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Abstract. This paper presents a method for estimating offshore extractable wind power at hub height using
Sentinel-1 synthetic aperture radar (SAR) data and machine learning. The method was tested in two areas off
the Dutch coast, where measurements from Doppler wind lidars installed at the sea surface were available and
could be used as a reference. A first machine learning algorithm improved the accuracy of SAR sea surface
wind speeds by using geometrical characteristics of the sensor and metadata. This algorithm was trained with
wind data measured by a large network of weather buoys at 4 m above sea level. After correction, the bias in
SAR wind speed at 4 m versus buoys was 0.02 ms−1, with a standard deviation of error of 0.74 ms−1. Corrected
surface wind speeds were then extrapolated to hub height with a second machine learning algorithm, which
used meteorological parameters extracted from a high-resolution numerical model. This algorithm was trained
with lidar vertical wind profiles and was able to extrapolate sea surface wind speeds at various altitudes up
to 200 m. Once wind speeds at hub height were obtained, the Weibull parameters of their distribution were
estimated, taking into account the satellites’ irregular temporal sampling. Finally, we assumed the presence of a
10 MW turbine and obtained extractable wind power with a 1 km spatial resolution by multiplying the Weibull
distribution point by point by its power curve. Accuracy for extractable wind power versus lidars was ± 3 %.
Wind power maps at hub height were presented and compared with the outputs of the numerical model. The
maps based on SAR data had a much higher level of detail, especially regarding coastal wind gradient. We
concluded that SAR data combined with machine learning can improve the estimation of extractable wind power
at hub height and provide useful insights to optimize siting and risk management. The algorithms presented
in this study are independent and can also be used in a more general context to correct SAR surface winds,
extrapolate surface winds to higher altitudes, and produce instantaneous SAR wind fields at hub height.

1 Introduction

Estimating extractable offshore wind power at turbine hub
height is a challenge due to the difficulty of measuring the
wind profile in the boundary layer over the sea. It is currently
estimated using numerical models and/or Doppler wind li-
dars installed at the sea surface and pointing upwards (see,
for example, Optis et al., 2021). Lidars provide the complete
wind profile at a single location with a high temporal sam-

pling but are very expensive to operate. Therefore, only one
or two are typically used in site assessment. Conversely, nu-
merical models provide outputs over the entire area of inter-
est but are not capable of resolving small-scale phenomena
due to their physics and resolution. As a result, any errors are
not precisely known and may vary in time and space, which
is particularly problematic in coastal areas where processes
are more complex and on a smaller scale. Due to these lim-
itations, considerable uncertainty remains regarding actual
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offshore wind resources, which can affect wind farm project
planning and management.

The need to improve wind speed assessment and thus esti-
mate more precisely wind power availability throughout the
wind farm life cycle has led to growing interest in the use of
satellite data (see, for example, Hasager et al., 2015). Unlike
ground-based lidars, spaceborne sensors have the advantage
of conducting sounding over large areas. However, they also
have limitations: their revisit period is typically long (a cou-
ple of days for Sentinel-1 in Europe) and they use an indi-
rect measurement based on sea state backscatter. Therefore,
their measurements are impacted by several sources of po-
tential error (low temporal sampling, sensor geometry, cur-
rents, algae, rain cells, bathymetry, turbulence, bright targets
such as ships). Moreover, the extrapolation of their measure-
ments from sea surface to hub height is not an easy task due
to the variety of meteorological conditions that may impact
the wind speed extrapolation ratio.

