearly visible. Since this is a 2D case, the transversal
wavenumber l is zero. Comparing the two profiles for ||8̂||,
it is clear that the vertical non-uniformity has a large impact
on the stratification coefficients, with two peaks appearing at
k ≈ 0.36 and k ≈ 0.72km−1. We will now show that these
changes in the profile of ||8̂|| are caused by resonance in the
free atmosphere.

4.1.1 Internal wave resonance

While in a uniform atmosphere the wind farm can only trig-
ger waves with an upwards group velocity, changes in the
stratification and wind speed can cause waves to reflect. This
allows both up- and downgoing waves to propagate through-
out the atmosphere. As up- and downgoing internal grav-
ity waves pass through each other, they interfere, potentially
causing resonance. The resulting large wave amplitudes can
drastically affect the pressure feedback of the waves (Teix-
eira, 2014). The ratio A between the mean wave energy at a
given wavenumber for atmospheric profile with and without
vertical variations is an effective measure for gravity-wave
resonance as long as the waves are in the propagating regime
(Gill, 1982). It is easily evaluated numerically using the fol-
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Figure 2. Idealized upper-atmosphere velocity (a) and Brunt–Väisäla frequency (b) used by Wells and Vosper (2010) and the vertical velocity
field as calculated with the piecewise-constant method (black lines) and as found by Wells and Vosper (2010) (gray lines) (c). The contour
interval is 0.01 m s−1, and the solid and dashed lines denote positive and negative values, respectively.

Table 1. An overview of the different upper-atmospheric flow profiles used for verification. The upper atmosphere set up by Wells and Vosper
(2010) is also used in Sect. 4.1 and 4.2.

Upper-atmospheric profiles u(z) N (z)

Wells and Vosper (2010) Fig. 2, left Fig. 2, middle
Two-layer Brunt–Väisäla frequency, constant wind Constant Eq. (34)
Two-layer Brunt–Väisäla frequency, varying wind Eq. (33) Eq. (34)

lowing expression:

A=

Hn∫
H

eHD(z)dz ·

 Hn∫
H

eU (z)dz

−1

, (35)

where e is the sum of the kinetic and potential energy densi-
ties (Gill, 1982):

e =
1
2
ρ
(
u′2+ v′2+w′2

)
+

1
2
g2ρ′2/ρN2

g . (36)

For a sublayer in a piecewise-constant method, the integrals
are straightforward to determine analytically, allowing A to
be evaluated.

Figure 4 shows A for the atmosphere of Wells and Vosper
(2010). It is clear that ||8̂|| and A have a similar profile,
with the same peaks occurring at k ≈ 0.36km−1 and k ≈
0.72km−1. Above k = 0.408km−1, the gravity waves be-
come evanescent within some sublayers, leading to oscilla-
tions in A that do not correspond to resonant behavior. De-
spite this, it is clear from the figure that the profiles of ||8̂||
and A follow the same pattern, showing that the pressure
feedback is largely determined by constructive and destruc-
tive interference of the internal gravity waves.

4.2 Gravity-wave ABL interaction

We investigate how variations in the wind and stability
change the effects wind-farm operation has on the ABL flow
by revising an example case used by Allaerts and Meyers
(2019). By combining this case with the non-uniform up-
per atmosphere used in the previous sections, we identify

the mesoscale flow perturbations triggered by the wind farm.
One of these changes caused by the variations in the at-
mospheric conditions – the increase in the appearance and
strength of resonant lee waves – is further analyzed.

4.2.1 Example cases

To analyze how the changes in the stratification coefficients
impact the flows around wind farms, a flow case discussed
earlier by Allaerts and Meyers (2019) is analyzed. This ex-
ample case is simulated once with uniform upper atmo-
spheres and once with the upper atmosphere discussed in
Sects. 3.3 and 4.1.

The example case is set up to have a Froude number of
Fr = 1.1, with the Froude number given by Allaerts and
Meyers (2019),

Fr =
uB√
g′H

, (37)

where uB is a velocity scale for the ABL (Allaerts and Mey-
ers, 2019),

uB =

(
H1

H

1

u2
1
+
H2

H

1

u2
2

)−1/2

. (38)

The Froude number represents the ratio of the advection
terms in the momentum balance to the pressure gradient gen-
erated by the inversion waves (Durran, 1990). It is also a
measure for the ratio of the wind speed to the velocity of
inversion waves and therefore determines whether or not in-
version waves can travel upstream from a stationary per-
turbation. This leads to the classification of flows as being
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Figure 3. Mountain wave drag on a small ridge with a two-layer Brunt–Väisäla frequency profile and constant background wind (a) and
vertical wind shear (b), normalized by the drag for constant background profiles. The black lines with squares show our results, in which the
wave drag is normalized with the drag for constant background wind u0 and stratification strength N1. The blue lines with circles show the
results of Wells and Vosper (2010), and the red line with triangles in the left figure shows the results of Leutbecher (2001).

