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Abstract. Wake steering is an emerging wind power plant control strategy where upstream turbines are inten-
tionally yawed out of perpendicular alignment with the incoming wind, thereby “steering” wakes away from
downstream turbines. However, trade-offs between the gains in power production and fatigue loads induced by
this control strategy are the subject of continuing investigation. In this study, we present a multifidelity multi-
objective optimization approach for exploring the Pareto front of trade-offs between power and loading during
wake steering. A large eddy simulation is used as the high-fidelity model, where an actuator line representation
is used to model wind turbine blades and a rainflow-counting algorithm is used to compute damage equivalent
loads. A coarser simulation with a simpler loads model is employed as a supplementary low-fidelity model. Mul-
tifidelity Bayesian optimization is performed to iteratively learn both a surrogate of the low-fidelity model and
an additive discrepancy function, which maps the low-fidelity model to the high-fidelity model. Each optimiza-
tion uses the expected hypervolume improvement acquisition function, weighted by the total cost of a proposed
model evaluation in the multifidelity case. The multifidelity approach is able to capture the logit function shape
of the Pareto frontier at a computational cost only 30 % that of the single-fidelity approach. Additionally, we
provide physical insights into the vortical structures in the wake that contribute to the Pareto front shape.

1 Introduction

As wind energy systems have matured, plant-level control
has emerged as a new paradigm, where groups of turbines are
controlled in coordination to maximize collective power pro-
duction. This is in contrast to more traditional control strate-
gies, where individual turbines are controlled to maximize
their own power production. A potentially promising form of
such plant-level control is “wake steering”, where upstream
wind turbine yaw positions are intentionally misaligned from
the incoming wind, “steering” the wake away from down-
stream turbines. A counter-rotating pair of vortices is gener-
ated by the lateral thrust of the wind turbine rotor, which is
determined by the yaw offset direction (Fleming et al., 2018;
Martínez-Tossas and Branlard, 2020). This allows the per-
formance of wind power plants to be improved by diverting
wakes away from downstream turbines

It is speculated that wake steering may produce more
power while inducing less total fatigue on all turbines when
compared to the baseline strategy of aligning each turbine
with the incoming wind (Howland et al., 2019; Hulsman
et al., 2020). However, very few studies have quantified the
trade-offs between power and damage. Hulsman et al. (2020)
used an actuator line model to train polynomial chaos sur-
rogates for optimization of a weighted sum of power and
damage equivalent loads. Yin et al. (2020) present a multi-
objective genetic algorithm for the maximization of power
and minimization of total thrust. Damiani et al. (2018) per-
formed a detailed analysis of a single wind turbine, finding
that negative yaw offsets tended to increase fatigue loading
more than positive yaw offsets, but cautioned that this result
could not be generalized given the dependence on incident
conditions. Other studies have provided additional evidence
supporting the notion that positive yaw misalignment results
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in less edgewise loading of downstream turbine blades than
the corresponding negative yaw misalignment strategy (Za-
lkind and Pao, 2016; López et al., 2020). Wang et al. (2020)
demonstrated the potential of individual pitch control to alle-
viate loads induced from intentionally offsetting the turbine
yaw. Van Dijk et al. (2017) used the FLORIS and CCBlade
tools to examine trade-offs between power produced and the
edgewise and flapwise fatigue loading induced through wake
steering. Lin and Porté-Agel (2020) utilize a large eddy sim-
ulation (LES) framework to construct the Pareto set between
power and flapwise bending moment loading through a com-
prehensive parameter sweep. While these studies all provide
insights into the trade-offs between power and loading, there
is still a need for an efficient optimization algorithm to quan-
tify these trade-offs using computationally intensive simula-
tions.

Despite its promise, plant-level control via wake steering
involves complex physics and is challenging to model. Engi-
neering wake models have dubious accuracy when predicting
fatigue loading, which higher-fidelity models predict more
accurately (Rinker et al., 2021). In this study, we propose
a multifidelity multiobjective optimization framework to ad-
dress this challenge and explore trade-offs between power
and loading in wake-steering strategies. In practice, power
and loading will likely be optimized in real time using a sin-
gular weighted objective. The relative weights may be de-
cided upon by exploring trade-offs between power and load-
ing using multiobjective optimization to estimate the Pareto
frontier. When searching for the Pareto set, an efficient al-
gorithm must balance exploration and exploitation. Several
models have been developed that may be used to study the
effects of control strategies with various levels of mathemat-
ical detail and real-world accuracy (i.e., fidelity) (Annoni et
al., 2018; Martínez-Tossas et al., 2019; Hulsman et al., 2020).

Multifidelity optimization exploits the correlation between
low- and high-fidelity models to reduce the overall computa-
tional cost of optimization. For instance, Andersson and Ims-
land (2020) present a real-time modifier adaptation approach
for wake-steering design, where a Gaussian process (GP) is
used to iteratively learn the difference between observed op-
erational data and the predictions of an engineering wake
model. Ariyarit and Kanazaki (2017) present a two-objective
bifidelity approach that iteratively builds a GP discrepancy
function. Huang et al. (2006) and Rajnarayan et al. (2008)
employ an augmented expected improvement formulation,
including three factors to account for the correlation between
the low- and high-fidelity models, the observed error, and the
cost ratio between the low- and high-fidelity models. It is not
always clear when a proposed low-fidelity model is appropri-
ate for use in multifidelity optimization, though it is common
to assess candidate low-fidelity models by measuring their
correlation with the high-fidelity model (Giselle Fernández-
Godino et al., 2019).