Several studies have attempted to assess offshore wind
power potential using spaceborne scatterometers, including
ERS-1, ERS-2, NSCAT, QuikSCAT, and ASCAT (Sánchez
et al., 2007; Pimenta et al., 2008; Karagali et al., 2014; Ben-
tamy and Croize-Fillon, 2014; Remmers et al., 2019). How-
ever, the resolution of these instruments is 12.5 km2 at best,
which is not adapted to coastal areas due to land contamina-
tion. Synthetic aperture radar (SAR) satellites are an inter-
esting alternative because SAR wind products have a much
finer resolution of 1 km. The potential of SAR data has al-
ready been assessed by numerous studies (Hasager et al.,
2002, 2005, 2006, 2011, 2015, 2020; Christiansen et al.,
2006; Chang et al., 2014, 2015). However, limited studies
have been conducted validating SAR measurements using
in situ data (Ahsbahs et al., 2017, 2020; Badger et al., 2019;
de Montera et al., 2020), and these studies concluded that im-
portant biases remained (the term “in situ” includes profiling
lidars, even though they use remote sensing). One reason for
this is that SAR surface winds are obtained by inverting the
backscatter with geophysical model functions (GMFs) origi-
nally designed for scatterometers, although differences from
the SAR backscatter may occur due to different resolutions
and the lack of inter-calibration between these two technolo-
gies. Another reason is that GMFs were designed empirically
using the European Centre for Medium-Range Weather Fore-
casts (ECMWF) numerical model as a reference, which may
not be accurate in coastal areas (in situ data were used only
for validation and a posteriori bias correction; see Stoffelen
et al., 2017, and references therein). In addition, GMFs may
not fully capture the complex relation between sea state and
wind speed, in particular because they assume a neutral at-
mosphere. Therefore, it is necessary to improve the accuracy
of SAR wind speeds obtained with GMFs. This is particu-
larly important given that wind power is related to the cube
of wind speed and is therefore very sensitive to estimation
errors.

Regarding the extrapolation of surface wind speeds to
higher altitudes, the statistical theory of turbulence provides
theoretical wind profiles (see, for example, Grachev and
Fairall, 1996). However, this problem has not been satisfac-
torily solved and becomes increasingly critical as the typical
height of wind turbines increases. Empirical evidence from
offshore meteorological masts suggests that a simple power
law could be sufficient to model the wind profile (Hsu et al.,
1994). Nevertheless, above a few dozen metres, the power
law model is questionable (see, for example, Tieo et al.,
2020). This limitation has led some authors to use numer-
ical model outputs to improve extrapolation to higher alti-
tudes (Badger et al., 2016). The advantage of numerical mod-
els is that they provide information on atmospheric stabil-
ity through parameters such as surface temperature and sur-
face heat flux. In Badger et al. (2016), these surface param-
eters were averaged and combined with the similarity the-
ory of Monin–Obukhov to extrapolate wind Weibull param-
eters. However, to our knowledge, this method was validated
using only one meteorological mast in the Baltic Sea with
an altitude not exceeding 100 m. Therefore, more research is
needed to improve the extrapolation of SAR wind speeds to
hub height and convince the industry to use them.

Machine learning seemed appropriate to us for improving
SAR wind speed retrieval due to the variety of error sources.
We used a large network of weather buoys to train the algo-
rithm in order to cover a wide range of sensor angles. Re-
garding the extrapolation to higher altitudes, machine learn-
ing also seemed appropriate due to the complexity of the
problem. Machine learning had already been found to im-
prove the accuracy of extrapolated wind speeds, compared
to power laws or logarithmic laws (Türkan et al., 2016; Mo-
handes and Rehman, 2018; Vassallo et al., 2020) and the-
oretical approaches (Optis et al., 2021). Moreover, Bodini
and Optis (2020) showed that a machine learning algorithm
trained in one location could be applied to a large surround-
ing area without significantly degrading its performance. An-
other advantage of machine learning compared to theoretical
approaches is that it is not limited to the boundary layer and
can be trained at any altitude. As in Badger et al. (2016),
we took advantage of a numerical model to assess atmo-
spheric stability and extract relevant meteorological param-
eters. These parameters were used as input for the machine
learning algorithm, which was trained with lidar wind pro-
files measured in the North Sea.

Section 2 describes the SAR data, the high-resolution nu-
merical model, and the in situ data used as a reference to train
and validate the algorithms. Section 3 presents the algorithms
and the method used to compute the extractable wind power.
It also provides some insight into the effect of the sample
number on method accuracy, plus a specific method for cor-
recting SAR irregular temporal sampling. Section 4 presents
the performance of the two machine learning algorithms and
a test of the method in two areas off the Dutch coast. The re-
sulting maps of the extractable wind resource are presented
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Figure 1. Locations of Zone 1 (bottom; 51.50–52.09◦ N, 2.82–
3.77◦ E) and Zone 2 (top; 52.15–52.74◦ N, 3.71–4.68◦ E) with the
positions of the profiling lidars. Colours represent the number of
Sentinel-1 SAR Level-2 observations over a 2-year period (June
2016 to June 2018).

and compared with the outputs of the high-resolution nu-
merical model in order to estimate the benefits of using this
method compared with state-of-the-art techniques.

