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Abstract. Substructures of offshore wind turbines are becoming older and beginning to reach their design life-
times. Hence, lifetime extensions for offshore wind turbines are becoming not only an interesting research topic
but also a relevant option for industry. To make well-founded decisions on possible lifetime extensions, pre-
cise fatigue damage predictions are required. In contrast to the design phase, fatigue damage predictions can be
based not only on aeroelastic simulations but also on strain measurements. Nonetheless, strain-measurement-
based fatigue damage assessments for lifetime extensions have been rarely conducted so far. Simulation-based
approaches are much more common, although current standards explicitly recommend the use of measurement-
based approaches as well. For measurement-based approaches, the main challenge is that strain data are limited.
This means that measurements are only available for a limited period and only at some specific hotspot loca-
tions. Hence, spatial and temporal extrapolations are required. Available procedures are not yet standardised and
in most cases not validated. This work focusses on extrapolations in time. Several methods for the extrapolation
of fatigue damage are assessed. The methods are intended to extrapolate fatigue damage calculated for a limited
time period using strain measurement data to a longer time period or another time period, where no such data
are available. This could be, for example, a future period, a period prior to the installation of strain gauges or a
period after some sensors have failed. The methods are validated using several years of strain measurement data
from the German offshore wind farm Alpha Ventus. The performance and user-friendliness of the various meth-
ods are compared. It is shown that fatigue damage can be predicted accurately and reliably for periods where no
strain data are available. Best results are achieved if wind speed correlations are taken into account by applying
a binning approach and if a least some winter months of strain data are available.

1 Introduction

Although offshore wind energy is considered a relatively
young industry, the oldest offshore wind turbines (OWTs)
have been operating for more than 20 years. Some OWTs
have even already been decommissioned (Topham and
McMillan, 2017). In the upcoming years, many OWTs will
reach their predicted design lifetimes. This leads to the ques-
tion of what to do with these OWTs: continue to run them
with a lifetime extension; conduct a repowering, i.e. replace
the old turbine with a new one; or just decommission them?

This question is not only an economical and technical one but
also an environmental and political issue. Since the substruc-
tures of many old OWTs are expected to be overdesigned,
lifetime extensions are a viable option for them. Every year
of additional operation beyond the expected lifetime can be
fairly profitable (Rubert et al., 2019), as all debts, etc. are al-
ready paid back. In addition, longer turbine service lives can
also save resources and accelerate the expansion of renew-
able energies, since less wind turbines have to be decommis-
sioned in the upcoming years. Politically, lifetime extensions
are intended. For example, in Germany, recently a draft for
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an adaption of current laws has been published which in-
creases the maximum lifetime extension for OWTs from 5
to 10 years (BMWK, 2022).

To enable safe and profitable lifetime extensions, the re-
maining useful lifetimes of the OWTs need to be determined.
For this purpose, the first international guidelines for life-
time extensions for wind turbines have already been intro-
duced (DNVGL, 2016). These propose lifetime extensions
based on a combination of inspections and renewed fatigue
damage simulations using an updated design model. This
updated simulation model uses, for example, the measured
wind conditions (i.e. SCADA data; supervisory control and
data acquisition) during the entire lifetime instead of the
wind conditions assumed during the design phase. Hence,
wind conditions can be represented more realistically in the
simulation. This leads to a better – in most cases less con-
servative – lifetime estimation. Such simulation-based fa-
tigue reassessments of OWT substructures are investigated,
for example, by Ziegler and Muskulus (2016a, b), Bouty
et al. (2017), Natarajan and Bergami (2020), Saathoff and
Rosemeier (2020), or Nielsen et al. (2021). Nielsen et al.
(2021) even include economic effects in their risk-informed,
simulation-based fatigue reassessment.

However, frequently, not only are the wind conditions
known from SCADA data, but also additional data are avail-
able. For some OWTs, strain gauges at different relevant
positions of the substructure measure the real load condi-
tions the OWT is exposed to (Weijtjens et al., 2016). If these
load conditions are known from measurements, a strain-
measurement-based fatigue damage assessment can be con-
ducted. It can enhance or even replace the simulation-based
assessment. On the one hand, this has the advantage that the
uncertainty of the simulation model does not have to be taken
into account. On the other hand, measurement uncertainties
become relevant. In contrast to simulation-based remaining-
lifetime estimations – which have become quite popular in
recent years – strain-measurement-based remaining-lifetime
estimations for OWTs have rarely been conducted so far, al-
though guidelines (DNVGL, 2016) recommend the use of
measured load data if available.

Independent of the context of lifetime extensions, the
first fatigue damage estimations based on measured strain
data were conducted in the 1990s (Seifert, 1995; Söker,
1996). Due to the increasing relevance of lifetime extensions,
measurement-based fatigue damage calculations have again
become a research focus, as they are a valuable addition to
simulation-based analyses. However, an important obstacle
for such analyses is the limited strain data (Petrovska et al.,
2020). First, strain data have normally not been collected for
the entire lifetime of the turbine but only for a limited period
(Louraux and Brühwiler, 2016; Hübler et al., 2018). Strain
gauges frequently fail after some time and are not replaced
or have not been applied directly during the construction but
in a later project phase. That is why temporal extrapolation
methods are required to estimate fatigue damage for periods

where no strain data are available or even for future peri-
ods. Second, strain gauges are only placed at a few important
positions (e.g. hotspots) on the turbine or substructure. For
all other positions, spatial extrapolations are required. This
is why strain-measurement-based approaches can be divided
into three method types: no extrapolation, spatial extrapola-
tion and temporal extrapolation.

Early approaches by Seifert (1995) and Söker (1996) did
not apply any extrapolation approaches. They focussed on
the fatigue load determination for a directly measured data
set. There are also some more recent approaches (Smith et
al., 2014; Marsh, 2016; Petrovska et al., 2020) that do not ap-
ply any extrapolations. They concentrate instead on correla-
tions with environmental and operational conditions (EOCs)
and the uncertainty of the fatigue damage calculation. Cor-
relations with EOCs are considered by applying binning ap-
proaches. The uncertainty is determined using a statistical
resampling technique, i.e. bootstrapping.

Spatial extrapolations can be extrapolations either to other
positions on the same turbine or even to other turbines in
the same wind farm. The former is done, for example, by
Ziegler et al. (2017, 2019), Maes et al. (2016), Iliopoulos et
al. (2017) or Henkel et al. (2020). Ziegler et al. (2017, 2019)
use aerohydroelastic simulations and a k-nearest-neighbour
regression algorithm to extrapolate to other positions on the
same turbine. Maes et al. (2016), Iliopoulos et al. (2017) and
Henkel et al. (2020) conduct their extrapolations via modal
expansion. Extrapolations to other turbines within a wind
farm are conducted by Weijtjens et al. (2016), Noppe et al.
(2020) and d N Santos et al. (2021) by applying so-called
“fleet leader concepts”.

Finally, extrapolations in time – being the focus of this
work – are analysed by Louraux and Brühwiler (2016) and
Hübler et al. (2018). Louraux and Brühwiler (2016) calcu-
lated a fatigue lifetime by applying a straightforward linear
extrapolation in time. Moreover, for future work, they pro-
posed the assessment of a binning approach for two EOCs
wind speed and wind direction – similar to the approach of
Marsh (2016) – to increase the accuracy of the extrapolation.
Hübler et al. (2018) took up the recommendation of Louraux
and Brühwiler (2016). They assessed a strain-measurement-
based fatigue damage extrapolation approach that makes use
of correlations between fatigue damage and EOCs. More-
over, the uncertainty of the extrapolation is estimated by ap-
plying bootstrapping similarly to the approaches of Marsh
(2016) or Petrovska et al. (2020). Mai et al. (2019) combined
the classical binning approach with more advanced proba-
bilistic elements. They determine bin probabilities based on
joint distributions of environmental conditions that are up-
dated using measurement data. Moreover, in each bin, stress-
range distributions representing the fatigue damage are fit-
ted instead of using mean damage values in each bin. With
this approach, on the one hand, Mai et al. (2019) reduce the
amount of information that is lost due to the averaging in
each bin. On the other hand, especially for a limited amount
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of strain data, fitting distributions in all bins adds additional
statistical uncertainty. Nonetheless, the approach of Mai et al.
(2019) has already been applied successfully in the context
of determining the value of data for fatigue analyses (Long
et al., 2020).

Hence, there are first approaches for temporal extrapola-
tions of strain-measurement-based fatigue estimations. How-
ever, up to now, neither are the available procedures com-
prehensively validated nor is there a consensus regarding
the most suitable methods. The approach of Hübler et al.
(2018), which correlates fatigue damage with EOCs, shows
reasonable results. However, a comprehensive comparison
of it with machine-learning methods is missing. Machine-
learning approaches are known not only from simulation-
based design (Dimitrov et al., 2018; Müller et al., 2021), life-
time extensions (Dimitrov and Natarajan, 2019; Natarajan
and Bergami, 2020) and spatial extrapolations (d N Santos
et al., 2021) but also in the context of load estimation based
on measurement data (Movsessian et al., 2021; Smolka and
Cheng, 2013; Cosack and Kühn, 2006; Noppe et al., 2018;
Seifert et al., 2017). Hence, such a comparison is overdue.
Moreover, many assumptions and decisions made by Hübler
et al. (2018) are only based on expert knowledge. For exam-
ple, so far, it has not been conclusively analysed which EOCs
should be included in the correlation approach (Hübler et al.,
2018; Marsh, 2016; Louraux and Brühwiler, 2016; Petrovska
et al., 2020). Therefore, in this work, several approaches for
strain-measurement-based fatigue damage extrapolations in
time are analysed in detail. They are compared to each other
and validated using real offshore measurement data from the
German wind farm Alpha Ventus. The three method types
investigated are simple extrapolations, binning approaches
for EOCs and machine-learning approaches. The probabilis-
tic approach of Mai et al. (2019) is not analysed in detail in
order to not overload this work. For binning approaches, fur-
ther investigations regarding the most suitable bin types and
sizes are conducted. Finally, the required amount of data is
analysed.

