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Abstract. Wake steering models for control purposes are typically based on analytical wake descriptions tuned
to match experimental or numerical data. This study explores whether a data-driven surrogate model with a high
degree of physical interpretation can accurately describe the redirected wake. A linear model trained with large-
eddy-simulation data estimates wake parameters such as deficit, center location and curliness from measurable
inflow and turbine variables. These wake parameters are then used to generate vertical cross-sections of the wake
at desired downstream locations. In a validation considering eight boundary layers ranging from neutral to stable
conditions, the far wake’s trajectory, curl and available power are accurately estimated. A significant improve-
ment in accuracy is shown in a benchmark study against two analytical wake models, especially under derated
operating conditions and stable atmospheric stratifications. Even though the results are not directly generalizable
to all atmospheric conditions, locations or turbine types, the outcome of this study is encouraging.

1 Introduction

Wind turbine wakes cause considerable power losses and in-
creased loads at downstream machines. Control strategies
to mitigate these negative effects are gaining support in the
wind energy community. In particular wake steering, or wake
redirection through intentional yaw misalignment (Dahlberg
and Medici, 2003; Wagenaar et al., 2012), is regarded as
a promising control strategy. A yaw misalignment intro-
duces a lateral thrust force component, which redirects the
downstream wake and generates two counter-rotating vor-
tices around upper- and lower-tip height that curl the wake
into a kidney shape (Howland et al., 2016). Numerical simu-
lations (e.g., Gebraad et al., 2016; Fleming et al., 2018; Huls-
man et al., 2020), wind tunnel experiments (e.g., Campag-
nolo et al., 2016; Bartl et al., 2018; Bastankhah and Porté-
Agel, 2019) and free-field campaigns (e.g., Fleming et al.,
2017, 2019, 2020; Bromm et al., 2018) have demonstrated
the potential of an increased wind farm power production

when utilizing the wake steering concept. The efficacy of
wake steering is strongly dependent on turbine operation
and atmospheric inflow characteristics, such as the turbine
thrust coefficient (Jimenez et al., 2010), atmospheric stabil-
ity (Vollmer et al., 2016), wind shear (Schottler et al., 2017)
and turbulence intensity (Bastankhah and Porté-Agel, 2016).

Wake steering controllers regulating the turbine yaw angle
are often based on simple wake models that can describe the
downstream wake under different inflow conditions. These
models, such as those available in the FLORIS framework
(NREL, 2020), are typically based on a simplified analytical
description of the momentum conservation equations for sta-
tionary inflow conditions. When combined with a dynamic
controller, wind direction variability can be included (Rott
et al., 2018; Simley et al., 2020). The performance of these
wake steering controllers, and therefore the accuracy of the
underlying wake models, is essential for a successful appli-
cation of wake steering as a control strategy in a real wind
farm.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



1456 B. A. M. Sengers et al.: A physically interpretable data-driven surrogate model for wake steering

Frequently used in recent years is the wake model based
on Gaussian self-similarity (Bastankhah and Porté-Agel,
2014, 2016; Abkar and Porté-Agel, 2015; Niayifar and Porté-
Agel, 2016). Combining wake deficit and wake deflection
models, the Gaussian (GAUS) model uses turbulence inten-
sity as an atmospheric inflow parameter. It was validated
against field measurements in Annoni et al. (2018) and used
as a controller in a field campaign in Fleming et al. (2019). A
disadvantage of this model is the negligence of the counter-
rotating vortices generated with yaw misalignment and con-
sequently the absence of wake curling. In addition, it does
not account for the initial wake deflection caused by the
torque-induced wake rotation in sheared inflow (Zahle and
Sørensen, 2008). The curl model (Martínez-Tossas et al.,
2019) accounts for these phenomena by explicitly including
vortices in a model based on linearized Reynolds-averaged
Navier–Stokes equations. Having a strong physical basis, it
is able to include a wide range of atmospheric conditions
and allows flexibility in the wake shape generation. A dis-
advantage is the high computational expense compared to
GAUS. For this reason, King et al. (2021) proposed to in-
clude the vortex description of the curl model into GAUS in
the Gaussian-Curl Hybrid (GCH) model. This incorporates
the initial wake deflection and even secondary wake steer-
ing, the deflection of the wake of a downstream turbine by the
vortices generated by the yawed upstream turbine (Fleming
et al., 2018), but not the curling of the wake itself. In addition,
the model includes a wake recovery term representing added
entrainment by the vortices generated due to yaw misalign-
ment. Fleming et al. (2020) showed promising results when
using GCH as controller input in a free-field campaign.

These analytical models contain parameters that can be
tuned to match numerical or experimental data. In addition,
data can be used to formulate parameterized error terms
(Schreiber et al., 2020). However, completely data-driven
wake models remain rare, and those that exist generally use
complex machine learning models with a low interpretabil-
ity (e.g., Göçmen and Giebel, 2018; Ti et al., 2020). This
is remarkable since simple data-driven models are proven
to be able to describe complex physical phenomena (Brun-
ton et al., 2016) and are already widely used for predic-
tion purposes, including wind power (Stathopoulos et al.,
2013; Messner and Pinson, 2019) and power curve predic-
tions (Marčiukaitis et al., 2017). Although analytical mod-
els are presumably more robust, especially when the data set
is small, the maximum achievable accuracy is also limited
as it is not feasible to develop one model for all scenarios.
An analytical model will not be able to capture features for
which equations were not in place; hence constant updates to
the model code are necessary (e.g., Abkar et al., 2018; Bas-
tankhah et al., 2022). With the community demanding that
wake models include increasingly more complex features
(e.g., the wake curl), data-driven models become interesting
as they can directly capture these features when enough data
are available.

