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Abstract. With the progression of novel design, material, and manufacturing technologies, the wind energy
industry has successfully produced larger and larger wind turbine rotor blades while driving down the levelized
cost of energy (LCOE). Though the benefits of larger turbine blades are appealing, larger blades are prone to
aeroelastic instabilities due to their long, slender, highly flexible nature, and this effect is accentuated as rotors
further grow in size. In addition to the trend of larger rotors, non-traditional rotor concepts are emerging includ-
ing two-bladed rotors and downwind configurations. In this work, we introduce a comprehensive evaluation of
flutter behavior including classical flutter, edgewise vibration, and flutter mode characteristics for two-bladed,
downwind rotors. Flutter speed trends and characteristics for a series of both two- and three-bladed rotors are an-
alyzed and compared in order to illustrate the flutter behavior of two-bladed rotors relative to more well-known
flutter characteristics of three-bladed rotors. In addition, we examine the important problem of blade design to
mitigate flutter and present a solution to mitigate flutter in the structural design process. A study is carried out
evaluating the effect of leading edge and trailing edge reinforcement on flutter speed and hence demonstrates the
ability to increase the flutter speed and satisfy structural design requirements (such as fatigue) while maintaining

or even reducing blade mass.

1 Introduction

With an increase in demand and reduction in costs, wind en-
ergy offers a promising clean energy solution. The wind in-
dustry has successfully produced large-scale wind turbines
by relying on new materials, design, and manufacturing
technologies while driving down the levelized cost of en-
ergy (LCOE). However, with the increase in rotor size, aeroe-
lastic instabilities like flutter become a significant concern
and should be actively examined in the design process. In ad-
dition to rotor size impacts on flutter behavior, various novel
turbine concepts have been studied as a possible pathway
to enable turbine designs at these extreme scales. One such
concept is the use of two-bladed, downwind turbines (Ichter
et al., 2016) at extreme scales in a project called SUMR
(Segmented Ultralight Morphing Rotor). The various studies
within the SUMR project have shown that two-bladed down-
wind turbines can provide a significant reduction in LCOE

(Loth et al., 2017; Yao et al., 2021b, a; Zalkind et al., 2019;
Pao et al., 2021; Kaminski et al., 2020), as well as allow for
the design of large turbines up to 50 MW (Yao et al., 2021b;
Martin, 2019). The flutter behavior of these two-bladed de-
signs is interesting and important to examine due to both
their highly flexible nature and structural differences for two-
bladed versus three-bladed rotors (Yao et al., 2021a), which
is the focus of the present study.

A number of studies have been performed over recent
decades investigating aeroelastic stability, including classi-
cal flutter, in horizontal axis wind turbine rotors, but all fo-
cused on the conventional upwind, three-bladed rotor con-
figuration. Riziotis and Madsen (2011) define classical flut-
ter as the instability occurring from the aeroelastic coupling
of the flapwise modes with the torsion modes during opera-
tion. In particular, the change in the angles of attack resulting
from the torsion deformation of the wing sections generates
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aerodynamic lift forces that are in phase with the flapwise
bending motion. This gives rise to violently amplifying flap-
wise vibrations that cannot be compensated for by structural
damping. Lobitz (2004) approached the problem of flutter
in megawatt-sized wind turbines with a NASTRAN-based
beam finite element model with Theodorsen unsteady aero-
dynamics (Theodorsen, 1934) for a blade rotating in still air,
a common assumption in flutter analysis in which the inflow
component of wind velocity is neglected and only the rotor
plane blade velocity is included. Pourazarm et al. (2016) de-
veloped and validated a flutter model against previous work,
using a blade model that accounts for flapwise and torsional
degrees of freedom, although the edgewise degree of free-
dom was neglected in their formulation. Owens et al. (2013)
developed the BLAST tool for flutter prediction, which was
similar to the approach of Lobitz (2004), but with an im-
proved structural model including flapwise, edgewise, and
torsional degrees of freedom. Modifications were made to the
mass, stiffness, and damping matrices to account for aerody-
namic effects and rotational effects such as Coriolis effects
and spin softening. Hansen (2004) further developed a full
turbine model in still air using an eigenvalue approach based
on a beam finite element (FE) model with aerodynamic loads
modeled using the blade element momentum (BEM) theory
coupled with the Leishman-Beddoes dynamic stall model.
They concluded that there was a reasonable similarity be-
tween flutter predictions for a full turbine versus analysis of
an isolated blade uncoupled from the tower. More recently,
Farsadi and Kayran (2021) developed a method to account
for compressibility effects on the wind turbine blades, but
the resulting flutter speeds were comparable to the classical
flutter analysis methods developed by Hansen (2007).

In addition to classical flutter involving coupled flapwise
and torsional modes, edgewise vibration has also been shown
to be a concern for large wind turbine rotor blades. In the
work of Griffith and Chetan (2018), it was shown how larger
blades tend to have a larger edgewise contribution to blade
instability as blade structural designs at the 100 m scale are
optimized for mass. These edgewise instabilities in large tur-
bine blades have been observed experimentally and numer-
ically by Kallesge and Kragh (2016). The edgewise flutter-
like instabilities were found to have a shallow crossover that
is considered as “soft” crossover to an unstable mode due to
higher structural damping. Additionally, the edgewise insta-
bilities resulted in limit cycle oscillations and were confirmed
by further experimentation on a Siemens 7 MW turbine by
Volk et al. (2020). Bergami (2008) examined the addition of
the edgewise unsteady aerodynamic terms and reached the
conclusion that this addition did not have much impact on
flutter predictions. Kelley and Paquette (2020) made an im-
provement to the BLAST tool (Owens et al., 2013) also by
including an edgewise term for the unsteady aerodynamics
of the blade; however, the same conclusion was reached in
that this addition did not have much impact on the predicted
flutter speeds.
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In the present study, we focus on the flutter performance
of two- and three-bladed designs. Prior work focused on the
analysis of various three-bladed wind turbine blade designs
and understanding their performance. A study on flutter in-
stabilities of two-bladed wind turbine blade designs has not
been studied, and here we introduce and present an examina-
tion of flutter behavior for two-bladed rotors. Here, we inves-
tigate the sensitivity and trends of flutter predictions, includ-
ing the flutter speeds and flutter mode shapes, for a series
of conventional three-bladed upwind rotors and a series of
downwind two-bladed rotors. Critical comparisons are made
that demonstrate clear differences in trends and characteris-
tics of flutter modes for two- versus three-bladed wind tur-
bine rotors. Once the flutter behavior is determined, it is im-
portant to examine blade designs that mitigate flutter instabil-
ity. Previous works (Griffith and Chetan, 2018; Chetan et al.,
2019a, b) have carried out blade design studies on the com-
posite layups of the wind turbine blades to achieve a higher
flutter margin. Thus, in the final analysis, a detailed trend
study is conducted to evaluate the effect of trailing edge and
leading edge reinforcements on the flutter margins of two-
and three-bladed turbines using a semi-automated design tool
called AutoNuMAD.