Figure 4. The stratification coefficients for a uniform atmosphere with U = 20.1 m s−1 and Ng = 0.0113 s−1 (a), the stratification coeffi-
cients (b) and the gravity-wave resonance parameter (see Eq. 35) (c) for the vertical non-uniform atmosphere of Wells and Vosper (2010)
used in Sect. 3.3. Only k < 1km−1 is shown so that the important details are clearly visible. Since this is a 2D case, the transversal wavenum-
ber l is zero. Above k = 0.408km−1, the gravity waves become evanescent within some sublayers, leading to oscillations in A that do not
correspond to resonant behavior.

either subcritical Fr < 1, when inversion waves can affect
the upstream flow, or supercritical Fr > 1, when they can-
not (Smith, 2010). Allaerts and Meyers (2019) analyzed two
cases: one is subcritical, with Fr = 0.9, while the other is su-
percritical, with Fr = 1.1. Here, we focus on the supercritical
case.

The example case is set up as follows. The mean flow in
the two layers of the ABL is based on the analytical bound-
ary layer model of Nieuwstadt (1983), with a cubic eddy vis-
cosity profile ντ = κu∗z(1−z/H )2 and the Von Kármán con-
stant κ = 0.41 (Allaerts and Meyers, 2019). This model finds
a velocity profile given a non-dimensional surface rough-
ness length z0 = z0/H and non-dimensional boundary layer
height h∗ =Hfc/u∗. Combined with the stratification pa-
rameters g′ and Ng , this gives all the inputs required for
the TLM. Allaerts and Meyers (2019) presume a conven-
tionally neutral boundary layer, determining these stratifica-
tion parameters with the non-dimensional groups Ng/fc and
g′H/Au2

∗, whereA= 500 is an empirical constant (Csanady,
1974; Tjernstrom and Smedman, 1993). Since we want to an-
alyze the impact vertical variations in the upper-atmospheric
profile have on the flow, the original inputs used by Allaerts

and Meyers (2019) are altered so that the upper atmosphere
corresponds to the one analyzed in Sect. 4.1. The correct
geostrophic wind and Brunt–Väisäla frequency are obtained
by modifying u∗ and Ng/fc, respectively, and g′H/Au2

∗ is
changed so that the final result still has a Froude number of
1.1.H is increased so that h∗ and z0 remain the same. The in-
puts are summarized in Table 2. Finally, the flow in the lower
layer is aligned with the x direction.

Table 3 gives an overview of the wind-farm configuration
used by Allaerts and Meyers (2019), which is chosen to be
comparable to the Belgian–Dutch wind-farm cluster in area
and installed capacity. The turbines are placed in a staggered
pattern with respect to the x direction, and the relative spac-
ing is equal in the x and y directions. The simulations were
performed on a 1000 km by 400 km grid, with 2000 by 800
grid points, which is the same as the grid spacing used in
Sect. 3.3. For the vertically non-uniform simulation, the same
vertical grid as in Sect. 3.3 and 4.1 is used.

The results of the uniform and non-uniform simulations
are shown in Fig. 5. When comparing the results, it is clear
that the mesoscale disturbances are much larger in the non-
uniform case, with a stronger reduction in the farm inflow
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Table 2. Flow parameters of the flow case based on the one used by Allaerts and Meyers (2019). The atmospheric state corresponds to a PN
of 1.1 and Fr of 1.1. For the vertically non-uniform case, the upper-atmospheric profiles of Wells and Vosper (2010), shown in Fig. 2, were
used.

Formula Definition Value Value used by
Allaerts and Meyers (2019)

h∗ Non-dimensional boundary layer height 0.15 0.15
z0 Non-dimensional surface roughness length 10−4 10−4

g′H/Au2
∗ Inversion parameter 0.71 1.04

N/fc Brunt–Väisäla frequency to Coriolis parameter 113 58

Table 3. Wind-farm configuration of the reference flow cases, as
analyzed by Allaerts and Meyers (2019).