2 Data

2.1 Areas of study

The two areas of study are located off the Dutch coast (Fig. 1)
and each measure approximately 70 km× 70 km. Their geo-
graphic extent was defined to include offshore profiling lidars
and parts of the coastline in order to observe the wind speed
coastal gradient.

2.2 Sentinel-1 SAR data

Sentinel-1A and Sentinel-1B are two polar-orbiting satellites
equipped with C-band SAR. This sensor, which records sur-
face roughness, has the advantage of operating day and night
at wavelengths not impeded by cloud cover. The Sentinel-
1 Level-1 Ground Range Detected (GRD) backscatter prod-
uct has a spatial resolution of a few dozen metres, whereas
Level-2 wind products typically have a spatial resolution
of 1 km. The two satellites are located at the same orbit
180◦ apart and at an altitude close to 700 km. In Dutch
coastal waters, the acquisition mode is an interferometric
wide swath using the TOPSAR technique, which provides a
better-quality product by enhancing image homogeneity (De
Zan and Guarnieri, 2006). The revisit rate is one passage ev-
ery 2 d, which occurs around 05:00 or around 17:00 (UTC).
The satellites pass in the morning or in the evening depend-

ing on the orbit orientation, descending or ascending, respec-
tively. The exact acquisition time can vary by plus or minus
30 min, depending on the incidence angle under which the
region of interest is observed. The number of samples over
2 years for the areas of interest is shown in Fig. 1, where it
can be seen that coverage was not spatially uniform.

Level-1 images were calibrated and corrected from the in-
strument noise provided as metadata. Dedicated bright target
filtering was applied to remove radar echoes created by ships,
wind farms, and other structures at sea. An additional filter
(Koch, 2004) was used to identify heterogeneous signatures
not related to wind, such as currents, radar interferences, and
remaining bright targets. However, since this filter has in-
creased sensitivity at low wind speeds, the identified pixels
were not removed to avoid disrupting the wind speed Weibull
distribution, which is necessary to estimate wind power. The
information provided by this filter was only used to create
a quality flag, indicating areas where wind power estimates
were unreliable, typically due to dense regions of wind tur-
bines or mooring areas (see Sect. 4). Level-1 SAR products
were then degraded to a 1 km resolution, and Level-2 surface
winds at 10 ma.s.l. were created using a Bayesian inversion
scheme with two inputs: the wind vector obtained by invert-
ing SAR backscatter with the CMOD7 GMF (Stoffelen et al.,
2017) and the wind vector obtained from the ECMWF nu-
merical weather prediction (NWP) model. Level-2 product
tiles were finally combined into a gridded map over the ar-
eas of interest in order to form a data cube where each pixel
corresponded to a time series of SAR wind speed measure-
ments.

2.3 High-resolution numerical model

We used the Weather Research and Forecasting (WRF)
non-hydrostatic meso-scale model (Skamarock et al., 2019)
with a resolution of 1 km. The planetary boundary layer
(PBL) parametrization of the model was based on Hahmann
et al. (2020). WRF was forced at its boundaries by a down-
scaled larger-scale model, the reanalysed ERA5 (Hersbach et
al., 2020) developed by ECMWF that has an hourly tempo-
ral resolution. WRF was run over the areas of study from De-
cember 2015 to June 2018 in order to cover the period during
which lidar campaigns and Sentinel-1 data overlapped.

WRF provides wind speed and wind direction from sea
level to 200 m in 20 m increments, as well as other variables
such as air and sea surface temperature, surface heat flux, rel-
ative humidity, and pressure. These meteorological parame-
ters were used to create the input parameters for the extrapo-
lation algorithm. Moreover, since WRF is typical of numer-
ical models currently used by industry, we also used it as a
reference to assess the benefits of using SAR data. Since the
industry often combines numerical models with in situ mea-
surements, we also assessed the WRF outputs using avail-
able lidar data. WRF was found to underestimate extractable
power by 3 % on average across all lidars. We corrected this
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bias before using WRF as a reference in the maps presented
in Sect. 4.