The paper is organized as follows: Sect. 2 presents the
methodology for flutter prediction implemented in this paper.
In Sect. 3, the various wind turbine blade models evaluated
in this study are presented along with the bench-marking of
the flutter evaluation tool. In Sect. 4, the flutter behavior for
the various two- and three-bladed wind turbine blades is an-
alyzed. Section 5 presents the design space exploration for
two- and three-bladed wind turbine blades to improve their
flutter margins. In Sect. 6, concluding remarks and future re-
search directions are summarized.

2 Method for classical flutter prediction

In this section, we present the methods utilized for flutter
prediction used in this study. First, we consider the incor-
poration of the rotational effects into the model. The system
of equations for the blade including rotational effects such as
Coriolis and spin softening takes the form of Eq. (1). This
equation is based on the three-dimensional implementation
of the Euler—Bernoulli beam finite element, thus allowing for
the blade to deform in flapwise, edgewise, and torsional com-
ponents represented by x.

Mix 4+ D+ G(R2)x + (K(x) = S(Q)x = Feent(RQ)+ F (1)

Here M, D, and K(x) are the mass, damping, and stiffness
matrices of the blade structure, respectively, that result from
the Euler—Bernoulli finite element formulation. Here, the
stiffness matrix K(x) is a function of the geometry to account
for potential geometric nonlinearities. For the rotational ef-
fects, G(2) introduces the Coriolis matrix, and S(€2) repre-
sents the spin softening effects at an angular velocity of .
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F represents the non-potential forces, and Feen(€2) is the
centrifugal forces on the system.

Now we consider aerodynamic effects in the flutter model.
For aerodynamic effects, the Theodorsen unsteady aerody-
namic theory (Theodorsen, 1934) is introduced, and the lift
and moment equations that cause the flapping and twisting
motion at the defined cross-sections are given by Egs. (2)
and (3), respectively.

L =npb*[Z + V6 — bab] +27pVbC (k)
1 .
|:Z+V9+b(§—a>0:| 2)
2|, 1 Y AAY:
M, =mpb”|bai — Vb E—a 6—>b g—i-a 0
N _ 1 :
+2mpVb a+§ Clk)|z+VO+b E—a 61 3

Here p is the air density, b is the semi-chord of the air-
foil section, a is the elastic axis position aft of the mid-
chord as a fraction of the semi-chord, z(¢) represents the
flapwise motion for the sections, 8(¢) is the torsional motion
of the section, and C(k) is the Theodorsen function (Wen-
dell, 1982) which models the amplitude and phase lag of the
aerodynamic forces acting on the section and is expressed in
Eq. (4). Figure 1 illustrates a two-dimensional airfoil under-
going heave and pitch motion.

C(k) = Fin(k) +iGn(k) “

wb
k=— 5
U &)
Here k is the reduced frequency and depends on the oscil-
latory motion of the airfoil section. The freestream velocity
U is modeled for a rotating turbine as a function of distance
from the hub axis r given by Eq. (6):

Uso =rQ. 6)

The resulting aerodynamic loads are a function of the angular
velocity €2 and the frequency w. Now, modeling the aerody-
namic mass, damping, and stiffness into Eq. (1) results in

(M +MA(2))X + (D + G(R2) +DA(R2, ) x + (K(x)
—S(£2) + Ka(2, @) x = Feent(£2) + F A(€2), @)

where MA(2), DA(R2, w), and Ka(R2, w) are the aerody-
namic mass, damping, and stiffness matrices, respectively.
The vector F A(£2) represents non-potential forces like aero-
dynamic forces. The coefficients of Eq. (7) are dependent
on the rotor speed €2 and reduced frequency k. The geomet-
ric nonlinearities can be linearized about the operating ro-
tor speed by solving the nonlinear static elasticity equation
(Eq. 8):

[K(x) = S(2)]x = Feent(£2). ®)
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Figure 1. Illustration of a two-dimensional airfoil undergoing
heave and pitch motion.

After solving for the equilibrium configuration xq, the stiff-
ness matrix can be updated to K(xeq). Finally, considering
the left-hand side of Eq. (7) and substituting K(xeq), we have
the below equation on which the modal analysis can be car-
ried out.

(M +Ma(2))F + (D + G(R) + DA (R, ) i
+ (K (¥eq) — S(Q) + Ka(2, @) x =0 )

Next, Eq. (9) is solved using an iterative procedure called
“p — k iteration” (Wright and Cooper, 2008), where the ini-
tial frequency of the system is guessed and iterated over until
convergence. The modes of the system are analyzed for nega-
tive damping which indicates potential aeroelastic instability
for that particular mode. This procedure is carried out itera-
tively for the entire rotational speed range of interest.

This method and similar methods have been used reliably
in the past for flutter predictions (Owens et al., 2013; Lobitz,
2004). However, we now consider the assumptions of this
model. Namely, the main assumptions are that (1) the flow is
always attached to the airfoil section, (2) the airfoil is thin,
(3) the resulting wake is also flat (parallel to the rotor plane
inflow), (4) the blade rotates in still air, and (5) the wake of
the blade does not affect the nearing blade. Assumptions 1, 2,
and 3 are assumptions of the Theodorsen theory, which have
been found to be reasonable assumptions over the majority
of the blade span (Hansen, 2004, 2007; Owens et al., 2013;
Lobitz, 2004; Kelley and Paquette, 2020).