Extrapolation approaches always feature some uncer-
tainty. Therefore, for all methods considered, not only a de-
terministic extrapolation but also a probabilistic one is con-
ducted. This enables an estimation of their uncertainty.

The rest of this work is structured as follows. In the next
section, the underlying measurements are explained. This in-
cludes a description of the measurement setup as well as the
presentation of some raw data. Moreover, the applied data
processing is illustrated. In Sect. 3, all methods for the fa-
tigue damage extrapolation are explained. This includes the
standardised short-term damage calculation as well as the ex-
trapolation in time – being the focus of this work. In Sect. 4,
results of the comparison and validation are presented. Fi-
nally, in Sect. 5, benefits and limitations of the current work
are summarised, and in Sect. 6, an outlook is given.

Figure 1. Farm layout of Alpha Ventus with the considered AV-07
turbine marked (adapted from OpenStreetMap).

2 Measurements

2.1 Measurement setup

In this work, offshore data from a measurement campaign
in the German Alpha Ventus wind farm are utilised. The
raw data are freely available for research purposes after
signing an agreement concerning the data usage (https://
www.rave-offshore.de/en/data.html, last access: 19 Septem-
ber 2022). Alpha Ventus consists of twelve 5 MW turbines:
six Senvion 5M turbines mounted on jackets and six Ad-
wen 5-116 turbines mounted on tripods (see Fig. 1). The
wind farm is located about 45 km north of the German island
Borkum (see Fig. 2). It has water depths of about 30 m.

Alpha Ventus was commissioned in April 2010. The mea-
surement campaign started in 2011. Since then, not only have
SCADA data been collected, but environmental conditions,
strains, accelerations, etc. have also been measured as well.
Further environmental data are available from the met mast
FINO1 (https://www.fino1.de/en/, last access: 19 Septem-
ber 2022). FINO1 is located next to the Alpha Ventus wind
farm (compare Fig. 1). This work focusses on the AV-07 tur-
bine (see Table 1). It is marked in Fig. 1. This turbine is
equipped with more than 100 sensors on the rotor–nacelle as-
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Figure 2. Location of Alpha Ventus and the met mast FINO1 (adapted from OpenStreetMap).

Table 1. Properties of the investigated AV-07 turbine (Bartsch,
2020).

Type Adwen 5-116 turbine

Substructure Tripod
Rotor diameter 116 m
Hub height 90 m
Water depth approx. 30 m
Rated power 5 MW
Rotor speed 5.9–14.8 rpm
Rated wind speed 12.5 ms−1

Cut-in wind speed 3.5 ms−1

Cut-out wind speed 25 ms−1

sembly, the tower, and the substructure above and below sea
level. Data concerning environmental conditions are avail-
able as statistical values – i.e. mean values, standard devia-
tions, maxima and minima – at 10 min intervals. Strain data
are provided as high-resolution (50 Hz) time series for sev-
eral locations (see Fig. 3). As an example, this work uses
the strain data from one location on the tower, as marked in
Fig. 3. At this location, four strain gauges are placed around
the circumference of the tower (see Fig. 4).

Although measurement data are, in general, available for
time periods since 2011, for many periods, the data qual-
ity is not sufficient for fatigue damage extrapolations. Many
sensors have experienced defects, leading to missing or er-
roneous data. For fatigue extrapolations, it is important that
data are recorded with a high availability for a continuous
period of at least 1 year to cover seasonal effects properly.
Since data of higher quality are available for the sensors on
the tower compared to sensors on the substructure, this work
only considers data from the previously mentioned strain

Figure 3. Illustration of the AV-07 turbine (not to scale) and some
of the installed sensors according to the sensor documentation
(IWES, 2019).

gauges on the tower. Moreover, only the data from 3 specific
years have a sufficient quality to be taken into account: 1 Jan-
uary to 31 December 2011 and 1 October 2015 to 30 Septem-
ber 2017. For these 3 years, raw data are post-processed as
described in the next section before calculating fatigue dam-
age.

Wind Energ. Sci., 7, 1919–1940, 2022 https://doi.org/10.5194/wes-7-1919-2022



C. Hübler and R. Rolfes: Probabilistic fatigue damage extrapolation based on strain measurements 1923

Figure 4. Positions of the strain gauges around the circumference
of the tower.

Figure 5. Example strain data before post-processing, which in-
clude clearly erroneous measurements, i.e. physically unrealistic
peak without any oscillation afterwards.

2.2 Raw data and data processing

For this work, three types of data are required: strain data,
data regarding environmental conditions and data concerning
operational conditions.

Strains are measured on the tower of the AV-07 turbine
(see Fig. 3). Four temperature-compensated strain gauges are
positioned around the circumference of the tower (see Fig. 4).
The raw data were post-processed using semi-automatic
methods to exclude, for example, erroneous data as shown
in Fig. 5. Zero values and unrealistically high and low val-
ues are excluded automatically. Some additional values are
excluded manually after visual inspections of the data. Pro-
found post-processing and full sensor calibrations were not
performed. The reasons for this are, first, in an industry con-
text, time-consuming manual post-processing is prohibitive.
Second, due to the long measurement period of approxi-
mately 7 years, the identification of all sensor drifts is not
straightforward. And lastly and most importantly, it is a com-
mon assumption to neglect the mean value of the signals for
the fatigue damage calculation (cf. Sect. 3.1). Surely, this as-
sumption is a simplification which could be resolved, for ex-
ample, by applying a so-called Goodman correction (Good-
man, 1914). However, for this work, not taking into account
the mean values is a valid assumption. Some example data
after the post-processing can be seen in Fig. 6.

Operational conditions are taken from SCADA data from
the AV-07 turbine. Environmental conditions are, in most
cases, taken from the FINO1 met mast. Only if no data

Figure 6. Example strain data. A wind direction of approximately
235◦ leads to wind-induced oscillations for the sensors at 225◦ (ten-
sion) and 45◦ (compression) and oscillations in its eigenfrequencies
in side-to-side direction (sensors at 135 and 315◦).

are available from FINO1, are the wind conditions included
in the SCADA data from the AV-07 turbine taken into ac-
count. FINO1 data are available for approximately 95 % of
all 10 min intervals. Another 3 % of the intervals are filled
up using SCADA data, yielding a data availability for the
environmental conditions of above 98 %. The reason for us-
ing FINO1 data whenever available is that they are of higher
quality. There are no or at least fewer disturbance effects,
e.g. no increased turbulence or reduced wind speed caused by
the rotor. Still, all extrapolation methods applied in this work
could also be used if no met mast data, i.e. only SCADA
data, are available (see Appendix A for an exemplary com-
parison of met mast plus SCADA data and pure SCADA data
using the example of the binning approach). For this work,
six environmental conditions, namely wind speed, wind di-
rection, turbulence intensity, significant wave height, wave
peak period and wave direction, are considered. The selec-
tion of these six environmental conditions was done based
on the available data and results of previous sensitivity anal-
yses, e.g. Hübler et al. (2017). In addition, the turbine sta-
tus – recorded by the SCADA system, e.g. normal opera-
tion, start-up and emergency stop – is taken into account.
Classical operational conditions like power output or pitch
angle are partly covered by using the turbine status. For all
EOCs, only statistical values, e.g. mean values of 10 min in-
tervals, are available. At FINO1, wind conditions are mea-
sured at 90 m above mean sea level. The wind speed is mea-
sured using cup anemometers. These are positioned on jibs
in secondary wind directions to reduce shadow effects. A
buoy in the immediate vicinity of FINO1 (about 150 m away)
measures the wave conditions. The available EOC data are
post-processed using semi-automatic methods. For example,
values below and above certain thresholds, and consecutive
values that are precisely the same are excluded. As stated
before, missing or erroneous data are replaced by SCADA
measurements to increase the number of 10 min intervals
for which strain and EOC data are available. Some exam-
ple data after the post-processing can be seen in Fig. 7. Since
EOC data are mainly used for the binning (see Sect. 3.2),
the slightly biased wind data, due to rotor disturbance when
using SCADA data, are less relevant compared to the in-
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Figure 7. Example wind speed data after the post-processing.

Figure 8. Correlation of wind speeds and logarithmised short-term
damage values (Dj ) determined using the strain gauge at 315◦. His-
togram based on all 10 min intervals in 2016.

crease in the overall amount of data. Or, in other words,
in this context, the amount of EOC data is more relevant
than the EOC data quality. This statement is only correct if
the statistical difference between FINO1 and SCADA data
is small (here: CVFINO = CVSCADA = 0.5). Moreover, since
SCADA data will always feature smaller mean wind speeds
(here: µFINO = 9.3 ms−1 and µSCADA = 8.3 ms−1), it is also
essential to use the same data source for the entire analy-
sis, e.g. not FINO1 data during the measurement period and
SCADA data for the extrapolation period.

As stated in the Introduction, most extrapolation ap-
proaches are based somehow on correlations between fatigue
damage and EOCs. This correlation is shown as an example
in Fig. 8 for the wind speed and a short-term damage to the
tower. There is a pronounced correlation for all wind speeds.
For high wind speeds, it is more visible, since the amount
of data is lower for high wind speeds. As EOCs are also
correlated with each other – as shown in Fig. 9 – it is not
straightforward to determine the relevant EOCs that need to
be considered for the extrapolation in time. Before discussing
different approaches for extrapolation in time in Sect. 3.2, in
the next section, some more information on the short-term
fatigue damage calculation is given.