The objective of this study is to explore the potential of
a Data-driven wAke steeRing surrogaTe model (DART) that
retains a high degree of physical interpretation. It is investi-
gated whether the curled wake can accurately be described
by a set of measurable inflow and turbine variables, and how
the use of these variables can be optimized in an interpretable
model. Next, the potential of this surrogate model is system-
atically assessed by evaluating its performance with large-
eddy simulation (LES) results for a reference wind speed
under a range of atmospheric conditions and subsequently
benchmarking it against two analytical wake models (GAUS
and GCH). Lastly, the surrogate model’s generalizability to
all atmospheric conditions, locations and turbine types is dis-
cussed.

2 Large-eddy simulations

In this study data are generated with revision 3475 of the
PArallelized Large-eddy simulation Model (PALM; Maronga
et al., 2020), which uses a non-hydrostatic incompressible
Boussinesq approximation of the Navier–Stokes equations
and the Monin–Obukhov similarity theory to describe sur-
face fluxes. In the boundary layer, the grid on a right-handed
Cartesian coordinate system is regularly spaced with 1=
5 m, while above the boundary layer height the vertical grid
size increases with 6 % per cell to save computational costs.
The Coriolis parameter corresponds to that at 55◦ N. De-
fault numerical schemes are used, the main ones being a
third-order Runge–Kutta scheme for time integration, a fifth-
order Wicker–Skamarock advection scheme for the momen-
tum equations, Deardorff’s 1.5-order turbulence closure pa-
rameterization for subgrid-scale turbulence and an iterative
multigrid scheme for the horizontal boundary conditions.
The simulation chain consists of a precursor simulation to
generate realistic inflow conditions and a subsequent main
simulation that contains one turbine.

2.1 Precursor simulations

Inflow conditions with realistic turbulent features are gener-
ated from an initially laminar flow by adding random per-
turbations in a precursor simulation with cyclic horizontal
boundary conditions. To study the potential of DART un-
der different inflow conditions, eight boundary layers (BLs)
ranging from a neutral to a strongly stable BL are used as ref-
erence inflow conditions, all having approximately the same
wind direction and wind speed at hub height. As reported by
Vollmer et al. (2016), wake steering is ineffective in a convec-
tive boundary layer, which is therefore not considered in this
study. Due to the large computational expense it was not pos-
sible to increase the number of simulations. Although these
eight BLs do not capture the great variability in the free field,
it is considered sufficient to provide a proof of concept for
data-driven models.
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The total domain size and simulation time vary between
the BLs, are determined empirically until convergence to a
stationary state occurs and are dependent on the size of the
largest eddies that explicitly need to be resolved. The details
of the precursor simulations are summarized in Table 1.

BL1 and BL2 portray neutral conditions with roughness
lengths representing low crops (z0 = 0.1 m) and parkland
(z0 = 0.5 m), which are typical landscapes found in north-
ern Germany. Following Basu et al. (2008), constant cool-
ing rates at the surface are prescribed to generate stable BLs,
where BL3 and BL4 represent weakly stable (∂θ ∂t−1

=

−0.125Kh−1) and BL5 and BL6 strongly stable conditions
(∂θ∂t−1

=−0.25K h−1; following Beare and Macvean,
2004). Two additional (near-)neutral BLs are generated, one
representing grassland (z0 = 0.03 m) and one having a very
small negative sensible heat flux (H =−0.001 Kms−1),
which is in the acceptable range defined in Basu et al. (2008).

Stationary inflow conditions are taken at 2.5 rotor diame-
ters (D) upstream of the turbines simulated in the main sim-
ulations (Sect. 2.2) and averaged over a line of size 2 D in
the crosswise direction and a period of 60 min. These inflow
conditions are assumed to be undisturbed, hence far enough
from the turbine that induction does not play a role. Typi-
cal inflow parameters are displayed in Fig. 1, indicating that
the wind speed is comparable for all simulations but that the
atmospheric conditions vary. A more stable boundary layer,
indicated by a larger Obukhov stability parameter (zL−1),
typically has a higher shear (α) and veer (∂α) and lower
turbulence intensity (TI). The spread of the parameters be-
tween the main simulations (see Sect. 2.2) in the same bound-
ary layer, indicated by the standard deviation as whiskers in
Fig. 1, is small enough to be neglected.

2.2 Main simulations

After generating stationary inflow conditions with a precur-
sor, simulations with one turbine are performed. Information
on turbulence characteristics from the precursor simulation
is fed to the main simulation by adding a turbulent signal
to a fixed mean inflow (turbulence recycling method) far up-
stream of the turbine. A radiation boundary condition ensures
undisturbed outflow downstream of the simulated turbine.
The size of the recycling area is equal to the domain size
of the precursor simulation, and the domain size of the main
simulation is only extended in streamwise direction by plac-
ing a turbine at x = 6 D downstream of the recycling area.
Wake data until x = 10 D are used for analysis, but the do-
main is extended to x = 13 D to eliminate blockage effects.
The total simulation time is 80 min: the first 20 min are con-
sidered spin-up time, and the last 60 min are used for analy-
sis.

The simulated turbine is an actuator disc model with ro-
tation (ADMR) representing a 5 MW NREL turbine, hav-
ing a hub height of 90 m and a rotor diameter D of 126 m
(Jonkman et al., 2009), as implemented in Dörenkämper

et al. (2015). Turbine yaw angles (φ) of −30, −15, 0, 15
and 30◦ are simulated, where a positive yaw angle is defined
here as a clockwise rotation of the turbine when looking from
above. Pitch angles (β) of 0, 2.5 and 5◦ are simulated to study
the effect of the thrust force on downstream wake character-
istics. This adds up to a total of 120 main simulations with
one turbine, i.e., 15 turbine settings (5 yaw angles times 3
pitch angles) for each of the 8 inflow conditions. The effect of
φ and β on the thrust coefficient CT is illustrated in Fig. 2, il-
lustrating that the effect of the turbine yaw angle of the thrust
coefficient is approximately symmetric around zero.