The novelty of the present study is the application of this
multifidelity technique to wind energy systems, resulting in

new insights into wake-steering flow physics. The present ap-
proach uses the low-fidelity model to first explore the full pa-
rameter space and then iteratively builds the low- and high-
fidelity model surrogates to gain the most improvement in the
Pareto front per model evaluation costs. While this frame-
work is similar to that presented by Ariyarit and Kanazaki
(2017) and Andersson and Imsland (2020), the exact frame-
work outlined here is new, and this is the first demonstration
of any such approach in the context of wind energy systems.

2 Optimization framework

A Bayesian framework for multiobjective multifidelity opti-
mization is presented. Throughout this section, we assume
that minimization of functions is the objective of the opti-
mization procedure (as opposed to maximization).

This study employs GP models to approximate power and
loading dynamics. A GP is a collection of random variables,
any finite number of which have a joint Gaussian distribution
(Rasmussen and Williams, 2006). The simulated power and
loads, fi , are approximated using individual Gaussian pro-
cess surrogate models, g, which are defined as

gi(γ )∼ GP
[
µi(γ ),ki(γ ,γ ′)

]
, (1)

where γ is a vector of proposed yaw angles (with dimension
equal to the number of turbines), γ ′ is an arbitrary vector
of yaw angles, µi(γ ) is the GP mean function, ki(γ ,γ ′) is
the GP kernel covariance function, and the index i refers to
power (i = 1) or loading (i = 2) objectives.

We perform Bayesian inference on functions by condition-
ing the GP on a set of observed input–output pairs Di =
{0,Yi}, where 0 =

[
γ (1),γ (2), . . .

]
is a matrix of simulated

yaw offsets, and Yi =
[
fi(γ (1)),fi(γ (2)), . . .

]
is a vector of

observations of simulated power or loading outputs. We use
the scikit-learn Gaussian process implementation (Pedregosa
et al., 2011), which is a well-validated open-source project.
The power and loading outputs are normalized to have zero
mean and unity variance during a preprocessing step. After
conditioning on Di , we obtain Gaussian distributions at test
locations γ ∗ with the posterior estimates of the mean,

µi
(
γ ∗ | Di

)
= kTi,∗K

−1
i Yi, (2)

and variance,

σ 2
i

(
γ ∗ | Di

)
= ki

(
γ ∗,γ ∗

)
− kTi,∗K

−1
i ki,∗ , (3)

where ki,∗ = ki (0,γ ∗) is a vector and K i = ki (0,0) is a
matrix.

The kernel covariance function encodes prior knowledge
about structural properties of the underlying signal, such
as smoothness, periodicity, and stationarity. In this study,
we employ an anisotropic radial basis function kernel (Ras-
mussen and Williams, 2006) for ki , given by

ki(γ ,γ ′)= exp

1
2

(
dim(γ )∑
j=1

(γj − γ ′j )2

l2ij

)1/2 , (4)
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where the correlation scale, lij , is estimated by maximizing
the log-marginal likelihood function (Pedregosa et al., 2011).

2.1 Single-fidelity approach

In Bayesian optimization, an acquisition function is defined
to maximize a metric representing both exploration and ex-
ploitation (Shahriari et al., 2015). A popular acquisition func-
tion for single objective optimization is the expected im-
provement (EI), which is the expected value of an improve-
ment function (Zhan and Xing, 2020) with respect to the pre-
dicted uncertainty of a GP. This acquisition function is em-
ployed by the efficient global optimization (EGO) algorithm
(Jones et al., 1998). The improvement function, I , quantifies
the improvement in the objective function for a new evalua-
tion, as compared to the best sampled objective, and is zero
if the new objective does not outperform all of the previously
sampled points. This results in

I (γ )=max
[
f ∗− f (γ ),0

]
, (5)

where f ∗ is the minimum sampled value and f (γ ) is the
function value, which is generally unknown and must be pre-
dicted by a GP.

There is a range of potential outcomes from sampling a
new point, and the GP framework conveniently estimates this
uncertainty. These uncertainties are used to compute the ex-
pected value of the improvement function. It is important that
the improvement function contains the maximum function;
otherwise, there would be no exploration of regions of larger
uncertainty. Other acquisition functions available include the
knowledge gradient (Ghoreishi and Allaire, 2018), expected
quantile improvement (He et al., 2017; Picheny et al., 2013),
improved expected improvement (Qin et al., 2017), entropy
search (Hennig and Schuler, 2012), and minimization of the
predictor (Andersson and Imsland, 2020).

The expected improvement may be extended to a multiob-
jective context. This is done by introducing a hypervolume
function, H , which measures the volume of a given Pareto
front, A, using a reference point, r . The expected hypervol-
ume improvement (EHVI), introduced by Emmerich et al.
(2006), is the multiobjective counterpart to the expected im-
provement acquisition function used in the EGO algorithm
and is given by

EHVI(γ ,g)= Eg(γ )
{
HVI

[
f (γ )

]}
. (6)

Here, Eg(γ )[·] represents the expectation with respect to a
normal distribution, g(γ ), and is expressed as

Eg(γ )
{
HVI

[
f (γ )

]}
=

∞∫
−∞

∞∫
−∞

HVI([P,L])

1

σ1(γ )
√

2π
e
−

1
2

[
P−µ1(γ )
σ1(γ )

]2 1

σ2(γ )
√

2π
e
−

1
2

[
L−µ2(γ )
σ2(γ )

]2

dP dL, (7)

where µ1 and σ1 are the mean and standard deviation, re-
spectively, of the powers modeled by g1, and µ2 and σ2 are
the mean and standard deviation, respectively, of loads mod-
eled by g2. The hypervolume improvement indicator (HVI)
function is the multiobjective counterpart to the improvement
indicator function. It is given as

HVI([P,L])=H (A∪ {[P,L]})−H (A) , (8)

whereA is an estimated Pareto frontier;A∪{[P,L]} is a new
Pareto set that potentially includes [P,L]; and H is a hyper-
volume function, which measures the volume spanned by the
Pareto set of objective functions relative to a reference point,
r , which must not be dominated by A∪ {[P,L]}. The Pareto
frontier is defined as the set of all function values that are
not strictly dominated by other function values. The formal
definition is

A=

{
y′ ∈

{
y ∈ Rdim(f )

: y = f (γ ),γ ∈�γ
}

:

{
y′′ ≺ y′,y′′ 6= y′

}
=∅

}
, (9)

where �γ is the set of allowable yaw offsets, ≺ denotes
Pareto dominance (that is, if y′′ ≺ y′, then y′′i ≤ y′i for all
values of i and y′′i < y′i for at least one value of i; Voorn-
eveld, 2003), and ∅ is the empty set.