In the following, a 10 min interval is only considered if
strain and complete EOC data are available.

Figure 9. Correlation of wind speeds and wave heights. Histogram
based on mean values of all 10 min intervals in 2016.

3 Fatigue damage calculation

Assuming a linear damage accumulation according to the
Palmgren–Miner rule, the overall damage, e.g. the lifetime
damage of a structure, can be calculated as the sum of many
short-term damage values. It is known that linear damage ac-
cumulation is a simplification of the real fatigue behaviour.
For example, sequence effects are neglected. Moreover, the
use of short-term intervals, e.g. 10 min intervals, for the dam-
age calculation is a simplification as well. In this case, long-
term fatigue cycles lasting several hours or even days are
not taken into account (Marsh et al., 2016; Sadeghi et al.,
2022). Still, this procedure is recommended for the design
of offshore steel structures (DNVGL, 2014), since it leads
to relatively small errors for steel components compared to
its use in the context of composite materials, for example,
in rotor blades. Based on this assumption, for each 10 min
interval, the (short-term) fatigue damage is calculated sepa-
rately. The calculation procedure for the short-term damage
based on strain measurements is fairly standardised and is
briefly presented in the following section. It should be noted
that this work focusses on the damage at a single location (cf.
Fig. 3). Most results are given for the strain gauge at 315◦ be-
ing a strain gauge which is positioned approximately perpen-
dicular to the dominant wind direction. A spatial interpola-
tion between the four strain gauges to determine a maximum
around the circumference or to calculated stress time series
for various points around the circumference is not done. Such
a spatial interpolation would be needed to actually determine
the fatigue life of the turbine in an industrial context. Simi-
larly, if fatigue damage values at other locations are required,
either data from additional strain gauges must be used or spa-
tial extrapolations (Maes et al., 2016; Henkel et al., 2020) are
needed. Still, for the current purpose, i.e. to assess and val-
idate methods for extrapolations in time, it is reasonable to
use a single strain gauge.
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Figure 10. Results of the rain flow cycle count for a 10 min inter-
val (18 March 2016; 00:10:00). Strain gauge at 315◦, which corre-
sponds to fore-aft direction for this interval.

Figure 11. Results of the rain flow cycle count for a 10 min inter-
val (18 March 2016; 00:10:00). Strain gauge at 225◦, which corre-
sponds to side-to-side direction for this interval.

3.1 Short-term damage

Assuming linear damage accumulation and a fixed location
at which high-resolution strain data (ε(t)) are available, the
fatigue damage sustained in a given time period can be calcu-
lated as follows. First, stress time series (σ (t)) are determined
by applying Hooke’s law,

σ (t)= E ε(t), (1)

where E is Young’s modulus. Since it is assumed that
strain data are already available for the required location,
e.g. height and position around the circumference of the
tower, a rain flow cycle counting of stress ranges (1σi) can
be applied directly to the stress time series. Here, 1σi is the
stress range of the ith band (also called block or bin) in the
factored stress spectrum (cf. Annex A of European Commit-
tee for Standardization, 2010). In this work, a cycle count-
ing according to Niesłony (2009) is applied. The number of
required stress bands (nσ ) is chosen to be 500 bands – loga-
rithmically spaced between 10 kPa and 1 GPa (Hübler et al.,
2019). Two example cycle counts for a 10 min interval are
shown in Figs. 10 and 11. Figure 10 shows the cycle count for
a strain gauge in the fore-aft direction, and Fig. 11 shows one
in the side-to-side direction. The latter clearly features many
cycles corresponding to the eigenfrequency of the structure
(peak just above 106 Pa).

For nominal stresses at the position of interest (here: the
measurement position), an overall safety factor (SF) is ap-
plied. It consists of several sub-factors. Using the safety fac-

tor, a representative value for the concentrated stresses at the
structural detail is achieved. First, a stress concentration fac-
tor for the specific detail is used (here: SCF= 1.0 according
to a recommended practice of DNVGL, 2014). Second, a cor-
rection for large wall thicknesses – the so-called size effect
(SE) correction – is applied (DNVGL, 2014). Third, a ma-
terial safety factor (here: MSF= 1.0 due to regular inspec-
tions, DNV GL AS, 2016) is used. All these factors might be
chosen differently and/or can be regarded as uncertain. For
example, the stress concentration factor highly depends on
the exact detail. Depending on whether the welding is sin-
gle or double sided, how large the ovality and/or eccentricity
of the two connected parts of the tower are or the precise
thickness of the tower at this position, SCF= 1 to SCF= 2,
are equally possible. Surely, such variations in the SCF have
significant influence on the short-term fatigue. Moreover, in
reality, safety factors also depend on the inspection and mon-
itoring concepts used. For example, it might be possible to re-
duce safety factors if monitoring-based approaches – as pre-
sented in this work – are applied. Hence, determining ade-
quate safety factors and, therefore, calculating precise short-
term damage values is not trivial, especially if not all struc-
tural details of the turbine are available. Fortunately, to assess
the extrapolation in time, precise values for the safety factor
are not required. The corrected stress ranges can be calcu-
lated as follows:

1σcor,i =1σi ×SF=1σi ×SCF×SE×MSF. (2)

The last step in calculating the damage sustained in a
given interval is the application of the Palmgren–Miner rule,
i.e. linear damage accumulation, and the application of S–
N curves according to the DNVGL recommended practice
(DNVGL, 2014). Here, DNVGL S–N curve D in air is ap-
plied. At this point, it should be noted that this S–N curve
consists of two parts with different slopes but does not ac-
count for a fatigue limit in the material, i.e. no horizontal part
at low stress cycles. The “missing” fatigue limit might lead
to an overestimation of the influence of small cycles. How-
ever, since the determination of most suitable S–N curves is
out of the scope of this work, here, the S–N curve as given in
the DNVGL recommended practice (DNVGL, 2014) is used.
The fatigue damage for a given time series (Dj ) can be cal-
culated as follows:

Dj =

nσ∑
i=1

nij

Ni
, (3)

where i and j are indices for the stress band and the time se-
ries, respectively, and nij is the number of cycles associated
with the stress range1σcor,ij . The endurance (Ni ; maximum
number of cycles) for the same stress range is obtained from
the corresponding S–N curve.
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3.2 Damage extrapolation in time

If strain data were available for the entire lifetime of the wind
turbine, it would be possible to determine its fatigue lifetime
by using the previously described approach of calculating
short-term damage values. In this case, the lifetime damage
(Dtotal) would be

Dtotal =

NLT∑
j=1

Dj , (4)

where NLT is the number of (short-term) intervals in the en-
tire lifetime, e.g. NLT = 6× 24× 365.25× 20 for 10 min in-
tervals and a lifetime of 20 years.

However, normally, strain data are not available for the
entire lifetime. Therefore, some kind of extrapolation pro-
cedure in time is necessary. In the following, three different
approaches are presented: a simple linear extrapolation, an
extrapolation based on bins of EOCs and an extrapolation
based on machine-learning techniques. The latter two make
use of the correlation of short-term damage and EOCs (cf.
Fig. 8).

In a real application, new data might come in continu-
ously or discontinuously after having conducted a first ex-
trapolation. Hence, updates of the extrapolation using ad-
ditional data have to be possible. For all three approaches,
such updates are feasible. Since the computing times of the
approaches are relatively low in order to enable uncertainty
assessments (cf. Sect. 3.2.4), discontinuous updates can be
achieved by rerunning the entire extrapolation. For continu-
ously incoming data, a simplification could be to update the
occurrence probability of the EOCs continuously and the cor-
relation itself on a discontinuous basis, e.g. once a month.

3.2.1 Simple extrapolation

The simplest extrapolation approach is a linear extrapola-
tion. It assumes that the fatigue damage only depends on the
elapsed time (Louraux and Brühwiler, 2016). This means that
the fatigue damage sustained in any predicted period can be
calculated as follows:

Dpred ≈
Nn

Nm

Nm∑
j=1

Dj , (5)

where Nm and Nn are the number of (short-term) intervals
in the measurement and the predicted period, respectively. If
the predicted period is the entire lifetime, it follows that

Dtotal ≈
NLT

Nm

Nm∑
j=1

Dj . (6)

For very long measurement periods (Nm ≈NLT), this ap-
proach yields accurate results. However, if the measurement
period is less than 1 year, seasonal effects are neglected. For

example, storms during the winter lead to increased dam-
age. Even if the measurement period covers more than a
year, yearly and/or long-term effects are not taken into ac-
count, e.g. varying damage due to climate change (Hübler
and Rolfes, 2021).

3.2.2 Extrapolation based on bins of EOCs

A more advanced approach, which makes use of the correla-
tion between fatigue damage and EOCs (cf. Fig. 8), is a so-
called binning approach (Marsh, 2016; Hübler et al., 2018).
This binning approach is still very simple to apply and, there-
fore, quite user-friendly. The binning approach is based on
the idea that most variations in fatigue damage are due to
changing environmental conditions. Hence, it is not neces-
sary to know fatigue damage for the entire lifetime. Having
determined the correlation between EOCs and fatigue dam-
age, it is sufficient to know the EOCs for the entire lifetime.
Since many EOCs are part of the SCADA data, EOCs are fre-
quently known for the entire lifetime. Hence, the only chal-
lenge is determining the correlation between fatigue damage
and EOCs. This correlation can be determined by statistical
and/or machine-learning techniques (Dimitrov and Natara-
jan, 2019; d N Santos et al., 2021) that yield a functional
relationship between (short-term) damage and EOCs:

Dj = f (xj )+ ε, (7)

where f is the functional relationship; xj is the vector of all
EOCs considered in the analysed interval j ; and ε is an er-
ror term, which cannot be explained by changes in the EOCs
considered. Such functional relationships are discussed in the
next section. The binning approach presumes that, due to the
uncertainty in the measured EOCs (e.g. disturbance of the
wind conditions by the rotor) and some unexplained varia-
tions in the fatigue damage (ε), a precise definition of a func-
tion is not expedient. Therefore, the (short-term) damage val-
ues are clustered according to the EOCs. For each cluster or
bin, the mean damage is determined using the available mea-
sured strain data. The calculation of mean values is supposed
to average out most unexplained effects (ε). Subsequently,
the damage sustained in the predicted period is

Dpred ≈Nn

M1∑
i1=1

. . .