The still air assumption (Assumption 4) is an important as-
sumption for the flutter prediction procedure of wind turbine
blades and is now considered. Of course, the wind velocity at
each spanwise section of the blade depends upon the inflow
component to the rotor plus the local in-plane rotor plane
component (due to r<€2). The still air assumption considers
only the r2 component. One way to evaluate the impact of
the inflow velocity effect on flutter speed is to directly in-
clude it in the model, and this has been performed by Ab-
del Hafeez and El-Badawy (2018), in which the Theodorsen
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Figure 2. Illustration comparing the wind turbine models considered in this study of flutter behavior in two- and three-bladed rotors.

function (Wendell, 1982) was modified to account for inflow
along with the rotor plane velocity. They show that including
the inflow resulted in about a 5 % increase in flutter speed
versus the still air assumption. The conclusions are that the
inflow has a small effect on flutter speed and that the still
air assumption tends to be conservative (producing a lower
flutter speed estimate); thus, the still air assumption is a rea-
sonable and acceptable assumption.

3 Description of two- and three-bladed wind
turbines

In order to examine the flutter behavior for large wind tur-
bines, a number of wind turbine blade models are examined
including open-source reference models for three-bladed ro-
tors, as well as recently designed two-bladed rotors. Figure 2
shows an illustration of the various wind turbine models con-
sidered in this study.

3.1 Three-bladed wind turbine models

For the analysis of flutter for three-bladed rotors, the follow-
ing designs are analyzed:

1. The WindPACT 1.5 MW reference wind turbine (RWT)
is a class ITA land-based wind turbine developed for the
WindPACT project (Malcolm and Hansen, 2006; Rinker
and Dykes, 2018).

2. The IEA 3.4 MW onshore RWT is a class IIIA land-
based wind turbine (Bortolotti et al., 2019).

3. The National Renewable Energy Laboratory (NREL)
5 MW (Jonkman et al., 2009), which is an offshore wind
turbine with 61.5 m blade, was designed to be used as
a baseline representing utility-grade offshore wind tur-
bines.
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4. The SNL100-00 13.2 MW (Griffith and Resor, 2011), a
100 m blade, was designed at Sandia National Labora-
tories as a baseline for large wind turbine blade studies.

5. The SNL100-01 13.2 MW (Griffith, 2013a) is an update
to the SNL100-00 blade with carbon spar cap.

6. The SNL100-02 13.2 MW (Griffith, 2013b) is a lighter
blade from the SNL100-01 through the use of advanced
core materials.

7. The SNL100-03 13.2MW (Griffith and Richards,
2014), the fourth and final design in the SNL100 series,
involves a significant change in geometry and materials
to achieve further mass reduction. In this design, flat-
back airfoils were incorporated instead of sharp trailing
edge airfoils, and a completely new aerodynamic design
was developed.

8. The UTD100-04 13.2 MW (Griffith and Chetan, 2018),
a 100 m blade, was developed based on the geometry
of SNL100-03. This final design shows not only an im-
provement in flutter margin from SNL100-03 but is also
a lighter blade.

A summary of the properties of the blades is presented in
Table 1.

3.2 Two-bladed wind turbine models

We now describe recently designed two-bladed rotors to be
examined in this flutter prediction study:

1. The SUMRI13A (Yao et al., 2021a; Zalkind et al., 2019;
Pao et al., 2021), a 104.34 m blade, is the initial blade in
the SUMRI13 series of blade designs aimed towards the
goal of attaining a 25 % mass reduction. It is a flatback
airfoil design with carbon fiber spar caps.
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Table 1. Geometry and operating specification of the three-bladed
wind turbine blade models examined in the study. The blades are
sorted by blade length.

Blade Length  Maximum Mass  Rated Rated
(m) chord (kg) power speed

(m) MW)  (rpm)

WindPACT 1.5 MW 33.25 2.8 4326 1.5 2046
NREL 5 MW 61.5 4.6 17740 5.0 12.1
1IEA 3.4MW 63 429 16441 34 1175
SNL100-00 100 7.63 114172 13.2 7.44
SNL100-01 100 7.63 73995 13.2 7.44
SNL100-02 100 7.63 59047 132 7.44
SNL100-03 (CONR) 100 522 49519 13.2 7.44
UTD100-04 100 522 49126 13.2 7.44

Table 2. Geometry and operating specification of the two-bladed
wind turbine blade models examined in the study. The blades are
sorted by blade length.

Blade Length Maximum Mass Rated Rated
(m) chord (kg) power speed

(m) (MW)  (rpm)

SUMR-D 20.87 1.56 847 0.39  21.96
SUMRI3A 104.34 7.51 57621 13.2 9.55
SUMRI13B  122.86 6.79 102170 13.2 7.99
SUMRI13C 14345 9.28 118110 13.2 7.00
SUMR25 169.00 10.78 142100 25.0 5.90
SUMRS50 246.77 15.8 392000 50.0 3.95

2. The SUMRI13B (Yao et al., 2021a; Zalkind et al., 2019;
Pao et al., 2021) is a 122.86 m intermediate design with
a slender aerodynamic design for a lower axial induc-
tion factor.

3. The SUMRI13C (Yao et al., 2021a; Zalkind et al., 2019;
Pao et al., 2021), the final iteration in the SUMRI13
blade series, is a 143.45 m blade.

4. The SUMR-D (Yao et al., 2019; Bay et al., 2019;
Kaminski et al.,, 2021; Kaminski, 2020) blade is
a 20.87m one-fifth scale subscale model of the
SUMRI13A design and currently under testing on the
CART 2 (Fingersh and Johnson, 2002; Bossanyi et al.,
2010) platform at the National Wind Technology Cen-
ter.

