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Abstract. As the wind energy industry is maturing and wind turbines are becoming larger, there is an increas-
ing need for cost-effective monitoring and data analysis solutions to understand the complex aerodynamic and
acoustic behaviour of the flexible blades. Published measurements on operating rotor blades in real conditions
are very scarce due to the complexity of the installation and use of measurement systems. However, recent de-
velopments in electronics, wireless communication and MEMS (micro-electromechanical systems) sensors are
making it possible to acquire data in a cost-effective and energy-efficient way. In this work, therefore, a cost-
effective MEMS-based aerodynamic and acoustic wireless measurement system that is thin, non-intrusive, easy
to install, low power and self-sustaining is designed and tested in a wind tunnel. The measurement system does
not require an electrical connection to the wind turbine and can be mounted and removed without damaging
the blade.The results show that the system is capable of delivering relevant results continuously, although work
needs to be done on calibrating and correcting the pressure signals as well as on refining the concept for the at-
tachment sleeve for weather protection in the field. Finally, two methods for using the measurements to provide
added value to the wind energy industry are developed and demonstrated: (1) inferring the local angle of attack
via stagnation point detection using differential pressure sensors near the leading edge and (2) detecting and
classifying leading edge erosion using instantaneous snapshots of the measured pressure fields. Ongoing work
involves field tests on a 6 kW operating wind turbine in Switzerland.

1.1 Full-scale aerodynamic measurements

As the wind energy industry is maturing and wind turbines
are becoming larger, there is an increasing need for cost-
effective monitoring and data analysis solutions to under-
stand the complex aerodynamic and acoustic behaviour of
the flexible blades (Schepers and Schreck, 2019). The in-
coming flow transports turbulent structures of different scales
spatially and temporally, yielding aerodynamic load fluctua-

tions that are complex to simulate. A high shear flow due
to the atmospheric boundary layer could create some addi-
tional instabilities. It can also change the relative wind speed
and angle of attack at different heights of the rotor blades.
These changes in the local inflow conditions on the rotor
blades contribute to non-linear aerodynamic loading. Even in
steady conditions with well-known free-stream conditions, it
is not easy to assess the local inflow conditions on a wind tur-
bine as the wind velocity decreases between the free stream
and the turbine rotor in a manner that varies with wind speed
and rotational speed of the rotor. Adding to that, a spanwise
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component of the flow — creating a three-dimensional flow —
makes it hard to correctly evaluate the local wind speed and
angle of attack on the rotor blade and hence to compare it
with simulations or measurements with a fixed blade.

Published aerodynamic and acoustic measurements on op-
erating rotor blades in real conditions are very scarce due to
the complexity of installation and use of measurement sys-
tems. A review of the measurements done as part of Interna-
tional Energy Agency (IEA) Wind Task 14 and Wind Task 18
can be found in Appendix A of the PhD thesis by Gerard
Schepers (Schepers, 2012). As well as this, the National Re-
newable Energy Laboratory (NREL) in the USA has been
carrying out extensive measurements on rotating wind tur-
bine blades since 1988 (Hansen and Butterfield, 1993). More
recently, a well-known field experiment called DANAERO
involved on-field experiments on a 2 MW wind turbine with
an instrumented blade (Madsen et al., 2016; Troldborg et al.,
2013). In this project, the aerodynamic and acoustic proper-
ties of the wind turbine were thoroughly investigated, both
in wind tunnel tests and in field tests. Far-field microphones
were placed around the wind turbine, and a blade was in-
strumented with 50 flush-mounted microphones to evaluate
the noise emission of the blade and detect local flow separa-
tion. It was shown that such aeroacoustic field measurements
have the potential to provide a high added value to the wind
industry through further understanding of three-dimensional
effects. However, the project required a very large effort and
high costs.

Before this, a set of wind turbine field experiments tack-
ling the aerodynamics, performance and noise emissions
were carried out on a 2.3 MW operating wind turbine (Med-
ina et al., 2011). In this work, a thorough characterisation of
the inflow properties and of the structure of the wind turbine
was presented. For this, four five-hole pitot tubes were in-
stalled on the blade as well as 60—64 pressure taps at nine dif-
ferent locations along the span. An extended study was car-
ried out to correct the pressure tap measurements in order to
extract the most accurate local pressure measurements. Sim-
ilarly to the DANAERO project, this study provided valuable
information to the research community as well as to the in-
dustry, but a large amount of effort was required in order to
instrument the wind turbine.

Even more recently, an on-field measurement system was
developed for a 100 kW wind turbine (Wu et al., 2019). Sim-
ilarly to previous experimental campaigns, pitot tubes were
installed at different spanwise locations in order to evaluate
the inflow conditions, and flush-mounted pressure taps were
installed at five different locations along the span and linked
to pressure scanners thanks to tubes.

As well as demonstrating the potential value of aerody-
namic and acoustic field measurements, all these measure-
ment campaigns demonstrate the complexity and the cost of
embedding sensors inside a blade and retrieving the data via
cables from a rotary machine. The present work therefore
focuses on less intrusive, easier-to-install systems that can
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provide added value to the wind energy industry at a rea-
sonable price. It should be noted that there are some similar
efforts known to the authors that are not yet published, such
as the pressure belt from DTU Wind (https://www.youtube.
com/watch?v=y50XKajTmfs, last access: 30 June 2022). An
exchange of experiences during these efforts is ongoing as
part of IEA Wind Task 43.

1.2 Recent developments in microelectronics

Due to the complexity and costs related to embedding con-
ventional aerodynamic and acoustic measurement technol-
ogy into rotor blades, this present paper focuses on the appli-
cation of a cost-effective MEMS (micro-electromechanical
systems)-based aerodynamic and acoustic measurement sys-
tem for rotor blades that is thin, non-intrusive, easy to install,
low power, self-sustaining and wirelessly transmitting.