Md∑
id=1

(
Prpred,i1,...,idDi1,...,id

)
, (8)

where d is the binning dimension, i.e. the number of EOCs
considered; M1 to Md are the number of bins for the cor-
responding EOC; and Prpred,i1,...,id and Di1,...,id are the oc-
currence probability of and the mean damage in bin i1, . . ., id ,
respectively. Mean damage within the bins can be determined
using a limited amount of strain data, e.g. 1 year (measure-
ment period). To determine the bin probabilities, only data
concerning the EOCs are required. Hence, bin probabilities
are determined using data of the predicted period. If the pre-
dicted period is the entire lifetime, it follows that
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Dtotal ≈NLT

M1∑
i1=1

. . .

Md∑
id=1

(
PrLT,i1,...,idDi1,...,id

)
. (9)

The main difference is that bin probabilities (PrLT,i1,...,id )
are now determined using EOC data, e.g. SCADA data, cov-
ering the entire lifetime. In contrast to the previously pre-
sented simple extrapolation, seasonal effects and long-term
changes due to changing EOCs are taken into account by
the bin probabilities. The main challenge of the binning ap-
proach is to apply expedient binning dimensions and bin
numbers. Too few bins – i.e. a low number of bins per di-
mension and/or a low dimensionality – result in highly scat-
tered damage values within each bin. This yields a less accu-
rate approximation of the correlation. In the extreme case of
d = 0, the binning approach is identical to the simple extrap-
olation. Too many bins lead to only a few short-term dam-
age values within each bin or even empty bins. These empty
or nearly empty bins have to be filled up. For 1D binning,
in most cases, no bins have to be filled up. However, for
2D bins, it is already necessary to fill up about 40 % of the
bins (cf. Fig. 9). Most of the empty bins feature very low
occurrence probabilities and, therefore, do not influence the
overall fatigue damage. Nonetheless, if the fatigue extrap-
olation is based on fairly limited data, the filling of empty
bins may lead to biased results. In this work, only bins with
no data at all are considered to be empty. These empty bins
are filled up relatively conservatively. The largest mean value
of the surrounding bins is used. Hence, the mean damage in
bin i1, . . ., id can be calculated as follows:

Di1,...,id =

{
1

Ni1,...,id

∑Ni1,...,id
j=1 Dj if Ni1,...,id > 0

max(Di1+j1,...,id+jd ) otherwise,
(10)

where Ni1,...,id is the number of short-term damage values in
bin i1, . . ., id and jk = {−1,0,1} if 1< ik <Mk , jk = {0,1}
if ik = 1 and jk = {−1,0} if ik =Mk for k = 1, . . .,d .

3.2.3 Extrapolation based on a functional relationship

As already discussed in the previous section, the correlation
between short-term damage and EOCs can also be expressed
as a functional relationship, i.e. Dj = f (xj )+ ε. In general,
such a functional relationship can be approximated using var-
ious statistical and/or machine-learning techniques, e.g. mul-
tiple regression, Gaussian process regression (GPR) and ar-
tificial neural networks (ANNs). To determine the functional
relationship, training data are required to train the relation
between inputs, i.e. EOCs, and outputs, i.e. fatigue damage
values. Similar to the binning approach, it is not necessary for
strain data to be available for the predicted period or the en-
tire lifetime. The strain and EOC data from the measurement
period, e.g. 1 year, are used as training data. Subsequently,
fatigue damage for other time periods can be predicted us-
ing EOC data only. EOC data are normally available for the
entire lifetime.

Dpred ≈

Nn∑
k=1

f (xk) and (11)

Dtotal ≈

NLT∑
k=1

f (xk) (12)

The accuracy of the prediction also depends on the EOCs
considered. If too few EOCs are taken into account, impor-
tant features might be missed. Too many EOCs might lead to
some kind of overfitting.

In this work, GPR and ANN are investigated. Both meth-
ods are very powerful machine-learning techniques which
have already been applied successfully in wind engineer-
ing (Dimitrov et al., 2018; d N Santos et al., 2021). On the
downside, they are less user-friendly compared to the bin-
ning approach. At least some expert knowledge is required
to achieve accurate predictions.

All configurations for ANN and GPR used in this work
are based on recommendations in literature, e.g. Larose and
Larose (2014); previous work, e.g. Müller et al. (2021); and
preliminary studies.

For ANN, inputs and outputs are normalised to values
between 0 and 1. Two hidden layers with 10 neurons each
are used. Hyperbolic tangent sigmoid transfer functions are
applied in all layers to prevent unrealistic negative outputs,
i.e. negative damage values. The network is trained using the
Levenberg–Marquardt algorithm; 80 % of the input data are
used as training data, and 20 % are used as validation data.
Since the performance of ANN depends strongly on the ran-
domly chosen initial weights for this problem, an automated
control algorithm is implemented. It restarts the learning pro-
cess using new initial weights if the relative prediction error
is higher than 50% for the training data.

For GPR, inputs are normalised to values between 0 and 1.
Outputs are standardised to achieve a mean value of 0 and a
standard deviation of 1. A purely quadratic basis function
and a Matérn kernel with a parameter of 5/2 and a sepa-
rate length scale per input are chosen. Since the amount of
training data is extensive, e.g. more than 50 000 training data
points from 1 year of measurements, a random subset se-
lection for the training is conducted. This reduces the time
required for training the model to a practicable level. Since
ANN and GPR both feature some random effects themselves
(initial weights and selected subsets), a statistical evaluation
of both is beneficial. Hence, the functional relationship f (x)
should be trained several, e.g. 100, times using the same
training data. This averages out the effect of the inherent ran-
domness, i.e. the model uncertainty. The averaging technique
for ANN and GPR is discussed in more detail in Sect. 4.2.

3.2.4 Uncertainty assessment

Independent of the chosen extrapolation approach, the re-
sults will be uncertain, for example, due to unrepresented

https://doi.org/10.5194/wes-7-1919-2022 Wind Energ. Sci., 7, 1919–1940, 2022



1928 C. Hübler and R. Rolfes: Probabilistic fatigue damage extrapolation based on strain measurements

EOCs. Nonetheless, the main reason for this uncertainty is
the limited amount of strain data and, therefore, of short-
term damage values (Dj ). This uncertainty due to limited
training data should not be confused with the model uncer-
tainty mentioned in the previous section which is only rele-
vant for ANN and GPR. To approximate the uncertainty of
the predicted (Dpred) or overall fatigue damage (Dtotal) due
to limited data, bootstrapping (Efron, 1979) can be applied
(Marsh, 2016). Bootstrapping allows for the estimation of a
distribution of Dpred or Dtotal by applying random sampling
with replacement. This distribution can be used to judge the
uncertainty present. For example, the standard deviation or
percentile values of this distribution are relevant measures of
uncertainty.

In the present case, short-term damage values (Dj ) are
limited – e.g. only available from 1 year of strain measure-
ments. Hence, using another year of measurement data yields
a (slightly) different correlation between EOCs and damage
values; i.e. f (xk) or Di1,...,id is different. As a consequence,
Dpred or Dtotal change as well. However, other values for
Dj are not available. Therefore, Dpred or Dtotal is calculated
several times using different samples Dj , which are sam-
pled randomly with replacement from all available samples
{D1,. . . ,DNm}. As an illustration, for Nm = 3, the standard
calculation would be based on the samples {D1,D2,D3}.
Other random realisations with replacement are, for example,
{D1,D1,D1} or {D2,D2,D3}. For each realisation (i.e. new
training data set), the entire extrapolation procedure de-
scribed in Sect. 3.2 has to be repeated; e.g. a new correlation
f (xk) has to be determined.

4 Results

In this section, the three methods for the temporal extrapola-
tion of fatigue damage, which were presented in the previous
section, are assessed using measurement data from the Al-
pha Ventus wind farm (see Sect. 2). The assessment tries to
answer the subsequent questions:

1. How should the parameters of each of the methods,
e.g. bin sizes, be chosen to yield the most accurate re-
sults?

2. Which method can predict fatigue damage for other
time periods most accurately?

3. How high is the uncertainty in the prediction?

4. What amount of training data is required? How long is
the minimum measurement period?

5. Do the approaches still yield reasonable results if long-
term extrapolations over several years are conducted?

6. Do the approaches still yield reasonable results if ex-
trapolations into the future are conducted, for which no
EOC data are available?

Figure 12. Visualisation of the 13 different 1-year periods for sta-
tistical evaluations.

Since high-quality strain data are only available for
3 years, for most steps, an extrapolation of measurement data
from a single year to another year is conducted. For exam-
ple, data from October 2015 to September 2016 are extrap-
olated to October 2016 to September 2017. Since strain and
EOC data are available for both periods, the accuracy of the
extrapolation can be determined by comparing the predicted
damage (Dpred) with the damage calculated using the actual
measured strain data from the predicted period, i.e. the real
damage (Dreal). Hence, the methods can be validated.