2.4 NDBC buoy network

The buoy dataset consisted of 10 min averaged wind speeds
from the National Data Buoy Center (NDBC) of the United
States of America (USA). This network has the advantage
of combining a large number of instruments, a large spatial
coverage, and a standardized processing and quality check
(Meindl and Hamilton, 1992). We selected only buoys mea-
suring wind speed at 4 m so that the dataset was homoge-
neous in height and obtained with a similar type of instru-
ment. A total of 12 buoys are located on the east coast of the
USA (stations 41004, 41009, 41010, 41013, 41025, 41043,
44007, 44017, 44018, 44020, 44025, 44065), 18 on the west
coast of the USA (stations 46011, 46012, 46014, 46015,
46022, 46025, 46026, 46027, 46028, 46041, 46042, 46047,
46050, 46053, 46054, 46069, 46084, 46086), 9 in the Gulf
of Mexico (stations 42002, 42003, 42012, 42035, 42036,
42039, 42055, 42056, 42060), and 3 around the islands of
Hawaii (stations 51000, 51002, 51003).

2.5 Lidar data

The dataset comprised five ground-based profiling lidars lo-
cated off the Dutch coast (Fig. 1): HKZA, HKZB, BWFZ01,
EPL, and LEG. HKZ stands for Hollandse Kust Zuid wind
farm, BWF for Borssele Wind Farm Zone, EPL for Euro-
pean platform, and LEG for Lichteiland Goeree platform.
Zone 1 included lidars BWFZ01, EPL, and LEG, and Zone 2
included lidars HKZA and HKZB. Lidars HKZA, HKZB,
and BWFZ01 are floating, whereas lidars EPL and LEG
are installed on platforms. These lidars provide 10 min av-
eraged wind speed and wind direction. The data were quality
checked by our data provider C2Wind (for each time interval,
the minimum number of packets was set at 20 and the min-
imum availability at 80 %). The vertical sampling and dura-
tion of these lidar measurements varied between observation
campaigns and are displayed in Table 1.

Many of the lidar altitude levels were similar to those of
WRF. However, where there was a difference, lidar wind
speeds were extrapolated to the closest WRF level in order to
obtain homogeneous measurements. Since the altitude differ-
ences were small, typically a few metres, this was done with
a classical power law:

uWRF level = ulidar level

(
zWRF level

zlidar level

)α
, (1)

where z denotes the altitude in metres (m), u the instanta-
neous wind speed in ms−1, and α the non-dimensional power
law exponent (set to 0.11, as recommended over sea by Hsu
et al., 1994).

3 Methods

3.1 Correction of SAR surface wind speeds

Given the complex relation between sea state and wind speed
and the number of factors able to influence it, machine learn-
ing was found to be an appropriate technique to improve the
accuracy of SAR surface winds. Since wind speed error de-
pends on sensor geometry, the algorithm was trained with
a large database of buoy measurements covering the diver-
sity of possible angles. This database was obtained from the
NDBC network of weather buoys (see Sect. 2.4). As a result,
the machine learning algorithm transformed SAR surface
winds into equivalent 4 m standard buoy measurements. A
total of 4419 collocated observations between NDBC buoys
and Sentinel-1 SAR could be found.

We used a gradient boosting algorithm (Friedman, 2001),
which is known to perform well in regression tasks. It was
implemented with the XGBRegressor function of the XG-
Boost Python package. Its architecture and hyper-parameters
were chosen using grid search with cross-validation. Regard-
ing input parameters, we selected parameters linked to SAR
wind speed errors due to physics or retrieval algorithm speci-
ficities. We then plotted scatter plots of these parameters
against SAR errors and checked the correlations visually. The
following parameters were ultimately selected: SAR wind
speed (extrapolated to 4 m with Eq. 1), SAR wind direction,
difference between the azimuth angle (i.e. angle between
the north and the satellite track) and wind direction, inci-
dence angle (i.e. angle between radar illumination and target
zenith), SAR backscatter, SAR cross-polarization backscat-
ter (related to strong winds), instrument thermal noise, Unix
time, and ECMWF wind speed provided as metadata (this
improves low wind speed accuracy). We also validated our
choices a posteriori by estimating the relative importance
of these parameters in the decision trees, using the Shapely
additive explanations (SHAP) method (Lundberg and Lee,
2017). The gradient boosting algorithm was trained with
80 % of the data points randomly chosen, with the remain-
der used as a test dataset.

3.2 Extrapolation to hub height

In order to extrapolate SAR surface wind speeds to hub
height, we first applied the correction algorithm described
above to transform them into equivalent 4 m standard buoy
measurements. This also removed their dependency on sen-
sor geometry, which was required since the extrapolation al-
gorithm had to be trained with a small dataset of lidars that
did not cover all possible angles. Next, the extrapolation al-
gorithm was trained with the lidar dataset from the North
Sea (Sect. 2.5) using as input corrected SAR surface wind
speeds and meteorological parameters linked to atmospheric
stability extracted from WRF (Sect. 2.3). As a result, the
algorithm did not require any in situ instruments to func-
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Table 1. Main characteristics of the five profiling lidars.

