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Abstract. The formulation of parametric online rainflow counting implements the standard fatigue estimation
process and a stress history in the cost function of a model predictive controller. The formulation is tested in
realistic simulation scenarios in which the states are estimated by a moving horizon estimator and the wind is
predicted by a lidar simulator. The tuning procedure for the controller toolchain is carefully explained. In com-
parison to a conventional model predictive controller (MPC) in a turbulent wind setting, the novel formulation
is especially superior with low lidar quality, benefits more from the availability of wind prediction, and exhibits
a more robust performance with shorter prediction horizons. A simulation excerpt with the novel formulation
provides deeper insight into the update of the stress history and the fatigue cost parameters. Finally, in a deter-
ministic gust setting, both the conventional and the novel MPC – despite their completely different fatigue costs
– exhibit similar pitch behavior and tower oscillations.

1 Introduction

Fatigue is damage of a material caused by cyclic applica-
tion of mechanical stress. For wind turbines, fatigue has a
large impact on lifetime, for example, of tower, blades, and
drivetrain and is a main design driver. Model predictive con-
trollers (MPCs) enable optimal control of turbines by utiliz-
ing predictions of the incoming wind by a light detection and
ranging (lidar) device (Bottasso et al., 2014; Schlipf et al.,
2013). Based on these input predictions, stress time series at
crucial spots in the turbine structure can be predicted. Rain-
flow counting (RFC) is the standard method for the decom-
position of stress time series for fatigue estimation. Until re-
cently, RFC could not be implemented in MPCs (Barradas-
Berglind and Wisniewski, 2016) and could only be used for
post-processing of measured and simulated data. In Loew
et al. (2020a), an MPC formulation was presented that exter-
nalizes the RFC evaluation and includes its results back into
the MPC via time-varying parameters. Therefore, this for-
mulation is referred to as “parametric online rainflow count-
ing” (PORFC). PORFC allows for the direct and rigorous

incorporation of fatigue in the cost function or constraints of
MPCs.

In PORFC, fatigue is calculated based on stress informa-
tion from the prediction horizon of the MPC, which is in the
order of a few seconds. However, fatigue is a long-term effect
in which stress cycles are usually defined on much longer
time spans. Therefore, in Loew et al. (2020b) PORFC was
combined with a systematic incorporation of historic stress
samples (“residue”). In the same work, this formulation was
simulated in an idealized setting in which only a few degrees
of freedom (DOF) in the plant turbine model were activated
and in which full information about the incoming wind and
the turbine states was assumed.

The main goal of the present work is to thoroughly assess
the formulation in a more realistic simulation scenario. Par-
ticularly, a mismatch is introduced between the MPC-internal
and the plant models, a moving horizon estimator provides
initial state estimates for the MPC, and a lidar simulator is
utilized to generate a realistically imperfect wind estimate.
The assessment is performed in several turbulent as well as
deterministic gust scenarios.
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This paper is organized as follows. In Sect. 2, the phe-
nomenon of fatigue and cycle identification are reviewed.
This analysis is the basis for an application-focused descrip-
tion of PORFC in Sect. 3. In Sect. 4, a moving horizon
estimator is formulated. In Sect. 5, the controller toolchain
and the tuning of each of its elements are presented. Finally,
PORFC is compared to a conventional MPC and to a conven-
tional proportional integral derivative (PID) controller in the
above-mentioned simulation scenarios.

2 Review of fatigue estimation

In the following, fatigue is defined, cycle identification is ex-
plained, and the concept of residue is presented.

2.1 Definition of fatigue

In the following, the phenomenon of fatigue is defined for
conditions and assumptions that apply to the wind energy do-
main: namely mechanical fatigue, normal ambient tempera-
tures, neglection of irreversible strain effects, and invariance
with respect to time. In this setting, fatigue is damage of a
material caused by cyclic application of mechanical stress.
Without loss of information, the fatigue impact of a given
stress-trajectory can be analyzed solely based on its extrema
or “reversals”. This implies that the shape and contained
frequencies of the original continuous stress trajectory are
considered to be irrelevant for fatigue estimation (Barradas-
Berglind et al., 2015). Therefore, the fatigue impact of a re-
versal sequence is fully determined by its contained individ-
ual stress cycles. Each stress cycle can be represented by
a cosine function. A stress trajectory typically contains full
cycles, which are cosines of a full period, and half cycles,
which are cosines of only a half period. Half cycles therefore
represent either a rising or falling transient. Instead of stor-
ing three (full cycle) or two (half cycle) stress samples, it is
common to store two stress samples and a weight, which is
valued wc = 1 (full cycle) or wc = 0.5 (half cycle). The two
stress samples can be the cycle stress maximum and mini-
mum or the stress amplitude σa, c and mean σm, c. Instead of
stress amplitude, stress range σr, c = 2σa, c is frequently used
as well.

Typically, fatigue impact of a stress cycle mainly corre-
lates with its stress amplitude: a positive stress mean in-
creases whereas a negative stress mean decreases fatigue im-
pact. Quantitatively, this mean stress effect is expressed by
the Goodman equation (Haibach, 2006) (p. 184), which leads
to the equivalent stress σeq, c. Consequently, equivalent stress
is used to calculate the number of cycles to failure,

Nc = f
−1
SN (σeq, c), (1)

via the inverse S–N or “Woehler” curve, which typically has
a piecewise definition over the stress axis. Fatigue damage of

a given stress cycle,

Dfatigue, c = 1/Nc, (2)

is obtained by the reciprocal of the number of cycles to fail-
ure. Total damage of the given stress trajectory is obtained
by linear accumulation Dfatigue =

∑
cDfatigue, c of damages

of individual stress cycles according to the Miner–Palmgren
rule (Miner, 1945).

2.2 Cycle identification via the rainflow algorithm

Cycle identification is straightforward if, for example, a sim-
ple sinusoid is analyzed. There, amplitudes, mean values, and
number of cycles are obvious. However, realistic stress tra-
jectories usually are highly complex and contain stress cycles
that can be nested (“nested cycles”). Additionally, half and
full cycles can be present, as stated above. The most widely
accepted algorithm for cycle identification from complex tra-
jectories is the rainflow(-counting) algorithm (RFC) (ASTM
International, 1985). A flowchart of the rainflow algorithm is
displayed in Fig. 1.

At the beginning of the algorithm, RFC receives as in-
put a stress trajectory and extracts its reversals (extrema).
Throughout the algorithm, reversals are read consecutively
from left to right. Each new reversal is stored in an op-
erational memory. From this memory, cycles are identified
based on a triplet of reversals. The Rainflow algorithm con-
tains four main loops. Loop 1 initiates the reading of a new
reversal sample if fewer than three reversals are in the op-
erational memory. Loop 2 initiates the reading of a new re-
versal if, based on the current operational memory, no cycle
could be identified. Loop 3 and Loop 4 initiate the subsequent
check for a cycle in the current operational memory and are
triggered after identification of a half or full cycle, respec-
tively. A more comprehensive explanation of the algorithm
can be found in The MathWorks Inc. (2018).

As shown above, the Rainflow algorithm contains algo-
rithmic branches and loops. Thus, a crucial property of the
Rainflow algorithm is its discontinuous output behavior. Fur-
thermore, the number Nc of identified cycles is not known
before execution but bounded by the number of extrema.

The characteristics of the identified cycles that are output
by RFC for each cycle c are stress range σr, c [Pa], stress
mean σm, c [Pa], sample index of cycle start kstart, c [–], sam-
ple index of cycle end kend, c [–], and cycle weight wc [–]. In
the present work, these characteristics will be used in a con-
verted form of stress amplitude σa, c [Pa], stress mean σm, c
[Pa], sample index of cycle maximum kmax, c [–], sample in-
dex of cycle minimum kmin, c [–], and cycle weight wc [–].