In general, recent developments in electronics, wireless
communication and MEMS sensors are making it possible
to acquire data in a cost-effective and energy-efficient way.
Novel IoT (Internet of things) sensors are enabling the estab-
lishment of some new and important research areas for many
applications, including structural health monitoring (SHM)
and predictive maintenance (Di Nuzzo et al., 2021; Chen
et al., 2021), which are often based on MEMS technologies
for ease of installation and system integration. SHM aims to
detect anomalies and prevent apparatus faults (Chen et al.,
2021; Queet al., 2019) at low cost and is connected to a long-
term vision of improving performance and/or reducing costs
of a particular asset. Previous analyses have demonstrated the
potential of using inexpensive and low-power MEMS sensors
for aerodynamic purposes (Fathima et al., 2021; Di Nuzzo
et al., 2021). For example, arrays of MEMS barometers have
already been deployed in other application scenarios, namely
on aeroplane wings (Raab and Rohde-Brandenburger, 2020)
and on cars (Filipsky et al., 2017). In general, the cited works
show that MEMS sensors are a valid option to acquire aero-
dynamic measurements. However, none of them address the
wireless communication and power consumption challenges
required for the continuous monitoring of wind turbines us-
ing an IoT device (Karad and Thakur, 2021).

In previous publications, a few examples of wireless de-
vices have been proposed in the wind turbine context (Won-
draetal., 2019; Di Nuzzo et al., 2021; Lu et al., 2019). How-
ever, they mostly support vibration measurements (Di Nuzzo
etal., 2021; Esu et al., 2016) for SHM modal analysis, where
the electronics have to process and transmit a data stream in
the range of 5 kbps. However, for aerodynamic and acoustic
measurements on wind turbine blades, a minimum through-
put larger than 1 Mbps is required (Fischer et al., 2021). The
data collected by arrays of barometers and microphones are
crucial for understanding the aerodynamic and aeroacoustic
behaviour, but on the other hand, they pose major challenges
in the design of an energy-efficient and long-lasting IoT sen-
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sor node. These challenges will be addressed in the present
work.

1.3 Providing added value to research and industry

As well as helping to further the understanding of three-
dimensional turbulent flow over rotor blades operating in the
field under real conditions, pressure and acoustic rotor blade
measurements can provide added value to the wind energy
community in several ways, which are discussed below.

Firstly, using measurements to infer the local angle of at-
tack and rotor inflow conditions can help wind turbine manu-
facturers relate rotor blade performance to inflow conditions
and enable them to improve their design tools. In previous
work, the local inflow conditions have been measured us-
ing probes positioned at the leading edge of the blades and a
reference pressure measured in the hub or far upstream, us-
ing long tubes (Medina et al., 2011; Troldborg et al., 2013;
Wu et al., 2019). However, a reference pressure is not sim-
ple to define and to acquire as the free-steam velocity de-
creases when approaching the wind turbine. Moreover, mea-
surements from pitot tubes must still be corrected to esti-
mate the local inflow conditions. This method is very time-
consuming and expensive to apply. Therefore the present
work avoids measuring a reference pressure and will not rely
on pitot tubes. Instead, the local inflow conditions will be
inferred from the pressure gradient at the leading edge (see
Sect. 4.1).

As well as this, the improved understanding gained from
the measurements can help original equipment manufactur-
ers (OEMs) to improve their aerodynamic and acoustic de-
sign tools, reducing investment costs of wind energy. The
improved design tools can then lead to more efficient and
less noisy rotor blade designs, reducing investment costs of
wind energy.

Furthermore, the measurements can enable early detection
and classification of local blade surface damage or deterio-
ration, which can reduce operating costs and increase wind
project revenues by improving operators’ decision-making
regarding blade cleaning and repair. One of the key topics
related to this point is leading edge erosion (LEE), which
can result from abrasive airborne particles or weather con-
ditions and can impact the annual energy production (AEP)
of a megawatt-scale wind turbine on the order of 5 % (Lan-
gel et al., 2015). Current methods for identifying LEE in-
volve manual (Nielsen, 2020) or drone-based visual inspec-
tion (Shihavuddin et al., 2019), electrical signal analysis (He
et al., 2020), or vibration monitoring (Skrimpas et al., 2016),
methods which either require the turbine to be shut down
or are limited for continuous monitoring (Du et al., 2020).
Therefore in the present work, a data-driven model is used
to predict the state of degradation of the leading edge of a
two-dimensional airfoil via aerodynamic pressure coefficient
learning, under the influence of various uncertain inputs and
parameters (see Sect. 4.2).
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The measurements can also enable increased revenues by
improving operators’ decision-making and asset manage-
ment of sub-optimal control settings, blade mass or aerody-
namic imbalance. Existing methods investigated in the lit-
erature include detecting imbalances on wind turbine rotors
using a harmonic analysis of the rotor response in the fixed
frame (Cacciola et al., 2016); a combination of blade and
nacelle measurements, most of which can be obtained from
standard instrumentation already found on utility-scale wind
turbines (Kusnick et al., 2015); and a combined optimisa-
tion of the power and loads using wake redirection by as-
sessing the influence of load variations of the rotor due to
partial wake overlap (van Dijk et al., 2016). These methods
are all theoretical and have not been proven in the field in a
robust manner.

The acoustic measurements can enable the detection of
amplitude modulation, an acoustic effect known to cause an-
noyance and reduce wind energy project acceptance, which
can increase the wind farm operating envelope and thus in-
crease wind project revenues (e.g. Tian and Cotté, 2016; Oer-
lemans and Schepers, 2009; Larsson and Ohlund, 2014).