The hypervolume,H , measures the extent of the Pareto set
as the volume of the Pareto-dominated space bounded by a
reference point, r , namely,

H (A)= Vol
({
y ∈ Rdim(f ) ∣∣y′ ∈ A≺ y and y ≺ r

})
. (10)

In practice, the Pareto set is computed by filtering a set of
discrete inputs so that only non-dominated points remain,

A=

{
y′ ∈ Y :

{
y′′ ≺ y′,y′′ 6= y′

}
=∅

}
, (11)

where Y is a matrix of observed function values. This filters
out observed samples that are Pareto dominated by other ob-
served samples.

Although these ideas may also be extended to more ob-
jectives, assuming two objectives simplifies the problem,
in this case, the observed Pareto set is defined as A≈
(y1,y2, . . .,yn) such that y1

1 < y
2
1 < .. . < y

n
1 . The hypervol-

ume is estimated using rectangular quadrature as

H (A)≈
n−1∑
i=1

(yi+1
1 − yi1)(r2− yi2)+ (r1− yn1 )(r2− yn2 ) , (12)

where n is the number of points in the given Pareto set and
r1 and r2 are the components of the reference point. In this
study, the EHVI is approximated through Monte Carlo sim-
ulation by

EHVI(γ ,g)

≈
1
Ns

Ns∑
k=1

[
H
(
A∪ {N [µ(γ ),σ (γ )]}(k)

)
−H (A)

]
, (13)
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where Ns is the number of Monte Carlo samples and
{N [µ(γ ),σ (γ )]}(k) is draw k from the GP model of power
and loading, g.

Once the EHVI is estimated, it must be maximized. This
is not necessarily trivial, as the EHVI computation is compli-
cated and difficult to vectorize, and the cost of the optimiza-
tion grows exponentially with the number of design vari-
ables. The EHVI optimum may be determined using a grid
search, random sampling, direct optimization, or surrogate-
based optimization. While a grid search is the most compre-
hensive option, the latter approaches are more computation-
ally efficient for high-dimensional design inputs.

2.2 Multifidelity approach

The multifidelity approach introduces computationally
cheaper but lower fidelity representations of the high-fidelity
model, which allow for greater control between exploration
and exploitation in the Bayesian optimization. Samples of
the low-fidelity model are adaptively refined throughout the
optimization as a cheap means for exploration of the high-
fidelity function space. Throughout this section, we assume a
known hierarchy of model fidelities, (f 1

k ,f
2
k , . . .,f

N
k ), where

f 1
k is the lowest-fidelity model of power/loading, N is the

number of different fidelity models, and fNk is the highest-
fidelity model of power/loading. When a model is evaluated
at a point, γ , we assume that all lower-fidelity models will
also be evaluated at this point.

The lowest-fidelity model, f 1
k , is approximated using a GP,

g1
k , resulting in the following output distribution:

g1
k (γ )∼N

[
µ1
k(γ ),σ 1

k (γ )
]
, (14)

where µ1
k and σ 1

k are the mean and standard deviations, re-
spectively, associated with the lowest-fidelity power/loading
model. Higher-fidelity models, f ik (γ ), are approximated us-
ing additive discrepancy functions that map the next lowest
fidelity function, f i−1

k (γ ), to f ik (γ ):

f ik (γ )≈ f i−1
k (γ )+ δik(γ ) ∀i > 1 , (15)

where δik(γ ) is the discrepancy function associated with ob-
jective k and fidelity i,

δik(γ )∼N
[
µik(γ ),σ ik (γ )

]
∀i > 1 , (16)

where µik and σ ik are the mean and standard deviations, re-
spectively, modeled by the discrepancy function GP associ-
ated with fidelity i.

New GPs are defined to extend the EHVI to a multifidelity
context. No matter which fidelity is to be sampled next, the
ultimate goal is to minimize the highest fidelity functions, so
each GP is constructed to predict the high-fidelity outputs.
However, GPs associated with lower-fidelity models should
not take into account uncertainties associated with higher-
fidelity models, as these uncertainties will not be collapsed

if the lower-fidelity model is sampled. Sampling the highest-
fidelity model must take all sources of surrogate uncertainty
into account, as a high-fidelity model evaluation will be as-
sociated with sampling all lower-fidelity models at the same
point. So, new GP models, hi , are constructed to predict the
high-fidelity output while encoding different uncertainty in-
formation. The GPs associated with each fidelity are defined
as

hik(γ )∼N
{ N∑
j=1

µ
j
k (γ ),

√√√√ i∑
j=1

[
σ
j
k (γ )

]2
}
. (17)

Putting the above formulations together, it is natural to define
a multifidelity multiobjective acquisition function as the ratio
of EHVI per evaluation cost:

J (γ , i)=−
EHVI

(
γ ,hi

)
i∑

j=1
Cj

, (18)

where J is the optimization acquisition function, which is a
function of a set of proposed yaw offsets and model fidelity,
to be minimized with respect to yaw offsets, γ , and model
fidelity, i, in each optimization iteration, and Ci is the com-
putational cost associated with model i.