2.3 Batchwise cycle identification and residue

As shown in Loew et al. (2020b), wind turbine stress tra-
jectories can contain long-term cycles. Thus, the Rainflow
analysis has to be carried out over the entire length of an
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Figure 1. Flowchart of the MATLAB implementation rainflow() of the three-point algorithm (simplified from The MathWorks Inc.,
2018). Stress extrema are called “reversals”. The range r(X)= |X(2)−X(1)| of a stress value pair X is the absolute value of the difference
between both stresses.

available stress trajectory. For offline purposes, this mode is
perfectly adequate. However, for online monitoring and con-
trol, a complete Rainflow analysis for each newly measured
stress sample is computationally infeasible. As a solution,
Heinrich et al. (2019) showed that Rainflow analysis can be
performed batchwise if a so-called “residue” is used for car-
rying along the half-cycle stress samples. Residue, therefore,
denotes a set of stress samples that occurred in the past and
have not formed full cycles as yet.

Depending on the stress signal, a high number of sam-
ples can be accumulated in the residue. The maximum pos-
sible length of the residue vector results from diverging and
converging stress time series because they generate a large

number of half cycles (Köhler et al., 2012). However, long-
term diverging series are unrealistic because unstable ma-
chine behavior typically is counteracted by the controller or
an emergency shutdown. Long-term converging series are ir-
relevant since very low-amplitude cycles can be discarded
without significant errors in fatigue estimation. To conclude,
the length of the residue vector is finite and remained well
below 100 in practical tests (Loew and Obradovic, 2020).
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3 Fatigue in model predictive control of wind
turbines

Wind turbine fatigue is usually implemented in MPC within
the cost function. Common cost types in MPC are stage cost
and terminal cost. Stage costs comprise a summation of state
samples or a time integral of state trajectories over the pre-
diction horizon and are preferred for the present application.
Terminal costs are defined as a function of the sole state sam-
ples at the end of the prediction horizon (Grüne and Pannek,
2017). Alternatively, fatigue can also be used as a constraint,
for example, to express a desired lifetime goal.

3.1 Indirect fatigue metrics in MPC

Several approaches reported in the literature involve indirect
fatigue metrics (Barradas-Berglind and Wisniewski, 2016;
Gros and Schild, 2017; Evans et al., 2015). However, indi-
rect fatigue metrics have two main disadvantages:

– Instead of actual damage, only a damage-related value
is obtained and optimized.

– Indirect fatigue terms have different units from har-
vested energy. Thus, weighting both terms in the cost
function is not straightforward.

When considering tower fatigue, the most common approach
involves the quadratic penalization of tower tip deflection
rate ḋT. This also can be interpreted as a penalization of ki-
netic energy of the lumped tower massmT, averaged over the
prediction horizon Thoriz. In the present work, therefore, the
stage cost,

Jfatigue,TTVP =

tend∫
t0

1
2ThorizPg,max

mTḋ
2
Tdt, (3)

is used for comparison and referred to as “tower tip velocity
penalization” (TTVP). An additional division by rated power
Pg,max is used for scaling the cost, which is beneficial for
optimization.

3.2 Direct fatigue metrics in MPC

In contrast to indirect fatigue metrics, direct fatigue metrics
return actual damage. As shown in Sect. 2, direct fatigue es-
timation involves the Rainflow algorithm. Implementation of
RFC within a gradient-based optimization seemed impossi-
ble until now due to the following obstacles:

– RFC is a function of all stress samples. Therefore, the
concept of neither stage nor terminal cost applies.

– RFC contains branches. Therefore, it exhibits discontin-
uous outputs and is not continuously differentiable.

– RFC contains “while” loops, which lead to a changing
function execution structure depending on the stress in-
put.

Thus, in all known references, the Rainflow algorithm is
approximated to some extent. In Sanchez et al. (2015), a ver-
sion of simple range counting is applied, which is standard-
ized in ASTM International (1985). In Barradas-Berglind
et al. (2015), hysteresis operators are used to adapt param-
eters of a cost function in MPC. This cost function penalizes
deflection rates, comparable to TTVP. In Luna et al. (2020),
damage estimation including standard RFC is performed on
a large number of stress time series, which are used to train
a surrogate artificial neural network (ANN). The latter seems
to be very promising in terms of correct damage estimation.
However, the approach involves a high a priori effort in set-
ting up the ANN, as well as a significantly increased compu-
tational load in the MPC (Luna et al., 2020).

Stress history is not included in any of these approaches. In
Barradas-Berglind et al. (2015), the hysteresis operators only
have memory of damage evolution. Similarly, in Luna et al.
(2020), only the previous fatigue rate output of the ANN is
memorized until the next evaluation.

3.3 Parametric online rainflow counting - concept

The above-mentioned obstacles for a direct implementation
of RFC in MPC are overcome by the method of parametric
online rainflow counting (PORFC). In PORFC, all discon-
tinuous parts of the fatigue estimation procedure are carried
out before each execution of the MPC algorithm, as shown
in Fig. 2. Additionally, the stress history is incorporated via
a residue, which is inspired by the batchwise cycle identifi-
cation in Sect. 2.3. The algorithmic workflow is as follows.

– Simulation. The reduced wind turbine model is simu-
lated over the prediction horizon using the current mea-
sured states as initial values to produce a stress predic-
tion, as visualized in Fig. 3b.

– Merge. The residue (see Fig. 3a) is merged with the
stress prediction.

– Rainflow. The rainflow algorithm is used to identify
stress cycles over this merged trajectory. Consequently,
it is assumed that the structure of identified cycles
does not change within the next optimization. The term
“structure” denotes here positions (kmin, c, kmax, c) and
weights (wc) of cycles. As shown in Fig. 3b, this as-
sumption implies that the controllable extrema in the
prediction horizon only can be shifted vertically (i.e.,
in the values but not in their positions) by the optimiza-
tion.

– Residue update. Stress cycles can be composed by stress
samples only from residue or prediction or by a combi-
nation of both (“mixed cycle”). However, only the sam-
ples within the prediction horizon can be controlled by
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Figure 2. Externalization of fatigue estimation (Rainflow algo-
rithm) from the MPC.

the optimization. Particularly the measured initial value
at prediction step 0 cannot be controlled and, therefore,
is added to the residue. If a full cycle is detected en-
tirely within the residue, both contributing values are
discarded from the residue. The reason for this is that
also in the future they will never again form a cycle with
a sample from the prediction and, therefore, are irrele-
vant for the MPC.

– Time-varying parameters. Information from cycle iden-
tification is used to fill vectors of time-varying param-
eters, which are forwarded to the cost function of the
MPC. Details on this step are provided in Sect. 3.4.

– Optimization/MPC. In the cost function of the MPC, the
parameters are used to time-continuously calculate fa-
tigue cost over the horizon and accumulate it via inte-
gration. Finally, the optimization problem is solved, and
the resulting control variables are applied to the wind
turbine plant.

3.4 Parametric online rainflow counting – time-varying
parameters and cost function

3.4.1 Distribution of damage over time

Since information from cycle identification is forwarded to
the MPC via parameters, which are varying over the predic-
tion horizon, the total fatigue damage has to be distributed
over the prediction horizon, as visualized in Fig. 4b. There-
fore, the damage of each stress cycle is split into two halves,
which are allocated to the two contributing stress samples.
For example, cycle 4 is formed by samples k = 4 and k =
8. Their fatigue cost terms therefore are allocated to these
samples, as shown by the blocks in Fig. 4b. This example
also shows an important property of the Rainflow algorithm,
which identifies cycle 4 even though it is interrupted by the
nested cycle 2, as shown in Fig. 4a. If, for a given stress sam-
ple, the complementary stress sample is not controllable (i.e.,
lies in the residue), all damage is allocated to the given sam-
ple. Here, this is the case for cycles 1 and 3, in which all
damage is allocated to sample k = 2 and k = 4, respectively.