Measurements on single wind turbines with retrofit de-
vices installed (e.g. vortex generators and trailing edge serra-
tions) can allow operators to quantify their effect on perfor-
mance and thus decide whether to invest in their application
to other wind turbines at a site (e.g. De Tavernier et al., 2021;
Zhu et al., 2022).

Finally, the measurements may even allow early detection
of local blade structural damage, which can reduce operat-
ing costs by enabling early repair or decisions to be made
(note that this application is still under investigation). For
the detection of damage in wind turbines structures, classi-
cal vibration- or strain-based monitoring methods rooted in
the derivation and the tracking of modal properties have been
the prime focus of research (Weijtjens et al., 2016). Cluster-
ing approaches are further applied on the operational modal
analysis results to reduce the effect of environmental and op-
erational conditions (Oliveira et al., 2018). The identification
results could be improved via a modified stochastic subspace
system identification, for instance, as proposed by Dong et al.
(2018), or via direct measurements on the blades (instead of
on the tower and nacelle only) (Tcherniak and Larsen, 2013),
especially to improve the observability of aerodynamically
damped modes for damage detection.

1.4 Goal of this work

The goal of this work is to design, test and demonstrate the
added value of a prototype cost-effective MEMS-based aero-
dynamic and acoustic measurement system for rotor blades
that is thin, non-intrusive, easy to install, low power, self-
sustaining and wirelessly transmitting. This is part of the
Aerosense project, which has the ultimate goal of developing
pilot measurement systems proven on megawatt-scale wind
turbines.

Wind Energ. Sci., 7, 1383-1398, 2022




1386 S. Barber et al.: Development of a pressure and acoustic measurement system

In this paper, the design of the measurement system is dis-
cussed in Sect. 2, firstly related to the overall system and
then to the key sub-systems. In Sect. 3, the system test and
demonstration are described. Finally, two applications of the
measurement system that provide added value to the wind
energy industry are demonstrated in Sect. 4: (1) inferring the
local angle of attack and (2) detecting and classifying leading
edge erosion (LEE). The conclusions can be found in Sect. 5.

2 Design of the measurement system

In this section, the design considerations of the measurement
system are first introduced, followed by a description of the
design of the overall system and the key sub-systems.

2.1 Design requirements

In order to establish the design requirements, the following
three priority use cases were first defined based on the ex-
pected added value introduced in Sect. 1 alongside the results
of personal interviews with potential customers:

1. Use case 0 — operational measurement system. This
use case represents a fully functioning measurement
chain including collecting the measurement data; push-
ing them to a digital twin in the cloud; calibrating, cor-
recting, filtering and storing them; and finally checking
their plausibility. The use case provides value to cus-
tomers by providing them with the raw data for evalu-
ating and analysing the behaviour of the operating wind
turbine.

2. Use case 1 — improved aeroacoustic models. This use
case involves expanding use case O to include evalu-
ation modules in the digital twin that directly allow
the user to compare the results to two-dimensional
measurements or simulations and understand the three-
dimensional flow effects in field operation, thus improv-
ing their aerodynamic and acoustic designs and their de-
sign tools. This includes machine learning (ML) mod-
ules that infer the angle of attack and classify the data
according to external and operating conditions.

3. Use case 2 — surface damage detection. This use case
involves expanding use case 1 with further ML modules
that allow detection and classification of surface dam-
age in order to help operators optimise performance and
make decisions related to maintenance planning.

Based on these use cases, the main requirements used for
the initial design included, although were not limited to, the
following considerations:

— The system should be easy to install and remove without
damaging the blade and be protected from the weather
and not affect the airflow too much (meaning that the
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thickness of the node should not exceed a maximum
height of <0.3% of the chord or of ACp <0.3%,
where Cp refers to the pressure coefficient; this re-
quirement was introduced by potential customers and
users of the measurement system and means that, prac-
tically, the thickness should not exceed 4 mm). During
the project, the effect of the measurement system will be
assessed via comparisons with flush-mounted systems,
and corrections will be developed if necessary.

There should be enough pressure sensors around the
blade at one radial location to allow the pressure dis-
tribution to be obtained with a spatial resolution high
enough to capture effects such as boundary layer tran-
sition and separation. Based on previous work and on
the expected pressure gradients, the requirement was
estimated to be approximately 40 sensors distributed
around the pressure and suction sides with a higher res-
olution near the leading edge.

There should be enough acoustic sensors at the trailing
edge to be able to estimate parameters used in low-order
aeroacoustic models, such as the chordwise and span-
wise correlation lengths as well as the convection veloc-
ity and the pressure fluctuation spectrum, with the con-
straints of being able to transfer the data in the limited
bandwidth provided by the IoT: the best trade-off has
been found with 10 sensors in an L shape with varying
distances between each microphone, as shown in Fig. 1.
To estimate the turbulence scale with this set-up, the co-
herence lengths in the chordwise and spanwise direc-
tions are calculated using the cross-correlation between
the microphones.

An inertial measurement unit (IMU) should be present
in order to establish the blade position, angle, speed and
acceleration.

The sampling frequencies of the sensors should be high
enough to capture the key dynamics in the system. A
summary of relevant dynamic effects on a wind turbine
and the sampling frequencies of the different sensors
chosen for the Aerosense system is presented in Fig. 2.
The range given by the sensors refers to the range of
available sensors. Due to the Shannon-Nyquist sam-
pling theorem, the sampling frequency of the sensors
should be at least 2 times higher than the highest fre-
quency which has to be acquired. The label “Dynamic
stall/LE vortex” refers to dynamic stall effects occur-
ring due to the leading edge vortex, whereas the label
“Dynamic stall/pitching” refers to lower-frequency dy-
namics that occur as the blade is actively pitched when
travelling through the atmospheric boundary layer.