Lidar Latitude Longitude First date Last date Number Lowest Highest SAR
of levels altitude (m) altitude (m) collocations

HKZA 52.309◦ N 4.011◦ E 5 Jun 2016 5 Jun 2018 11 30 200 327
HKZB 52.292◦ N 4.013◦ E 5 Jun 2016 5 Jun 2018 11 30 200 327
LEG 51.917◦ N 3.667◦ E 17 Nov 2014 31 Mar 2017 10 61 300 108
EPL 51.998◦ N 3.276◦ E 30 May 2016 31 Mar 2017 11 61 290 153
BWFZ01 51.710◦ N 3.033◦ E 11 Jun 2015 27 Feb 2017 10 30 200 188

tion. Combining all measurement sites, more than 1000 col-
located data points between lidars and Sentinel-1 SAR could
be found. We transformed these data points into triple collo-
cations by adding the corresponding meteorological parame-
ters extracted from WRF.

Since the accuracy of numerical models is questionable,
these meteorological parameters had to be chosen carefully.
In particular, WRF wind speed at hub height could not be
used directly because it would interfere with SAR estimates.
Instead, we provided the algorithm with the WRF extrapola-
tion ratio between surface wind speed and hub height. How-
ever, when assessing WRF versus lidars, we found that WRF
wind speed had an unrealistic bias below 40 m. It was un-
clear if this was due to the PBL adapted to higher altitudes,
to the lack of accuracy of lidar first levels, or to the power
law extrapolating these first levels to a lower altitude. In any
case, as a precaution, we used the extrapolation ratio between
WRF wind speed at 40 m and WRF wind speed at hub height.
This extrapolation ratio was found to be accurate: the com-
parison with experimental data showed that its bias was less
than 1 % for each lidar. The other relevant parameters we se-
lected were air–sea temperature difference and surface heat
flux. The accuracy of these parameters was also problematic
(see Pena Diaz and Hahmann, 2012). However, in the context
of machine learning, the focus was more on the information
that the parameters contained rather than on their absolute ac-
curacy. Since they did not fluctuate as quickly as wind speed,
we assumed that their biases were following repetitive pat-
terns that could be learnt and that these biases would not pre-
vent the algorithm from extracting the relevant information.
Here, too, we used scatter plots to confirm the correlation be-
tween these parameters and the experimental extrapolation
ratio, and we checked their relative importance a posteriori
using the SHAP method.

This second algorithm was also implemented with the
XGBRegressor function of the XGBoost Python package,
and its architecture was also chosen using grid search with
cross-validation. Since the final estimation of extractable
wind power must be done lidar by lidar and since its accuracy
is very sensitive to the number of samples (see Sect. 3.4), we
used a round-robin validation. This method involved remov-
ing a lidar from the dataset, training the algorithm with the
remaining lidars, assessing performance with the lidar that

was not used, and then repeating the process with each li-
dar. It allowed extractable wind power to be estimated with
all the available samples for each lidar. Another advantage of
the round-robin validation was that training was done in one
location and validation in another.

3.3 Extractable wind power estimation

Total wind power density is related to the cube of wind
speed. Therefore, very high wind speeds have a strong in-
fluence on its estimation. Since SAR sensors become sat-
urated at high wind speeds and therefore do not estimate
them well, we do not recommend using SAR data to es-
timate total wind power density. However, SAR data can
be used to directly estimate extractable wind power since
wind turbines do not usually operate or function on a plateau
when very high wind speeds occur. Extractable wind power,
denoted by P in the following, was obtained by multiply-
ing point by point the wind speed probability density func-
tion (pdf) by the power curve of a wind turbine. In this
study, we chose to simulate a typical 10 MW turbine op-
erating at 119 m: the DTU 10 MW Reference Wind Tur-
bine V1 (DTU Wind Energy, 2017). Its power curve is
available at https://github.com/NREL/turbine-models/blob/
master/Offshore/DTU_10MW_178_RWT_v1.csv (last ac-
cess: 2 September 2021). A simple histogram could be used
to estimate the wind speed pdf. However, due to the limited
number of SAR samples, a more efficient technique would
involve fitting SAR data with a Weibull pdf, which usually
describes wind speed accurately. The Weibull pdf is

pdf(u)=
k

λ

(u
λ

)k−1
e−(u/λ)k , (2)

where λ is a scale parameter in ms−1 and k a dimensionless
shape parameter. These parameters can be obtained by us-
ing the method of the moments with the following formulae
(Pavia and O’Brien, 1986):

k = (σ/µ)−1.086, (3)