5. The SUMR?25 is designed with a rated power of 25 MW
and blade length of 169 m (Qin et al., 2020).

6. The SUMRSO0 (Yao et al., 2021b) is designed with a
rated power of 50 MW and blade length of 246.77 m.

A summary of the properties of the blades is presented in
Table 2.
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3.3 Flutter tool benchmarking

In this section, flutter speeds for a few of the blade models
discussed in the previous section are analyzed and compared
with flutter predictions from previously published studies.
To gain a more thorough understanding, both critical flutter
speeds and flutter mode shapes are analyzed. We find gen-
erally good agreement in comparing our predictions (current
study) with those of other studies (as noted in Table 3). The
WindPACT blade shows a flutter speed of 38.06 rpm with
a second flap and first torsional mode. This flutter speed is
lower than values reported by Pourazarm et al. (2016) and
Owens et al. (2013), who also report a third flap and first tor-
sion mode coupling. The flutter speed for the NREL 5 MW
blade in the current study is 20.80rpm, which is close to
the speed predicted by Pourazarm et al. (2016) but 13 %
lower compared to Hansen (2007). Although our tool pre-
dicts a different flutter mode (second flapwise mode coupled
with first torsion) than reported by Pourazarm et al. (2016)
and Hansen (2007), the flutter speeds for the SNL100-XX
series of 100 m blades (SNL100-00, SNL100-01, SNL100-
02, SNL100-03) are in very good agreement with previous
studies (Owens et al., 2013; Griffith, 2013a, b; Griffith and
Richards, 2014) and are on the conservative side. Note that
the maximum revolutions per minute for the SNL100-XX se-
ries is 7.44 rpm, and the flutter ratio (i.e., flutter speed divided
by maximum rotor revolutions per minute) is calculated for
each and placed in parentheses for the current study.

4 Analysis of flutter behavior for two- and
three-bladed rotors

We start the analysis by examining the trends in flutter pre-
dictions for the three-bladed designs following the method
described in Sect. 2. As noted in the “Introduction”, there
are two families of flutter instabilities that we examine in
this work for large-scale, highly flexible wind turbine rotors:
(1) classical flap-torsion coupled-mode flutter instability and
(2) edgewise-mode-dominated flutter instability referred to
as edgewise vibration. In this analysis, we are interested in
examining the behavior of both types of unstable modes; thus
we search for and analyze both types of modes following the
procedure introduced in Sect. 2.

4.1 Three-bladed wind turbines

In analyzing various blade cases for the three-bladed rotors,
we observed an edgewise-dominated instability occurring in
many cases before classical flap-torsion coupled-mode flut-
ter. This trend exists for most three-bladed designs. Further
examination of the damping versus revolutions per minute
plots (Fig. 3) shows that the transitions to these edgewise-
dominated instabilities are “soft” or gradual transitions to
the unstable region. Figure 4 illustrates one such edgewise
instability for the SNL100-03 blade. Similar edgewise insta-
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Table 3. The flutter speeds in revolutions per minute: current study and previous studies for a few blade models.

Blade Rated Pourazarm Hansen Owens Griffith Current study
speed etal. (2007) et al. et al.
(rpm) (2016) (2013) (2013a,b),
Griffith
and
Richards
(2014)
WindPACT 20.46 4545 - 434 - 38.06 (1.86)
NREL 5 MW 12.1 20.7 24 - - 20.80 (1.71)
SNL100-00 7.44 16.91 - 13.05 - 14.11 (1.89)
SNL100-01 7.44 - - - 13.69 13.19 (1.77)
SNL100-02 7.44 - - - 12.72 12.24 (1.65)
SNL100-03 7.44 - - - 10.41 10.44 (1.40)
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Figure 3. An illustration of a typical damping ratio versus rotor
speed plot. The transition for edgewise instability and classical flut-
ter is shown. Please note the scale for the edgewise instability damp-
ing is 1/10th that of classical flutter damping.

bilities have also been reported in previous studies and in
full-scale wind turbine stability experiments (Kallesge and
Kragh, 2016; Volk et al., 2020). As designers, we note this
is a very serious concern because the edgewise (in-plane)
aerodynamic damping is relatively very low compared to
flapwise aerodynamic (out of plane) damping, and the in-
plane modes can be excited by in-plane rotor loads including
gravitational and inertial effects. Again, classical flap-torsion
coupled-mode flutter (or simply classical flutter) is defined
as the unstable coupling of a torsional mode with a flapwise
mode. Typically, these tend to be the first torsional mode cou-
pled with the second or third flapwise modes, and Fig. 5 il-
lustrates the modal contributions of a classical flutter mode
for the SNL100-03 blade.

Expanding on the nature of each three-bladed design, we
start with the WindPACT 1.5 MW turbine as presented in Ta-
ble 4. This blade follows the trend discussed above, in which
we have an edgewise instability occurring at 37.91 rpm be-
fore classical flutter which occurs at 38.06 rpm. Though the
edgewise contribution in the first unstable mode is domi-
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Figure 4. Tlustration of first edgewise unstable mode for the
SNL100-03 blade.
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Figure 5. Illustration of first classical flutter mode for the SNL100-
03 blade.

nant, it does have a small degree of contribution from sec-
ond flapwise and first torsional modes. Next is the NREL
5MW design, which has a pure edgewise unstable mode at
20.01 rpm and classical flutter occurring at 20.08 rpm with
a flutter margin of 1.65. The NREL 5 MW is a traditionally
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Table 4. Flutter speeds for three-bladed wind turbine models. E = edgewise, F = flapwise, T = torsional. The numbers next to the mode type
indicate the mode order. The modes are arranged according to highest to lowest contribution.