4.1 Parameter selection

For the three extrapolation methods considered in this work,
different parameters must be chosen, for example, the num-
ber of EOCs to be taken into account. To determine the most
suitable parameters, the extrapolation from a single year to
another year is analysed. Since the choice of the parameters
might be influenced by the period investigated, several pe-
riods should be analysed. However, only 3 years of data is
available, with only 2 of these being consecutive years. For
the third, non-consecutive year (2011), long-term effects –
being analysed in Sect. 4.5 in detail – might already be rele-
vant. Hence, within the 2 consecutive years, the 1-year period
is shifted, e.g. with October 2015 to September 2016 being
extrapolated to October 2016 to September 2017, Novem-
ber 2015 to October 2016 being extrapolated to October 2015
and November 2016 to September 2017. A visualisation of
this shifting procedure is shown in Fig. 12. Using these
shifted periods, 13 “different” periods are available. There-
fore, some statistical significance for the determined param-
eters is given.

4.1.1 Parameter selection: simple extrapolation

For the simple extrapolation, no parameters have to be cho-
sen. First results for the simple extrapolation are presented in
Fig. 13. For all 13 periods of 1 year, the unsigned percent-
age errors (PEs) of the predicted yearly damage are shown as
follows:

PE=
|Dreal−Dpred|

Dreal
. (13)
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Figure 13. Percentage errors of predicted yearly damage values us-
ing a simple extrapolation method compared to real yearly dam-
age values. Prediction from a year to a second year for 13 different
years. Box plot shows summary statistics.

Moreover, a box plot shows some summary statistics: the
median (red centre line), the 25th and 75th percentile (box),
the minimum and maximum values (excluding any outliers),
and possible outliers of 13 different 1-year measurement pe-
riods. Hence, the box plots visualise the variation in the ac-
curacy of the predictions depending on the period consid-
ered. All box plots in the following sections show the same
summary statistics. To judge the conservatism of the ap-
proach, signed errors are more informative. For such results,
the reader is referred to Sect. 4.3.

Clearly, the prediction does not yield precise results.
Nonetheless, it is remarkable that even such a simple extrap-
olation leads to results with errors of less than 35 %.

4.1.2 Parameter selection: EOC bins

For the extrapolation based on bins of EOCs, the number and
type of EOCs to be taken into account and the bin size must
be selected. In contrast to previous work by Louraux and
Brühwiler (2016) and Hübler et al. (2018), who focussed on
one to three different wind parameters, in this work, six dif-
ferent environmental conditions (wind speed and direction,
turbulence intensity and wave height, period and direction)
are analysed in a systematic manner. Bin sizes are chosen
in such a way that the overall range of each environmental
condition is discretised into about 3 to 120 bins depending
on the environmental condition. For example, bins of 0.25
to 6 ms−1 are used for the wind speed. Regarding operational
conditions, only the turbine status is considered. As bin sizes
for the turbine status (a discontinuous variable) have to be de-
fined differently, operational conditions are considered sepa-
rately in a second step (see Sect. 4.1.4).

Some example results for the binning approach are pre-
sented in Fig. 14. As before, the box plot shows summary
statistics of 13 different measurement periods. On the one
hand, the results clarify that many bin types yield similar re-
sults. The detailed performance depends on the time period
considered, i.e. the year in this case, as demonstrated by the
scatter illustrated by the box plot. On average (cf. red centre
lines of the box plots), it does not make a significant differ-
ence whether, for example, wind speed bins or wind speed
and turbulence intensity bins are used. Most important is the

consideration of the wind speed. This result is in accordance
with previous research (Hübler et al., 2018). On the other
hand, the results also demonstrate that there are bin types that
perform worse. For example, wind direction and turbulence
intensity bins without considering the wind speed or 6D bins
do not perform very well. If the wind speed is neglected, im-
portant effects are missed. If the binning dimension is too
high, a large number of bins remain empty. Hence, the empty
bins have to be filled up artificially, leading to less accurate
extrapolations. Moreover, a high dimensionality leads to in-
creased computing times, which is problematic at least for
the uncertainty assessment (cf. Sect. 4.3). The bin size does
not have a pronounced effect, as shown in Fig. 14 using the
example of 1D bins, i.e. 1D6

vs
to 1D120

vs
. Medium-sized bins

(e.g. 10 bins per environmental condition) are recommended.
Again, small bin sizes might result in many empty bins. Ex-
cessively large bin sizes lead to higher uncertainties within
each bin.

The optimal choice always depends on the turbine consid-
ered, the measurement period and the extrapolation period.
Hence, an automated selection method would be beneficial.
Ideally, different choices would be assessed automatically for
the predicted period and the best choice selected. However,
strain data from the predicted period are normally not avail-
able; otherwise no extrapolation would be required. This is
why automated selection must be based on cross-validation,
i.e. splitting up the measurement period. One part of the data
is used as training data to determine the mean damage in all
bins. Another part replaces the prediction period. It is used
to evaluate the accuracy of the extrapolation for the chosen
settings. This procedure reduces the amount of training data
significantly. As a result, predictions become less accurate.
In most cases, due to the limited training data, the automated
selection yields bin sizes which are too fine, i.e. overfitting.
Hence, although automated selection is desirable, it is not
suitable for “short” measurement periods. For example, mea-
surement periods of 1 year or less – as used in this work – are
not sufficient.

Therefore, it can be summarised that the choice of the
bin dimension and size is of minor importance as long as
empty bins do not occur at all or only in some rare cases.
For most applications, simple wind speed bins with a size
of 2 to 3 ms−1 are adequate, although they are not optimal.
Moreover, fortunately, it is not necessary to take wave con-
ditions into account; these are rarely available, as they are
not recorded by the SCADA system. It should be noted that,
to some extent, these conclusions might be limited to this
turbine and the considered location at the turbine. For exam-
ple, normally, wave loads become more relevant for larger
monopiles and locations further down the turbine. These lim-
itations are discussed in detail in Sect. 5.
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Figure 14. Percentage errors of predicted yearly damage values using a binning method compared to real yearly damage values. Comparison
of various bin types and sizes (n is the overall number of bins): wind speed (vs), wind direction (θ ) and turbulence intensity (TI) only (1Dnx );
combinations of two environmental conditions out of wave height (Hs ), vs, θ and TI (2Dnxy ); vs, TI and Hs (3D); and all six environmental
conditions (6D). Please note: for the sake of clarity, the vertical axis is scaled differently for 6D.

Figure 15. Percentage errors of predicted yearly damage values us-
ing a functional relationship compared to real yearly damage values.
Comparison of GPR and ANN and different EOCs: vs (1D), vs and
TI (2D), and all environmental conditions (6D).

4.1.3 Parameter selection: functional relationship

For the extrapolation based on a functional relationship, only
the number and type of EOCs to be taken into account are
relevant. The same six environmental conditions as before
are considered. Operational conditions are taken into account
separately in a second step. Some example results for the
functional relationship are presented in Fig. 15. Again, the
detailed performance depends significantly on the measure-
ment period (cf. scatter shown by the box plots). Moreover,
a significant amount of uncertainty is introduced by the ran-
dom selection of the initial weight using ANN and by the ran-
dom subset selection using GPR. This is discussed in more
detail in Sect. 4.2.

A slight improvement in the accuracy might be achieved
for ANN if additional environmental conditions are taken
into account. However, this improvement is not significant,
especially when considering the previously mentioned un-
certainty due to the random selection of the initial weights.
At least for wave conditions, it definitely does not justify the
effort needed to measure them.

Therefore, in the following, only results using a single en-
vironmental condition, i.e. the wind speed, are shown.

4.1.4 Operational conditions

In contrast to the environmental conditions, the turbine sta-
tus, i.e. the sole considered operational condition, is not de-

fined continuously. This makes the definition of a functional
relationship complicated. Hence, in this work, the turbine
status is treated differently from the environmental condi-
tions. For all three methods, in a first step, all data are split
up according to the turbine status. This means that some kind
of binning based on the turbine status is applied for all three
approaches. This has the advantage that in each turbine sta-
tus bin, the extrapolation approach remains unchanged. Fi-
nally, the extrapolation results of each turbine status bin are
weighted according to the occurrence probability of this tur-
bine status. For the simple extrapolation this yields the fol-
lowing:

Dpred ≈Nn

K∑
k=1

(
Prk

Nm,k

Nm,k∑
j=1

Dj

)
, (14)

where K is the number of different turbine statuses consid-
ered;Nm,k is the number of available short-term damage val-
ues for this turbine status; and Prk is the occurrence proba-
bility of this turbine status, determined using data from the
predicted period (e.g. the entire lifetime). For the extrapo-
lation based on a functional relationship, the procedure is
equivalent. Hence, a functional relationship fk(vs) is trained
for each turbine status considered. For the binning approach,
it means that just another binning dimension is added. This
yields 2D bins: wind speed and turbine status.

Similar to the challenge of determining a suitable bin size,
an adequate number of different turbine statuses and the type
of statuses must be found. The most simple differentiation is
normal production operation and others (two statuses). This
was already proposed by Hübler et al. (2018). Other possible
classifications are, for example, “normal production opera-
tion”, “idling (below cut-in)”, “idling (above cut-off)”, “oth-
ers” (four statuses) or another additional class for “service”
(five statuses). Other combinations of these classes are possi-
ble as well but are not investigated in detail in this work. Fig-
ures 16 to 18 show how the performance of the three methods
changes if operational conditions are taken into account. For
all three methods, the effects are not very pronounced and
relatively uncertain, i.e. depending on the period considered
(cf. scatter shown by the box plot). Nonetheless, percentage
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Figure 16. Percentage errors of predicted yearly damage values us-
ing simple extrapolation. Data separated according to turbine sta-
tuses: no separation (1), normal production operation and others (2),
idling below cut-in and above cut-off (4), and service (5).