It should be noted that smaller step sizes for yaw and pitch
angles would be preferred as these step sizes could be too
coarse when utilizing a regression-based model (Sect. 3.3).
This can lead to deviating estimates when interpolating to
values far away from these set points (e.g., for φ = 7.5◦).
Increasing the step size would, however, lead to more sim-
ulations, which was computationally not feasible and not
deemed necessary to show proof of concept.

The wake is described using the normalized wake deficit,
defined as und =

uwake−u∞
u∞,h

, where uwake represents the ob-
served wind speed in the wake, u∞ the undisturbed inflow
2.5 D upstream at the same height and u∞,h the undisturbed
inflow at hub height. It is assumed that the advection veloc-
ity is constant in streamwise direction (assumption of frozen
turbulence) and that the wake behaves as a passive tracer in
the ambient wind (Larsen et al., 2008).

3 Development of the Data-driven wAke steeRing
surrogaTe model

This section describes the development of the Data-driven
wAke steeRing surrogaTe model (DART). It should be noted
that many different kinds of data-driven models exist. For the
purpose of this exploratory study, the focus was to develop a
simple regression model that performs well on small data sets
without the risk of overfitting.

Figure 3 displays a flowchart of the training and execu-
tion (including testing) procedure. The respective sections in
which each step is explained are indicated in parentheses.
DART is trained with the LES data representing reference
inflow conditions (BLs) described in Sect. 2. From the wake
data, key wake steering variables are deducted by executing
the multiple 1D Gaussian method explained in Sect. 3.1. Ad-
ditionally, input variables are extracted at 2.5 D upstream,
and several operations are performed (Sect. 3.2) to deter-
mine the final input parameters. A multi-task lasso regres-
sion (Sect. 3.3) is subsequently performed to generate a co-
efficient matrix.

This matrix can be used in the execution (testing) of the
model to estimate the key wake steering parameters for new
inflow conditions. The same operations as in the training pro-
cedure are done on the input variables to obtain the input pa-
rameters, after which the linear model (Sect. 3.3) is solved to
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Table 1. Summary of simulation parameters and classification into neutral (NBL), near-neutral (NNBL), weakly stable (WSBL) and stable
(SBL) boundary layers. The size (Lx,p,Ly ,Lz) of the domains is normalized by the rotor diameter (D = 126 m). All parameters are identical
in precursor and main simulations, except for the domain size, which is extended in the streamwise direction (Lx,m); tp is the simulated time
of the precursor run, ug and vg the geostrophic wind, ∂θ∂t−1 the heating rate, H the sensible heat flux, and z0 the surface roughness length.

tp Lx,p Lx,m Ly Lz ug vg ∂θ ∂t−1 H z0
[h] [D] [D] [D] [D] [ms−1] [ms−1] [Kh−1] [Kms−1] [m]

BL1 NBL 28 40.6 61.0 20.3 14.0 10.115 −3.969 – – 0.1
BL2 NBL 28 40.6 61.0 20.3 14.0 10.595 −5.572 – – 0.5
BL3 WSBL 25 27.9 50.0 14.0 8.4 9.952 −5.115 −0.125 – 0.1
BL4 WSBL 45 27.9 50.0 14.0 8.4 10.607 −6.447 −0.125 – 0.5
BL5 SBL 20 11.4 30.5 7.6 4.6 9.500 −5.170 −0.250 – 0.1
BL6 SBL 20 11.4 30.5 7.6 4.6 10.565 −6.585 −0.250 – 0.5
BL7 NBL 40 40.6 61.0 20.3 14.0 9.609 −3.193 – – 0.03
BL8 NNBL 40 40.6 61.0 20.3 14.0 9.831 −3.488 – −0.001 0.1

Figure 1. Summary of inflow parameters (60 min averages), given as mean (dots) and standard deviation (whiskers) over the 15 main
simulations performed in each BL (5 yaw angles times 3 pitch angles). Considered are wind speed (uh) and turbulence intensity at hub height
(TI), wind shear (α) and veer (δα) over the rotor area, and the Obukhov stability parameter (zL−1) at z= 2.5 m. Equations for these variables
can be found in Table 3.

Figure 2. Overview of the effect of yaw angle φ and pitch angle β
on thrust coefficient CT. Whiskers indicate the standard deviation
between all eight BLs.

estimate the key wake steering parameters. A reversed ver-
sion of the multiple 1D Gaussian model can then be exe-
cuted (Sect. 3.4) to obtain gridded wake data. During model
development, this wake estimation can be compared to the
original LES data. One can experiment with different input
variables and operations to determine what set of input pa-

rameters gives the most accurate solution (Sect. 3.5). This
last step has not been included in Fig. 3 to reduce clutter.

3.1 Defining key wake steering parameters

A data-driven model will not be able to produce a full mul-
tidimensional flow field but rather estimate parameters de-
scribing the wake at desired downstream positions. Since
curled wakes are considered, key wake steering parame-
ters in this study are retrieved with the multiple 1D Gaus-
sian method (Sengers et al., 2020). In the example below,
the wake of a turbine with a +30◦ yaw angle in BL1 at
x = 5 D is considered (Fig. 4a). This method fits a simple
1D Gaussian at every vertical level (k = 1. . . K) where infor-
mation is available to obtain a set of local normalized wake
center deficits (A= A1. . . AK ), wake center positions (µ=
µ1. . . µK ) and wake widths (σ = σ1. . . σK ). Subsequently,
another Gaussian can be fitted through the local wake center
deficits in the vertical (Fig. 4b) to find the overall normalized
wake center deficit (Az) and vertical position with respect to
hub height (µz), as well as the vertical extension of the wake
(σz). The local wake center position and width at vertical
level k that corresponds to µz are subsequently considered
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Figure 3. Flowchart describing the training (a) and execution (b) procedure of DART. The section in which the process is described is
indicated in parentheses. The coefficient matrix generated in (a) is used in (b).

Table 2. Defined dimensionless key wake steering parameters. The
normalized wake deficit is computed as described in Sect. 2.2. All
length parameters are nondimensionalized by the rotor diameter D.