Turbine No.of Blade Rated First unstable edgewise mode First classical flutter mode
blades length rpm rpm  Nature Transition rpm  Nature Transition

WindPACT 1.5 MW 3 3325 2046 3791 E2;F2;Tl Soft 38.06 F2;T1;E2 Hard
NREL 5 MW 3 61.5 12.1  20.01 E2 Soft 208 F2;T1 Hard
IEA 3.4 MW 3 65 11.75 33.8 El Soft 1557 F3; Tl Hard
SNL100-00 3 100 744 2339 El Soft 14.11 F3;E2; Tl Hard
SNL100-01 3 100 7.44 1281 E2 Soft 13.2 F2;Tl;E2 Hard
SNL100-02 3 100 744 11.63 E2 Soft 1225 F2;T1;E2 Hard
SNL100-03 3 100 7.44 9.86 E2 Soft 1045 F2;T1;E2 Hard
UTD100-04 3 100 7.44 1087 E2 Soft 12.5 F3; Tl Hard

designed blade representing the industry-standard offshore
turbine in 2009. In contrast, for the IEA 3.4 MW which has
a similar blade length as the NREL 5 MW, the flutter margin
is lower at 1.32. To note, the IEA 3.4 MW does not have an
edgewise unstable mode occurring at lower revolutions per
minute than the unstable classical flutter mode as this blade
shows an edgewise instability at 33.8 rpm and classical flutter
at 15.57 rpm. The IEA 3.4 MW blade is an optimized blade
with a lower rating; this points to a trend of highly innova-
tive, optimized blades tending to have a lower flutter margin.
This behavior is further examined for the SNL100-XX series
in the following.

Next, looking at the SNL100-XX blade series (SNL100-
00, SNL100-01, SNL100-02, and SNL100-03) we note the
trend to lower flutter speed (and lower flutter ratio) of the
100 m designs as the mass of the designs was successively re-
duced in the blade optimization sequence. Note from Table 4
that for the SNL100-XX series the flutter speeds are 14.11,
13.20, 12.25, and 10.45 rpm, respectively, for SNL100-00 to
SNL100-03. Except for the SNL100-00 blade, the SNL100-
XX series of blades has a second edgewise unstable mode
before the occurrence of classical flutter. The trend in re-
duced flutter speed is clear for the first three blades, which
have the same airfoils and aerodynamic design, and this trend
continues for the most lightweight SNL.100-03 design, which
was redesigned aerodynamically with a significantly smaller
chord using flatback airfoils. In reviewing the spanwise stiff-
ness properties, the trend to lower flapwise, edgewise, and
torsional stiffnesses is evident (Fig. 6). This is the main driver
of reduced flutter speed in the SNL100-XX series. Finally,
the UTD100-04 blade (Griffith and Chetan, 2018) which is
a redesign of the SNL100-03 model exhibits similar behav-
ior to the SNL100-03 blade but with a higher flutter speed of
12.50 rpm.

In examining the stiffness distributions of the SNL100-XX
series of blades certain patterns emerge that can help explain
the reductions in flutter speed. First, we can notice the signif-
icantly higher edgewise stiffness of the SNL100-00 blade. As
discussed earlier the SNL100-00 blade is the only one in the
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SNL100-XX series that does not have an edgewise unstable
mode before classical flutter. Next, looking at the flapwise
and torsional stiffness distributions of the blades we can ob-
serve the progressive reductions along the generations in this
design series. This correlates directly to the decrease in the
flutter speeds that were computed for the blades.

In addition to the stiffness distribution along the span,
the chordwise locations of the elastic axis (EA), mass cen-
ter (CG), and the aerodynamic center (AC) of the blade con-
tribute to the flutter performance of the blade. These results
are included in the Appendix in Figs. A1-A8 which show the
various axes for the three-bladed designs. Typically, in blade
design, the elastic axis is adjusted so that it aligns with the
reference or pitch axis of the blade. Three-bladed wind tur-
bine blades tend to have a lower chord value in comparison to
two-bladed designs to maintain the solidity of the rotor. This
in turn contributes to lower stiffness for three-bladed designs,
as well as larger margins between the EA and CG locations
in the chordwise direction.

4.2 Two-bladed wind turbines

We now turn our attention to two-bladed rotor designs. In
looking at aero-structure-optimized two-bladed wind turbine
designs (e.g., SUMR13A or SUMR13C) we can observe that
they tend to have much larger chords versus aero-structure-
optimized three-bladed rotors (e.g., SNL100-03) as shown
in Tables 1 and 2. This results from the solidity of the two-
and three-bladed rotors being similar, thus requiring larger
chords for two-bladed rotors. Table 5 shows a comparison of
unstable edgewise and classical flutter modes for a series of
two-bladed designs. In each case, the contributions of the dif-
ferent modes are described, as well as the nature of the transi-
tion to the unstable mode. From Table 5, we also observe that
the flutter revolutions per minute decrease with the increase
in the blade lengths. An interesting finding is that, unlike the
three-bladed designs, the two-bladed designs do not exhibit
an edgewise instability at revolutions per minute lower than
the revolutions per minute of the classical flutter mode. This
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Figure 6. Flapwise stiffness, edgewise stiffness, and mass properties for the SNL100-XX series of blades.

Table 5. Flutter speeds for two-bladed wind turbine models. E = edgewise, F = flapwise, T = torsional. The numbers next to the mode type
indicate the mode order. The modes are arranged according to highest to lowest contribution.

Turbine No.of Blade Rated First unstable edgewise mode First classical flutter mode
blades  length rpm rpm Nature  Transition rpm  Nature Transition
SUMR-D 2 209 2196 585 E2;F3 Soft 5398 TI1;F2 Hard
SUMRI13A 2 104.35 9.55 162 E2 Soft 104 TI1;F2;E2 Hard
SUMRI13B 2 123 799 104 E2 Soft 823 F3; Tl Hard
SUMR13C 2 143.45 7 122 E2 Soft 82 F3; Tl Hard
SUMR25 2 169 5.9 9 E2 Soft 6.33 F3;Tl Hard
SUMRS50 2 250 395 408 EI Soft 4.08 F3;T1 Soft