3.4.2 Setup of the time-varying parameters

Figure 4a visualizes the generation of the time-varying pa-
rameters. Since each stress extremum belongs to one or two
stress cycles (Shi et al., 2018), one or two stress references

are set per extremum. These stress references are considered
as optimization or tracking references for the current MPC
step. If both stress samples of a cycle lie in the prediction,
mean stresses (M2, M4) become the stress references. If the
complementary stress sample of a cycle lies in the uncon-
trollable residue (“mixed cycle”), this complementary stress
value (C1, C3) becomes the stress reference for the consid-
ered sample in the controllable prediction. However, in many
cases, a mixed cycle is crossing the level of the initial stress
σ (t0). In this case, the best possible tracking reference is this
initial stress value itself (R1, R3) since zero oscillation in
the prediction corresponds to zero fatigue cost. A more de-
tailed derivation and explanation can be found in Loew et al.
(2020a).

3.4.3 Cost function

The fatigue cost function is defined by an integral over two
cost terms, each one representing one potential cycle contri-
bution of a stress sample, i.e.,

Jfatigue,PORFC (σ,p)=

1
Tcntrl

tend∫
t0

(
Jfatigue, c(σ (t), σ̂ ref, c1(t), ŵc1(t))+

Jfatigue, c(σ (t), σ̂ ref, c2(t), ŵc2(t))
)

dt [EUR]. (4)

The notation ˆ(·) means fixed for one MPC step, while (·)
means sampled on the control intervals of the prediction
horizon. The cost terms are “switched on” by nonzero cy-
cle weights ŵc1/2(t). Reference stresses σ̂ ref, c1/2(t) and cy-
cle weights ŵc1/2(t) are collected in the parameter vector,

p =
(
σ̂ ref, c1, σ̂ ref, c2, ŵc1, ŵc2

)
, (5)

which is defined as piecewise constant over the control inter-
vals of the prediction horizon. The cost of individual cycles
is defined by

Jfatigue, c = ŵc1/2(t) am |σ (t)− σ̂ ref, c1/2(t)|m, (6)

where the fatigue coefficient am and the fatigue exponent m
are derived from the damage curve of Eq. (2).

3.5 Optimization problem for TTVP and PORFC

The rigorous inclusion of fatigue into an MPC formulation
described up to now is completely general and can be used
to formulate different cost functions. The same formulation
can be readily adjusted to include fatigue damage as an MPC
constraint.

https://doi.org/10.5194/wes-7-1605-2022 Wind Energ. Sci., 7, 1605–1625, 2022
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Figure 3. Stress residue from the past (a). Stress prediction into the future (b).

Figure 4. Stress trajectory (blue), its initial value at t0 (grey circle), its extrema (colored dots), sequence of samples that form a cycle (dash-
dotted), generated time-varying reference stresses (solid purple, red, green, yellow), and optimization goals (dotted arrows) for PORFC (a).
Corresponding distribution of damage over the prediction horizon (b). Both figures are modified from Anand (2020).

To exemplify the use of PORFC in a practical case, here
the following economic optimization problem is considered:

min
u,s

(
−αrevenueJrevenue+αfatigueJfatigue+

tend∫
t0

(
10−1β̇2

b + 10−2Ṫ 2
g + 107 s2

ω+ 107 s2
P
)
dt
)
. (7)

The problem seeks the maximization of the revenue Jrevenue
and the minimization of the fatigue Jfatigue, which is repre-
sented by Eq. (3) for TTVP and Eq. (4) for PORFC. The
constants αrevenue and αfatigue are weighting factors. Instead
of generated electrical energy, harvested aerodynamic energy
Jrevenue is maximized to avoid a greedy extraction of rotor ki-
netic energy by the MPC (“turnpike effect”), as suggested by
Gros and Schild (2017). Furthermore, pitch rate β̇b, torque
rate Ṫg, and slack variables for rotational speed sω and gen-
erator power sP are penalized (see their use in the constraints
below). The optimization variables are the demanded pitch
angle and torque rate u= (βb, d, Ṫ g, d), as well as the slack
variables s = (sω,sP). For both TTVP and PORFC, revenue
is weighted by the current electricity price αrevenue = pelec
[EUR W−1 s−1] to match the monetary nature of Eq. (4). The

fatigue weight αfatigue remains free and will be determined
later in this work.

It should be noted that the balance of revenue and tower fa-
tigue, despite being common in wind turbine MPC research
(Gros, 2013; Evans et al., 2015; Luna et al., 2020), does not
fully reflect the true economic goals of wind turbine oper-
ators, nor does it capture the complex interrelations among
power capture, damage to the various turbine components,
and its effects on operation and maintenance costs, on life-
time, on actuator duty cycle, and others. Therefore, the nov-
elty of the present contribution is on how fatigue is treated in
a modern control framework and not on the specific formu-
lation of the cost function. A more realistic industrial appli-
cation should embed damage into a more complex business-
oriented scenario-dependent cost function or constraint. This
aspect of the problem is extremely relevant and very inter-
esting, but it is considered as out of the scope of the present
work.

The optimization problem is subject to

– the system dynamics of a reduced turbine model ẋ =
F (x(t),u(t),d(t)), whose six states

x(t)= (ωr(t),dT(t), ḋT(t),βb(t), β̇b(t),Tg(t))T (8)

Wind Energ. Sci., 7, 1605–1625, 2022 https://doi.org/10.5194/wes-7-1605-2022
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are rotational speed of the rotor noted ωr, tower tip de-
flection dT, tower tip velocity ḋT, pitch angle βb, pitch
rate β̇b, and generator torque Tg; more details about the
model are given in Löw and Obradovic (2018);

– inequality constraints over the horizon to keep rota-
tional speed, tower deflection (yield strength), pitch an-
gle, pitch rate, generator torque, and generator power
within their limits (in order to maintain feasibility of the
optimization despite model uncertainties and temporary
constraint violations, the constraints on rotational speed
and generator power are augmented by slack variables,
as suggested by Gros, 2013);

– box constraints on control and slack variables.

4 Moving horizon estimator

The MPC-internal system model only comprises the six
states defined by Eq. (8), while the plant model in
OpenFAST (including the actuators but excluding the yaw
mechanism) comprises 33 states (eight tower states, six states
for each of the three blades, two states for drive-shaft tor-
sion, two states for rotor rotation, two states for the collective
blade pitch actuation, one state for the generator torque actu-
ation) (Jonkman et al., 2009). Thus, the MPC-internal model
is only a reduced representation of the plant model. Further-
more, both the tower deflection and velocity of the MPC-
internal model cannot be measured directly on a real turbine.
Only rotor speed, tower tip fore–aft acceleration d̈T(t), and
the actuator states can be measured by onboard sensors. Con-
sequently, a state estimator is required to provide initial value
estimates for the MPC-internal model based on the available
measurements from the plant and the lidar system.