Scalar parameter Symbol

Amplitude of the normalized wake deficit Az
Lateral wake center displacement µy
Vertical wake center displacement µz
Width of the wake center height σy
Vertical extent σz
Curl curl
Tilt tilt
Quadratic wake width parameter sa
Linear wake width parameter sb

to be lateral wake center position (µy) relative to the turbine
location and wake width (σy). Next, by fitting a second-order
polynomial through the local wake center positions between
upper- and lower-tip height (Fig. 4c), one obtains a measure
for the curl (coefficient of quadratic term) and tilt (coefficient
of linear term) of the wake. An expression for the wake width
as a function of height is found by repeating this step for the
local wake widths (Fig. 4d) to obtain coefficients sa and sb.
After this procedure, the wake can be described by the set of
dimensionless parameters displayed in Table 2.

Note that this method cannot accurately capture the split-
ting of the wake in two separate cells, which might occur
under strong veer as discussed in Vollmer et al. (2016). Such
cases will result in inaccurate values for the key wake steer-
ing parameters and should be filtered out before applying the
regression model described in Sect. 3.3.

Table 3. Set of dimensionless input parameters: dir is the wind di-
rection [◦], z is the height above the surface [m], uh and σuh are
the mean and standard deviation of the wind speed at hub height
[ms−1], ueff is rotor effective wind speed [ms−1], T is thrust [N],
Q is torque [N m], and ω is rotor speed [rads−1]. Subscript ut indi-
cates upper-tip and lt lower-tip height.

Variable Symbol Calculated

Turbine yaw angle φ φ

Veer δα dirut− dirlt
Shear α lnuut

ult
/ ln zut

zlt
Obukhov stability parameter zL−1 2.5/L
Turbulence intensity TI σuh/uh
Thrust coefficient CT T/(0.5 ρ u2

effπ (D/2)2)
Torque coefficient CQ Q/(0.5 ρ π u2

eff (D/2)3)
Tip speed ratio TSR ω(D/2)/uh

3.2 Input parameters

A regression model (Sect. 3.3) is used to estimate the key
wake steering parameters in Table 2. A set of measurable
inflow and turbine variables are used as input parameters,
which are made dimensionless to make the model more uni-
versally applicable, at least within the variability found be-
tween the simulations in this study. This set of parameters is
presented in Table 3.

Although these input parameters might all have their own
isolated effect on the wake propagation, they are heavily cor-
related in LES as shown in Fig. 5. One can identify sev-
eral highly correlated input clusters, representing (1) yaw
(φ), (2) atmospheric inflow (δα, α, zL−1, TI) and (3) tur-
bine variables (CT, CQ, TSR). Note that wind speed is not
included since it is approximately constant in all simulations
and correlated with both inflow and turbine parameters. A
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Figure 4. Exemplary figures (BL1, φ =+30◦, x = 5 D) illustrating the key wake steering parameters. (a) Normalized wake deficit cross-
section (contour) of original LES data. (b) The local normalized wake center deficits A, (c) local wake center positions µ, and (d) local wake
widths σ . Black crosses indicate LES, solid red lines the relation fitted in according to the multiple 1D Gaussian method (Sect. 3.1) and
dashed red lines the assumed continuation in the reversed multiple 1D Gaussian composition method (Sect. 3.4). (e) Cross-section (contour)
of the normalized wake deficit after applying the reversed multiple 1D Gaussian composition method.

high correlation between variables indicates that they contain
much of the same information. Providing the same informa-
tion to a model multiple times is futile as it will not improve
the accuracy. For this reason, it is hypothesized that reason-
able accuracy can be achieved with the regression model as
long as one variable from each input cluster is included. This
would reduce the number of model parameters and would
give the user freedom to choose parameters based on pref-
erence and availability. However, since the input variables
are not perfectly correlated, the information they contain is
slightly different, and including both variables can increase
the model’s accuracy. For this reason, two versions of the
surrogate model having a different number of variables are
experimented with; see Sect. 3.5. Although a high correlation
between input variables is usually undesirable in regression
problems due to multicollinearity, Sect. 3.3 explains that this
is not an issue due to the regression model used in this study.

This regression model is linear, so to include nonlinear
relations the input variables can be transformed using re-
ciprocal (f (x)= x−1), exponential (f (x)= ex), logarithmic
(f (x)= ln(x)) or square root (f (x)=

√
x)) transformations.

All these transformations have been tested in the procedure
described in Sect. 3.5. In addition to the transformed vari-
ables, second-order polynomial and interaction terms are
added, as well as an intercept (unity), extending the set of
input parameters.

3.3 Regression model

Since the LES data set has a relatively small sample size, a
linear model is chosen as they perform well on small sample
sizes, reduce the risk of overfitting compared to more com-
plex machine learning models and are highly interpretable
(Hastie et al., 2009).

The regression is formulated as a linear model in matrix
form

Y
(n×d)
= X

(n×p)
× B

(p×d)
, (1)

Figure 5. Correlation matrix of the dimensionless input parameters
in LES. Colors indicate a positive (red) or negative (blue) correla-
tion.

which estimates the output variable Y based on the design
matrix X and coefficient matrix B. Matrix dimensions indi-
cated in Eq. (1) represent the sample size n, number of down-
stream distances d and number of input parameters p. Note
that p contains the transformed variables and their second-
order and interaction terms as well as intercepts. Since these
parameters are highly correlated and not all relevant, the co-
efficients are determined based on a lasso regression method
as introduced by Tibshirani (1996). This guarantees a shrink-
age of the number of variables through a regularization pa-
rameter found by cross-validation. Relevant input parame-
ters are isolated from irrelevant parameters by multiplying
the latter with a coefficient of zero, effectively eliminating
them from Eq. (1). Multicollinearity is therefore not an issue
in lasso, contrary to ordinary least squares, as typically only
one parameter is chosen from a set of highly correlated input
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parameters. This reduces the number of input parameters, in-
creasing the interpretability of the model. Additionally, it is
desired that the same set of input parameters is used to es-
timate the output variable at all downstream distances. This
is guaranteed in the multi-task lasso method introduced by
Obozinski et al. (2006), which is implemented in the multi-
task lasso algorithm from the scikit-learn Python library (Pe-
dregosa et al., 2011). See Appendix A for further explana-
tion.