Configuration Value

Wind-farm length 20 km
Wind-farm width 30 km
No. of turbine rows 18
No. of turbine columns 27
Rotor diameter 154 m
Thrust coefficient 0.8
Relative turbine spacing 7.21

velocity. The farm’s effects also spread out in the transversal
directions as V-shaped patterns appear over large distances.
Finally, the wind farm seems to trigger strong lee waves in
its wake. These waves also appear in the reference case, al-
though they are weaker there.

4.2.2 Resonant lee waves in the ABL

We further analyze the lee waves that appear in Fig. 5 and
show that they are associated in this case with internal wave
reflection. We follow the ideas developed by Allaerts and
Meyers (2019) by analyzing the equation for the total dis-
placement ηt . When the wind in the ABL is aligned with the
x axis (v1 = v2 = 0), that equation corresponds to Allaerts
and Meyers (2019):

(
−1+Fr−2

+P−1
N

8

GNg

)
∗
∂2ηt

∂x2 +

(
Fr−2

+P−1
N

8

GNg

)
∗
∂2ηt

∂y2 =
H1

u2
1
∇ ·RHS1+

H2

u2
2
∇ ·RHS2,

(39)

where G is the geostrophic wind velocity. Furthermore,
RHS1 and RHS2 are the right-hand sides of the Eqs. (6)
and (7), respectively, and only depend on ηt through the tur-
bulent viscosity, which is a relatively weak effect (Allaerts
and Meyers, 2019). As discussed before, the Froude number
Fr indicates the strength of the inversion waves. The second
non-dimensional group PN governs the pressure induced by

internal gravity waves and is given by

PN =
u2
B

GNgH
. (40)

It reflects the fact that the pressure induced by a ver-
tical displacement scales linearly with GNg in the hy-
drostatic regime. It is then clear that the left-hand side
of Eq. (39) represents the forcing induced by flow ad-
vection

(
−
∂2ηt
∂x2

)
and the corresponding gravity waves((

Fr−2
+P−1

N 8/GNg∗
)
∇

2
Hηt

)
. These are balanced by the

right-hand side of the equation, which represents the other
terms in the momentum equations. If the advection terms
and the pressure contributions from the gravity waves bal-
ance each other, the left-hand side of Eq. (39) becomes zero.
This corresponds to a resonant state as ηt can be non-zero
without external forcing, which explains the lee waves that
appear in Fig. 5.

The left-hand side of Eq. (39) is easily expressed in Fourier
components, leading to the definition of the two-dimensional
lee-wave resonance parameter R:

R = (cosλ)2
−Fr−2

−
H

u2
B

8̂, (41)

where λ is the angle the horizontal wave vector makes with
the k axis so that (cosλ)2

= k2/(k2
+ l2). The parameter R is

a non-dimensional parameter indicating the flow’s resistance
to the occurrence of two-dimensional lee-wave resonance. If
R = 0, the pressure perturbations induced by ηt 6= 0 and the
accompanying gravity waves balance the advection terms,
and resonant lee waves appear. Equation (41), in combina-
tion with Eq. (4), shows that for uniform upper atmospheres,
this type of resonance can only take place if the internal grav-
ity waves are evanescent as 8̂ has to be real for R to be zero.
Physically, this corresponds to propagating waves not being
able to trap the perturbation energy below the capping inver-
sion (Vosper, 2004). In contrast, the wave reflection in verti-
cally non-uniform atmospheres can cause part of the wave
energy to be trapped by being reflected back. This corre-
sponds to the stratification coefficients as given by Eq. (23)
potentially having a real component, even in the propagat-
ing regime. The additional constraint found by Allaerts and
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Figure 5. Planform view of the inversion layer displacement ηt (a, d), pressure perturbation p′ (b, e), and velocity reduction in the lower
layer u′ (c, f) in the reference uniform (a–c) and vertically varying (d–f) flow cases. The wind-farm region is indicated by the black rectangles.

Meyers (2019), that the flow has to be subcritical, is also not
necessary when the waves can be reflected.