Kalman filters are widely used for the estimation of struc-
tural wind turbine states (Bottasso and Croce, 2009; Ritter,
2020). However, they have some disadvantages compared to
the more sophisticated moving horizon estimators (MHEs).
First, Kalman filters are minimum-variance state estimators
for linear dynamic systems with Gaussian noise; although
assumptions on linearity and Gaussian noise behavior can
be relaxed, MHEs are formulated as more general nonlin-
ear optimization problems over a time horizon, which repre-
sent a natural complement to the similarly general nonlinear
optimization-based formulations behind MPCs. Second, the
inclusion of constraints in state estimation problems can be
important to prevent non-physical results. The inclusion of
state constraints is possible in Kalman filters, but not straight-
forward, and nonlinear constraints lead to loss of optimality
of the filter and may generate different results, depending on
the formulation (Simon, 2010). In contrast, state constraints
can be explicitly and readily set in an MHE (Rawlings et al.,
2017). Although state constraints are not employed in the es-
timator used in the present work, this feature may become
relevant in future research. Third, Kalman filters are one-step

recursive estimation methods and thus have to start opera-
tion with only one measurement time sample. In the case of
large initial state errors, this can lead to inaccurate estimation
and possibly to the divergence of the filter (Rawlings et al.,
2017). MHEs are less vulnerable to this danger since, right
from the start, they take into account an estimation horizon
comprising numerous measurement samples. An advantage
of the recursive nature of Kalman filters is their significantly
lower computational effort compared to MHEs. However, in
the present context, the computational effort of an MHE is
low enough if suboptimal optimization methods such as the
“real-time iteration” (Gros et al., 2013) are utilized. Because
of these advantages of MHEs over Kalman filters, the former
are chosen for the present work.

4.1 Formulation of the MHE

The cost function of the MHE,

min
v

t0∫
t0−Thoriz, est

(
‖yest(t)− ymeas(t)‖

2
Wmeas
+

‖xest(t)− xest, prev(t)‖2W prev
+‖v(t)‖2W v

)
dt, (9a)

penalizes differences in the current estimates from the mea-
surements, differences in the current estimates from the pre-
vious estimates, and noise v(t) (Huang et al., 2010; Gros
et al., 2013). The term xest, prev(t) indicates the state trajecto-
ries that were estimated at the previous MHE execution, as-
sumed as piece-wise constant and shifted backward in time
by one time step. This second term of the cost function pe-
nalizes deviations over the course of consecutive MHE steps
and has been added to obtain a smoother estimation output.
The noise term v is also assumed to be piece-wise constant.
Within the vectors of estimated

yest =

(
xest(t)
d̈T,est(t)

)
(9b)

and measured variables

ymeas =

(
xmeas(t)
d̈T,meas(t)

)
, (9c)

the states x are defined as in the reduced system given by
Eq. 8. The estimated tower acceleration d̈T, est(t) is obtained
by the nonlinear output equation

d̈T, est(t)=
1
mT

(
FT(t)− cTḋT, est(t)− kTdT, est(t)

)
, (9d)

with lumped tower mass mT, damping cT, and stiffness kT.
The diagonal weighting matricesWmeas,W prev, andW v will
be tuned in Sect. 5.2.4.

The optimization problem is only subject to the system
dynamics,

ẋest = F (xest(t),dest(t))+ v(t), (9e)
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with the additive optimization variable represented by the
process noise v(t) (Huang et al., 2010). The external input

dest(t)= (Vw(t),βb,d(t), Ṫg, d(t))T (9f)

comprises the lidar-estimated wind speed Vw, as well as the
pitch angle βb,d and torque rate demands Ṫg, d, which have
been set by the MPC and thus are fixed for the present MHE
step. Notably, there is no equality constraint for the initial
states xest(t0− Thoriz, est), which thus are freely varied by the
optimization algorithm.

After the execution of the MHE, the terminal states at the
end of the MHE estimation horizon become the initial states
at the beginning of the MPC prediction horizon:

x(t0)= xest(t0). (10)

In the present controller setup, the optimized noise v(t) of the
MHE is not utilized in the MPC, and its role is limited to the
improvement of the quality of the estimates by taking into
account process noise (which, in this context, also includes
model errors).

4.2 Initialization of the MHE

The MHE requires information about the measurements over
its entire estimation horizon. Therefore, the past measure-
ments ymeas are buffered.

As mentioned above, the tower deflection and velocity
are not measured. However, the MHE optimization bene-
fits from meaningful measurement values as tracking refer-
ence. Therefore, a static wind-to-tower deflection mapping
is interpolated over the lidar wind estimate in order to gen-
erate a proxy tower deflection trajectory dT,meas. Tower ve-
locity ḋT,meas is obtained by the numerical time derivative of
the deflection trajectory. These quantities are termed “lidar-
based references” in the remainder of this work.

5 Simulation setup, tuning, and results

In the following, the simulation setup is presented, each ele-
ment of the controller toolchain is tuned, and the simulation
results are discussed.

5.1 Simulation setup

5.1.1 Plant model

Various controller formulations are tested with the National
Renewable Energy Laboratory (NREL) 5 MW onshore ref-
erence turbine (Jonkman et al., 2009) in the aeroelastic sim-
ulator OpenFAST. This turbine has a hub height of 110 m
and a rotor diameter D = 126 m. All mechanical degrees of
freedom (DOF) are activated.

Figure 5. Rayleigh probability density function for a mean wind
speed of Vw,mean = 7 m s−1.

5.1.2 Wind model

All turbulent results in this work are mean values of 12 simu-
lations (each with a different seed) of 600 s length in DLC 1.2
with category A turbulence. For the chosen turbine with a
hub height of 110 m and coastal onshore setting, a mean an-
nual wind speed of Vw,mean = 7 m s−1 can be assumed (Hau,
2017). Thus, in the turbulent simulations the probability of
wind speed is assumed to follow the Rayleigh distribution

p(Vw)=
π

2

(
Vw

V 2
w,mean

)
exp

[
−
π

4

(
Vw

Vw,mean

)2
]
, (11)

as shown in Fig. 5. The Rayleigh distribution is a variant
of the Weibull distribution with the simplification of having
only a single parameter (Manwell et al., 2002).

5.1.3 Lidar simulator

The model of a pulsed lidar with four beams is employed.
The model is implemented in the lidar simulator from
sowento GmbH, which generates lidar wind estimates of-
fline, and thus independently from the wind turbine simu-
lation suite (Raach and Schlipf, 2018). Considered physical
effects are the limitation to line-of-sight wind speeds, spa-
tial averaging via a Gaussian range weighting function, dis-
crete scanning, and “unfrozen” wind evolution. Particularly
the wind evolution can be parameterized by an exponential
decay constant; here, a higher value results in higher varia-
tion in the wind during its convection towards the rotor. Fi-
nally, the spatially distributed measurements are converted to
rotor-effective wind speed by wind field reconstruction.

5.1.4 MHE and MPC framework

The MHE and MPC are implemented in the state-of-the-art
acados framework (Verschueren et al., 2021), using the
interior-point solver HPIPM for the underlying quadratic pro-
grams (QPs).

5.1.5 Controller variants

In the following, the performance of five MPC formulations
and the baseline conventional controller (CC) from NREL
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(Jonkman et al., 2009) are compared. The MPCs involve the
conventional formulation of TTVP (see Sect. 3.1) and the
novel formulation of PORFC (see Sect. 3.3). For PORFC,
a fatigue exponent of m= 2 (see Eq. 6) is utilized that, re-
sulting in quadratic cost functions, is particularly suited for
quadratic programming. This case is assessed in combina-
tion with (named PORFC-2R) and without (named PORFC-
2) the use of residue. Additionally, a fatigue exponent of
m= 5 is also tested (named PORFC-5) because this value
is present at low stress amplitudes in the actual S–N curve of
the tower material. However, this parameterization in com-
bination with residue (which would be named PORFC-5R)
has not led to satisfactory results and thus is not considered
further.

5.1.6 Performance indicators

Considered performance indicators are revenue (analogous
to energy), fatigue cost derived from damage at tower base
(based on tower capital expenditures (CAPEX) and a real-
istic piecewise S–N curve), a simplified definition of profit
(revenue minus fatigue cost), pitch travel, and torque travel.
It should be noted that these definitions of fatigue cost and
profit have various limitations:

– A change in tower damage can have further implica-
tions, e.g., on maintenance costs, which are not consid-
ered here.