Whereas fitting the regression coefficients is more com-
plex than ordinary least squares fitting, the estimations of the
key wake steering variables in the testing or execution phase
are generated through simple matrix multiplication as shown
in Eq. (1). The algorithm is therefore highly interpretable,
easy to implement and computational inexpensive.

3.4 Wake composition: reversed multiple 1D Gaussian

The coefficient matrix B can be used to estimate the key wake
steering parameters in Table 2 from inflow variables. This
information is used to compose a vertical cross-section of
the wake deficit using the reverse of the multiple 1D Gaus-
sian method described in Sect. 3.1. The amplitude of the nor-
malized wake deficit Â at each height (k = 1 . . . K) can be
computed by simply filling out the Gaussian function using
Az,µz,σz. Similarly, local wake center positions µ̂ and lo-
cal wake widths σ̂ can be found by filling out a second-order
polynomial. Additional assumptions outside of the rotor area
are that the curl continues (dashed red line in Fig. 4c), and
the wake width can be described by an ellipse between lower
tip and surface and between upper tip and wake top (dashed
red line in Fig. 4d). Finally, a simple 1D Gaussian can be
filled out at every vertical level using the information from
Â, µ̂, σ̂ , resulting in a two-dimensional grid filled with und
values (Fig. 4e). Comparing this composed wake to the orig-
inal LES in Fig. 4a, one can see that this simple description
still contains much of the original information. The shape
of the wake is conserved, as well as the displacement of the
wake center. The maximum deficit of the composed wake
center appears to be slightly larger than in LES. Addition-
ally, in the composition the maximum wake deficit is always
in the center (definition of a Gaussian), which is not neces-
sarily true in LES or reality.

3.4.1 Wake composition validation

The procedure described in Sect. 3.4 is repeated for all 120
simulations, and 1 D≤ x ≤ 10 D at everyD. The metric used
here to evaluate the accuracy of this method is the percent-
age error in available power in the rotor area of the composed
wake relative to when computed with the original LES wind
field (PE [%] = (Pcomp−PLES)/PLES ·100). A few things can
be noted by studying the results shown in Fig. 6. The compo-
sition shows a large systematic positive bias in the near wake
(x ≤ 3 D). This is due to the so-called double-bell shape of

the near wake, with a speed-up region around hub height.
When attempting to fit this with a simple 1D Gaussian, the
deficit in the rotor area is underestimated, resulting in a pos-
itive percentage error. For this reason, the near wake is ex-
cluded from analysis in the remainder of this work. Further
downstream (x ≥ 8 D) a small negative systematic bias can
be identified, which is due to the “top-hat” shape of the wake
deficit as a result of temporal averaging. This is not cap-
tured by a Gaussian function and will on average result in
an overestimation of the wake deficit amplitude. The large
(negative) outliers typically indicate cases where the wake
does not have a Gaussian shape, such as the separation in
two cells under strong veer. The median error in the region
4 D≤ x ≤ 10 D is, however, smaller than 1 %.

3.5 Feature selection

Numerous combinations of input parameters are possible.
This includes choosing from the variables presented in Ta-
ble 3, as well as which of the five transformations proposed in
Sect. 3.2 to use. In order to find the most accurate solution, all
combinations are tested. The combination that provides the
minimum absolute percentage error in available power over
all training data, i.e., all considered simulations and down-
stream distances (4 D≤ x ≤ 10 D), is sought. When using all
eight variables presented in Table 3, denoted DART-8, only
the variable transformations need to be decided. The num-
ber of possible combinations is proportional to the number
of transformations to the power of the number of variables.
All five transformations are tested on all variables except for
φ, for which the logarithmic and square root transformations
have been omitted because negative values occur. This re-
sults in a total of 31

· 57
= 234375 possible combinations.

Not only is using all variables computationally expensive,
as is discussed in Sect. 4.1, operationally it is also unlikely
that all variables are routinely obtained due to high costs. As
hypothesized in Sect. 3.2, using one variable from each input
cluster is already expected to produce accurate results. To test
this, a version of DART with only three variables, denoted
DART-3, is considered. Allowing each variable to be chosen
and transformed, the total number of possible combinations
is a multiplication of the possible combinations of each input
cluster. In total, (1 ·3) · (4 ·5) · (3 ·5)= 900 possible combina-
tions are tested to find the optimal set of input parameters. It
should be noted that other feature selection procedures could
be considered to reduce the computational expense needed
for training, but enhancing the training procedure was con-
sidered outside of the scope of the current work.

3.6 Benchmark models

DART is benchmarked against the Gaussian (GAUS) and
the Gaussian-Curl Hybrid (GCH) models present in version
2.2.2 of the FLORIS framework (NREL, 2020). Although
secondary steering is not studied here, the GCH is still in-
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Figure 6. Accuracy of the wake composition procedure expressed as a percentage error in available power of a virtual downstream turbine.
At each downstream distance, data from all 120 simulations are considered. The subplot in the top right zooms in to 4 D≤ x ≤ 10 D. Axis
labels correspond to those of the main plot.

cluded because of its incorporation of initial wake deflection
and the added wake recovery term. Both models share the
same tuning parameters for the far-wake onset (αfloris,βfloris)
and wake recovery rate (ka,floris,kb,floris). Analogous to the
training of DART discussed in Sect. 3.5, the values of the
tuning parameters are determined by minimizing the APE of
available power over all considered simulations and down-
stream distances (4 D≤ x ≤ 10 D). Information on inflow
(e.g., uh, TI) is taken from the LES data. The models are
trained independently of each other and will therefore have
different values for the tuning parameters.