— The system price should be on the order of USD 5000

for the measurement system and USD 50 000 per year
for a measurement service.
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Figure 1. Photo of the 10 microphones installed on a NACA63418
profile in the anechoic wind tunnel at Ecole Centrale de Lyon. The
chord of the airfoil is 125 mm.

Blade rotation

Dynamic stall / pitching

Dynamic stall / LE vortex

Atmospheric turbulence

TE noise

barometers

microphones

differential pressure sensors l
0.1 1 10 100 1000 10000

Figure 2. Dynamics of the physical features that should be mea-
sured by the Aerosense system and the range of frequencies that
the sensors can acquire. The horizontal axis is in Hertz (Hz) and
on a log scale. LE and TE denote leading edge and trailing edge,
respectively.

— The lifetime should be on the order of 4 years to al-
low multiple measurement campaigns of several months
with one system.

— Long-term drift and malfunctioning sensors need to be
accounted for.

2.2 Overall system design

An overview of the system is shown in Fig. 3. The system
consists of three sub-systems: (1) the sensor node, (2) the

https://doi.org/10.5194/wes-7-1383-2022

base station and (3) the digital twin on the cloud. In this pa-
per, the design of the sensor node and the digital twin will be
described below. The base station design is ongoing and is
not required for the functional tests shown in this paper.

2.3 Hardware design of the sensor node

The sensor node consists of a thin sleeve (4 mm height)
wrapped around the entire blade with embedded MEMS sen-
sors (pressure, acoustic, inertial, temperature), electronics,
a power supply and a data transmission system. Following
the definition of the initial requirements described above, an
ultra-low-power wireless sensor node was designed, tested
and verified. In particular, to measure the pressure distribu-
tion and the acoustic behaviour on a wind turbine blade, a
large number of sensors is needed, which generate a large
volume of data (typically megabytes).

In electronics design, this need is in contrast with standard
low-power requirements. Hence specific design considera-
tions were made in order to tackle the hardware and software
design challenges. Other than a multi-core system on a chip
(SoC), the sensor node includes a 512 MB non-volatile mem-
ory, two external analog-to-digital converters to support up to
10 channels in parallel and a smart power management sys-
tem. It includes a cluster-parted power domain distribution
and a solar energy harvester. Moreover, to exploit as much
as possible the 1 Mbps bandwidth of the Bluetooth Low En-
ergy (BLE) 5.0, an on-board data-compression algorithm de-
creases the number of data forwarded to the cloud. In any
case, since the BLE imposes a data throughput bottleneck,
the raw data are internally stored on the 512 MB memory,
and after that they are forwarded to the gateway in raw or
compressed format, depending on the system settings. The
description of the compression algorithm goes beyond the
scope of this paper, which focuses on the description of the
Aerosense project and its capability to collect aerodynamic
and aeroacoustic data.

The system is designed to be able to operate with three
nodes connected to one base station. The sensor node sup-
ports the following features:

long-range and low-power Bluetooth communication at
1 Mbps with a maximum coverage above 200 m;

— support for up to 40 MEMS absolute pressure
sensors (barometers) sampled at 100Hz, model
LPS27HHWTR;

— support for up to 10 wide-range MEMS microphones
sampled at 16 kHz, model VM2020;

— support for up to five differential pressure sensors sam-
pled at 100 Hz, model Pewatron 52-Series;

- 512MB on-board flash
TC58CYG2SOHRAIJ;

memory, model
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Figure 3. Overview of the Aerosense system.

— a MEMS inertial measurement unit (IMU) sampled at
1 kHz, model BMX160 from Bosch;

— on-board lossless and lossy compression algorithms;

— solar energy harvester.

All these properties have been implemented according to
the use case requirements presented above. The final block
diagram of the sensor node is shown in Fig. 4.

As well as the electronics, the integration of the system in
a sleeve had to be considered. This sleeve has to enable the
system to be easily installed on and removed from a wind
turbine blade, protect the electronics from the weather con-
ditions, and minimise the aerodynamic impact of the sensors
on the flow over the blade. The solution chosen is a custom-
made PolyJet 3D-printed sleeve, which is flexible enough to
bend around any airfoil as shown in Fig. 5, in which the hous-
ings were tested for robustness on a 6 kW operating wind tur-
bine. The sleeve is fixed onto the blade with the same type of
adhesion tape that is used for leading edge protection of wind
turbine blades. It is then easy to install by a technician even
on mounted blades, sticks well and can be removed without
damaging the blade.

Wind Energ. Sci., 7, 1383-1398, 2022
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2.4 Digital twin design

The digital twin system is an essential part of this project,
required in order to use the measurement data to provide
added value to the customers. As shown in Fig. 3, the soft-
ware layer of the system includes (a) a data pre-processor
to collect, timestamp, clean, correct, calibrate and store (in
a BigQuery database) the measurement data as well as the
external data collected (such as supervisory control and data
acquisition — SCADA - and met mast data); (b) inverse prob-
lem solvers to infer quantities such as the angle of attack and
the leading edge erosion class (using e.g. trained ML models)
and forward problem solvers to predict non-measured quan-
tities such as the structural deformation of the blade (e.g. us-
ing fluid-structure-interaction simulations); (c) data analysis
algorithms such as a post-processor that computes derived
quantities such as the lift and drag coefficients; and (d) dash-
boards to display and download the results.