– Changes in the pitch and torque utilization affect fatigue
on other components, such as the blades and drivetrain,
an effect that is not considered here.

– The computation of the actual profit of the operator is
potentially much more complex and scenario-dependent
than the simple model considered here.

However, the focus of the present work is on the demonstra-
tion of the rigorous inclusion of fatigue in an MPC frame-
work rather than the solution of a realistic business case.
Therefore, the results shown here should not be interpreted
as being capable of providing business-critical decision sup-
port.

Another important remark is that the standard baseline CC
is based on a controller design whose major objective has
been neither the reduction of fatigue nor the maximization
of a profit metric. Therefore, benefits of the MPCs with re-
spect to the CC in regard of these metrics are to be expected
and should not be considered as key findings of the present
work. This CC is utilized here because it has been used for
similar comparisons in previous publications (Schlipf et al.,
2013; Luna et al., 2020) and therefore allows for some cross-
comparisons to these other works. The more sophisticated
– and thus relevant – comparison controller formulation is
the TTVP MPC, which also has been utilized in other pub-
lications (Schlipf et al., 2013; Gros et al., 2013; Luna et al.,
2020).

5.2 Tuning

Each element of the controller toolchain (lidar simulator, li-
dar processing, moving horizon estimator, model predictive
controller) comprises a set of tunable parameters, which all
impact the control performance. A comprehensive overview
of these parameters is provided in Schlipf et al. (2018). In-
stead of tuning all parameters at once (monolithic approach),
the sequential approach of Schlipf et al. (2018) is pursued.
Here, the elements are tuned sequentially according to their
individual performance criteria.

5.2.1 Tuning of lidar simulator

In Schlipf et al. (2018), the same wind turbine plant model
(NREL 5 MW onshore) and lidar simulator are used as in
the present work. There, the parameters of the lidar simula-
tor are tuned in order to maximize the measurement coher-
ence bandwidth for the rotor-effective wind speed. In other
words, the smallest detectable eddy size is maximized, reach-
ing a value of Deddy,min = 1.58D = 199 m. Since control of
fatigue – and not lidar tuning – is the focus of the present
work, the parameters of the lidar simulator in Table 1 are
adopted from Schlipf et al. (2018). This “default lidar” sce-
nario with a low decay constant of 0.1 is accompanied by a
“high decay lidar” scenario, in which the exponential decay
constant is increased to 0.4 (Schlipf, 2016).

5.2.2 Tuning of lidar processing

The raw rotor-effective wind speed from the lidar simulator
has to be buffered in order to compensate for time delays and
filtered to remove uncorrelated high-frequency information.
The buffer and filter parameters have to be tuned. In Schlipf
et al. (2018), the tuning of the lidar processing is performed
using the reduced wind turbine model as the plant model for
performance reasons. However, simulations in Loew et al.
(2019) have shown that unrealistically high fatigue reduc-
tion is possible if the MPC-internal and the plant models are
matching. Thus, in the present work, the mid-fidelity Open-
FAST model is used for tuning the lidar processing in order
to benefit from its more realistic fatigue behavior.

Buffering

Inspired by Schlipf (2016), the raw rotor-effective wind
speed is buffered by an adaptive buffer time span of

Tbuffer(t)= Ttravel(t)− 0.5Tscan− Tfilter. (12)

Here, the traveling time Ttravel(t)= dtravel(t)/Vmean(t) from
the closest scanning plane to the rotor is obtained by the
traveling distance dtravel and the current mean wind speed
Vmean. The traveling distance dtravel(t)= dscan, close+dT(t) is
the nominal distance corrected by the current tower tip de-
flection. The total scan time Tscan = 1/fscan is obtained from
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Table 1. Parameters of lidar simulator for the “default lidar” and “high decay lidar” scenarios.

Parameter Unit Default lidar High decay lidar

Type of lidar – Pulsed Pulsed
Opening angle [◦] 11.3 11.3
Distance to closest scanning plane dscan, close [m] 40 40
Distance to farthest scanning plane [m] 280 280
Number of scanning planes [–] 10 10
Scanning rate fscan [Hz] 4 4
Gaussian – full width at half maximum [m] 20 20
Gaussian – evaluation points [m] −10, 0, 10 −10, 0, 10
Exponential decay constant of turbulent wind [–] 0.1 0.4

the scanning rate. The filter delay Tfilter is zero here since a
zero-phase filter is utilized.

Filtering

Since the lidar correlation varies with wind speed (Schlipf,
2016), the uncorrelated high-frequency information has to be
processed by a low-pass filter, which is adaptive as well. In
order to avoid the above-mentioned filter-delay compensa-
tion, only zero-phase algorithms have been considered. Par-
ticularly, a zero-phase forward–backward infinite impulse re-
sponse (IIR) filter based on a first-order Butterworth filter
(function filtfilt in MATLAB) has been compared to
a central moving mean filter (function movmean in MAT-
LAB). For this purpose, the lidar simulator parameteriza-
tion from Sect. 5.2.1 and a reasonable initial parameteriza-
tion of the MHE and MPC have been utilized in turbulent
simulations. Despite its simplicity, with different MPC for-
mulations and horizon lengths, the moving mean filter has
exhibited superior performance and thus has been chosen for
the present application. It should be noted that this superior-
ity of the moving mean filter has only been observed for the
present lidar and wind turbine configuration and cannot be
generalized. Thus, for another configuration, the comparison
should be repeated. Beneficially, the moving mean filter only
requires tuning of its window length. The empirical formula

Tmovmean(t)=
Deddy,min

Vmean(t)
, (13)

which is based on the smallest detectable eddy size and the
current mean wind speed, has led to a very good adaptive
tuning for the present setup.

Due to its nature, the central moving mean filter requires
sufficient information from the past and future. Except for
the beginning of a simulation, the amount of past information
is typically sufficient and even growing in the course of the
simulation. In contrast, sufficient future information beyond
the prediction horizon is only ensured if the inequality

Tpred(t)− 0.5Tmovmean(t)≥ Thoriz (14)

Figure 6. Comparison of the effectively available filtered prediction
information (dash-dotted red) to the MPC horizon length (dashed
black).

holds, where half the moving mean filter length Tmovmean
subtracted from the lidar-predicted time Tpred exceeds
the MPC horizon length Thoriz. The lidar-predicted time
Tpred(t)= dscan, far/Vmean(t) depends on the distance of the
farthest scanning plane to the rotor and the current mean
wind speed. As shown in Fig. 6, the inequality typically holds
and is only slightly violated at Vmean > 22 m s−1.

Further scaling of buffer and filter parameters

In order to verify the above adaptation formula, simulations
have been executed in which these buffer and filter window
lengths are increased or decreased. These results are gener-
ated for the “high decay lidar” scenario, in which lidar data
quality is lower, and thus correct filtering is more impor-
tant. The simulations reveal that the above adaptation laws
lead already to high revenue and low fatigue cost. As shown
for the filter window length in Fig. 7, for both TTVP and
PORFC with scaling factors of 1, a high revenue is main-
tained while achieving low fatigue cost. Lower scaling fac-
tors (shorter filter windows) have a tendency towards higher
actuator usage, while higher scaling factors dramatically in-
crease fatigue cost. Consequently, scaling of the buffer and
filter parameters is not applied in the present work.
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Figure 7. Variation in KPIs depending on the scaling of moving
mean filter window length.

5.2.3 Tuning of the MHE algorithm

The MHE is set up with an estimation horizon length of 8 s
and a sample time of 0.1 s, which are fixed for all MPC con-
figurations.

