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Abstract. Reynolds-averaged Navier–Stokes (RANS) simulations of wind turbine wakes are usually conducted
with two-equation turbulence models based on the Boussinesq hypothesis; these are simple and robust but lack
the capability of predicting various turbulence phenomena. Using the explicit algebraic Reynolds stress model
(EARSM) of Wallin and Johansson (2000) can alleviate some of these deficiencies while still being numerically
robust and only slightly more computationally expensive than the traditional two-equation models. The model
implementation is verified with the homogeneous shear flow, half-channel flow, and square duct flow cases,
and subsequently full three-dimensional wake simulations are run and analyzed. The results are compared with
reference large-eddy simulation (LES) data, which show that the EARSM especially improves the prediction of
turbulence anisotropy and turbulence intensity but that it also predicts less Gaussian wake profile shapes.

1 Introduction

As wind farms increase in size and number of turbines, in-
creasingly more attention should be given to the study of
wind turbine wakes, as they can account for a relatively large
power production decrease. Simple engineering models, such
as the classic Jensen (1983) model, the “new-classic” Bas-
tankhah and Porté-Agel (2014) model, or the more recent
Ishihara model (Ishihara and Qian, 2018), can be used to
model the flow through a wind farm on a regular laptop in
a matter of seconds. However, they all share some common
weaknesses: they are based on rather strict flow assumptions,
need empirically tuned parameters, and require a superposi-
tion model for overlapping wakes.

A wind turbine wake is a complex three-dimensional
swirling flow, and its development is governed by turbulent
mixing, which is strongly influenced by density stratification
in the atmospheric boundary layer (ABL) and the interaction
between the ABL and the wake itself. To model a more phys-
ically correct wind farm flow we therefore solve the Navier–

Stokes equations, which in essence are a reformulation of
Newton’s second law, along with conservation of mass. The
process of discretizing and solving these equations on com-
puters is known as computational fluid dynamics (CFD).
Unfortunately, the Reynolds number of atmospheric flows
is so large (106–108 or more; see, e.g., Wyngaard, 2010)
that it is unfeasible to conduct direct numerical simulation
(DNS) for even a single-wind-turbine wake. Instead large-
eddy simulation (LES), i.e., the simulation of the spatially
filtered Navier–Stokes equations, has been performed by nu-
merous groups in the last decade; see review by Breton et al.
(2017). Even though the rotor geometry is reduced to an
actuator disk (AD) or an actuator line (AL) model, these
simulations require a vast number of CPU hours on mod-
ern high-performance computing (HPC) clusters, again even
for a single-wind-turbine wake. A much faster simulation
can be conducted by solving the Reynolds-averaged Navier–
Stokes (RANS) equations instead; however, in contrast to
LES, which needs only to parameterize turbulent fluctua-
tions at the smallest (unresolved) scales, RANS simulation
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relies heavily on the quality of the turbulence model because
it must model fluctuations across all simulated scales. For ex-
ample, the standard two-equation k–ε model of Launder and
Spalding (1974) was shown by Réthoré (2009) to perform
poorly for simulation of wind turbine wakes in terms of wake
recovery prediction and also generating unphysical Reynolds
stresses in the vicinity of the turbine (i.e., unrealizable turbu-
lence). This is not unexpected since it was originally devel-
oped for simple free shear and boundary layer flows, e.g., flat
plate, pipe, plane jet, and cavity flows (Launder and Spald-
ing, 1974). The standard k–ε model is considered to be a
linear eddy viscosity model (EVM) because the anisotropy

tensor, aij ≡
u′iu
′
j

k
−

2
3δij (where u′iu

′

j is the Reynolds stress
tensor; k is the turbulent kinetic energy, TKE; and δij is the
Kronecker delta tensor), is linearly proportional to the nor-
malized strain rate tensor through the Boussinesq hypothe-
sis (Boussinesq, 1897); see also Eq. (5). A modified model
coined the “k–ε–fP ” model was developed and calibrated
specifically for atmospheric wind farm flows by van der Laan
(2014), and it showed much improvement over the standard
k–ε model. It is essentially equivalent to the first-order model
of the non-linear eddy viscosity model (NLEVM) of Apsley
and Leschziner (1998).