In order to apply this theory to the case from Sect. 4.2.1,
Fig. 6 shows the wavenumber spectra for ηt and R. Figure 6
shows that low values of ||R|| correspond to high values of
||η̂t ||, indicating resonant lee waves in the ABL. The varia-
tions in wind and stability in the upper atmosphere can cause
||R|| to decrease several orders of magnitude in the propa-
gating wave regime. This happens when the internal gravity-
wave interference is destructive, which lowers the vertical
energy flux of the waves considerably. This keeps the per-
turbation energy contained in the lower atmosphere, leading
to low ||R||, which for uniform atmospheres only happens
in the evanescent wave regime (Vosper, 2004; Allaerts and
Meyers, 2019). In contrast, constructive interference can lead
to very large values for ||8̂||, and thus for ||R||. Furthermore,
when ||R|| � 0, a large imbalance exists between the advec-
tion and pressure forces in the ABL. Changes in ABL height
of the wavelengths at which this occurs cannot exist in an
equilibrium system without external forcing. This is clearly
visible in Fig. 6 as high values of ||R|| correspond to low val-
ues of ||η̂t ||. Internal gravity-wave resonance thus prohibits
large displacements of the inversion layer at the wavelengths
at which it occurs by creating large pressure gradients that
cannot be counteracted by the flow acceleration.

While the above analysis explains how vertical variations
in the atmospheric profile change the interaction between in-
ternal gravity waves and the ABL flow, it does not offer in-

sight on how to predict the resulting impact on wind-farm
performance. It is not clear what parameters could describe
this. Extensive research has been done on internal gravity-
wave resonance, with most of it focusing on flow around
topographies. However, this has to be used with caution as
the overall flow is then analyzed in the context of mountain
wave drag, where the height displacement is given by the
shape of the terrain (Teixeira, 2014). In contrast, the wind-
farm forcing leads to this displacement through its interac-
tion with the ABL. Additionally, it is itself influenced by the
mesoscale effects it triggers, leading to an additional feed-
back loop. Parameters successfully describing internal wave
resonance may therefore not be able to predict how vertical
non-uniformity will impact the interaction with wind farms.

4.3 Overall impact

To determine the impact of varying wind speeds and stability
on wind-farm energy production, we follow the approach of
Allaerts et al. (2018) by simulating 1 year of wind-farm op-
eration of the Belgian–Dutch wind-farm cluster. This analy-
sis is performed with both uniform and non-uniform upper
atmospheres, and the two are compared. The TLM input is
based on ERA5 reanalysis data of the year 2016 from Hers-
bach et al. (2018), which are available at hourly frequency,
resulting in 8784 flow cases. Like Allaerts et al. (2018), we
use data from the grid point nearest to the wind-farm clus-
ter, at 51.6◦ N, 3.0◦ E, and the same approach in determining
the TLM input from the atmospheric data. We further assume
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Figure 6. ||η̂t ||/H (a, c) and ||R|| (b, d) for the reference flow case with a uniform (a, b) and a non-uniform free atmosphere (c, d). Only
the wavenumbers ||k|| ≤ 1.26km−1 and ||l|| ≤ 1.26km−1 are shown so that the important details are clearly visible. The left column shows
parts of the Fourier transforms of the left column of Fig. 5.

that all turbines are DTU 10 MW reference turbines, a com-
monly analyzed model for which the power curve is readily
available (Bortolotti et al., 2019), and place them within the
same trapezoidal area as Allaerts et al. (2018). To ensure that
we obtain the same total installed capacity of 3.8 GW, we
scale the number of turbines and the turbine spacing from
475 and 7.36 to 380 and 8.23, respectively. The thrust co-
efficient of the turbines is set based on the height-averaged
background velocity in the wind-farm layer of the TLM.

The simulations were performed on a 2000 by 2000 grid,
on a 1000 km by 1000 km domain, the same grid density as
in the previous sections. Variations in the atmospheric pro-
files were taken into account up to the tropopause. Within
the troposphere, the potential temperature and velocity pro-
files were modeled as first- and third-order splines, respec-
tively, through the ERA5 data points, around which the sub-
layers were spaced as well, resulting in 30 to 50 sublayers
for each case. The tropopause altitude and the stratification in
the stratosphere were determined with a two-line, piecewise-
linear regression fit on the temperature profiles between the
ABL height and 15 km. The velocity in the stratosphere was
then determined by height-averaging the profile from the
tropopause up to 15 km. As an example, Fig. 7 shows the pro-
files of θ , u, and v for the upper atmosphere at 00:00 GMT
on 1 May 2016.