Figure 17. Percentage errors of predicted yearly damage values us-
ing a binning method (1D wind speed bins) compared to real yearly
damage values. Data separated according to different turbine sta-
tuses (cf. Fig. 16).

errors can be reduced by about 20 % to 30 % for the binning
approach and ANN (cf. red centre lines of the box plots) if
several different turbines statuses are considered separately.
For the simple approach, splitting up the data does not im-
prove the approximation significantly. It should be noted that
conclusions regarding the relevance of considering different
turbine statuses are at least partly case-specific. This limita-
tion is discussed in Sect. 5 in more detail.

To summarise, splitting up the data according to opera-
tional conditions can help to improve the extrapolation. How-
ever, it is not straightforward to determine the best separa-
tion, as it depends on the period considered and probably
on the turbine as well. Moreover, if the measurement pe-
riod is relatively short and/or many environmental conditions
are taken into account, e.g. 3D binning, clustering according
to operational conditions becomes more challenging. In this
case, the amount of data for each turbine status might become
insufficient.

Hence, as improvements are not always pronounced, for
many applications it can be sufficient not to cluster the data
according to operational conditions. This is especially the
case either if the relation of operational to non-operational
data is similar in the measurement and the extrapolation pe-
riod or if the short-term damage values in operational and
non-operational do not differ significantly. Since these two
prerequisites are fulfilled for the present data, in the rest of
this work, clustering according to operational conditions is
not performed. In a real application, the two prerequisites

Figure 18. Percentage errors of predicted yearly damage values us-
ing an ANN compared to real yearly damage values. Data separated
according to different turbine statuses (cf. Fig. 16).

Figure 19. Percentage errors of predicted yearly damage values us-
ing all extrapolation methods compared to real yearly damage val-
ues. Predictions from a year to a second year for 13 different years.

should be checked. For example, the second prerequisite can
easily be tested by analysing the difference between the mean
short-term damage during operational and non-operational
conditions in the measurement period.

4.2 Performance

In the following, the performance of the extrapolation ap-
proaches with respect to the accuracy of the prediction, the
computing time, and the required data and knowledge is eval-
uated. For all methods, no clustering according to operational
conditions is applied. For the binning approach, only wind
speed bins with a bin size of 3 m s−1 are used. Similarly, only
wind speed correlations are taken into account for ANN and
GPR. These choices are in accordance with the findings of
Sect. 4.1.

In Fig. 19, the percentage errors of predicted yearly dam-
age values of all approaches for all 13 years are shown. The
limited accuracy of ANN and GPR in the present case is ex-
plained in more detail in the following.

It becomes apparent that the binning approach reduces the
percentage error on average by about 60 % compared to the
simple extrapolation (cf. red centre lines of the box plots).
Moreover, the binning approach outperforms ANN and GPR.
However, two facts about ANN and GPR should be men-
tioned. First, the initial weights used by ANN and the subsets
used by GPR are chosen randomly. Hence, the performance
of both is not deterministic but features some kind of model
uncertainty that should not be confused with the uncertainty
due to limited strain data (cf. Sects. 3.2.4 and 4.3). The ex-
istence of this model uncertainty – being relevant even when
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using precisely the same measurement/training data – be-
comes obvious when comparing the results of ANN and GPR
(wind speed only) in Figs. 15, 18 and 19. All three figures
show results for different randomly selected initial weights
or subsets but the same measurement data. The box plots do
not completely agree, although all settings, etc. are the same.
Such a model uncertainty exists neither for the simple ex-
trapolation nor for the binning approach. In order to assess
the performance of ANN and GPR with some statistical evi-
dence, several, e.g. 100, ANNs and GPR models are trained
using the same training data but varying initial weights or
subsets. The extrapolation results of the 100 trained models
are averaged to rule out the model uncertainty. This yields
mean percentage errors of the predicted yearly damage val-
ues of all 100 runs and 13 years of 10.3 % and 8.9 %, for
each method, respectively. Hence, on average, both are out-
performed by the binning approach, which yields a mean per-
centage error of all 13 years of 5.9 % (cf. red centre line of the
box plot in Fig. 19). Second, it might be possible to improve
the accuracy of the machine-learning approaches by exploit-
ing their full potential, e.g. by using more hidden layers for
ANN. However, a comprehensive analysis of the machine-
learning approaches is beyond the scope of this work, as a
user-friendly extrapolation approach is being sought. More-
over, d N Santos et al. (2021), who analysed ANN in more
detail in the context of fleet-wide extrapolations, also found
out that predictions – using 10 min SCADA data only – lead
to percentage errors of up to 10 % in damage-equivalent
loads. They showed that ANN is suitable for highly accu-
rate predictions if more or better measurement data (e.g. 1 s
SCADA data) are available but not for user-friendly predic-
tions based on 10 min SCADA data, which are the focus of
this work.

The second performance criterion evaluated in this work
is the computing time. For deterministic predictions using
wind speed as the only EOC, all methods are more or less
suitable. For a prediction from a single year to another, the
simple approach and the binning approach require less than
0.1 s on a standard desktop computer. ANN requires a few
seconds, and GPR needs about 30 s. If ANN and GPR are
run 100 times to rule out the model uncertainty, their com-
puting times are significantly longer. For ANN, the com-
puting time is still sufficiently short, i.e. only a few min-
utes. For GPR, 100 runs take nearly an hour. For probabilis-
tic predictions, i.e. assessing the uncertainty due to limited
strain data (cf. Sects. 3.2.4 and 4.3), thousands of predic-
tions using different training data sets are required. Hence,
the computing time becomes much more relevant. For exam-
ple, if 1000 predictions are used for the uncertainty assess-
ment, ANN and GPR require more than 30 min and more
than 8 h, respectively, whereas the prediction based on bins
is finished after about 10 s, and the simple prediction is fin-
ished within 1 to 2 s. At this point, it should be mentioned
that the model uncertainty in ANN and GPR does not have
to be treated separately for probabilistic predictions, i.e. 1000

and not 100× 1000 runs. The reason for this is that some
averaging of the model uncertainty is done implicitly when
conducting predictions for 1000 different training data sets.
Nonetheless, overall, the computing time of GPR is about
15 times higher compared to ANN. For ANN, it is more than
100 times higher compared to the binning approach and an-
other 5 to 10 times higher compared to the simple approach.
If additional EOCs are taken into account, the computing
time of the binning approach increases quite quickly. For ex-
ample, for three EOCs, the computing time of the binning ap-
proach increases by a factor of 5 compared to the case with a
single EOC. For six EOCs, a probabilistic prediction already
becomes unfeasible on a standard desktop computer for the
binning approach. The reason for the increase is the exten-
sive empty bin filling. For GPR, the increase is moderate.
The computing time rises by factors of 1.5 to 2 and 4 to 5 for
three and six EOCs, respectively. This increase is caused by
the more complex training procedure needed for more inputs.
For ANN, the computing time does not change significantly.

The last criterion, i.e. the user-friendliness and required
data, is a more vague criterion. Clearly, the simple extrapola-
tion does not require any additional data (e.g. SCADA data)
and is straightforward to apply. The binning approach, espe-
cially if only wind speed bins are used, is also quite user-
friendly and does not rely on detailed data. For the machine-
learning approaches, first of all, much more expert knowl-
edge is required to achieve adequate results. Moreover, the
two previous criteria demonstrated that machine-learning ap-
proaches perform better with respect to accuracy and com-
puting time if additional data (e.g. additional EOCs or 1 s
SCADA data) are available.

To summarise, the simple extrapolation works relatively
well. However, if 10 min SCADA data are available, the
binning approach clearly outperforms the simple extrapo-
lation with respect to accuracy, while computing time and
user-friendliness are comparable. For expert users and high-
quality data, ANN and GPR might be alternatives. For the
current application, they are less accurate. Moreover, the
machine-learning approaches, especially GPR, have signif-
icantly longer computing times. The long computing time of
GPR makes probabilistic predictions nearly unfeasible on a
standard desktop computer. This is why GPR is not consid-
ered in the rest of this work.

4.3 Uncertainty assessment

The box plots in the previous sections showed that the per-
formance of the various extrapolation approaches depends on
the period considered, as there is a significant scatter of the
percentage error across the 13 different years. Since 13 dif-
ferent years are not enough for a well-founded assessment
of the uncertainty of the prediction due to the limited avail-
able strain data, this uncertainty is approximated by applying
bootstrapping, i.e. resampling with replacement. Therefore,
for all three extrapolation approaches, bootstrapping is con-
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Figure 20. Empirical distribution for the (signed) percentage er-
ror of predicted yearly damage using different extrapolation meth-
ods. Prediction from a single year (1 October 2015 to 30 Septem-
ber 2016) to another year (1 October 2016 to 30 September 2017).
PDF: probability density function.

ducted using NBT = 1000 runs of resampling. This means
that for each of the 1000 bootstrapping runs, 52 596 short-
term damage values (Dj ) are sampled with replacement from
the measurement period (1 year in this section). Based on
these short-term damage values, an entire extrapolation is
conducted (see Sect. 3.2). For the binning approach, this
means not only that mean damage values for all bins have
to be calculated 1000 times but also that empty bins have to
be filled up for each bootstrap run as well. For ANN, a new
functional relationship f (x) has to be determined 1000 times
using the “new” training data. As stated before, the effect of
random initial weights is no longer relevant for ANN, since
some averaging takes place implicitly during the 1000 boot-
strap runs. For all approaches, the same settings as before
are used, e.g. only wind speed bins. The bootstrapping yields
NBT values for the extrapolated yearly damage Dpred. These
values are compared to the real damage values for the sec-
ond year to calculate an empirical distribution for the per-
centage error. In this case, signed percentage errors are used
– i.e. no absolute values of errors – to analyse the bias of
the extrapolation as well. Example resulting empirical dis-
tributions are shown in Fig. 20 for an extrapolation from a
single year (1 October 2015 to 30 September 2016) to an-
other year (1 October 2016 to 30 September 2017). The re-
sults demonstrate that there is some uncertainty in the ex-
trapolation, which should not be neglected. Moreover, all ap-
proaches lead to slightly biased results. This is not surprising,
since the correlation between the environmental conditions
and fatigue damage cannot cover all effects. Nonetheless, this
bias is not critical, as it is not systematic. For some measure-
ment periods, the extrapolation is conservative, but for others
it is not (cf. Figs. 20 and 21). Such (random) changes in con-
servatism are typical of approaches using correlations. De-
pending on the “severity” of all other (not considered) EOCs
during the measurement and extrapolation period, the results
will be conservative or not. If it is necessary to be conserva-
tive in all cases, an option could be, for example, to use a high
percentile of the resulting distribution (cf. Fig. 20 and 21).