In this study, we examine the bifidelity case (N = 2),
where

h1
k(γ )∼N

[
µ1
k(γ )+µ2

k(γ ),σ 1
k (γ )

]
(19)

and

h2
k(γ )∼N

{
µ1
k(γ )+µ2

k(γ ),
√[
σ 1
k (γ )

]2
+
[
σ 2
k (γ )

]2}
. (20)

The bifidelity workflow is visualized in Fig. 1. The EHVIs
associated with the low-fidelity (h1) and high-fidelity (h2)
GP models are maximized. Then, the EHVI per cost is maxi-
mized with respect to fidelity in the comparative step, which
corresponds to minimizing J (γ , i). If the EHVI per cost as-
sociated with evaluating the low-fidelity model is greater
than the EHVI per cost associated with evaluating the high-
fidelity model, the low-fidelity model is evaluated. Other-
wise, the high-fidelity model is evaluated. In the figure, h1

is represented by GPLF, h2 is represented by GPHF, C1 is
represented by CLF, and C2 is represented by CHF.

3 Numerical approach

This section outlines the numerical approaches used in this
study. Section 3.1 presents the flow modeling framework em-
ployed. Section 3.2 introduces the specific power and loading
objective functions used in this study. Section 3.3 presents
the approach used to maximize the multiobjective acquisi-
tion function. Section 3.3.1 outlines the sampling approach,
and Sect. 3.3.2 presents a correlation analysis used to deter-
mine the low-fidelity loading proxy.
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Figure 1. Workflow visualization for the bifidelity optimization
case. h1 is represented by GPLF, h2 is represented by GPHF, C1
is represented by CLF, and C2 is represented by CHF.

3.1 Flow modeling

We use the WindSE framework (National Renewable En-
ergy Laboratory, 2021) to model flow within the wind power
plant. We investigate a two-turbine case, with a single wind
direction and speed, where the turbines are spaced seven ro-
tor diameters apart and the wind direction is such that the
front turbine directly wakes the back turbine. The large tur-
bine spacing was chosen to ensure that solutions associated
with optimal power production were inside of the boundaries
of allowable yaw offsets. When turbines are spaced tightly,
it is common for the optimal power to be associated with the
largest allowable yaw offset of the front turbine, which is a
less challenging optimization case. The inflow boundary is
modeled using a logarithmic profile with a hub height wind
speed of 7.5 m s−1. The top, side, and outflow boundaries are
specified as no-stress boundaries, and the ground is specified
as a no-slip boundary. We consider turbine representations of
the IEA 3.4 MW reference turbine (Bortolotti et al., 2019),
with hub heights of 120 m and rotor diameters of 130 m. The
turbine blades are represented as actuator lines with 15 force
nodes. This analysis does not consider the turbine nacelle
or tower, and the turbine blades are modeled as being rigid.
There is no turbine controller, and the rotor speed and blade
pitch angles are modeled as constants. The domain is repre-
sented with a 2260×2000×520 m3 mesh, corresponding to a
301 s flow-through time. The mesh is refined near the center
of the domain and where the turbines are located. A target
Courant–Friedrichs–Lewy condition of 0.98 is specified. All
simulations were initiated with the same atmospheric condi-
tions.

The simulations solve the filtered conservation of mass
and Navier–Stokes equations given by

∇ · (ρũ)= 0 , (21)

Dũ

Dt
=−

1
ρ
∇p̃+

(
µ

ρ
+ νt

)
∇

2ũ+F , (22)

where D/Dt = ∂/∂t + ũ · ∇ is the material derivative, ũ
is the velocity, t is time, x is the spatial location, ∇ is
the spatial gradient, ρ is the density, p̃ is the pressure, µ
is the dynamic viscosity, νt is the turbulent viscosity, and
F is the turbine forcing. The density is specified as ρ =
1 kg m−3, and the dynamic viscosity is specified as µ=
1.8× 10−5 kg m−1 s−1. The turbulent viscosity, νt, is mod-
eled using the Smagorinsky–Lilly LES model as

νt = C
2
s1

2
|S| , (23)

where Cs = 0.17, 1 is the grid cell size, and S is the strain
rate tensor given by

S=
1
2

[
∇ũ+ (∇ũ)T

]
, (24)

and |S| = (2S : S)1/2.
The turbine forcing is computed as

F(x)=
dim(γ )∑
k=1

3∑
b=1

Nnodes∑
j=1

f kbj (x)
1

π3/2ε3

exp

[
−
|dkbj (x)|2

ε2

]
, (25)

where Nnodes is the number of actuator nodes per blade; ε
is the characteristic width of the actuator forces (specified as
2 m in this study); dkbj (x) is the distance from node j asso-
ciated with blade b and turbine k; and f kbj (x) is the actuator
force on node j associated with blade b and turbine k, which
is computed based on the wind speed, angle of attack, and
the reference airfoil lift and drag coefficients, as well as a tip
loss correction, as described by Allen et al. (2022).

Low- and high-fidelity models were developed for this
study using the WindSE framework. A Cartesian discretiza-
tion of the computation domain is specified, where the grid
is refined twice in the wake region as well as near the tur-
bine rotors. Each high-fidelity simulation is run to 1200 s us-
ing Taylor–Hood elements (Ern and Guermond, 2004). The
power and loading results only use information from the final
600 s of simulation time. These time parameters were justi-
fied by comparing power and loading computed over time
intervals of 600–900 and 900–1200 s, resulting in relative
differences of only 2.6 % for power and 4.2 % for loading
when γ = (15◦,0◦). These time parameters were chosen to
obtain a reasonably efficient optimization problem for the
present demonstration, accepting the possibility that the op-
timization results could be slightly different if different time
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Figure 2. Time-averaged velocity magnitude fields at the tur-
bine hub height associated with the low- and high-fidelity mod-
els. Panel (a) shows the flow field associated with the low-fidelity
model, and panel (b) shows the flow field associated with the high-
fidelity model. In both cases, the front turbine is offset by 30◦, and
the back turbine has no yaw offset. Brighter colors correspond to
faster velocity magnitudes. Turbine positions are shown with dark
lines.