λ=
µ

0
(

1
k+1

) , (4)

where µ is the mean wind speed and σ the wind speed stan-
dard deviation, both in ms−1, and 0 is the gamma function.
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Figure 2. Accuracy of the method of the moment for estimating
extractable wind power as a function of the number of samples.

Since the mean wind speed and its standard deviation are di-
rectly linked to the wind speed pdf, an accurate estimation of
these first two moments is enough to obtain the extractable
power and achieve a low error.

3.4 Effect of the number of samples on accuracy

The accuracy of this estimation method was assessed using
simulations by generating a time series of a Weibull random
variable with arbitrary parameters and then trying to recover
the original parameters from these time series. More specifi-
cally, we chose Weibull parameters typical of the North Sea
wind climate (k = 2.2 and λ= 8.5) and computed the refer-
ence extractable power using the exact formula (Eq. 2 mul-
tiplied point by point by the 10 MW turbine power curve).
We then generated random synthetic wind speed time series
using the Weibull pdf (Eq. 2) with these parameters and ap-
plied the method of the moment (Eqs. 3 and 4) to estimate
these original parameters and the extractable power. Figure 2
shows the extractable power error as a function of the number
of samples in the synthetic time series. With 500 samples –
the approximate number of SAR samples used in this study –
accuracy was ± 3 %. Note that, in industrial applications, we
expect a higher accuracy since other satellites (like Envisat
and RADARSAT) would be used together with Sentinel-1 to
cover a period of more than 20 years, thus providing a num-
ber of samples of between 1000 and 1500.

3.5 Correction of low temporal SAR sampling

The main limitation of SAR satellites is their low temporal
sampling (one passage every 2 d for Sentinel-1 in Europe).
This limitation actually guarantees the statistical indepen-
dence of measurements. Nevertheless, since SAR satellites
are on a sun-synchronous orbit, they always pass at the same
time of day, in the morning or in the evening. As a result,
they cannot fully see the intraday variability in wind speed.
Moreover, the monthly and yearly sampling can also be irreg-

Figure 3. Intraday variability in mean wind speed at 120 m for each
lidar. The time is given in UTC, which is close to local time since
Zone 1 and Zone 2 are located near the Greenwich meridian (the
LEG curve is higher because the campaign was performed during
winter).

Table 2. Estimation of mean wind speed error and extractable wind
power error due to low temporal SAR sampling.

Lidar Mean wind speed Extractable wind power
error in % error in %

HKZA −0.34 −0.16
HKZB −0.23 −0.01
LEG 0.36 0.94
EPL −0.04 0.06
BWFZ01 −0.47 −0.08

ular due to space mission start and end dates and operational
constraints.

However, the intraday variability in wind speed is low
(Van der Hoven, 1957) and close to a 24 h period sinusoid
(Fig. 3). Therefore, since Sentinel-1 satellites pass at two
possible times of the day separated by 12 h, according to
the Nyquist–Shannon sampling theorem, they should still be
able to capture intraday variability. In order to verify this,
we computed mean wind speed and extractable wind power
using only lidar measurements at 05:00 and 17:00 (UTC).
We then compared these results to those obtained using all
lidar measurements at any time of day. For all lidar, the dif-
ferences were found to be below 0.5 % and 1 %, respectively
(Table 2). Therefore, SAR satellites are indeed able to cap-
ture most wind intraday variability. However, this conclusion
might not be true in geographical areas where thermal winds
are stronger than in the North Sea.

Although the effect of intraday variability is expected to
be low, in order to improve the accuracy of our method, we
decided to correct the errors related to low and irregular SAR
sampling. These errors were removed by precisely simulat-
ing all of the satellites’ passages over the WRF outputs: for
each pixel of the study areas, we computed the mean wind
speed produced by WRF and compared it to the mean wind
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Figure 4. Relative importance of the input parameters used to correct SAR surface winds.