is primarily due to two-bladed designs having higher edge-
wise stiffness than the three-bladed designs, which is largely
an artifact of the larger chord. The SUMR-D blade, being the
shortest of the two-bladed designs studied, exhibits a classi-
cal flutter instability at 53.98 rpm. Next, the blade designs of
the SUMR13 series are progressively longer and exhibit a de-
creasing trend in the flutter speeds. A lower torsional stiffness
is generally observed in the SUMR13B blade and can be re-
lated to the lower revolutions per minute classical flutter mar-
gin observed. This shows the significance of the flapwise and
torsional stiffness on the flutter margin of the blades. Further,
we see much lower revolutions per minute for the edgewise
instability in SUMR13B versus SUMR13A and SUMR13C,
which is due to the much lower edgewise stiffness in the most
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slender chord SUMR13B design. The edgewise stiffness of
the SUMRI13C blade is significantly higher than that of the
other blades because the SUMRI13C blade design is driven
by edgewise loads (Yao et al., 2021a), and the design was
approached with both larger chord and more usage of trail-
ing edge (TE) reinforcement, which also helps to increase
the torsional stiffness of the blade (Fig. 7). The SUMR25
blades also follow similar trends to the 13 MW designs in
which the flutter instabilities occur earlier and have a flap-
wise and torsional contribution. As for the SUMRSO0 blade
design, the edgewise instability and the first classical flutter
mode occur at the same speed of 4.08 rpm. The lower stiff-
ness of the blade in relation to its size contributes to this be-
havior of the two instability types coinciding. It is to be noted
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Figure 7. Flapwise stiffness, edgewise stiffness, and mass properties for the SUMR13 series of blades.

that the SUMRSO0 blade analyzed in this study was designed
to meet most structural requirements, including deflection,
max strain, and fatigue, and the requirements on buckling
and flutter were marginally satisfied; thus some additional
design work could be performed. Looking across most of the
blades, the classical flutter modes for the two-bladed designs
are primarily flapwise and torsion modes as shown in Table 5.
There exists some degree of edgewise contribution to the flut-
ter mode shapes, but it is comparatively lower than that of the
three-bladed designs due to the higher edgewise stiffness ob-
served in the two-bladed designs. Looking at the chordwise
centers for these turbines (shown in Figs. A9—A14), it can
be observed that two-bladed turbines follow a similar trend
to the three-bladed designs in that the higher margins be-
tween EA and CG tend to decrease the flutter speeds.

4.3 Comparison of flutter behavior for two- and
three-bladed rotors

Based on the results of the prior sections (Sect. 4.1 and 4.2),
we can draw some conclusions from the studies of flutter be-
havior in both three-bladed and two-bladed rotors. In sum-
mary, we note the following: (1) flutter margins of wind tur-
bine blades tend to decrease with the increase in blade length,
(2) more innovative, optimized blades like the SNL.100-03,
IEA 3.4MW, and SUMRI3A tend to have a lower flut-
ter margin, (3) three-bladed designs for large wind turbine
blades tend to have an unstable edgewise mode that occurs
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before the onset of classical flap-torsion coupled-mode flut-
ter, (4) two-bladed designs show the opposite trend and tend
to have an unstable classical flap-torsion coupled-mode flut-
ter at lower revolutions per minute with an edgewise insta-
bility occurring at higher revolutions per minute, and (5) the
margins between the chordwise center of gravity, elastic axis,
and aerodynamic center are important design factors for the
flutter speed for the turbine for both two- and three-bladed
rotors.

Figure 8 summarizes the various blade designs analyzed in
this study including both two- and three-bladed designs. By
observing the classical flutter and edgewise instability mar-
gins as a function of the blade length, we see the asymp-
totic nature of the margins that decreases with the increase
in blade length but avoid reaching the value of 1. Two- and
three-bladed designs exhibit this asymptotic nature of mar-
gins as seen in Fig. 8. This asymptotic nature of flutter mar-
gins is primarily due to the decrease in rated operating speeds
of the turbine with the increase in blade length, and the in-
herent increase in structural stiffness needed to withstand
the loads as the rotors get larger. Similar results were also
observed by Kelley and Paquette (2020) in which a scaling
study for large blade designs was conducted and showed that
the flutter speeds are asymptotic with blade length. But this
is the first study that observes the asymptotic nature of these
two- and three-bladed rotors using a large set of detailed
structural designs with the majority meeting all requirements
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three-bladed turbines, and the red markers show the two-bladed downwind SUMR series of blades.

of international design standards for strength, deflection, fa-
tigue, buckling, and dynamic stability, while a couple designs
meet the majority of these requirements. Next, looking at
the unstable edgewise modes, we can observe a correlation
with the edgewise stiffness of the blades. For most of the
three-bladed designs, the edgewise instabilities are below the
classical flutter modes, and for the two-bladed designs, they
are higher than the classical flutter modes. We can also ob-
serve that they follow a similar asymptotic trend to the clas-
sical flutter modes. It is important to note that the observed
classical flutter modes are “hard” flutter modes, in which the
change in the damping ratio into the unstable region is sharp
or sudden, whereas the edgewise instabilities tend to have a
“soft” or shallow transition into the unstable region.

5 Blade redesign to improve flutter margin

As shown in the prior section, flutter instability of both types
(edgewise vibration and classical coupled-mode flutter) are
a concern for highly flexible, large-scale rotors, especially
beyond 100 m in length. A key question we examine now
is how to address or mitigate flutter in the wind turbine de-
sign process. The fundamental list of options or approaches
for flutter mitigation is three-fold: (1) pursue aerodynamic
redesign solutions by changing, for example, the airfoils or
chord design, (2) pursue a new control strategy such as flutter
detection and flutter suppression, or (3) pursue a structural re-
design solution to adjust blade mass, stiffness, and chordwise
CG properties. Of course, the most desirable design solution
is to have a wind turbine blade design that has a higher, im-
proved flutter margin while constraining blade mass and re-
ducing system cost. In this section, we investigate the third
option, which is a passive design solution to mitigate flut-
ter in the structural design process. But what is the best ap-
proach to improve flutter margins through a blade structural
redesign? To answer this question, a design study is carried
out to investigate the impact of material placement and selec-
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tion on the flutter margin using a tool called AutoNuMAD.
The effect of the material placements on the flutter speed is
analyzed to better understand how blades can be developed
to have higher flutter margins and also give a precursor to
implementing structural optimization.