From the 8746 cases, we only use those where the at-
mosphere is statically stable at every altitude in the free at-
mosphere. Additionally, the cases without capping inversion,
(cf. earlier discussion following Eq. 10 in Sect. 2.2) or with
a capping inversion situated lower than twice the turbine hub
height were left out, leaving 3890 cases. This filtering was
necessary as for the removed cases the assumptions made
in the derivation of the model are not valid, as discussed in
Sect. 2.2. The results of the simulations are shown in Fig. 8
and summarized in Table 4. On average, the difference be-
tween the results with non-uniform and uniform upper atmo-
spheres is small. Despite this however, the impact on individ-
ual cases is often significant. In 16.6 % of the analyzed cases,
the difference between the uniform and the non-uniform in-
flow perturbation was more than 30 % of the uniform per-
turbation case. We therefore conclude that vertical variations
in the upper-atmospheric profiles are important to take into
account when analyzing individual flow cases.

Figure 9 shows that the differences between the simula-
tions seem to be independent from parameters that were good
predictors of the TLM’s behavior in previous studies, such
as Fr and PN . We also investigated parameters that were
found to correlate well with mountain wave drag in vertically
non-uniform atmospheres, such as c1 as found by Klemp
and Lilly (1975) (Eq. 16), but could not identify a meaning-
ful correlation in our case. Directional shear effects, such as

Wind Energ. Sci., 7, 1367–1382, 2022 https://doi.org/10.5194/wes-7-1367-2022



K. Devesse et al.: Including realistic upper atmospheres in a wind-farm gravity-wave model 1379

Figure 7. The atmospheric profiles of potential temperature (a), velocity in the x (b) and y direction (c). The blue crosses are the ERA5
data, and the black lines are the inputs to the TLM, showing the piecewise-constant approximation made in the discretization.

Figure 8. The maximum capping inversion displacement (a) and the inflow velocity perturbation (b) for all analyzed cases with both uniform
(x axis) and non-uniform (y axis) upper atmospheres.

Table 4. Average perturbations over all the analyzed flow cases for
both uniform and non-uniform upper atmospheres.

Average over analyzed Uniform Non-uniform
flow cases

Maximum ηt/H 10.64 % 11.68 %
Inflow 1u1/u1 4.06 % 4.08 %

those investigated by Teixeira et al. (2008), might explain the
discrepancy.

5 Conclusions

The goal of this study was to extend the applicability of
a wind-farm gravity-wave model to vertically non-uniform
free atmospheres. This was done by changing the expressions
for the stratification coefficients 8̂ to results derived from the
internal wave equation for general stratified flows. By apply-
ing the well-known piecewise method with large numbers of

sublayers, general stratification and velocity profiles can be
incorporated into the model.

The effects of the variations in background wind and sta-
bility were studied by analyzing how free-atmospheric wave
reflection influences the wave pressure feedback, the ABL
flow, and overall wind-farm performance. Firstly, the strat-
ification coefficients for the idealized atmosphere used by
Wells and Vosper (2010) were compared to those for a uni-
form atmosphere based on it. The differences were found to
be caused by constructive and destructive interference of the
internal gravity waves in the free atmosphere. In a second
step, this vertically non-uniform atmosphere was combined
with a flow case used by Allaerts and Meyers (2019). An
analysis of the appearance of resonant lee waves led to a
qualitative understanding of the vertical non-uniformity’s ef-
fects on the interaction between gravity waves and the ABL
flow. Due to destructive internal wave interference, resonant
lee waves can appear. On the other hand, internal gravity-
wave resonance dampens inversion layer displacement for
the wavelengths at which it occurs.

Finally, the extended TLM was used to simulate 1 year of
operation of the Belgian–Dutch wind-farm cluster, repeating
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Figure 9. The difference between the maximum capping inversion displacements in the non-uniform and uniform simulations as normalized
by the ABL height (a) and the displacement in the uniform simulation (b), plotted against the parameters Fr and PN . The lack of a clear
trend in both figures indicates that Fr and PN are not related to the impact of the vertical non-uniformity.

a similar analysis by Allaerts et al. (2018), in order to de-
termine overall impact of variations in the atmospheric pro-
files on the interaction between the ABL flow and the gravity
waves to be determined. While this impact was found to be
small when averaged out over all flow cases, for individual
flow cases it is often of the same order of magnitude as the
total flow perturbation. In 16.6 % of the analyzed flows, the
variations in the atmospheric profiles caused a relative differ-
ence in the upstream velocity reduction of more than 30 %. It
is unclear how the effect of this non-uniformity for individ-
ual flow cases can be predicted since it does not simply scale
with Fr or PN .