Figure 5. Scatter plots between SAR and buoy wind speeds at 4 ma.s.l. before machine learning (a) and after machine learning (b) using
the test dataset. The colours represent the density of points, and the black curve is the identity line.

speed seen by the satellites. The difference was used to cor-
rect SAR mean wind speed.

4 Results

4.1 Performance versus buoys at 4 m

The correction algorithm hyper-parameters optimized with
grid search are shown in Table 3 (middle column). The other
hyper-parameters are the defaults. The relative importance
of the input parameters is given in Fig. 4. As expected, the
parameters related to geometry and to low and high wind
speeds contained the most useful information. The algorithm
was able to reduce the bias in SAR wind speed estimated at
4 ma.s.l. from −0.48 to 0.02 ms−1, its mean absolute error
(MAE) from 0.85 to 0.57 ms−1, and its standard deviation
from 0.95 to 0.74 ms−1. Figure 5 shows the scatter plots of
SAR wind speeds versus buoys before and after applying ma-
chine learning. The bias is indeed reduced and the cloud of
points is thinner after machine learning.

Table 3. Gradient boosting hyper-parameters optimized with grid
search with cross-validation.

Hyper-parameter Correction of Extrapolation to
surface winds hub height

objective Squared error Squared error
learning rate 0.03 0.03
max_depth 5 6
min_child_weight 0 0
min_split_loss 0.02 0.02
subsample 0.99 0.99
colsample_bytree 1 1
reg_alpha 0.5 0.
reg_beta 0.8 0.7
n_estimators 320 350
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Figure 6. Relative importance of the input parameters used to extrapolate SAR surface winds to higher altitudes.

Figure 7. Performance of the machine learning algorithm extrapo-
lating corrected SAR surface winds to higher altitudes.

4.2 Performance versus lidars

The extrapolation algorithm hyper-parameters optimized
with grid search are shown in Table 3 (right column). The
relative importance of the input parameters is given in Fig. 6.
It can be seen that surface net heat flux was the most relevant
atmospheric stability parameter. Algorithm performance ver-
sus lidars is shown in Fig. 7 for various altitudes up to 200 m.
At 120 m, the hub height of the simulated turbine, the bias in
SAR wind speed was 0.16 ms−1, its MAE 0.99 ms−1, and
its standard deviation 1.43 ms−1. We also extrapolated cor-
rected SAR wind speeds to higher altitudes, assuming the
power law given by Eq. (1) for comparison. Figure 8 shows
the scatter plots versus lidars of SAR wind speeds, extrap-
olated using the power law and machine learning. It can be
seen that dispersion was significantly reduced with machine
learning. Figure 9 shows the final biases in SAR mean wind
speed and SAR extractable power versus each lidar at various
altitudes. These biases remained within ± 3 % up to 200 m.
As explained previously, an even higher accuracy is expected
in real-life industrial applications since the number of sam-
ples used here was limited by the short duration of the lidar
campaigns used as a reference.

These results need to be confirmed in geographical loca-
tions other than the North Sea. Nevertheless, in a region with
a very different wind pattern and no available lidar measure-
ments, a simpler method can be applied. The extrapolation

ratio provided by the high-resolution numerical model can
be used to directly extrapolate SAR surface winds without
applying machine learning. In this case, the extractable wind
power error was found to be within± 7 %, which is still accu-
rate enough to provide some insight compared to a numerical
model alone.

4.3 Wind power maps at hub height

Figures 10 and 11 show the extractable wind power produced
at 120 m over the areas of study by the WRF model and SAR
satellites and the difference between them as a percentage. It
can be seen that the use of SAR data significantly increased
the level of detail compared to WRF outputs. In particular,
the coastal wind speed gradient, which is often crucial in off-
shore site assessment, was resolved by the SAR and not by
WRF (see the gradients in Fig. 12). Therefore, SAR data can
be used to optimize the required distance from the coast and
minimize wind farm project risks.

Some elements are still visible on the maps and need to be
corrected in the future. As explained in Sect. 2.2, the pres-
ence of these elements was measured using a Koch filter, and
a quality flag was created. Figures 10 and 11 also show the
percentage of SAR data flagged as “low quality”. These areas
were mainly due to bright targets that could not be filtered,
related to existing wind farms with a high density of turbines
and areas where large numbers of stationary shipping ves-
sels were anchored. In addition, in Zone 1, unrealistic waves
can be seen close to the coast. These patterns correspond
to similar waves of sand on the seabed. The bathymetry in
these shallow waters seemed to affect currents and therefore
the SAR backscatter. Regarding swath edges that can still be
seen, the problem arises from a difficulty in estimating wind
speed standard deviation when the sample number is low. We
expect this problem to disappear if more SAR samples are
used. In an industrial application, the total number of SAR
samples would be between 1000 and 1500, instead of less
than 300 as in the worst case here.
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Figure 8. Scatter plots between SAR and lidar wind speeds at 120 ma.s.l. when the extrapolation is performed with a classical power law (a)
or with machine learning (b). The colours represent the density of points, and the black curve is the identity line.