parameters were chosen. For example, using a time interval
from 1200 to 1800 s, instead of the present 600–1200 s, re-
sulted in changes to the hypervolumes of the Pareto fronts
discovered by the single-fidelity and multifidelity optimiza-
tions of less than 0.5 %. The low-fidelity model was selected
using the same grid as the high-fidelity model but runs to 400
simulation seconds and uses piecewise linear elements. The
power is averaged after 300 s and the loading is estimated
using the front and back turbine moments past 300 s. This
cut-in time and the total low-fidelity model simulation time
were selected to avoid initial transient effects while minimiz-
ing the computational cost of the low-fidelity simulation. Us-
ing eight processors, the high-fidelity model was measured
to take 5.4 h to run, and the low-fidelity model was measured
to take 0.24 h to run. This corresponds to a cost ratio of ap-
proximately 0.05. The flow fields produced by the low- and
high-fidelity models are compared in Fig. 2.

3.2 Objective functions

The objective of the optimization is to minimize negative
power, −P , and loading, L, with respect to each turbine yaw
offset such that the yaw offset angles, γ , are bounded be-
tween −30 and 30◦.

Power and loading are quantified using the actuator line
model results, discarding an initial transient period. Power
is computed as the average total power after the initial tran-
sient period. While there are several ways to quantify load-
ing, this study provides a demonstration of the optimization
framework by summarizing the time history of the flapwise
bending moment of one blade in the front and back turbines
after the same initial transient period. Using the high-fidelity
model, loading is computed as the sum of damage equivalent
loads (DELs) (International Electro-technical Commission,
2015) associated with the front and back turbine flapwise

bending moments. The power and flapwise bending moment
are computed from the actuator force as

Pk(t)= ω
3∑
b=1

Nnodes∑
j=1

rj
(
f kbj · n̂θ,k

)
(26)

and

Mk(t)=
Nnodes∑
j=1

rj
(
f k1j · n̂n,k

)
, (27)

where Pk(t) is the power associated with turbine k, Mk(t)
is the flapwise bending moment associated with turbine k, ω
is the angular speed of the rotor (which is a constant 11.6
rotations per minute in this study), rj is the radial location
associated with node j , n̂n,k is the unit vector orientated out-
ward from the rotor plane associated with turbine k, and n̂θ,k
is the unit vector oriented in the direction of rotation of tur-
bine k.

The average power production of each turbine is computed
as

Pk,avg
=

1
tf− t0

tf∫
t0

Pk(t)dt , (28)

where Pk,avg is the average power associated with turbine
k, t0 is the initial time considered, and tf is the final time
of the data set. The total power, measured in megawatts, is
computed as the sum of the powers produced by each wind
turbine,

P =

dim(γ )∑
k=1

Pk,avg . (29)

Each DEL is computed using the rainflow-counting algo-
rithm as

DEL(Mk)=

(
100∑
i=1

Rmi
ci

1t

)1/m

, (30)

where i loops through each cycle found using the rainflow-
counting algorithm, Ri is a load range, ci is the number of
cycles associated with the ith range bin of the moment load
spectrum, 1t is the time elapsed in seconds, and m is the
Wöhler exponent. In this study, m is set as 10, and Ri and
ci are computed using the fatpack Python package (Frøseth
and Capponi, 2021), utilizing 100 loading bins. The loading
objective is computed as the sum of the flapwise bending mo-
ment DELs associated with the front and back turbines as

L̂HF
=

dim(γ )∑
k=1

DEL(Mk). (31)

The loading objective, L, is normalized to be negative and on
a similar scale to power, as

L= L̂/107
− 10 , (32)
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where L̂ is the load prior to normalization, which is com-
puted in newton meters. This normalization was chosen to
ensure that power and loading are of similar scale and that
both are negative. Because the EHVI is an area produced by
the two objectives, we do not expect different values in this
scaling function to affect the results of maximizing the ac-
quisition function, provided that all sampled objective values
are always less than the associated reference value.

3.3 Optimization implementation

Here we use a simple optimization approach for simplicity
of demonstration. In each iteration, the l correlation scale
parameter in Eq. (4) is selected based on the maximum like-
lihood function (Pedregosa et al., 2011), with a lower bound
of 5◦ and an upper bound of 30◦. The reference point, r ,
in Eq. (12) is specified as (0◦,0◦). In our formulation, we
minimize J (γ , l) using a grid-based search for the maximum
value. The grid is evenly spaced with 31 inputs per yaw off-
set dimension. Individual grids are considered for all values
of l. The EHVI is computed using Monte Carlo sampling
with 1200 samples taken from the GP. The EHVI may also
be computed through numerical quadrature (Emmerich et al.,
2011; Hupkens et al., 2015). When dealing with inputs of
larger dimension, the EHVI may be maximized using an op-
timization algorithm, such as a genetic algorithm or the EGO
approach. After the optimization, the Pareto set was refined
using B-spline interpolation in SciPy (Virtanen et al., 2020).

3.3.1 Initial sampling

Initial sampling points are selected using a heuristic ap-
proach, where an assumed kernel is used to progressively
minimize the standard deviation of the predictor. The sim-
plest approach to initializing the optimization procedure is
to randomly sample the low-fidelity and discrepancy func-
tions. Random initial sampling may affect the optimization
results, so a deterministic and symmetric sampling strategy
is used as a test case. An isotropic kernel is used with a corre-
lation scale of 10◦. The GP model is initialized with the point
(0◦,0◦). A 100×100 grid of inputs ranging between−30 and
30◦ degrees is used to find the next point that minimizes un-
certainty in the predicted variance. This process was repeated
iteratively to generate 100 points. These points were used to
naively estimate the optimal power and loading and Pareto
hypervolume as a reference. The first 5 points were used as
the initial high-fidelity samples, and the first 20 points were
used as the initial low-fidelity samples. This heuristic sam-
pling approach is also used to generate 100 samples for use
in a correlation analysis and as a naive, baseline approach to
searching for the Pareto set.