In order to implement this, the digital twin architecture
had to be defined and developed. The software development
pipeline has been set up together with the UK company
Octue (https://www.octue.com/, last access: 30 June 2022)
according to the best industry practice, with Git branch-

https://doi.org/10.5194/wes-7-1383-2022
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Figure 4. Aerosense low-power sensor node block diagram.

ing/version tracking, testing, documentation and continu-
ous integration/continuous deployment hosted on GitLab.
Two examples of inverse problem solvers developed are dis-
cussed in Sect. 4. The existing software packages (forward
solvers) inside the digital twin also had to be wrapped for
cloud deployment. The wrapping process requires definition
of input/output variables and files, as well as configuration
variables/files for each software package via JSON schema
(https://json-schema.org/, last access: 30 June 2022). The
wrapped package is then deployed on the cloud as a service.
For the use cases discussed in Sect. 4, the following software
was wrapped:

— OpenFOAM  (https://openfoam.org/, last access:
30 June 2022). The software was wrapped via PyFoam
(http://openfoamwiki.net/index.php/Contrib_PyFoam,
last access: 30 June 2022) and Octue SDK
(https://github.com/octue/octue-sdk-python, last
access: 30 June 2022) to create a pipeline capable of
automatically running 2D airfoil simulations with vary-
ing inputs. The inputs are sampled from their presumed
probability distributions. The simulated data are used
as a training dataset for machine learning algorithms
and for the purposes of uncertainty quantification.

Figure 5. PolyJet 3D-printed housings glued on a 6 kW operating

wind turbine to test its robustness. . . .
— Construct 2D meshing utility. This software cre-

ates structured, high-quality 2D airfoil meshes. The
modified version of the software developed by

https://doi.org/10.5194/wes-7-1383-2022 Wind Energ. Sci., 7, 1383-1398, 2022
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Fraunhofer IWES (https://gitlab.cc-asp.fraunhofer.de/
iwes-cfsd-public/wtrb-aerodynamics/c2d-ext, last ac-
cess: 30 June 2022) was wrapped with Octue SDK and
implemented as a child process for the OpenFOAM ser-
vice.

— XFOIL. Python-wrapped version of XFOIL called
xfoil-python (https://github.com/DARcorporation/
xfoil-python, last access: 30 June 2022), developed
by DARcorporation was further wrapped with Octue
SDK and deployed on the cloud. During verification
and validation, several bugs were discovered, and fixes
were implemented in the xfoil-python GitHub main
branch.

— OpenFAST (https://www.nrel.gov/wind/nwtc/openfast.
html, last access: 30 June 2022). The software was
wrapped using NREL-developed Python tools. The ba-
sic Octue SDK wrapper was defined to take site wind
conditions, generate inflow data via TurbSim and per-
form an aeroelastic simulation with the AVENTA wind
turbine model.

3 Test and demonstration of the measurement
system

Following the initial design of the system, the sensor node
was built and tested for the first time on a rotating wind
turbine model in the small-scale wind tunnel at OST in
Rapperswil-Jona, Switzerland. The primary goals of these
tests were to evaluate how hard it was to design and build
flexible printed circuit boards (PCBs) and solder sensors, to
evaluate the firmware and the Bluetooth communication in a
windy and rotating environment, and to extract the first re-
sults and see what we could expect, as well as to gain expe-
rience with the system.

For these first tests, no measurement sleeve was used as
the focus was on the electronics and the communication. A
set of sensors (barometers, microphones, IMU) were prelim-
inary chosen, and a microcontroller with a Bluetooth connec-
tion and its firmware was developed. The system consists of
40 ST LPS27 absolute pressure sensors and 10 InvenSense
1CS-43434 acoustic sensors installed on a flexible PCB. The
system was then installed on the blade of a small-scale ver-
tical axis wind turbine inside the OST wind tunnel, with a
blade chord length of 70 mm, a blade height of 0.5 m and ro-
tor radius of 0.35 m, as shown in Fig. 6. Measurements were
made at a range of wind speeds of 0 to 7.5ms~! and a rota-
tion speed range of 0 to 345 rpm, to reach a range of tip speed
ratios between 0 and 6.3 and a Reynolds number based on the
incoming wind velocity and on the chord of the airfoil on the
order of 10 000.

A phase-averaged pressure distribution during the com-
plete rotation of one blade is presented in Fig. 7 for a tip
speed ratio of 2. On the vertical axis, the zero line represents
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Figure 6. Layout of the first version of the Aerosense system on a
vertical axis wind turbine in the OST wind tunnel.

the leading edge of the airfoil. Negative values towards —1
show the pressure on the inner side of the airfoil, and those
towards +1 show the pressure on the outer side of the air-
foil. The horizontal axis represents the position of the blade
during the rotation around the vertical axis. The blade starts
with the leading edge of the blade facing upwind, and at /2,
the blade is at its upstream position, while at 377 /2, the blade
is in the downwind situation. The position of the blade is
known thanks to the IMU of the measurement system. The
red colours indicate when and where most of the aerody-
namic force is generated. As known in the literature (among
others, Li et al., 2013; Rossander et al., 2015; Delafin et al.,
2017; Barber and Nordborg, 2018), due to a large variation
in the local angle of attack of the blade, the suction is mostly
on the outer side of the airfoil but is present on the inner side
when the blade is in the upstream part. It can be seen that
these variations are well captured by the measurement sys-
tem.

As the measurement system has not been designed to mea-
sure such low-pressure variations and for such a small blade
without smooth housings (here 70 mm, while blades where
the system will be installed have a size on the order of 1 m
or more), further investigations into the physical meaning of
the measurements are not carried out here.

The main outcomes of these tests were as follows:

— The measurement system can be installed on an airfoil
and can record and transmit data even if it is in rotation
with an incoming wind.

— Retrieving the “zero” value (when there is no wind)
from the measurement system is of primary importance
to achieve accurate results.
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Figure 7. Phase-averaged pressures around the blade for a complete
turn of the blade of the vertical axis wind turbine at a tip speed ratio
of 2. Negative chord is the inside of the blade, zero the leading edge
and positive chord the outside of the blade.

— The centrifugal acceleration should be taken into ac-
count. Preliminary tests showed there could be a bias of
5Pa g’l. On multi-megawatt wind turbines, accelera-
tion can reach 100 m s~2, which would affect the sensor
measurement by 50 Pa.