Figure 9. Biases in SAR extrapolated wind speed (a) and extractable wind power (b) versus each lidar as a percentage. The results with
LEG lidar are less accurate due to its low number of collocated SAR samples.

5 Conclusion

This article has presented a new method for estimating the
offshore wind resource at hub height using SAR and machine
learning. The method consisted of three main steps. Firstly,
SAR Level-1 products were homogeneously reprocessed into
Level-2 surface wind products, and these wind speeds were
corrected with a machine learning algorithm using geometri-
cal parameters of the SAR sensor and SAR metadata to com-
pensate for systematic errors attributed to the GMF or SAR
calibration. This algorithm was trained with a large network
of weather buoys. Secondly, SAR surface winds were extrap-
olated to higher altitudes with another machine learning al-
gorithm, using meteorological parameters extracted from a
high-resolution numerical model. This algorithm was trained
with a dataset of lidar vertical wind profiles. Thirdly, the
wind speed Weibull parameters were estimated, taking into
account SAR irregular sampling, and a wind turbine was sim-
ulated to compute the extractable wind power computed.

This first machine learning algorithm correcting SAR
surface wind speeds was tested against 4 m high buoy
measurements. The resulting SAR wind speed bias was
0.02 ms−1. Its MAE was 0.57 ms−1 and its standard devi-
ation 0.74 ms−1. This algorithm can be used stand-alone to

improve the accuracy of SAR wind products. The second al-
gorithm extrapolating surface winds to higher altitudes was
tested against lidar measurements up to 200 m. At 120 m,
which is the hub height of the simulated turbine, the ex-
trapolated wind speed bias was 0.16 ms−1. Its MAE was
0.99 ms−1 and its standard deviation 1.43 ms−1. This al-
gorithm can also be used stand-alone to extrapolate wind
speeds measured at 4 ma.s.l. These two algorithms combined
together produced instantaneous SAR wind fields at hub
height, which can provide interesting insights for wind farm
developers. When these SAR wind speeds at hub height were
converted into potential extractable wind power, at 120 m, the
accuracy was 3 % versus lidars. Since this assessment was
done with a low number of SAR samples due to the limited
duration of lidar campaigns, higher accuracy is expected in
an industrial application.

The method was tested in two areas off the Dutch coast.
Compared to the maps provided by the WRF numerical
model, this method has the advantage of providing a much
higher level of detail thanks to the 1 km resolution provided
by SAR surface wind measurements. The most striking result
is that wind resource maps based on SAR were able to re-
solve the wind speed coastal gradient. Therefore, using SAR
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Figure 10. Wind resource at 120 m over Zone 1, assuming a typical 10 MW turbine: extractable wind power in kilowatts (kW) predicted by
WRF (a) and SAR satellites (b), difference in percentage (c), and percentage of low-quality SAR data (d).

Figure 11. Wind resource at 120 m over Zone 2, assuming a typical 10 MW turbine: extractable wind power in kilowatts (kW) predicted by
WRF (a) and SAR satellites (b), difference in percentage (c), and percentage of low-quality SAR data (d).
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Figure 12. Extractable wind power coastal gradient at 120 m on a
horizontal line at the top of Zone 2, estimated by WRF and by SAR
satellites.

data combined with machine learning can improve the accu-
racy of offshore wind resource estimates at hub height and
provide useful insights to optimize wind farm siting and risk
management.

Further research should focus on removing remaining arte-
facts on SAR maps, such as swath edges, bright targets, and
the effect of bathymetry. Moreover, since the method was
validated using lidars located only in the North Sea, the ex-
trapolation algorithm may not be adapted to meteorological
conditions in seas with a different wind climate. In these
cases, wind profiles measured by lidars located in the region
of interest would need to be included in the training dataset
and used to validate the method again.

Code and data availability. Level-1 SAR data are available on
the ESA Copernicus Open Access Hub website. Buoy data are avail-
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