3.3.2 Low-fidelity loading model

We considered several different low-fidelity model forms for
loading and selected the one with the highest correlation to
the high-fidelity model, as that is known to result in the best
multifidelity performance. We used 100 samples obtained us-
ing the heuristic sampling method described in Sect. 3.3.1 to
test the correlation. In practice, this correlation test would
not be part of the optimization procedure, and reasonably
accurate models would be identified based on past experi-
ence and/or expert opinion. The correlation analysis revealed
a correlation of 0.976 between the low- and high-fidelity
power predictions. Using the DEL as the load proxy in the
low-fidelity model yielded a low correlation between the
low- and high-fidelity models. We explored other potential
loading proxies – applying the proxy to both the front and
back turbine moment histories and then summing the results
– and the results of each correlation analysis are presented
in Table 1. We used the proxy associated with the highest-
measured correlation, namely

L̂LF
= µt

[
M front(t)

]
+ 5σt

[
M front(t)

]
+µt

[
Mback(t)

]
+ 5σt

[
Mback(t)

]
, (33)

where µt and σt are the mean and standard deviation, respec-
tively, with respect to time. The DEL is purposely replaced
with lower-order moment functions to avoid the influence of
the spurious oscillations caused by the low-fidelity loading
model. The DEL is essentially a high-order moment, which is
especially susceptible to these oscillations. The lower-order
moments in Eq. (33) were less susceptible to the spurious
oscillations, which is why larger correlations are observed.

4 Results and discussion

4.1 Pareto set computation

The convergence of the single-fidelity and multifidelity op-
timization approaches is compared in Fig. 3. The dashed
lines show the hypervolume, best-sampled load, and best-
sampled power found from 100 sampled points using the
heuristic sampling approach, which the single-fidelity and
multifidelity approaches both outperformed. The EHVI as-
sociated with the multifidelity approach was generally lower
than the EHVI associated with the single-fidelity approach.
The multifidelity approach took less than a third as much
total time to estimate the optimal power and loading com-
pared to the single-fidelity approach. The optimal power is
achieved with 26◦ offset in the front turbine and 2◦ offset
in the back turbine. The optimal loading is achieved with
22◦ offset in the front turbine and −30◦ offset in the back
turbine. We also performed several shorter optimizations as
part of the development process using random initial sam-
ples, confirming that the multifidelity approach consistently
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Table 1. Correlations observed between high-fidelity DEL and different loading proxies of the low-fidelity model using 100 heuristic sam-
ples.

Proxy DEL µ σ µ+ σ µ+ 2σ µ+ 3σ µ+ 4σ µ+ 5σ µ+ 6σ

Correlation 0.742 0.103 0.800 0.479 0.745 0.857 0.892 0.899 0.896

determined the correct hypervolume in fewer iterations than
the single-fidelity approach.

Figure 4 compares the Pareto sets found using 50 equiv-
alent high-fidelity evaluations using the single-fidelity and
multifidelity approaches. The multifidelity approach captures
five Pareto points, and the single-fidelity approach captures
four Pareto points. The estimated Pareto sets are very sim-
ilar, although the single-fidelity approach captures more of
the Pareto set close to the optimal power and the multifidelity
approach captures more of the Pareto set close to the optimal
loading. The results of the single-fidelity and multifidelity
approaches are combined to show a single Pareto set, which
has a shape similar to a logit function.

Although the primary goal of the present study is to de-
velop and demonstrate a multifidelity multiobjective opti-
mization framework, once several of the points in the Pareto
set are identified the set can be further refined using a grid
search. As a demonstration of this additional step, the Pareto
set resulting from the combination of the single-fidelity and
multifidelity approaches was interpolated to create refine-
ment samples using B-spline interpolation (Virtanen et al.,
2020) with 10 interpolation points. To pick up more of the
Pareto set, this interpolation was offset in the γ1 direction by
−2◦, −1◦, 1◦, and 2◦ when creating the input refinement set.

The Pareto set resulting from these additional refinement
samples is visualized in Fig. 5. The resulting Pareto set has
three more points than the Pareto set found combining the
single-fidelity and multifidelity approaches. The optimiza-
tion algorithm did not originally fill in these points because
they reside in a relatively flat portion of the Pareto set (i.e.,
dP/dL is small), where adding points would not be expected
to increase the Pareto set hypervolume based on the rectan-
gular quadrature employed in this study. Adding these points
increased the hypervolume of the discovered Pareto set by a
very small amount, on the order of 0.002 %. Even when us-
ing such a refined set of inputs, there are several points where
the Pareto set jumps from one yaw position to another; atten-
tion would be needed for an operator to control the turbines
to operate along the Pareto set.

The multifidelity approach was successful in quantifying
the trade-offs between loading and power and was shown to
be more efficient than its single-fidelity counterpart. From
the presented results, we find that loading may be reduced
by 4 % while only reducing the optimal power by 0.3 %. The
accuracy of the single-fidelity and multifidelity GP models is
quantified using a leave-one-out analysis in the Appendix A.
Table 2 shows the power and front and back turbine DELs

associated with several strategies. Slight adjustments to the
back turbine angle result in substantial differences in the
back turbine loading. These small changes in yaw position
adjust the turbine thrust away from the flow, reducing the to-
tal thrust imparted on the back turbine.