5.2.4 Tuning of the MHE cost weights

Practical experience has shown that the goal of the MHE
should not be an accurate reconstruction of the unmeasured
true plant states of tower tip deflection and velocity, as shown
in Fig. 8. In fact, an accurate reconstruction would contain
high frequencies from the plant higher-order degrees of free-
dom that, not being matched by corresponding degrees of
freedom of the MPC-internal model, would spill over and
pollute its lower-order degrees of freedom.

Instead, the MHE should provide low-frequency initial
states for the low-frequency MPC-internal model (“estimated
initial” states). Consequently, the MHE is tuned to estimate
state trajectories that best fit the behavior of the reduced
model. This is achieved by setting low weights for the tower
variables in the weighting matrixWmeas, as shown in Table 2.
These low weights allow for significant deviations from the
measured tower acceleration and the lidar-based references
and thus for a greater focus on the reduced model dynamics.
For tower deflection and velocity, very low values of 10−4

are chosen since these quantities are not measured. For tower
acceleration, an intermediate value of 10−2 is chosen since
it is measured, but its trajectory does not need to be tracked
carefully.

The estimated tower deflection in Fig. 8 exhibits a sig-
nificant steady-state offset from the unmeasured true tower
deflection. This can be possibly attributed to the inaccurate
system model since this offset also pertains in the MPC pre-
diction, which is based on the same system model.

Table 2. Diagonal elements of the weighting matricesW penalizing
the corresponding entries of the estimation yest and noise v vectors.

ωr(t) dT(t) ḋT(t) βb(t) β̇b(t) Tg(t) d̈T(t)

Wmeas 1 10−4 10−4 1 1 1 10−2

Wprev 10−2 10−2 10−2 10−2 10−2 10−2 –
W v 1 1 1 1 10−3 10−3 –

By the intermediate weights in the weighting matrix
W prev, the current state trajectories are only loosely tied to
the previous ones.

In the weighting matrix W v , significant noise is only per-
mitted for the pitch angle and torque rate in order to enable
a close match of pitch and torque estimations with their al-
ready accurate measurements.

5.2.5 Tuning of the MPC algorithm

The controller sample time is set to 0.1 s like in Bottasso
et al. (2014) and Gros and Schild (2017). The maximum hori-
zon length of Thoriz,max = 8 s is chosen based on the find-
ings of Loew et al. (2020b), which indicate that a consider-
able portion of the plant stress cycles will be contained in
this prediction horizon. However, since horizon length has
a substantial impact on performance and since, moreover,
the longest horizon is not always the best, shorter horizons
of Thoriz = {4;2;1} s will be tested throughout all turbulent
studies.

One QP is solved per MPC step. The Hessian matrix is
automatically convexified to account for possible numerical
issues due to the highly non-standard cost formulation of
PORFC. Practical experience has shown that performance is
improved if the Newton step length of the QP is reduced from
1 to 0.1. This can be explained by the frequently changing
optimization problems, especially for PORFC. In this case
the initialization of the QP might not be sufficiently close to
the optimum, and full Newton steps could leave the region
of validity of the quadratic approximation of the nonlinear
program (Diehl and Gros, 2020).

5.2.6 Tuning of the MPC cost weights

As shown in Sect. 3.5, all weights in the cost function except
for the fatigue weight αfatigue are pre-defined for simplicity.
Thus, only the fatigue weight has to be tuned in the follow-
ing. Tuning is executed at a single reference wind speed of
Vw, ref = 9 m s−1. This wind speed is chosen since, for the
conventional controller CC, the highest profit contribution
occurs there, as shown in terms of profit density in Fig. 9.
Profit density represents the incremental contribution to total
cumulative profit at a certain wind speed. Other meaningful
criteria for a suitable tuning wind speed would be the wind
speed at which half of the total cumulative profit is reached
or where the highest revenue contribution occurs.
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Figure 8. Wind turbine tower quantities ordered by occurrence in the estimation and control process: measured, unmeasured, lidar-based
reference (see Sect. 4.2), estimated, and predicted. Negative time samples are estimation horizon of the MHE; positive time samples are
prediction horizon of the MPC.

Figure 9. Normalized profit density and cumulative profit. The lat-
ter is normalized with respect to the total profit of the conventional
controller.

The variation in important key performance indicators
(KPIs) with fatigue weights is shown in Fig. 10. For brevity,
only the results for the maximum MPC horizon length of 8 s
are shown. All variants of PORFC are able to maintain high
revenue levels while decreasing fatigue cost with increasing
fatigue weights. In contrast, the revenue of TTVP declines
rapidly above a certain fatigue weight. Thus, the tuning of
PORFC can be considered as less critical than that of TTVP.
Since in most cases torque travel and pitch travel increase
with fatigue weight, low fatigue weights should be preferred
as long as fatigue cost is not harmed significantly. Following
this strategy, the fatigue weights are determined for all con-
troller formulations and horizon lengths, as shown in Table 3.

5.3 Results of turbulent simulations

5.3.1 Comparison of controller formulations in the
“default lidar” scenario

As a next step, the optimal tuning weights from Sect. 5.2.6
are fixed, and simulations at different reference wind speeds
Vw,ref = {5;7; . . . ;25}m s−1 are performed for each con-
troller formulation and prediction horizon length. The sim-
ulations result in the Weibull-weighted cumulative KPIs
shown in Fig. 11.

For all MPCs, revenue is at least slightly below the one of
the CC. However, especially for PORFC-2R and PORFC-5
with a prediction horizon of Thoriz ≥ 2 s, the revenue losses
remain moderate. In contrast, all MPCs with Thoriz ≥ 2 s ex-
hibit substantially lower fatigue cost than the CC. As a rough
indication of the combined effect, the changes in revenue and
fatigue cost can be assessed in terms of the simplified profit
indicator. The highest profit gain is achieved by PORFC-
2R at maximum prediction horizon, which surpasses CC by
30 % and the best TTVP by 2.5 %. At least for the present
setting, very short horizons of 1 s cannot be recommended
since they significantly decrease revenue and greatly increase
fatigue.

Over different horizon lengths, PORFC-2R exhibits very
stable revenue and fatigue levels. In contrast, for the
PORFC formulations without residue (PORFC-2, PORFC-
5), a shorter horizon of Thoriz = 4 s exhibits higher profit than
Thoriz = 8 s. This phenomenon may be explained by a higher
influence of the prediction errors: due to model errors and
wind evolution, the predicted states at the end 4 s< t ≤ 8 s
of a long horizon may be affected by large errors. Since
PORFC-2 and PORFC-5 have to rely solely on the predic-
tions, their performance may suffer from long horizons.

For all MPCs, the fatigue reduction with respect to CC
comes at the price of a higher pitch travel. Here, TTVP ex-
hibits around 6 times the pitch travel of CC. Since in the
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Figure 10. Variation in KPIs for different fatigue weights and a prediction horizon length of Thoriz = 8 s.

Table 3. Optimum fatigue cost weights αfatigue for different controller formulations and prediction horizon lengths.

Controller formulation Thoriz = 8 s Thoriz = 4 s Thoriz = 2 s Thoriz = 1 s

TTVP 104 103 104 105

PORFC-2R 104 103 102 103

PORFC-2 106 103 104 104

PORFC-5 105 105 105 104

literature more moderate increases (e.g., by a factor of 2)
are reported (Luna et al., 2020), further studies on pitch pe-
nalization should be conducted. For PORFC, pitch travel is
even slightly higher and is somewhat reduced by a reduction
in horizon length. Torque travel exhibits different behavior
in that several MPC formulations have a lower torque travel
than CC.