The data used for the tuning include simulations with yaw
and pitch angles. FLORIS adjusts the thrust coefficient nu-
merically for yaw angles, but not for pitch angles. For this
reason, the thrust coefficient lookup table was adjusted by
the ratio CT,pitch/CT,nopitch found in LES (Fig. 2).

4 Results

4.1 Performance on training data

This section displays the performance of the Data-driven
wAke steeRing surrogaTe model (DART) and the benchmark
models when using all 120 simulations for training or tuning.
In Sect. 4.2 and 4.3 a validation of the model with testing data
is shown.

Following the feature selection procedure as de-
scribed in Sect. 3.5, the optimal combination of in-
put parameters of DART-8 was found to be the set
(φ, δα, α−1, ln(zL−1),TI−1, C−1

T ,
√
CQ,TSR−1) and for

DART-3 (φ, δα−1, ln(CT)). Figure 7 compares the perfor-
mance of these versions to that of the benchmark models as a
function of downstream distance. The shaded areas indicate
a significant improvement (green), insignificant difference
(yellow) or significant decline (red) in the DART accuracy
compared to the best-performing benchmark model. Statis-

tical significance is determined using an independent Welch
t test on the absolute percentage error with a probability
value< 0.05. This test assumes a normal distribution but can
deal with unequal variances between data sets. From Fig. 7 it
is clear that both DART-8 and DART-3 consistently provide
significantly more accurate results than GAUS and GCH.
Most striking is the variability in the benchmark models that
is an order of magnitude larger than that of DART. The rea-
son for this is systematically evaluated in Sect. 4.2 and 4.3.
The systematic error, indicated by the median, is however
very similar for all models. Comparing the two benchmark
models, it is clear that GCH consistently estimates a higher
power than GAUS due to the added wake recovery term.
The accuracy of DART-8 is higher than that of DART-3,
especially closer to the turbine. This is attributed to the
stronger wake deficit closer to the turbine as the wake center
deficit Az exhibits a larger range of possible values closer
to the turbine. For instance in the training data at x = 4 D,
the range is −0.6≤ Az ≤−0.21, whereas at x = 10 D the
range is −0.27≤ Az ≤−0.09. Estimations with the same
relative error therefore bear a larger absolute error closer to
the turbine. Having access to more information, DART-8
consistently has a smaller relative error when estimating
Az than DART-3, which has a larger effect on the available
power estimates closer to the turbine.

The order of magnitude of computational costs needed
to train the models on a single node is displayed in Ta-
ble 4. Computational expenses needed to generate the LES
database are not considered. The benchmark models tune
their parameters in approximately 7.5 h (GAUS) and 8.25 h
(GCH). DART’s training procedure is split up in different
stages. The column “Iteration” refers to the regression fitting
to obtain the coefficient matrix B (Sect. 3.3) and the calcu-
lation of the absolute percentage error in available power at
4 D≤ x ≤ 10 D (Sect. 3.5). This can be carried out in sec-
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Figure 7. Performance of all models on training data displayed as percentage error in available power. In black GAUS, in blue GCH, in
green DART-8 and in red DART-3. The boxes on the far right (labeled 4–10) include all simulations and all distances. The shaded areas
indicate a significant improvement (green), insignificant difference (yellow) or significant decline (red) in the accuracy of DART compared
to the benchmark models.

Table 4. Model training (DART) or tuning (GAUS and GCH) time
using all 120 simulations and seven (4 D≤ x ≤ 10 D) downstream
distances. Iteration times are expressed as the mean over the first
100 iterations. DART’s total is a simple multiplication of iteration
and combinations.

Iteration Combinations Total
[s] [–] [h]

GAUS – – 7.5
GCH – – 8.25
DART-8 148 234 375 9635
DART-3 45 900 11.25

onds, in which fewer variables result in faster fitting. The col-
umn “Combinations” indicates the number of possible com-
binations that need to be tested (Sect. 3.5). The total training
time is then simply the number of combinations to be tested
times the execution time of one iteration. Because of its large
number of possible combinations, DART-8’s total training
time would be over a year on a single node, which is not oper-
ationally feasible. To generate the results in Fig. 7, the train-
ing process was heavily parallelized. With 900 possible com-
binations DART-3 can be trained in approximately 11.25 h,
which is only slightly more than the benchmark models. As
mentioned in Sect. 3.5, the training procedure could be en-
hanced, but this was considered outside of the scope of the
current work. Even though Fig. 7 shows a small accuracy
gain of DART-8 over DART-3, the computational costs to
train DART-8 are much larger, and measuring all these vari-
ables in the free field is impractical. For these reasons, it is
decided to only consider DART-3 in the remainder of this
study.

4.2 Performance on testing data

A simple leave-one-out cross-validation technique is used to
discuss the performance of DART compared to the bench-
mark models. The models are trained or tuned with seven out
of the eight BLs (Fig. 1) and tested on the remaining one,
representing a new inflow condition. Eight evaluations can
therefore be performed, i.e., each BL being tested once. Note
that for each evaluation a set of optimal parameters and trans-
formations are determined, which can differ from DART-3 in
Fig. 7. Similarly, GAUS and GCH are tuned again, resulting
in new values for their tuning parameters. Since the models
show similar behavior in relation to the downstream distance
as discussed in Sect. 4.1, here only the collective result over
4 D ≤ x ≤ 10 D is discussed.

Figure 8 presents the results of this validation procedure.
For all BLs, DART-3 shows a significant improvement over
GAUS and GCH. The systematic biases (indicated by the me-
dians) are similar for all models on the order of a few percent,
but the variability is greatly reduced in DART-3. The main
reason for this is that the benchmark models do not include a
pitch angle parameter β. Although the CT tables in the mod-
els are corrected in this study, the tunable parameters do not
account for this. To clarify, LES finds a decreasing wake size
(in both horizontal and vertical extent) with increasing β.
This is accurately captured by DART-3, but GAUS and GCH
produce a wake of similar size independent of β or CT. The
inclusion of this effect is a notable improvement of DART
that is important for control strategies such as axial induction
control (e.g., Corten and Schaak, 2003; van der Hoek et al.,
2019).