4.2 Flow physics insights

Figure 6 shows the flow fields associated with neutral,−30◦,
and +30◦ yaw offsets in the front turbine, with the back tur-
bine aligned with the wind direction. When the front tur-
bine is offset, two structures are produced: a pair of counter-
rotating vortices and a coherent structure that is drawn from
the boundary layer. The direction of vortex rotation is deter-
mined by the direction of thrust the turbine imparts on the
incoming air. Induced vortices generally rotate in the oppo-
site direction from the blades that generated them, and the
location of the vortices is determined by their rotational di-
rection and the direction of blade rotation. The upper vortex
associated with the positive yaw offset is lower in elevation
than the upper vortex produced by the negative yaw offset.
The upper vortex also drifts less in the cross-flow direction
when using the positive yaw offset than when using a neg-
ative yaw offset. The bottom vortex drifts similarly in both
the positive and negative offset cases. All this amounts to a
larger and more extreme velocity deficit encroaching on the
back turbine when using the negative yaw offset, rather than
the positive yaw offset, resulting in more loading and less
power.

Time-averaged flow fields associated with the optimal
power, γ = (26◦,2◦), and optimal loading, γ = (22◦,−30◦),
solutions are compared in Fig. 7, which shows vertical slices
of the flow field before the flow reaches the back turbine. The
lesser front turbine yaw offset angle in the γ = (22◦,−30◦)
case results in less lateral movement of the wake, and the
wake structure has greater overlap with the back turbine than
in the γ = (26◦,2◦) case. The stronger vortical motion result-
ing from the γ = (26◦,2◦) case results in the boundary layer
being convected further inwards. This boundary layer struc-
ture also impacts the back turbine less in the γ = (22◦,−30◦)
case because of the reduced back turbine projected area. As
the wake convects past the back turbine, additional vorticity
is added to the flow. In the γ = (22◦,−30◦) case, the bound-
ary layer structure appears to be pushed back down by the
rotation of the bottom vortex.

Figure 8 shows time histories of the flapwise bending mo-
ment associated with the front and back turbines for various
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Figure 3. Convergence history of the single-fidelity and multifidelity approaches. The left plots show the EHVI, hypervolume, and best-
observed power and loading. The right plots show the yaw configurations associated with the best-observed power and loading.

Figure 4. Sampled inputs and outputs associated with power greater than 3 MW and loads less than 3 MN m. Points associated with the
single-fidelity approach are shown using blue square markers, and points associated with the multifidelity approach are shown using green
circular markers. A Pareto set constructed from the single-fidelity and multifidelity results is highlighted with hollow circles, where darker
(magenta) circles correspond to Pareto points with lower loads and lower powers.
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Figure 5. Sampled inputs and outputs associated with power greater than 3 MW and loads less than 3 MN m. Points associated with the
single-fidelity approach are shown using blue square markers, and points associated with the multifidelity approach are shown using green
circular markers. Refinement points are shown as black triangles. A Pareto set constructed from the single-fidelity, multifidelity, and refine-
ment samples is highlighted with hollow circles, where darker (magenta) circles correspond to Pareto points with lower loads and lower
powers.

Table 2. Observed power and loads for various yaw configurations.

γ1 γ2 Power Load Front turbine Back turbine Front turbine Back turbine
(◦) (◦) (MW) (M-Nm) Power (MW) Power (MW) DEL (M-Nm) DEL (M-Nm)

30 0 3.24 3.53 1.84 1.40 0.78 2.75
−30 0 2.99 5.59 1.84 1.15 0.93 4.66
26 2 3.45 1.92 2.12 1.33 0.61 1.31
26 0 3.44 1.87 2.12 1.32 0.61 1.27
26 −2 3.44 1.85 2.12 1.32 0.61 1.24
26 −30 3.25 2.18 2.12 1.13 0.61 1.57
22 0 3.26 3.55 2.21 1.05 0.52 3.03
22 −30 3.13 1.63 2.22 0.91 0.52 1.11

wake-steering strategies. The spikes in the back turbine load-
ing history are caused by the wake impacting the back tur-
bine. When γ = (−30◦,0◦), the back turbine shows greater
downward spikes in loading than when γ = (30◦,0◦), be-
cause of the greater velocity deficit discussed above. The
γ = (26◦,0◦) case yields smaller downward spikes associ-
ated with the back turbine loading than when γ = (30◦,0◦),
because the strength of the counter-rotating vortices is such
that the structure convected from the boundary layer does
not impact the back turbine as adversely. The γ = (22◦,0◦)
offset case has larger downward spikes in the back turbine
loading than the γ = (26◦,0◦) offset case, because the latter
steers the wake further away from the back turbine. When
the back turbine is offset to −30◦, the back turbine thrust
and associated moments are generally reduced. With this ex-
treme back turbine yaw offset, there is less variation in the
back turbine loading when the front turbine is offset by 22◦

than when it is offset by 26◦, because the former case results

in greater variation of velocity across the back turbine rotor
plane. These results are specific to the specified spacing be-
tween turbines and atmospheric conditions.

5 Conclusions

This paper has demonstrated a multifidelity multiobjective
optimization approach for wake-steering strategies. Actua-
tor line simulations were carried out using the WindSE tool
and using a coarser simulation as the low-fidelity model. The
high-fidelity loading was characterized as the sum of flap-
wise bending moment DELs on blades on the front and back
turbines. Due to oscillations in the low-fidelity simulations,
characterizing the low-fidelity loading with a DEL resulted
in a relatively low correlation between the low- and high-
fidelity loading predictions, so a different low-fidelity surro-
gate was developed with a higher correlation.
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Figure 6. Flow fields associated with the extreme and neutral offsets in the front turbine, viewed from upstream. The 1x term indicates the
distance downstream from the front turbine in terms of rotor diameters. Brighter colors show faster velocities. Streamlines show the direction
of the cross-flow and vertical velocity components. In each plot, the vertical and cross-flow location of the back turbine is shown as a white
circle. The turbines rotate clockwise when viewed from upstream. A diagram is shown on the left depicting the direction of positive yaw
offset when viewing the turbine from above.