The measurement results show that the system is capa-
ble of delivering relevant results continuously, although work
needs to be done on calibrating and correcting the pres-
sure signals as well as on refining the concept for the at-
tachment sleeve for weather protection in the field. Ongoing
work involves field tests on a 6 kW operating wind turbine in
Switzerland.

4 Applications for added value

In this section, two applications of the measurements that
could provide added value to the wind energy industry are
demonstrated: (1) inferring the local angle of attack and
(2) detecting and classifying leading edge erosion (LEE).

4.1 Inferring the angle of attack

In this part, a method for deducing the local angle of at-
tack using the measured pressure gradient near the leading
edge is investigated and demonstrated using a set of wind
tunnel measurements. The method involves utilising differ-
ential pressure sensors. Small variations in the angle of at-
tack or/and wind speed will change the pressure gradient at
the leading edge, which can be captured by differential pres-
sure sensors. Differential pressure sensors do not require the
use of a known reference pressure, commonly located far up-
stream or in an area with no wind. While it can easily be ac-
quired in a controlled environment, such as in a wind tunnel,
a known reference pressure is much more complicated to ac-
quire on a wind turbine. Differential pressure sensors work
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on a smaller measuring range than absolute pressure sensors
and are therefore more sensitive and able to detect smaller
variations in pressures and therefore angles of attack. In the
Aerosense system, the differential pressure sensors use the
same reference pressure point, Py, which is an arbitrary point
located in the leading edge region (Fig. 9). Discrete values of
pressure difference at the leading edge with an arbitrary point
(P; — Py) are used to interpolate the pressure gradient due to a
specific incoming flow (angle of attack and wind speed) pass-
ing around the leading edge (Fig. 10). The measured varia-
tions in pressure are fed into an algorithm based on a po-
tential flow model passing a parabola (Saini and Gopalarath-
nam, 2018) to estimate the angle of attack and the incoming
flow velocity without the need for external measurements and
reference pressure.

The feasibility of the method has been demonstrated on a
3D-printed NACAOQO018 profile section in the sub-sonic wind
tunnel at ETH Zurich, Switzerland, as shown in Fig. 8. The
airfoil was designed and 3D-printed specifically for these
tests with a chord of 25cm and a span of 1m. A set of
40 flush-mounted pressure taps were integrated at mid-span
for reference, with corresponding digital pressure transduc-
ers. The blade was designed to be tilted 10° backwards to
mimic a spanwise component of the flow that is similar to
what could be found on a wind turbine blade and was fit-
ted with three different barometer strips installed at 150 mm
below mid-span and 150 and 250 mm above mid-span. The
measurements were used for various other tests and com-
parisons within the Aerosense project. Loads exerted on the
blade were acquired by a 6-degrees-of-freedom balance. In
order to test the method of inferring the angle of attack, tests
were made within a static angle-of-attack range of —30 to
30°, at three different wind speeds (10, 30 and 50 m s L re-
sulting in a range of Reynolds numbers based on the chord
of the airfoils between 2 x 10° and 8 x 10°). The results pre-
sented in the present paper are for a non-tilted blade.

Figure 10 presents the pressure values in the leading edge
region in the first 10 % of the chord, from the 40 pressure
taps with an arbitrary Py reference point. The horizontal axis
n corresponds to a non-linear curvilinear axis linked to the
parabola fitting (Ramesh, 2020), which enhances the gradient
of pressure at the leading edge. The coordinates 7 are linked
with the chordwise coordinates of the airfoil x thanks to the
leading edge radius rje: x = rlen2 /2.

The thick black line is created thanks to the values of five
chosen pressure points, shown in colour in Figs. 9 and 10,
that are used to fit the analytical pressure distribution of a
flow passing a parabola. The measured pressure distribution
at the leading edge can be well represented by an inviscid
flow passing a parabola.

This pressure distribution passing through a parabola de-
pends on the stagnation point and the flow velocity. From the
stagnation point, it is then possible to retrieve the angle of
attack in a look-up table.
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Figure 8. A 3D-printed NACA0018 blade installed in the test sec-
tion of the ETH Zurich wind tunnel. The blade is in the 10° tilted
configuration, with three barometer strips installed and sandpaper
at the leading edge.

This stagnation point method has the advantage of being
applicable to three-dimensional flow that can occur on op-
erating wind turbines. Traditional methods of obtaining or
inferring the angle of attack such as the inverse blade ele-
ment momentum (BEM) method or three-point method (Vi-
malakanthan et al., 2018), are limited by the fact that the def-
inition of the angle of attack involves assuming that the flow
remains inside a two-dimensional plane, as is the case for
wind tunnel tests. On a rotating wind turbine, however, the
flow can be three-dimensional; hence a true angle of attack
in this sense cannot be defined. Moreover, the incoming flow
gradually decreases approaching the blade due to the induc-
tion; hence it is not possible to assess a “true” incoming wind
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Figure 9. Sketch of differential pressure sensors at the leading edge.
The reference pressure P is taken at a point in the leading edge
area on the pressure side. Four other sensors record the difference
in pressure between their locations and the reference pressure.
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Figure 10. Pressure distribution at the leading edge. Coloured
points represent the values from the differential pressure sensors
shown in Fig. 9. The other empty circles represent values from other
pressure points. The thick black line is the result of an inviscid flow
passing a parabola modelling the leading edge.

velocity as is the case in a wind tunnel, and to build a correct
vectorial combination to evaluate the relative wind speed on
the rotor blade.