Figure 21. Empirical distribution for the (signed) percentage er-
ror of predicted yearly damage using different extrapolation meth-
ods. Prediction from a single year (1 August 2016 to 31 July 2017)
to another year (1 October 2015 to 31 July 2016 and 1 August to
30 September 2017). PDF: probability density function.

Overall, even the highest errors are below ±20% for the
binning approach. Finally, it should be noted that the variance
of the distributions for the binning approach (cf. Figs. 20
and 21) is smaller compared to the other approaches. Hence,
the binning approach features the lowest uncertainty. The
reason for the higher uncertainty for ANN is the randomness
of the initial weights that is covered implicitly by the boot-
strapping. Compared to the simple extrapolation, the binning
approach has a slightly reduced uncertainty, as the scatter-
ing of the short-term damage values Dj within each bin is
smaller compared to the scattering if no bins are employed.

4.4 Minimum measurement length

In theory, the three extrapolation methods can be used to ex-
trapolate from any period to another. However, if the mea-
surement length is too short, the extrapolation will be biased
(Hübler et al., 2018). A simple example in this context is that
an extrapolation based on data from a few summer months
with benign environmental conditions will lead to an under-
estimation of the fatigue damage for winter months. There-
fore, in the following, the convergence of the percentage er-
ror of the predicted yearly damage with increasing measure-
ment length is analysed to determine a minimum measure-
ment length. This analysis is conducted for all three extrapo-
lation approaches using the same settings as before.

Measurement lengths of 2 to 12 months are used to predict
the fatigue damage expected to occur in a second year. This
means that, for example, 1 October to 30 November 2015,
1 October to 31 December 2015 and so on are extrapolated
to the second year, i.e. 1 October 2016 to 30 September 2017.
Again, to enable a statistical interpretation of the results,
these predictions using different measurement lengths are re-
peated using the 13 different years that have been used be-
fore, e.g. 1 November to 31 December 2015 is extrapolated
to October 2015 and 1 November 2016 to 30 September 2017
(cf. Fig. 12). This yields 13 different values for 11 different
measurement lengths. The results for all three approaches are
shown in Figs. 22 to 24.
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Figure 22. Convergence of the percentage error of predicted yearly
damage values using simple extrapolation for increasing measure-
ment lengths. Box plot shows data from 13 different measurement
periods.

Figure 23. Convergence of the percentage error of predicted yearly
damage values using the binning approach for increasing measure-
ment lengths. Box plot shows data from 13 different measurement
periods.

For the simple approach, no complete convergence is
achieved even for measurement lengths of 12 months. There
is a small increase in the percentage error for measurement
lengths of more than 9 months. This is probably a statisti-
cal artefact due to the limited number of different measure-
ment periods. Nonetheless, for measurement lengths greater
or equal to 9 months, relatively low percentage errors are
achieved. This is not only in accordance with results from
Hübler et al. (2018), who recommended a minimum mea-
surement length of 9 months, but also logical. In order to
cover seasonal effects, nearly a complete year has to be mea-
sured.

For the binning approach, convergence is achieved for
measurement lengths of approximately 8 to 9 months. After
this period, all bins – especially those for high wind speeds
are critical – are filled with enough data for an accurate ex-
trapolation. However, for the binning approach, this time can
be reduced if the measurement period starts during the win-
ter. Figure 25 shows the same convergence plot but only for
starting dates of the measurement period between 1 Octo-
ber and 1 February. For these starting dates, the relevant bins
are filled with enough data within a few months. After 2 or
3 months, sufficient data might already be available; after
a few months, additional data do not improve the predic-
tion. The slight increase in percentage errors for measure-
ment lengths of 10 months and more – visible in Fig. 25 –
is probably only due to the limited number of different mea-
surement periods – in this case, five. To sum up, if binning

Figure 24. Convergence of the percentage error of predicted yearly
damage values using the ANN for increasing measurement lengths.
Box plot shows data from 13 different measurement periods.

Figure 25. Convergence of the percentage error of predicted yearly
damage values using the binning approach for increasing measure-
ment lengths. Box plot shows data from five different measurement
periods starting in the winter.

approaches are to be used, it might be expedient to start mea-
surement campaigns in the autumn.

For ANN, fairly accurate results can be achieved using
data from a few months. Here, the advantage of determining
a functional relationship becomes obvious if data are scarce.
Starting the measurement campaign in winter can further re-
duce the required measurement length (not shown). Nonethe-
less, it should be noted that even for a measurement length of
only 2 months, ANN and the binning approach perform sim-
ilarly well.

4.5 Long-term extrapolations

So far, all extrapolations of fatigue damage have been con-
ducted for 2 consecutive years, i.e. short-term extrapolations.
This has the advantage that long-term changes not only in the
environmental conditions but also in the turbine can virtu-
ally be ruled out. However, for real damage assessments used
for lifetime extensions, an extrapolation over several years
might be necessary. For example, if strain gauges failed af-
ter 5 years of operation and an lifetime extension is planned
after 15 years, extrapolations over 10 years, i.e. long-term
extrapolations, are required. Such long-term extrapolations
might be more challenging, as the “learned” correlation be-
tween environmental conditions and fatigue damage might
have changed. If it has changed, which might even happen
within the first year after the measurement campaign ended,
extrapolations based on all three methods are impossible. It
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Figure 26. Visualisation of the 26 different periods for statistical
evaluations in the context of long-term extrapolations.

Figure 27. Percentage errors of predicted yearly damage values us-
ing all extrapolation methods compared to real damage values. Data
concern both short-term (13 different consecutive years) and long-
term predictions (1 year extrapolated to a non-consecutive second
year for 26 different years).

is important to be aware of this fact. Otherwise such effects
might lead to an underestimation of the fatigue loads.

In the following, a single year of measurement data is ex-
trapolated to a second year which occurred several years ear-
lier or later. For this purpose, data from the 3 years of 1 Jan-
uary to 31 December 2011 and 1 October 2015 to 30 Septem-
ber 2017 are used. Similar to before, the starting dates of
the 2 years are shifted month by month in order to realise a
higher number of different years. This means that the year
of 1 January to 31 December 2011 is extrapolated forwards
to 1 October 2015 to 30 September 2016, 1 November 2015
to 31 October 2016 and so on. In addition, 1 October 2015 to
30 September 2016, 1 November 2015 to 31 October 2016
and so on are extrapolated backwards to 1 January to 31 De-
cember 2011, i.e. vice versa. This procedure yields 26 differ-
ent years. A visualisation of this shifting procedure is shown
in Fig. 26.

The results of the long-term extrapolation for the three ex-
trapolation approaches, using the same settings as before, are
shown in Fig. 27 and compared to the previously determined
results of the short-term extrapolations.

For all three extrapolation approaches, the resulting per-
centage errors are in a similar range for both short-term and
long-term extrapolations. For the binning approach, the ap-
proximation even improves slightly for long-term extrapola-
tions. However, it can be assumed that this improvement is

only due to some random effects in the varying environmen-
tal conditions across the different years. Nonetheless, for this
data set, it can be concluded that long-term changes in the
structural behaviour seem to be less pronounced compared to
variations in environmental conditions. Therefore, depending
on how severe structural changes are, i.e. whether the learned
correlation is still valid, long-term extrapolations are possi-
ble, especially if the binning approach is applied. Certainly,
it must be asked where the boundaries of these long-term
extrapolations lie. Is it still possible to use them if the struc-
ture has changed significantly (e.g. rotor blades have been ex-
changed)? This question cannot be answered conclusively by
this work, as much more data would be needed and since the
answer will always be case-specific to some extent. Nonethe-
less, although the exact changes to the AV-07 turbine may not
be mentioned here for reasons of confidentiality, it should be
said that the AV-07 turbine has been significantly modified
during the period considered. Despite this significant modifi-
cation, the learned correlation seems to be still valid. Hence,
long-term extrapolations are probably possible for more sit-
uations than expected, sometimes even if moderate to severe
modifications to the turbine have been made. In a real indus-
try application, it would be necessary to test the validity of
the correlations every few years. For this purpose, for exam-
ple, a small measurement campaign with only strain gauges
at a single location for a few weeks could be conducted.