A look at the profit density and cumulative profit in Fig. 9
shows that both MPC formulations (TTVP, PORFC) “earn
money” very similarly over wind speed. Compared to CC,
the MPC fatigue reduction strategies lead to profit benefits at
very low and at intermediate wind speeds. With the present
tuning, TTVP has a slight extra advantage at very low wind
speeds, while PORFC-2R is superior over a broad range of
intermediate wind speeds.

5.3.2 Performance in the “high decay lidar” scenario

The “default lidar” scenario of the previous sections can be
considered as very favorable for lidar-assisted control since
the wind does not change very much between the lidar mea-
surement planes and the rotor. Thus, the lidar provides a
fairly good estimate of the true incoming wind. In order to
challenge the MPCs even more, a further assessment is per-
formed for the “high decay lidar” scenario (see Table 1).

Despite the significant reduction in lidar signal quality, the
profit benefit of the MPCs over CC decreases only slightly, as
shown in Fig. 12. Particularly, the best-performing PORFC-
2R (Thoriz = 4 s) still surpasses CC by 26 % for the “high de-
cay lidar” scenario, in comparison to the above-mentioned
30 % for the “default lidar” scenario.

The profit benefit of 5.1 % of the best PORFC-2R (Thoriz =

4 s) over the best TTVP (Thoriz = 8 s) shows that PORFC-2R
is particularly strong in handling situations of low lidar data
quality. In a direct comparison using the same horizon length
(Thoriz = 4 s), PORFC-2R is superior by almost 9 %. Just like
in the “default lidar” scenario, PORFC-2R exhibits better
revenue stability over the horizon lengths Thoriz = {8;4;2} s
but also exhibits excessive fatigue cost at Thoriz = 1 s.

5.3.3 Performance in the “perfect prediction” scenario

The increasing benefit of PORFC-2R with respect to TTVP
with lower lidar data quality conversely suggests decreasing
benefits with very high lidar data quality. This hypothesis
is actually partially confirmed by the extreme scenario of a
perfect wind prediction (without lidar errors). As shown in
Fig. 13, as expected, fatigue cost can be reduced by TTVP
and PORFC-2R even further than in the “default lidar” sce-
nario of Sect. 5.3.1. However, relative to TTVP, the advan-
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Figure 11. “Default lidar” scenario. Weibull-weighted KPIs for different controller formulations (indicated by edge style) and MPC predic-
tion horizon lengths (indicated by color). The results for the shorter horizons are transparent in order to focus the attention on the more im-
portant longer horizons. Results are normalized with respect to the best TTVP configuration with a prediction horizon length of Thoriz = 8 s.
Middle row, right: zoomed version of profit plot.

Figure 12. “High decay lidar” scenario. Weibull-weighted KPIs for different controller formulations and prediction horizon lengths. Results
are normalized with respect to the best TTVP configuration with a prediction horizon length of Thoriz = 8 s. Middle row, right: zoomed
version of profit plot.

tage of PORFC-2R decreases significantly. For the maximum
horizon length, the profit of TTVP even slightly surpasses
PORFC-2R by 0.4 %. On the other hand, as revenue and fa-
tigue cost of PORFC-2R are more stable for shorter horizons,
this formulation retains a significant advantage there.

5.3.4 Benefit of “perfect prediction” vs. “perfect
persistence”

All previous scenarios assumed a wind preview. However, to
date, lidar systems can still account for a significant portion
of the capital and operational expenditures of wind turbines
(Canet et al., 2020). In order to avoid lidar-related costs or
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Figure 13. “Perfect prediction” scenario. Weibull-weighted KPIs for different controller formulations and prediction horizon lengths. Results
are normalized with respect to the best TTVP configuration with a prediction horizon length of Thoriz = 8 s. Middle row, right: zoomed
version of profit plot.

effort, some studies are directed towards predictive control
without explicit preview measurement (Evans et al., 2015;
Jassmann et al., 2016). In this case, the wind prediction over
the MPC horizon can for instance be generated via constant
extrapolation of the instantaneous wind estimate at the rotor
(persistence). This motivates an analysis of how the novel
PORFC MPC actually benefits from a predictive preview
compared to a persistent preview.

Since the design of a rotor-effective wind speed estimator
is out of scope of the present work, a “perfect persistence”
scenario is employed and compared to the above “perfect
prediction” scenario.

As shown in Fig. 14, all MPC formulations significantly
benefit from prediction (instead of persistence). For all for-
mulations, this is primarily achieved by high fatigue reduc-
tion. At the same time, actuator usage is moderately de-
creased or even increased at some horizon lengths for TTVP
but is significantly decreased for PORFC-2R if Thoriz ≥ 2 s.

These results further indicate the technical benefit of lidar-
assisted control and motivate further studies comparing the
realistic lidar wind preview with a sophisticated wind speed
estimator.

5.4 Insights into PORFC

In order to gain deeper insight into the behavior of PORFC,
short time periods within a turbulent simulation in the “de-
fault lidar” scenario are analyzed.

5.4.1 Evolution of residue

Figure 15 shows a situation where the stress prediction at the
initial value σ (t0) turns from a mildly rising slope (MPC step
1) to a mildly falling slope (MPC step 2). Consequently, a
new stress maximum is formed and added to the “right-hand

side” of the residue set at MPC step 2, as shown in Fig. 15a.
In the following steps 3 to 5, the size of the residue set re-
mains constant; only the right-hand-side value is updated by
the current initial stress value.

5.4.2 Evolution of PORFC parameters

As shown in Fig. 15b, the change in extrema in the stress
prediction over the course of MPC steps leads to frequent
changes in the PORFC stress references (see Sect. 3.4.2) or,
more in general, in the PORFC parameter structure (see bars
in Fig. 15b). However, since many of the emerging or van-
ishing stress cycles are small in amplitude, also their corre-
sponding stress reference values are close to the stress pre-
diction trajectory (compare bars to the solid blue line) and
thus have low impact on the overall optimization problem.

Since by nature of MPC the stress trajectory is shifted to
the left-hand side with each simulation step, also the PORFC
parameter samples are shifted. This becomes even more clear
in Fig. 16, where stress reference 1 is plotted over the predic-
tion horizon and over MPC steps (simulation time). Here,
over the course of MPC steps, the stress reference pattern
is evolving smoothly towards the beginning of the prediction
horizon. While some references emerge within the prediction
horizon, many references originate at the end and do not van-
ish before reaching the beginning of the prediction horizon.

5.5 Results of deterministic gust simulations

According to the current standards (IEC, 2005), a central
qualification criterion for controllers is their reaction to de-
terministic gusts. Previous literature already has shown that
deterministic gusts are an easy but unrealistic task for predic-
tive controllers like MPCs (Schlipf and Raach, 2016), result-
ing in too optimistic conclusions regarding extreme load re-
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Figure 14. Weibull-weighted KPIs of the “perfect prediction” scenario normalized with respect to the individually corresponding KPIs of
the “perfect persistence” scenario with the same MPC formulation and horizon length.

Figure 15. Stress trajectories for PORFC-2R in turbulent wind 10 s after the start of the simulation. Top-down: five consecutive MPC steps.
Residue set of variable size, in which the values of the last stress samples are labeled (a). Stress prediction of the MPC and stress references
as part of the PORFC parameter set (b).

duction. Besides, extreme loads are not even always design-
driving for some wind turbine components (Canet et al.,
2020). Nonetheless, the study of gust scenarios sheds addi-
tional light on the controller dynamic behavior.

Thus, in the following, the conventional controller is com-
pared to the MPC formulations of TTVP and PORFC-2R in
an “extreme operating gust” scenario (IEC, 2005), with a du-
ration of 10.5 s and an initial wind speed that is 2 m s−1 be-
low rated wind speed (Vrated = 11.4 m s−1). In order to test
the MPCs with partial knowledge of the gust, a prediction

horizon of 4 s is chosen. Besides this limited horizon, a per-
fect wind prediction without lidar errors is assumed.