The results are shown in Fig. 11, in which the position of
the stagnation point based on the inviscid flow model using
only five differential pressure points in the first 5 % of the
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chord for different wind speeds can be seen. For compari-
son, the location of the maximum of pressure, which is the
dynamic pressure at the stagnation point, has been found us-
ing the 40 flush-mounted pressure taps at the mid-span of the
airfoil (see crosses in Fig. 11). Our method finds the same
stagnation point position as the pressure taps, even when the
flow starts to detach near the trailing edge (above 10°). The
method is not as accurate for angles of attack larger than the
stall angle of the airfoil, as expected. For wind turbine appli-
cations, the optimal working range of the angle of attack is
below the stall angle, where this method performs well.

From the stagnation point, it is possible to retrieve the an-
gle of attack using a look-up table built with XFOIL in this
case (Fig. 12). The estimated angle of attack is slightly lower
than the actual angle of attack set in the wind tunnel if the
stagnation point positions found in XFOIL and with pres-
sure taps are compared. As long as the angle of attack is not
greater than the stall angle, the error is not larger than £2.5°
with the look-up table using XFOIL. More precise measure-
ments and corrections of the experimental data as well as
more accurate simulations would probably help in reducing
this gap. For example, the angle of attack inferred from the
stagnation point using the dense flush-mounted pressure taps
and the angle of attack from this method have a difference
of less than half a degree and would be satisfactory for a
non-intrusive method based on MEMS differential pressure
Sensors.

Further experiments were carried out with a roughened
leading edge (using sandpaper) and a tilted wing in order to
test the robustness with leading edge erosion and with three-
dimensional flow. The estimation of the stagnation point po-
sition remained as precise as with a clean airfoil. This angle-
of-attack estimation method seems therefore adequate for
wind turbine purposes. Ongoing work involves testing the
system in the field, as well as quantifying the effect of the
measurement system itself on the flow and corrections de-
veloped if necessary.

4.2 Detecting and classifying leading edge erosion
(LEE)

In this part, data-driven methods for learning to diagnose
LEE on an airfoil via aerodynamic pressure coefficients are
investigated and demonstrated using aeroelastic simulations
and computational fluid dynamics (CFD). The existing mea-
surements could not be used for the demonstration because
measurements are not available for different levels of LEE
from this measurement campaign.

Two approaches can be taken to diagnose the severity
of LEE using the aerodynamic output streaming from the
Aerosense device. It should be noted that any LEE on the
blade will be covered up at the exact location of the sensors
during the measurement campaign and therefore can only be
detected if the damage affects a region wider than the mea-
surement node sleeve width in the spanwise direction. This
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Figure 12. Estimation of the angle of attack using our method and
a look-up table. Comparisons with estimation of the angle of attack
from pressure taps are shown with the crosses.

is expected to be the case. Despite covering a portion of the
blade, the overall aerodynamic performance will be degraded
by LEE, which is potentially detectable. A first approach in-
volves the use of time series of integrated pressure quanti-
ties (lift and drag), while the second utilises instantaneous
snapshots of the pressure field. In essence, the first approach
focuses on the temporal component, while the second con-
centrates on the spatial aspect.

For the first approach, a necessary prerequisite is the
modelling and simulation of the aeroelastic response of a
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wind turbine undergoing blade LEE. In order to do this,
a pipeline was developed as follows. The time-dependent
degradation process affecting the aerodynamic properties of
a blade is modelled with a non-homogeneous compound
Poisson process (Duthé et al., 2021), a stochastic process
which parametrises the cumulative damage on a blade sec-
tion caused by the arrival of random degradation-inducing
shocks. The aeroelastic response to this degradation is then
simulated by coupling this process to OpenFAST (an aeroe-
lastic wind turbine simulator), under uncertainty in the en-
vironmental conditions. This simulation pipeline is used to
generate a dataset of aeroelastic time-series data (wind in-
flow velocity, angle of attack, lift and drag coefficients) cor-
responding to different categories of LEE severity. Then, a
transformer neural network (Vaswani et al., 2017) is trained
on this database in a supervised manner, such that when it is
given a multivariate time-series input, it outputs a prediction
for the severity of LEE. More information on this approach
can be found in Duthé et al. (2021). The results showed that
transformers are a promising method for diagnosis of such
degradation processes. The attention-based mechanism al-
lows a focus on different features at different time intervals
for better prediction accuracy. This is especially important
for long time-series sequences typical of a slow degradation
process.

The second approach also involves computationally gen-
erating training data, albeit via CFD simulations in this case,
as shown in Fig. 13. In order to create a robust training
dataset which encompasses a reasonably wide variety of op-
erational conditions, in the first step the 2D CFD input pa-
rameters (inflow velocity, turbulence intensity, angle of at-
tack, roughness height, chordwise extension of LEE rough-
ness) are modelled as probabilistic variables. A suitable dis-
tribution is formulated for each variable; for instance the in-
flow velocity follows a Weibull distribution and further ac-
counts for wind turbine revolutions per minute (rpm), while
the distribution for roughness parameters is devised based
on the work of Sareen et al. (2014). A preliminary dataset
is established with around 300 unique combinations. Addi-
tionally, a variational auto-encoder (Kingma and Welling,
2013) is trained on the UIUC airfoil database (Selig, 1996)
to construct a distribution of airfoil shapes (step 2), which
can then be sampled from in order to generate realistic, yet
unique, airfoil shapes to be used as the basis for the simula-
tion meshes (step 3). Samples are then drawn from the distri-
butions both for the flow conditions and for the airfoil shapes,
such that a database of unique CFD simulation inputs is cre-
ated. In step 4, each simulation is then executed in Open-
FOAM using a k—w shear stress transport (SST) Reynolds-
averaged Navier—Stokes (RANS) model with modified rough
wall functions, as suggested in Knopp et al. (2009). Air-
foil surface pressure coefficient data are extracted from the
converged simulations and stored along with the correspond-
ing roughness label, thus forming the dataset upon which an
adapted point cloud neural network (Qi et al., 2017) is trained
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in a supervised manner in step 5. The resulting algorithm is
able to output predictions for leading edge roughness, given
an input of surface pressure coefficients.