The results of this study show that vertical atmospheric
non-uniformity could play a major role in the interaction be-
tween wind farms and gravity waves. This suggests that vari-
ations with altitude of the free atmosphere’s wind and stabil-
ity should be taken into account when simulating wind-farm
operation in specific atmospheric conditions and may be im-
portant for the optimization of turbine control in the future
(see, e.g., Lanzilao and Meyers, 2021b). In the future, we
foresee further improvements of the TLM, among others, in-
cluding hydrodynamic effects in the boundary layer and up-
grading the wake model to include the improved wake merg-
ing model by Lanzilao and Meyers (2021a). Next to that, we
plan further validation against detailed large-eddy simula-
tions (similar to Allaerts and Meyers, 2019) and data from
operational wind farms.

Appendix A: Convergence analysis

Adding more sublayers leads to a better approximation of
the actual profiles of atmospheric variables. This would then
also result in a better approximation of W (z). To estimate
the rate of convergence, z∗ is defined as the altitude where
∂W̃
∂z

(z∗)= ∂W
∂z

(z∗). If n is sufficiently large, such an altitude
exists in each sublayer. The error E =W − W̃ can then be

written as a Taylor expansion around z∗:

E(z)=W (z)− W̃ (z)

=W (z∗)+
∂W

∂z
(z∗)1z+

1
2
d2W

dz2 (z∗)1z2

−W̃ (z∗)−
dW̃
dz

(z∗)1z−
1
2
d2W̃

dz2 (z∗)1z2
+ . . .

=W (z∗)
(

1−
1
2
m2(z∗)1z2

)
− W̃ (z∗)

(
1−

1
2
m̃2(z∗)1z2

)
+ . . . (A1)

Using the above result, the change in error over the j th sub-
layer 1jE can be written as

1jE = E(Hj+1)−E(Hj )

=W (z∗)
(

1−
1
2
m2(z∗)1z2

j+1

)
− W̃ (z∗)

(
1−

1
2
m̃2(z∗)1z2

j+1

)
−W (z∗)

(
1−

1
2
m2(z∗)1z2

j

)
+ W̃ (z∗)

(
1−

1
2
m̃2(z∗)1z2

j

)
+ . . .

=
1
2
m2(z∗)

(
1z2

j −1z
2
j+1

)
−

1
2
m̃2(z∗)

(
1z2

j −1z
2
j+1

)
+ . . . (A2)

Because 1zj+1+1zj =1jH , with 1jH the thickness of
the j th sublayer, a maximum value for |1Ej | is given by

|1jE| ≤
1
2

∣∣∣m2(z∗)− m̃2(z∗)
∣∣∣1jH 2

+ . . . (A3)
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If m2
= m̃2 somewhere in the sublayer, substituting a Taylor

expansion for m2 then directly leads to

|1jE| ≤
1
2

∣∣∣∣dm2

dz
(z∗)

∣∣∣∣1jH 3
+ . . . (A4)

From this analysis, it is clear that the piecewise-constant
method has the best result when the distance to z∗ is min-
imized for all z. Therefore, when approximating a gen-
eral continuously varying atmosphere, sublayers should be
evenly spaced, and the atmospheric state should be evalu-
ated halfway through each sublayer when calculating m̃2

j . In
that case, the maximum error can be expected to scale with
n|1jE| and 1jH ∼ n−1, resulting in a second-order rate of
convergence, as also found with a different derivation by Pütz
et al. (2019). This is confirmed by comparison with a finite-
difference solver.

It is notable that the above derivation is not limited to
piecewise-constant methods but is valid for general piece-
wise methods. Therefore, as long as W̃ (z) is not set up so that
W̃ (z∗)=W (z∗), the convergence rate will remain second-
order. For example, we also developed a piecewise-linear
methods using Airy functions instead of exponential func-
tions that did not outperform the piecewise-constant one.
This is because when linearly approximating a general func-
tion m2(z), W̃ (z∗) and W (z∗) will still not coincide. As a
result, there is no improvement for general atmospheric pro-
files.

Code and data availability. The code used for the simulations
and the raw data of the simulation results can be provided by con-
tacting the corresponding author. An open-source version of the
code is planned to be released by the end of the year. The code
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