5.1 AutoNuMAD and design space exploration

AutoNuMAD (Chetan et al., 2019a) is a wind turbine blade
design tool developed at the University of Texas at Dallas
and is based on the NuMAD framework created by Sandia
National Labs (Berg and Resor, 2012). This tool simplifies
the process of wind turbine blade design by allowing the user
to define design variables and to manage all the detailed and
complicated blade design information including airfoil ge-
ometry, the variation in chord and twist, and detailed com-
posite material layups. AutoNuMAD offers built-in features
to perform additional analysis, including a bill of materials,
manufacturing cost analysis, modal analysis, Campbell dia-
grams, and flutter prediction. Additionally, the tool allows the
user to run analysis codes like OpenFAST (Jonkman, 2020),
MLife (Hayman and Buhl, 2012), and MExtremes (Hayman,
2015) within the framework to be able to use the desired out-
puts in an optimization loop. Figure 9 covers all the aspects
of blade design and optimization under a unified framework
— all features that are essential for the design of blades. Au-
toNuMAD leverages the well-established optimizers from
the MATLAB Optimization and Global Optimization tool-
boxes. The flexibility to vary the blade structural parameters
allows the user-defined Monte Carlo sweeps to explore a de-
sign space or find a stable starting point for further optimiza-
tion. In this work, AutoNuMAD is used to sweep the de-
sign space for the wind turbine blade structure. The compos-
ite layups are varied, and the resulting beam properties are
extracted using PreComp (Bir, 2006). The blade mass and
flutter analysis is carried out using the respective modules in
AutoNuMAD.

https://doi.org/10.5194/wes-7-1731-2022



M. Chetan et al.: Flutter behavior of highly flexible blades for two- and three-bladed wind turbines 1741

BLADE OPTIMIZATION

AutoNuMAD
Monte Carlo Sweep
Optimization

tAutoNuMAD

"

—

BLADE MODELING

g:Elastodyn Blade File
BeamDyn Blade File

Figure 9. AutoNuMAD framework.

5.2 Structural design mitigation: trends for improving
flutter speeds of wind turbine blades

In this section, a trends study is carried out on the three-
bladed SNL100-03 (Griffith and Richards, 2014) design and
the two-bladed SUMR13C (Zalkind et al., 2019; Yao et al.,
2021a) design. The flutter mitigation solution via structural
design is approached by varying the leading edge (LE) and
trailing edge (TE) reinforcement in the blade structural de-
sign (as illustrated in the cross-section of Fig. 10). The choice
of LE and TE reinforcement to address the flutter speed is a
judicious choice as the placement of the LE and TE in the
cross-sectional geometry contributes primarily to the edge-
wise stiffness, torsional stiffness, chordwise center of mass,
and chordwise elastic center. As observed in previous sec-
tions all these properties make a strong contribution to the
flutter margin of the blade, and hence the LE and TE rein-
forcement plays a role in determining the flutter margin of
the blade.

We begin by examining the SNL100-03 blade for a three-
bladed rotor. In this study, we vary the LE and TE reinforce-
ments to study the ideal usage of these layers to influence
not only the flutter speed but also the overall blade mass,
blade cost, and blade stiffness properties. Thus, we vary the
LE and TE reinforcement by scaling the existing number of
plies by a scaling factor. For the LE reinforcement, because
the SNL100-03 blade does not have LE reinforcement, we
define 12 layers of LE reinforcement as the maximum of
the range to be consistent with the range of the number of
layers of TE reinforcement for this study. Figure 11 shows
us contour plots of the various resulting flutter properties

https://doi.org/10.5194/wes-7-1731-2022

DETAILED DESIGN

Blade Layup
CLT Analysis
Bill of Materials

~ STATIC ANALYSIS

ANSYS Shell Gen
Buckling
Blade FEM Analysis

DYNAMIC STABILITY

Flutter Analysis
Campbell Plots

Leading

Edge Trailing

I srarCap
ZZZ2Z core
7774 ShearWeb
I Reinforcement
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for the SNL100-03 blade. Note the red star which indicates
the SNL100-03 blade, which is the baseline for this LE and
TE reinforcement sweep study. From these plots we can ob-
serve that (1) flapwise stiffness is more sensitive to variations
in LE than TE reinforcement, (2) the torsional stiffness is also
more sensitive to variation in LE at higher TE layers, and it
is more sensitive to variation in TE at higher values of LE,
(3) flapwise frequencies are more sensitive to the variation in
LE layers than TE, (4) in terms of classical flutter speed, it is
most sensitive to variations in LE than TE reinforcement; the
sensitivities equalize at higher values of TE reinforcement,
(5) the sensitivity of flutter speed to TE at higher TE val-
ues is primarily driven by stiffness increases, (6) the increase
in sensitivity of flutter speed to LE at lower TE can be ex-
plained as being driven by the CG location in addition to the
stiffness effect, and (7) the maxima for the flapwise and tor-
sional stiffness occur at higher LE and TE, but for the flutter
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03).

margin, the maxima occur at lower TE and higher LE rein-
forcement. From these observations of the trends study we
note the benefits of additional LE layers to increase the flut-
ter speed versus the TE layers. Similarly, these trends show
that we can potentially have blade designs that are lighter
than the baseline structure but have a higher flutter speed.
Next, we examine a structural redesign for a two-bladed
rotor for the SUMRI13C blade. Here, the number of layers
for both TE and LE is scaled by a factor from 0 to 2 from
the baseline design having scale factors of 1. The resulting
contours are shown in Fig. 12. A few observations are noted
from these results as follows: (1) flapwise and torsional stiff-
ness is more sensitive to variations in TE than LE, (2) for
a lower number of TE layers and higher number of LE lay-
ers, the classical flutter speed is sensitive to variations in TE,
(3) in general, the flutter speed is more sensitive to the vari-
ation in TE; this is more driven by the change in the CG
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than the increase in stiffness as evident by the Fig. 12, (4) the
first torsional frequency of the blade remains relatively the
same across the variation in TE and LE, and (5) from under-
standing the design space, we can increase flutter speed for
the baseline blade by increasing the LE reinforcement and
reducing or not modifying the TE layers. In contrast to the
trends for the SNL100-03 blade (Fig. 11), the SUMRI13C is
more sensitive to changes in TE. This is primarily due to the
use of carbon in the SUMR13C, whereas glass fiber is used
in the SNL100-03 design.