Figure 7. Time-averaged flow fields associated with the optimal power (left) and loading (right) found by the optimization, viewed from
upstream, six rotor diameters away from the front turbine and one rotor diameter upstream of the downstream turbine. Brighter colors indicate
faster velocity magnitudes. In each plot, the vertical location and cross-flow location of the back turbine are shown as a white ellipse.

The multifidelity multiobjective optimization approach
was effective in exploring the trade-offs between loading
and power when developing a wake-steering design. Con-
vergence was achieved in the multifidelity optimization case
after approximately 30 % as many equivalent high-fidelity
model evaluations as in the single-fidelity case. Future work
should apply this approach and a low-fidelity loading func-
tion to more complex wind plant layouts to confirm their ef-

fectiveness. Exploring the solutions in the final Pareto sets
guided insights into the fundamental flow physics. Given the
specified turbine spacing and atmospheric conditions, a pos-
itive front turbine yaw offset is more effective at reducing
loading and increasing power than a negative yaw offset be-
cause the counter-rotating vortices associated with the nega-
tive front turbine yaw offset produce a greater velocity deficit
in the downstream wake. The boundary layer is convected
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Figure 8. Loading histories associated with different yaw offset strategies (values of γ ).

by the counter-rotating vortices, adversely affecting loading,
and this may be avoided using less-extreme front turbine yaw
offsets. Slightly modifying the back turbine yaw offset re-
duced loading by 4 % and only reduced power by 0.3 %.
Greater offsets in the back turbine also led to less overall
loading, with significantly less power generation.

It is well known that yaw position errors can adversely
affect the performance of wake-steering strategies. This is
especially true when it comes to turbine loading. A 30◦

yaw offset is already an aggressive strategy, and unfavorable
yaw position errors may result in even more aggressive yaw
offsets in practice. Yaw offset errors are generally extreme
in lower wind speeds, which is when wake-steering strate-
gies are most efficient at increasing power. Previous work
has examined the potential of considering yaw error uncer-
tainties in the wake-steering optimization problem (Quick
et al., 2017, 2020). The multifidelity optimization approach
presented in this paper could conceivably be extended to
optimization under uncertainty, using the final GP models
to propagate yaw position uncertainty, and potentially even
modifying the EHVI definition to include uncertainty in-
formation. Incorporating uncertainty will likely change the
shape of the discovered Pareto front.

A drawback of the presented approach is that it requires
sequential high-fidelity model evaluations. In practice, it is
often feasible to evaluate a high-fidelity model several times
in parallel, and the greatest expense is the time needed to run

the optimization. This framework may be extended to allow
for parallel function evaluations. A simple approach is to use
predictions of the GP as stand-ins for future model evalua-
tions, iteratively using these points to construct the next iter-
ation of the GP and the associated EHVI (Ginsbourger et al.,
2010). Yang et al. (2019) propose dividing the input space
into separate regions for parallelization of EHVI optimiza-
tion. Another intuitive approach could be to include refine-
ment points during each iteration. Refinement points could
be selected using the Pareto set predicted by the GP models
or interpolated along the observed Pareto set. Care should
also be taken when applying this method to ensure conver-
gence of the Pareto set with respect to convergence of the
underlying simulation.

In future work, this framework can be applied to a larger
array of turbines using more realistic control strategies with
different turbine spacings and atmospheric conditions. While
considering more turbines presents additional complications
in maximizing the EHVI, we anticipate there will be even
greater cost savings from the multifidelity approach as the
number of turbines increases. Additionally, the framework
can be extended to allow for optimization under uncertainty,
as it is not realistic to assume perfect control of wind turbine
yaw positions. Finally, the framework can incorporate more
lower-fidelity models and be combined with layout optimiza-
tion to realize the full benefits of multifidelity multiobjective
wake-steering optimization.
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Appendix A

A leave-one-out analysis was performed to assess the ac-
curacy of the single-fidelity and multifidelity GP models.
For each point considered, the model was trained using the
remaining points available, excluding the point of interest.
Then, the accuracy of the prediction was quantified by com-
paring it to the observed value. The single-fidelity and mul-
tifidelity approaches were analyzed using the data associated
with the optimization case study. When assessing the accu-
racy of the multifidelity model, the low- and high-fidelity
samples associated with each point considered in the leave-
one-out analysis were removed. Figure A1 shows results of
the leave-one-out analysis associated with the single-fidelity
GP. Figure A2 shows the results of the leave-one-out analysis
associated with the multifidelity GP.

Figure A1. Results of the single-fidelity leave-one-out analysis. Panel (a) shows the leave-one-out prediction errors associated with power
and loading, and the points are colored by the sum of both errors. The same points are plotted in panel (b), showing their associated γ1 and
γ2 values.

Figure A2. Results of the multifidelity leave-one-out analysis. Panel (a) shows the leave-one-out prediction errors associated with power
and loading, and the points are colored by the sum of both errors. The same points are plotted in panel (b), showing their associated γ1 and
γ2 values.

Based on these results, both GPs served as reasonably ac-
curate surrogates. Many of the sampled errors are less than
0.1 MW and 0.1 MN m, particularly in the region of the dis-
covered Pareto set, which correspond to 3 % of the maxi-
mum power and 6 % of the minimum loading, respectively.
The multifidelity approach yielded higher maximum errors
and lower minimum errors than the single-fidelity approach.
This analysis focused on the final results of the optimization,
and we generally expect the leave-one-out errors to shrink as
the optimization progresses.
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