4.6 Extrapolation to the future

In all previous sections, it has been shown that the use of
EOC data, i.e. SCADA data, is beneficial compared to a sim-
ple extrapolation based on pure strain data. However, it was
always assumed that EOC data are available for the predicted
period. This is a valid assumption for nearly all predicted pe-
riods in the past, since SCADA systems feature a high avail-
ability and data quality. However, for extrapolations into the
future, this is no longer valid. Extrapolations into the future
are especially relevant for lifetime extensions. Hence, in this
section, the last question of Sect. 4, i.e. “Do the approaches
still yield reasonable results if extrapolations into the fu-
ture are conducted, for which no EOC data are available?”,
is to be answered. For this purpose, the binning probabili-
ties (Prpred,i1,...,id ) in Eq. (8) are no longer determined using
EOC data from the predicted (future) period. Instead, past
long-term EOC data are used. Long-term EOC data should
be available for any lifetime extension, as the wind turbine
has already been operating for 15 to 20 years. Moreover, it
can be assumed that EOCs in the future period can be better
predicted using long-term EOC data compared to using EOC
data from the limited measurement period, i.e. the period for
which strain data are available. The advantage of long-term
EOC data is that random variations are more completely in-
cluded. Using only EOC data from the measurement period
could yield biased results if, for example, the measurement
period features relatively harsh conditions compared to the
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Figure 28. Percentage errors of predicted yearly damage values us-
ing all extrapolation methods compared to real yearly damage val-
ues. Results of predictions into the future using long-term EOC data
are compared to previous results for which EOC data are available
(short-term predictions of past periods); 13 different years are used
in both cases.

long term. This is why, in this work, long-term probabilities
for all wind speed bins (Prlong-term,i1,...,id ) are determined us-
ing EOC data from 10 years (2011 to 2020). Using the long-
term probabilities, an extrapolation to future periods should
be possible, even if no EOC data are available for the pre-
dicted period:

Dfuture ≈Nn

M1∑
i1=1

. . .

Md∑
id=1

(
Prlong-term,i1,...,idDi1,...,id

)
. (15)

For approaches using functional relationships, the adap-
tation for future periods is similar. Here, Eq. (11) remains
nearly unchanged. The only difference is xk . For predic-
tions into the past, xk is the EOCs of the predicted period,
i.e. xk ∈

{
x1, . . .,xNn

}
. For predictions into the future, Nn

random realisations (with replacement) of the EOCs of the
long-term measurement period are generated, i.e.

Dfuture ≈

Nn∑
k=1

f (xk) xk ∈
{
x1, . . .,xNlong-term

}
, (16)

where Nlong-term is the number of short-term, e.g. 10 min, in-
tervals in the long-term measurement period.

For the simple extrapolation, there is no difference be-
tween extrapolations to periods in the past (with available
EOC data) and the future (without EOC data), since the sim-
ple extrapolation is based on strain data from the measure-
ment period only.

Results of all three approaches are shown in Fig. 28. In this
figure, percentage errors of predicted yearly damage for fu-
ture periods are compared to previous results for which EOC
data are available (short-term predictions of past periods).

By definition, for the simple extrapolation, an extrapola-
tion into the future is equally accurate compared to an ex-
trapolation to a period for which EOC data are available. For
all other approaches, the results demonstrate that the qual-
ity of the prediction decreases slightly for extrapolations into
the future. Nonetheless, predictions are still reasonable and
yield lower percentage errors compared to the simple extrap-
olation. Just like before, the binning approach also leads to

the smallest percentage errors for extrapolations into the fu-
ture.

In summary, extrapolations to future periods, for which no
EOC data are available, are still possible with a relatively
high accuracy provided that past long-term EOC data are
used instead. Again, the binning approach is most suitable.
Certainly, it must be kept in mind that the accuracy will de-
crease if long-term changes in the EOCs, e.g. due to climate
change, become relevant. Hence, an accurate extrapolation
of a few years into the future is possible, but an extrapolation
20 years into the future might be unreasonable.

5 Conclusion, benefits and limitations

To enable well-founded lifetime extensions for OWTs, the
remaining useful lifetime has to be determined. Although
several simulation-based and strain-measurement-based ap-
proaches for determining the remaining useful lifetime al-
ready exist, especially for strain measurement concepts, ad-
ditional research is required. This work addresses the re-
search gap regarding extrapolations of strain-measurement-
based fatigue damage calculations to other time periods.

Regarding the extrapolation in time, several approaches
making use of the correlation of EOCs (10 min mean values)
and short-term fatigue damage values are enhanced, assessed
and validated using real offshore measurement data. The ap-
proaches are a simple extrapolation, a binning approach and
two machine-learning approaches. A summary of the most
important results is as follows.

1. User-friendly binning approaches yield accurate results.

2. More complex machine-learning approaches do not
yield better results for the given data type, i.e. 10 min
EOC data.

3. It is sufficient to consider wind speed correlations only.
Other environmental conditions do not need to be taken
into account for locations at the tower.

4. Consideration of different turbine statuses can improve
the accuracy of the prediction. However, as it is not
straightforward, careful consideration should be given
to the question of whether it is beneficial.

5. The uncertainty of the prediction is moderate, and no
systematic bias occurs.

6. It is sufficient to measure strains for only a few months,
if these months are winter months.

7. Long-term extrapolations over several years might be
possible, even if the OWT is moderately to heavily mod-
ified in this time period if the learned correlation be-
tween EOCs and fatigue damage is still valid, which has
to be checked.
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8. For extrapolations into the future, the accuracy of the
prediction decreases, since EOCs have to be approxi-
mated using long-term EOC data. Still, reasonable pre-
dictions are possible.

Therefore, the results of this work demonstrate that user-
friendly binning approaches are a suitable alternative or ad-
dition to simulation-based lifetime extensions, even if only
limited strain data are available. However, some limitations
of this work should be discussed. First, spatial extrapola-
tions, i.e. extrapolations to other locations on the same tur-
bine and/or to other turbines in the same wind farm, are not
addressed. For spatial extrapolations, the reader is referred
to current research, e.g. Noppe et al. (2020) or Ziegler et
al. (2019). Second, to determine correlations, only data of
various environmental conditions and the turbine status are
used in this work. Classical continuous operational condi-
tions, like power output, are not taken into account. There
are well-founded reasons why wind speed data in combina-
tion with the turbine status are used instead of power output
data. For example, power output data have no informative
value for all turbine statuses where the turbine is not operat-
ing. Still, an additional use of continuous operational condi-
tions might be expedient. Third, only 10 min data are used.
This is reasonable, since 10 min SCADA data are nearly al-
ways available. Nonetheless, d N Santos et al. (2021) already
showed that additional data, e.g. 1 s SCADA data, are valu-
able for machine-learning approaches. Fourth, all present
analyses are only conducted for one turbine and one location.
Since other studies using different turbines – e.g. Hübler et
al. (2018) – yield comparable results, we do not expect sig-
nificant changes for similar turbines and/or other locations
on the substructure and/or tower. It could just be the case
that the influence of wave loads increases for locations fur-
ther down the turbine. For completely different turbines –
e.g. floating OWTs – results might no longer be valid. More-
over, for locations on the blades, the assumption of linear
damage is at least questionable. Hence, to determine the re-
maining lifetime of blades accurately, the approaches might
need to be adapted slightly. Finally, the analysed turbine is
located in the North Sea. There, only small to moderate long-
term changes in the environmental conditions occurred dur-
ing the measurement period. For other locations and/or ac-
celerating climate change, significant long-term changes in
environmental conditions might occur. This might reduce the
accuracy of the binning approach, even though the bin prob-
abilities should cover most of these changes.

6 Outlook

Some of the previously mentioned limitations of this work
immediately lead to future work.

First, the results of this work should be assessed for other
turbine types, for example, in other regions of the world or
onshore. This would increase the general validity of the re-

sults. Certainly, here, the availability of open-access strain
measurement data is a limiting factor.

Second, an analysis of extrapolation approaches for tur-
bine blades would be valuable. The presented binning ap-
proach is quite user-friendly and based on limited data.
Hence, it could be interesting for industry applications. If
such a “simple” approach were available for blades and other
components as well, this could be a useful extension. How-
ever, before applying the binning approach to rotor blades,
two simplifications of the short-term damage calculations
should be investigated in more detail. The relevance of se-
quence effects of stress cycles has to be investigated. More-
over, the effect of long-term fatigue cycles lasting more than
an hour should be analysed. For such cycles, Marsh et al.
(2016) and Sadeghi et al. (2022) showed their relevance even
for steel components of wind turbines. Two approaches to
reduce the error due to long-term fatigue cycles could be to
increase the length of the short-term periods to several hours
or to derive a correction factor (i.e. a damage ratio of dam-
age values with and without consideration of long-term fa-
tigue cycles) similar to Marsh et al. (2016) and Sadeghi et al.
(2022).

Third, the value of additional data, e.g. data of continuous
operational conditions like power output or pitch angle or
1 s SCADA data, should be analysed. For machine-learning
approaches, additional data are valuable. However, it is not
known whether it also improves the accuracy of binning ap-
proaches, since these are normally based on aggregated EOC
data.

Fourth, a thorough comparison with the probabilistic ap-
proach of Mai et al. (2019) would be interesting, especially
when focussing on the amount of required measurement data.

Finally, a combination of temporal and spatial extrapola-
tion methods would be an interesting addition. In this con-
text, spatial extrapolations cover predictions for other posi-
tions on the same turbine and also for other turbines in the
same wind farm.

Appendix A: Use of SCADA data

In this work, environmental conditions are taken from the
FINO1 met mast. Only if no data are available from FINO1,
are the wind conditions included in the SCADA data from
the AV-07 turbine taken into account. The reason for using
FINO1 data is that they are of higher quality. Still, in indus-
try applications, met mast data are normally not available.
Hence, the proposed methods have to yield accurate results
even if only SCADA data are used. In theory, this should be
the case, since EOC data are only used for the correlation,
e.g. binning. The practical applicability is demonstrated in
Fig. A1. It shows – exemplarily for the 1D binning approach
– a comparison of extrapolation results based on met mast
plus SCADA data (cf. Fig. 14) and pure SCADA data.
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Figure A1. Percentage errors of predicted damage values using a
binning method compared to real damage values. Comparison of
predictions using met mast plus SCADA data and SCADA data
only. Results only for 1D bins, i.e. wind speed (vs) bins, but var-
ious bin sizes (n). Notations as before: 1Dnx .
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