As shown in Fig. 17, even during the gust, for all con-
trollers the rotor speed remains below the rated speed of
1.267 rad s−1. As a result, the conventional controller re-
mains at the minimum pitch angle, and the tower deflection
freely follows the gust wind speed, which leads to a high pos-
itive excursion. After the gust, the tower oscillation quickly
vanishes due to aerodynamic damping.

In contrast, the MPCs anticipate the incoming gust and re-
act to a significant extent by pitching the blades. Interest-
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Figure 16. PORFC stress reference over the prediction horizon of 80 samples for 100 consecutive MPC steps.

ingly, despite their different fatigue cost formulations, the
MPCs exhibit very similar pitching behavior. As expected,
the TTVP and the PORFC-2R MPC attenuate very effec-
tively the tower excursion and dampen the oscillation im-
mediately. However, PORFC-2R puts less priority on the
attenuation of the tower excursion. Since the tower deflec-
tion has been flat prior to the gust, the stress residue of
PORFC-2R contains only stress values around the steady
state. Consequently, PORFC-2R assumes only a small stress
cycle with low damage potential during the gust. This behav-
ior is changed if the stress residue is initialized with 0 MPa,
which corresponds to an undeflected tower prior to operation.
Due to this stress memory, PORFC-2R identifies a large half
cycle and consequently tries to further limit the maximum
tower excursion by peak shaving, as shown by the purple tra-
jectory in Fig. 17.

Clear differences of PORFC-2R with respect to TTVP can
be seen in the rotor speed and generator power dynamics.
At the beginning of the gust, the generator power is reduced
in order to achieve a high rotor speed during the gust. This
behavior can be attributed to an attempt at harvesting the
energy of the gust and also has been observed for an MPC
where 5 QPs (instead of 1 QP) have been solved per MPC
step for better convergence. For the PORFC-2R MPC with
the 0 MPa residue, the rotor speed remains at a high level
for a longer time frame, which is an unusual behavior and
requires more investigation. Finally, it can be noted that the
steady-state rotor speed is slightly higher for the MPCs than
for the conventional controller, as seen before the gust. As-
suming perfect tracking of optimal rotor speed by the con-
ventional controller, this difference can be attributed to the
MPC plant–model mismatch. However, as shown in Fig. 17,

the rotor speed difference does not result in significant sub-
optimality of the steady-state power capture.

6 Conclusions and outlook

6.1 Conclusions

The present work represents a significant step in assessing
the benefits of the MPC formulation of PORFC. For this pur-
pose, the simulation setup of Loew et al. (2020b) has been
extended by a realistic lidar simulator, lidar processing, and
an MHE.

First, the PORFC formulation has been presented in
an application-focused way. It has been highlighted how
PORFC directly incorporates mechanical fatigue in predic-
tive wind turbine control. Since fatigue requires long obser-
vation windows, stress history has been considered in a con-
sistent manner by carrying along a residue (PORFC-2R).

Second, the formulation of the MHE has been explained,
in which the lidar wind estimate has been used to generate an
initialization for the unmeasured tower states.

Third, a sequential tuning approach has been employed for
the lidar simulator, lidar processing, MHE, and MPC:

– For the lidar simulator, parameters from the literature
have been utilized, which maximize the measurement
coherence bandwidth.

– For the lidar buffering and filtering, simple adaptive
tuning laws have been employed. Simulations have re-
vealed that they result already in good performance and
that no further tuning seems to be required.
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Figure 17. Extreme operating gust at V = Vrated− 2 m s−1.

– For the MHE, instead of accurately reconstructing the
plant states, the cost weights have been tuned to esti-
mate only the low-frequency state information that can
be handled by the MPC-internal model.

– For the MPC, four different prediction horizon lengths
have been employed throughout the study since no sin-
gle horizon length has led to the best performance in all
scenarios. In the MPC cost function, the fatigue weight
has been tuned systematically for each controller for-
mulation and horizon length.

Finally, extensive economic and dynamic simulation re-
sults have been presented for turbulent and gust wind set-
tings:

– In the “default lidar” scenario, all MPCs are able to sig-
nificantly reduce fatigue cost with respect to a conven-
tional PID controller, while PORFC-2R has to sacrifice
less revenue than a conventional MPC. For shorter hori-
zons, especially the PORFC formulation with residue
has shown a more robust performance than the conven-
tional MPC.

– In the “high decay lidar” scenario with a lower lidar pre-
diction quality, the advantage of PORFC-2R over the
conventional MPC even increases. This suggests that
PORFC-2R is a recommended solution especially for
lower lidar prediction quality.

– In the “perfect prediction” scenario, both MPCs have
exhibited similar results. A comparison with a wind
persistence setting has shown that PORFC-2R benefits
more from the availability of this high-quality predic-
tion than the conventional MPC.

– In all considered turbulent scenarios, MPCs with a very
short prediction horizon of 1 s have obtained only mod-
est results.

– An excerpt of a turbulent simulation with PORFC-2R
has demonstrated how the residue is updated and that
the parametric stress references evolve smoothly fol-
lowing an expected pattern.

– In an extreme operating gust setting, both MPCs have
shown a similar pitching behavior and the effective at-
tenuation of tower excursion. During the gust, PORFC-
2R has shown a higher variability in the rotor speed.

6.2 Outlook

The MPC formulation of PORFC still has several aspects
worth investigating:

– For the MHE tuning, an automated but still computa-
tionally tractable approach should be developed.

– The MHE- and MPC-internal system model has a sig-
nificant error with respect to the plant system. Thus, on-
line model adaptation promises further benefits.

– In the MPC cost function, economic terms for the actu-
ator, blade, and drivetrain damage should be included.

– In certain business cases, the goal may not be to mini-
mize fatigue but simply to keep the fatigue rate on av-
erage below certain thresholds or to keep the cumula-
tive damage below a threshold by the end of service.
To assist these goals, the PORFC cost function could
be modified, and fatigue could be added as a paramet-
ric constraint in the MPC. Alternatively, an outer con-
trol loop based on structural health monitoring could be
added (Do and Söffker, 2020) which adapts the MPC
cost function weights. More in general, other scenario-
based more sophisticated and comprehensive cost func-
tions should be considered to better capture the com-
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plex interactions of fatigue damage with the economic
utilization of wind assets.

– Instead of the NREL baseline controller (Jonkman et al.,
2009), the MPCs could be compared to a more modern
reference controller, as for example the one of Abbas
et al. (2022).

– The novel PORFC MPC has been extensively simulated
and is ready for application on real systems. Conse-
quently, just like for conventional MPCs in Sinner et al.
(2021) and Dickler et al. (2021), the novel PORFC MPC
should be assessed on scaled and full-scale wind tur-
bines.

Appendix A

Table A1. Nomenclature.

Quantity Unit Explanation

a – Quantity sampled on the control intervals
of the prediction horizon

â – Quantity fixed for one MPC step
ã – Quantity estimated from measurements

Abbreviation Explanation

CC – Conventional PID controller
Lidar – Light detection and ranging
MHE – Moving horizon estimator
MPC – Model predictive controller
PORFC – Parametric online rainflow counting
QP – Quadratic programming
RFC – Rainflow counting algorithm
TTVP – Tower tip velocity penalization

Code and data availability. MATLAB figure files for the loss-
less extraction of the results shown can be retrieved via the
DOI https://doi.org/10.5281/zenodo.6600688 (Loew, 2022a). The
MATLAB function and a test script for the PORFC parame-
ter generation and the residue update can be retrieved via the
DOI https://doi.org/10.5281/zenodo.6600832 (Loew, 2022b). Fur-
ther data can be provided upon request.
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