Furthermore, BL5 contains the worst results for all mod-
els. Figure 1 indicates that this is an extreme case as it has
the highest Obukhov stability parameter and veer along with
the lowest turbulence intensity. This is problematic for the
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Figure 8. Performance of GAUS (black), GCH (blue) and DART-3 (red) using a leave-one-out cross-validation technique. Performance is
displayed as a percentage error in available power. Each box includes data from 15 main simulations and 4 D≤ x ≤ 10 D. The shaded areas
again indicate a significant improvement (green), insignificant difference (yellow) or significant decline (red) in the accuracy of DART-3
compared to the benchmark models.

models since it is an inflow condition unlike anything it was
trained for. This indicates a limited generalizability of all
models, and caution is needed when applying them under
conditions that differ greatly from those used for training.
This is further discussed in Sect. 5.1.

4.3 Operation without derating

For a fair comparison between DART-3 and the benchmark
models, this section only considers simulations representing
operation without derating the turbine (β = 0◦). The train-
ing (selection of parameters for DART-3) and tuning (tun-
ing parameters of GAUS and GCH) have been repeated, and
the results of the leave-one-out cross-validation technique are
displayed in Fig. 9. The variability in the benchmark models
in (near-)neutral conditions (BL 1, 2, 7 and 8) decreases con-
siderably, but DART-3 still produces significantly more accu-
rate results. In (weakly) stable boundary layers (BLs 3 to 6)
GAUS and GCH still show a large variability and occasion-
ally a large systematic bias, which is not true for DART-3.
These results suggest that DART-3 outperforms the bench-
mark models, especially under stable stratifications, those
conditions where wake steering is deemed most effective.
Furthermore, the model performance is assessed for partial-
wake operation. Figure 10 compares the models when the
downstream turbine is moved 0.5 D to the left (from the up-
stream observer’s point of view). Generally, the variability is
greatly reduced since the deficit is smaller. The benchmark
models display a systematic negative bias in all BLs, which
is not true for DART-3. Only in BL8 does DART-3 not show
a significant improvement over the benchmark models, but
no satisfying explanation has been found as to why exactly
this BL displays this behavior.

A case study is displayed in Fig. 11a that presents the
LES wake in a weakly stable boundary layer (BL3) for a
turbine with φ =+30◦. The wake has a clearly defined curl
and a wake center left of the hub. The DART-3 wind field in
Fig, 11b shows that the wake shape and center position are
well presented. The GAUS model (Fig. 11c), however, pro-
duces a circular wake shape and a larger wake deflection to
the left. The percentage errors indicated in the top of the fig-
ure show that DART-3 has a high accuracy for both virtual
turbines, but GAUS has large biases due to the misplacement
of the wake center. Under stable conditions the wind veer is
relatively high, adding a crosswise force pointing towards to
right above hub height. This force effectively opposes the lat-
eral thrust force component introduced by yaw misalignment
pointing to the left, reducing the deflection of the wake. The
opposite is true for negative yaw angles, where wake deflec-
tion is enhanced by veer. This asymmetry has already been
pointed out in Fleming et al. (2015), Vollmer et al. (2016)
and Sengers et al. (2020). This effect is implicitly included
in DART-3, but not in the benchmark models. Figure 11d il-
lustrates that these models show an ever further deflecting
wake, whereas DART-3 settles at a smaller lateral displace-
ment close to LES. This explains not only the negative bias of
the benchmark models in Fig. 10, but also their larger spread
observed in Fig. 9. This result strengthens the previous indi-
cation that DART-3 is superior under stable stratifications.

5 Discussion

5.1 Generalizability

Although the results presented in Sect. 4 are encouraging and
are believed to show proof of concept, they are not directly
generalizable. A data-driven surrogate model is sensitive to
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Figure 9. Same as Fig. 8, but only for cases with β = 0◦, i.e., without derating the turbine.

Figure 10. Same as Fig. 9, but for partial-wake operation, i.e., with a virtual downstream turbine moved 0.5 D to the left.

the data used for training, and encountering situations that
vary greatly from those used for training can result in large
errors. This includes very dissimilar atmospheric conditions,
as already illustrated by the strongly stable BL5 in Fig. 8, but
extends to other locations (e.g., topography, wind farm lay-
out) and turbine types. Generating a numerical database with
more atmospheric conditions, tailored to each location and
turbine type, is not possible due to the high computational
expense of these high-fidelity models. This limits a large-
scale implementation of data-driven surrogate models trained
with numerical data. Potentially, field measurements could
be used, either in isolation or in combination with numerical
data. Wake data could possibly be obtained from long-range
lidars (Brugger et al., 2020) or strain measurements from the
turbine’s blades (Bottasso et al., 2018). Exploration of these
possibilities is deemed an important task for future research.

In this exploratory study, the development of DART was
limited to the far wake and a two-turbine setup. If desired,
further development of the model is needed to include the
near wake, which can for instance be done by including the

super-Gaussian description (e.g., Shapiro et al., 2019; Blon-
del and Cathelain, 2020). An extension to wind farm level
could be achieved by for instance applying the superposition
principle as done in GAUS and GCH, although the accuracy
of DART under disturbed inflow needs attention.

5.2 Interpretability

As mentioned in Sect. 1, analytical models such as GAUS
and GCH are presumed to be more robust than purely data-
driven models. However, when properly trained, the accu-
racy of DART is expected to be significantly higher than that
of analytical models as it is specifically tailored to certain
scenarios. This can easily be understood by looking at the
number of fitted or tuned parameters. Since DART includes
second-order polynomial and interaction terms, adding more
input variables exponentially increases the size of coefficient
matrix B (Eq. 1). This means that for DART-3, having only
3 input variables, B contains 10 coefficients, but with 8 in-
put variables DART-8’s B already contains 45 coefficients.
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Figure 11. Case study of a turbine in a weakly stable boundary layer (BL3, φ =+30◦, β = 0◦). Cross-section of normalized wake deficit
(contours) of the LES (a), DART-3 (b) and GAUS (c) at x = 6 D downstream. (d) Wake center trajectory at 4 D≤ x ≤ 10 D.