From analyzing the design space for both the two- and
three-bladed designs we understand that the design space for
each blade is important as the sensitivities tend to be unique.
The design space provides a design direction that could lead
to an optimal blade design that has higher flutter speeds. The
blades enumerated in this LE and TE parameter study are not
designed to the same constraints as the nominal design; they
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Figure 12. LE and TE sweep for the two-bladed SUMR13 blade. The red star in the plots indicates the baseline blade design (SUMR13C).

provide an insight into the inherent trends in flutter margin
that arise from modifying the blade LE and TE reinforce-
ments. A next step to this work, after the potential for miti-
gation of flutter instability via structural redesign modifica-
tion has been successfully demonstrated, would be to apply
these new flutter design strategies while satisfying require-
ments of international design standards. It is important to
identify the flutter instability within the design or optimiza-
tion framework given the prominence of flutter in the design
of highly flexible, large-scale rotors. This is especially true
when edgewise instabilities as seen in the three-bladed de-
signs are present. Additionally, if the modes are not correctly
identified, the jumps in the different unstable modes could
lead to discontinuities for gradient-based optimization sys-
tems. To overcome this, techniques like modal assurance cri-
teria (MAC) and other reliable mode tracking methods must
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be implemented (McDonnell and Ning, 2021; Chen and Grif-
fith, 2021).

6 Concluding remarks and future work

From the study of flutter in wind turbine blades, a pattern
emerges of longer, highly flexible blades having lower per
revolution flutter speeds. There is a need to better understand
the flutter behavior of large wind turbine rotors, including
new configurations such as two-bladed rotors, and there is
a need to optimize rotor designs to avoid flutter while still
meeting design performance and cost constraints. This is the
focus of this work. Toward these goals, the main contribu-
tions of this paper are (1) a comprehensive study of the flutter
behavior (e.g., flutter speeds, flutter mode shapes) for a series
of two-bladed wind turbine rotors, (2) a comparison of flut-
ter behavior for both two- and three-bladed rotors including
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an examination of classical coupled-mode flutter and edge-
wise vibration, (3) a comparison of flutter behavior including
an examination of classical coupled-mode flutter and edge-
wise vibration, (4) the observation of the asymptotic nature
of wind turbine flutter speeds with respect to blade length,
and (5) a trend study of LE and TE reinforcement to mitigate
flutter through the structural design of material choice and
material placement.

Firstly, we performed a comprehensive study of the trends
in flutter characteristics as they vary with structural design
choices (materials, geometry) for a series of wind turbine
blades. The lowest revolutions per minute unstable modes
in three-bladed turbine blades tend to be edgewise in nature,
which is then followed by the classical flutter modes which
are flap-torsion driven. These are primarily observed in three-
bladed designs due to their lower edgewise stiffness result-
ing from their slender nature. For the wide range of blades
studied, the results show that classical flutter (flap-torsion
coupled-mode) is the first unstable mode for two-bladed de-
signs, whereas for three-bladed designs edgewise instability
occurs first. Additionally, in examining a large number of
wind turbine blades we observe an asymptotic nature of the
flutter margins with respect to the size of the wind turbine
blades. This points to requiring flutter to be actively consid-
ered as a constraint in the design of wind turbines and wind
turbine blades.

Finally, the trends showed the need to increase flutter mar-
gins in large blade design. Thus, a detailed trends study was
performed on a three-bladed SNL100-03 blade and a two-
bladed SUMR13C blade to understand the effects of placing
LE and TE reinforcement along the blade. The results show
how a careful combination of LE and TE reinforcement can
result in significant increases in flutter margins compared to
the baseline blade while maintaining or reducing the blade
mass. The increases in flutter margins are primarily observed
when the flutter modes that interact are of higher frequency.
For the SNL100-03 blade, we observe that the flutter speeds
are more sensitive to the leading edge layers, whereas for the
SUMR13C the flutter speeds are more sensitive to the trailing
edge reinforcements. The difference between the two trends
is driven by the SNL100-03 having LE reinforcements made
of glass fiber, but the TE reinforcements for the SUMRI13C
are made of significantly stiffer carbon fiber. In both cases,
we observe that it is possible to increase the flutter margins
while maintaining or reducing the mass of the blade.
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A future extension of this work should include a compari-
son of these flutter predictions with time-domain aeroelastic
simulation codes capable of modeling key full turbine dy-
namics. The inclusion of dynamics related to other flexible
turbine components like turbine shaft, hub, teeter joint (for
two-bladed rotors), and tower becomes important to capture
potentially contributing instabilities like whirl modes and
tower interactions to name a couple. Regarding the flutter
prediction tool, we found that our tool is in very good agree-
ment with other works, which we determined from a bench-
marking study. Additionally, in this study we observed that
the LE and TE reinforcements have significant impact on the
flutter margin of the blades studied. However, other struc-
tural components of the blades like spar cap and skin could
be examined as options (design variables) for the design of
blades to mitigate flutter through means of structural design.
Further, we envision the design trends study to be used as a
basis to optimize the turbine designs. This can be in the form
of a constraint when optimizing the turbine cost or optimiz-
ing the blade for flutter instability as a part of a co-design
process. It is to be noted that for gradient-based optimization
methods the modes have to be tracked carefully due to the
nature of how flutter modes switch with the changes in the
blade design.
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Appendix A: Two- and three-bladed turbine blade
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Figure A1. Planform for the WindPACT 1.5 MW turbine blade.
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Figure A2. Planform for the IEA 3.4 MW turbine blade.
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Figure A3. Planform for the NREL 5 MW turbine blade.
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Figure A6. Planform for the SNL100-02 turbine blade.
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Figure A8. Planform for the UTD100-04 turbine blade.

2 T T T T
—H&— Elastic Axis
15F —O— Mass Center |~
— = =—Semi Chord
—¥— Aero Center | |

N

I
3

Edgewise Axes Location (m)

0 5 10 15 20 25
Span Location (m)

Figure A9. Planform for the SUMR-D turbine blade.
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Figure A10. Planform for the SUMR13A turbine blade.
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Figure A12. Planform for the SUMR13C turbine blade.
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Figure A14. Planform for the SUMRS50 turbine blade.
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