The results show that through this method, it is possible to
estimate the leading edge roughness, given the pressure dis-
tribution on the airfoil surface. Preliminary findings indicate
that prediction quality is dependent on the angle of attack,
as highlighted in Fig. 14. This figure plots the distribution
of roughness prediction errors against the angle of attack for
the validation dataset. It can be seen that for higher angles of
attack, the number of predictions with large errors increases.
This aligns well with our expectations: at high angles of at-
tack, minor perturbations in the pressure field caused by in-
creased leading edge roughness may be secondary to fluctua-
tions induced by a detached flow. Furthermore for situations
with small amounts of leading edge erosion, we notice large
relative prediction errors. This outcome is also in line with
our presumptions as in these cases we expect that the flow
will only be modestly affected by small increases in leading
edge roughness.

Further work in this matter should focus on extending
these methods to real experimental data measured by the
Aerosense system, as they become available. To bridge the
gap from simulated data to real aerodynamic measurements,
it will be necessary to ensure that the training data are phys-
ically suitable. This can be achieved either by using more
complex physical simulations, such as unsteady CFD simula-
tions with a large variety of input turbulent inflow conditions
(including airfoil heaving, pitching and stalling), or by de-
veloping a framework which accounts for CFD model inac-
curacies and uncertainties. Methods from the field of transfer
learning could also be of interest here. Furthermore, mitiga-
tion strategies and different architectures should be explored
to overcome the challenges in predicting erosion for situa-
tions with low degradation severities or at high angles of
attack. One class of architectures that could be well suited
for this use case comprises graph neural networks (Scarselli
et al., 2008; Pfaff et al., 2020) as these network structures not
only enable the representation of positional information but
also allow for temporal updating and therefore dynamics.

5 Conclusions

A cost-effective MEMS-based aerodynamic and acoustic
wireless measurement system that is thin, non-intrusive, easy
to install, low power and self-sustaining has been designed
based on a set of requirements and use cases obtained from
interviews with the wind energy industry. The system con-
sists of three sub-systems: (1) the sensor node, (2) the base
station and (3) the digital twin on the cloud.

The sensor node includes a long-range and low-power
Bluetooth communication at 1 Mbps with a maximum cover-
age above 200 m, support for up to 40 MEMS absolute pres-
sure sensors (barometers) sampled at 100 Hz, up to 10 wide-

https://doi.org/10.5194/wes-7-1383-2022



S. Barber et al.: Development of a pressure and acoustic measurement system 1395

i
\

Step 4
OpenVFOAM

K-Omega SST RANS model
}

CFD Input Sampling

Latent space sampling
PARSEC Params Reconstructed vector

IITITITIT ——»  COEEEECCCTEEERD:

!
l PARSEC l

Latentvoctor Decoder
atent vector
MLP

Airfoil Shape Generation via VAE
Step 2

Airfoil meshing

Step 3

\

L

Full pressure field .|

OpenFOAM batch running

O PyTorch

Train PointNet neural
network on Cp dataset

Step 5

Figure 13. Overview of the proposed approach to simulate aerodynamic pressure coefficient data under diverse conditions of LEE, which

are then used to train a neural network for diagnostics purposes.

0.04

Number of Predictions

0.03

0.02 + B

0.01 1
-
1 T T 1 T T T T T
0 2 4 6 8 10 12 14 16
Angle of Attack [°]

Roughness Height Prediction Error [mm]

Figure 14. Error in the prediction of equivalent sand grain rough-
ness height as a function of the angle of attack gathered on the val-
idation dataset. The x-axis histogram gives an indication of how
the angle of attack is distributed over the validation set. Prediction
quality appears to decrease for higher angles of attack; neverthe-
less most of the prediction errors are distributed below 0.01 mm, as
highlighted by the y-axis histogram.

range MEMS microphones sampled at 16 kHz, and up to
five differential pressure sensors sampled at 100 Hz, as well
as 512 MB on-board flash memory, a MEMS IMU sampled
at 1kHz and a solar energy harvester. The electronics are
embedded into a custom-made PolyJet 3D-printed sleeve,
which is fixed onto the blade with the same type of adhesion
tape that is used for leading edge protection of wind turbine
blades.
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The software layer of the digital twin system includes a
data pre-processor to collect, timestamp, clean, correct, cal-
ibrate and store the measurement data as well as the exter-
nal data collected; inverse problem solvers to infer quantities
such as the angle of attack and the leading edge erosion class;
forward problem solvers to predict non-measured quantities
such as the structural deformation of the blade; data analy-
sis algorithms that compute derived quantities such as the lift
and drag coefficients; and dashboards to display and down-
load the results.

The sensor node was built and tested for the first time on
a rotating wind turbine model in the small-scale wind tunnel
at OST in Rapperswil-Jona, Switzerland. The results show
that the system is capable of delivering relevant results con-
tinuously, although work needs to be done on calibrating and
correcting the pressure signals as well as on refining the con-
cept for the attachment sleeve for weather protection in the
field.

Finally, two methods for using the measurements to pro-
vide added value to the wind energy industry were developed
and demonstrated. A method for inferring the local angle of
attack via stagnation point detection using differential pres-
sure sensors near the leading edge was shown to work well
for this application via a measurement campaign on a 2D
NACAQO018 airfoil in a wind tunnel. A method for detect-
ing and classifying leading edge erosion using instantaneous
snapshots of the measured pressure fields was shown to be
promising using a set of CFD data.

Ongoing work involves field tests on a 6 kW operating
wind turbine in Switzerland, as well as the expansion of the
entire system for additional use cases.
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