Figure 12. Regression coefficients of DART-3 estimating µy at
x = 6 D using scaled input parameters. Since all input parameters
are dimensionless, the corresponding coefficients are also dimen-
sionless. Variable y0 indicates the intercept or systematic offset.

When comparing this to the four tuning parameters of the
benchmark models, one can understand why the latter are
more robust but also are expected to have a lower maximum
achievable accuracy.

To demonstrate DART’s interpretability, Fig. 12 illustrates
DART-3’s fitted regression coefficients for all 10 input pa-
rameters for µy at x = 6 D. Since the order of magnitude of
the input parameters can vary greatly, for this example the
input parameters were scaled between −1 and 1 before re-
gression fitting. Consequently, the fitted coefficients indicate
how important each input parameter is in estimating the out-
put variable. For the lateral wake center displacement it can
easily be seen that φ is the dominant parameter, which intu-
itively makes sense. Other important parameters are the inter-
action term φ·ln(CT) (turbine variable cluster), y0 (intercept),
δα−1 and δα−2 (atmospheric inflow cluster), while other pa-
rameters only slightly affect the wake center displacement.

Alternative to the interpretable lasso model, more complex
black-box models (e.g., neural networks) could be consid-
ered as they are expected to have a higher accuracy when
abundant data are available. Simpler models are, however,
always preferred because they are less prone to overfitting,
which is especially true for small sample sizes as used in this

Table 5. Model run time [ms] when simulating seven (4 D≤
x ≤ 10 D) and one (x = 6 D) downstream distances expressed as
mean ± standard deviation over 40 iterations.

x [D] 4–10 6

GAUS 58± 2 19± 1
GCH 88± 2 32± 1
DART-3 81± 4 13± 3

study. In addition, a model’s interpretability typically dimin-
ishes with increasing complexity.

5.3 Speed test

A simple evaluation of computational costs has been carried
out to ensure that DART is sufficiently computationally ef-
ficient. The speed test comprises producing cross-sections
downstream of the turbine and therefore excludes the com-
putational resources needed to generate the LES data and to
train or tune the models. This test was executed on a lap-
top running Ubuntu 20.04.1 with eight 1.80 GHz Intel i7-
8550U CPU’s and 8 GB RAM, having a minimum number
of processes running in the background. All files containing
relevant information, such as inflow variables, were stored
locally at the same location. Run times are given as an av-
erage and standard deviation over 40 iterations, representing
all simulations with β = 0◦, such that no adjustment of the
benchmark’s thrust coefficient lookup table is needed. Ta-
ble 5 shows that when producing results for the whole re-
gion considered in this study (4 D≤ x ≤ 10 D), the run time
of DART is comparable to GCH and slightly higher than
GAUS. When simulating only one downstream distance, for
instance exactly where a turbine is located, DART performs
similarly to GAUS. These results suggest that DART is quick
enough to be used for controlling purposes.
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6 Conclusions

This study explores the potential of a Data-driven wAke
steeRing surrogaTe model (DART) that retains a high degree
of physical interpretation. After training with large-eddy-
simulation data, a model consisting of only linear equations
is able to accurately describe the far wake in terms of trajec-
tory, curl and available power. As input parameters, it uses
measurable inflow and turbine variables that are commonly
studied in the literature. The highest accuracy is obtained
when including all available input variables, but the model’s
training time becomes very large. When using only three
measurable input variables, the surrogate model displays a
slight accuracy loss, but the training time is greatly reduced.
In a benchmark against the Gaussian and Gaussian-Curl Hy-
brid models, the data-driven model with three input variables
typically shows a significantly higher accuracy. In particu-
lar it performs better under derated operating conditions and
stable atmospheric stratifications since it implicitly includes
the effect of turbine derating on wake size, as well as the ef-
fect of veer on the wake center position. These results are not
directly generalizable to all atmospheric conditions, other lo-
cations or new turbine types, which presents a challenge for
a large-scale implementation of data-driven surrogate mod-
els. The results shown in this study are, however, believed
to show proof of concept for physically interpretable data-
driven surrogate models for wake steering purposes.

Appendix A: Multi-task lasso algorithm

The original lasso implementation from Tibshirani (1996)
seeks to find the coefficients B based on

argmin
B

∑
n

(yn−
∑
p

xnpBp)2
+ λ

∑
p

|Bp|, (A1)

in which n is the sample size and p the input parameter. It
uses the regularization parameter λ, leading to sparse coef-
ficients for the coefficient vector B. The multi-task setting
from Obozinski et al. (2006) extends the lasso regression
to estimate d (distance downstream) outputs simultaneously,
penalizing the blocks of coefficients over the tasks. The loss
function is therefore extended and finds the coefficient matrix
B based on

argmin
B

∑
d

∑
n

(ynd−
∑
p

xnpBpd )2
+λ

∑
p

√∑
d

(Bpd )2. (A2)

In contrast to Eq. (A1), the multi-task lasso implementation
penalizes not only the single coefficients, but also the blocks
of coefficients over all tasks represented by the Euclidean
norm. Note that if d = 1, Eq. (A2) reduces to the standard
lasso estimate of Eq. (A1).

An exemplary result is illustrated in Fig. A1. Whereas the
original lasso model selects a new set of variables for each
distance, the multi-task lasso always takes the same set. This

Figure A1. Non-zero elements (black) of B for the output variable
µy in DART-3 for the original lasso (a) and multi-task lasso (b).

makes physically more sense and leads to fewer variables in
total, therefore reducing the risk of overfitting. The model is
optimized using the cyclical descent algorithm implemented
in Pedregosa et al. (2011).

Code availability. The Data-driven wAke steeRing surro-
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