Linear EVMs based on the Boussinesq hypothesis (e.g.,
mixing length, k–ε and k–ω models) are the de facto stan-
dard for RANS in many fields of research, including wind en-
ergy applications (e.g., Bleeg et al., 2018; Hornshøj-Møller
et al., 2021; Heinz et al., 2021; Dicholkar et al., 2022; Letizia
and Iungo, 2022). They are simple to implement and numer-
ically robust but have a drawback in terms of physical cor-
rectness – the example of wake recovery has already been
mentioned earlier, and one can also quickly derive that the
Reynolds stresses become unrealizable for large normalized
strain rates in general; see Fig. 2. Full Reynolds stress mod-
eling (RSM), where a transport equation for each of the six
unique Reynolds stress components is solved, was conducted
by Launder et al. (1975), and this approach leads to more
physical predictions because one avoids the use of the quite
limiting Boussinesq hypothesis, and hence the production of
turbulence needs no further modeling, which is a major im-
provement. The drawback of this method is that it is more
computationally expensive and, perhaps more importantly,
less numerically stable. Rodi (1976) deployed the weak equi-
librium approximation (WEA) to the RSM equations, which
transforms the set of differential equations into a set of alge-
braic equations while still retaining most of the physical be-
havior of the RSM. This approach is known as the algebraic
Reynolds stress model (ARSM), and it can be formulated as
a tensor equation for the anisotropy tensor, but unfortunately
it is a non-linear implicit equation with multiple solutions,
which is also prone to numerical stability issues. Pope (1975)
simplified the ARSM by using the Cayley–Hamilton theo-
rem and obtained the first explicit algebraic Reynolds stress
model (EARSM) for the case of two-dimensional flow, which

as the name suggests is an explicit algebraic relation between
the Reynolds stress tensor (or equivalently the anisotropy
tensor) and the normalized strain rate and rotation rate ten-
sors. Different three-dimensional generalizations were sub-
sequently made by Taulbee (1992), Gatski and Speziale
(1993), and Wallin and Johansson (2000), which differ in
the constants and more importantly in the way they treat
the non-linearity of the ARSM. The Wallin and Johansson
(2000) EARSM (hereafter WJ-EARSM) is chosen for this
work because it is based on the concept of self-consistency
(meaning that the explicit solution of aij satisfies the non-
linear ARSM tensor equation exactly in two-dimensional
mean flows and approximately in three-dimensional mean
flows) and is only slightly more computationally expensive
compared to a standard k–ε model. The self-consistent solu-
tion was independently formulated by Girimaji (1996), Ying
and Canuto (1996), and Johansson and Wallin (1996) and
facilitates a consistent solution in non-equilibrium condi-
tions (where TKE production does not balance dissipation
of TKE).

It appears that only Gómez-Elvira et al. (2005) and van der
Laan (2014) have attempted to use EARSM for RANS sim-
ulations of wind turbine wakes. Many other research ar-
eas have however used the WJ-EARSM successfully (e.g.,
airfoil flow, Franke et al., 2005; vortex generators, Jirásek,
2005; stirred tanks, Feng et al., 2012; Kaplan turbines, Javadi
and Nilsson, 2017; and high-speed trains, Munoz-Paniagua
et al., 2017), so it seems that an untapped potential ex-
ists in turbulence modeling for wind energy applications.
Gómez-Elvira et al. (2005) deployed the Taulbee (1992)
model in a parabolic RANS setup, which is fast to execute but
lacks physical features such as the upstream induction zone;
van der Laan (2014) tested the Taulbee (1992), Gatski and
Speziale (1993), and Apsley and Leschziner (1998) models
in the elliptic RANS solver EllipSys3D (Sørensen, 1995) but
found that they were more numerically unstable compared to
the standard k–ε model.

The EARSM framework of Wallin and Johansson (2000)
has been further exploited by including the strong coupling
with density stratification present in the ABL (Lazeroms
et al., 2013), capturing the effect of both stable and convec-
tive ABLs (Lazeroms et al., 2016; Želi et al., 2020, 2021).
In this paper, we restrict the study to the neutral atmospheric
surface layer (ASL; i.e., the lower part of the ABL), leaving
stratified conditions for upcoming studies.

Section 2 describes the turbulence model formulations. In
Sect. 3, we verify our implementation of the WJ-EARSM us-
ing several canonical flow cases, and finally in Sects. 4 and 5,
it is applied to simulations of wind turbine wakes in the neu-
tral ASL.
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2 Turbulence modeling

The turbulence models utilized in this paper assume incom-
pressible, non-stratified flow; no system rotation (no Coriolis
or centrifugal contributions); isotropic dissipation of TKE;
and high Reynolds number flow.

2.1 The standard k–ε model (Launder and Sharma,
1974)

The Boussinesq hypothesis is used to obtain the Reynolds
stresses

u′iu
′

j =−νt

(
∂Ui

∂xj
+
∂Uj

∂xi

)
+

2
3
kδij , (1)

which are needed to close the momentum equations (the
equations for the mean velocity vector, Ui). The eddy vis-
cosity in a linear EVM is defined as νt = Cµ k

2

ε
, and transport

equations are used to obtain TKE (k) and dissipation of TKE
(ε):

∂k

∂t
+Uj

∂k

∂xj
=−u′iu

′

j

∂Ui

∂xj︸ ︷︷ ︸
P

− ε+
∂

∂xj

(
νt

σk

∂k

∂xj

)
︸ ︷︷ ︸

D(k)

, (2)

∂ε

∂t
+Uj

∂ε

∂xj
= (Cε1P −Cε2ε)

ε

k
+

∂

∂xj

(
νt

σε

∂ε

∂xj

)
︸ ︷︷ ︸

D(ε)

. (3)

This paper focuses on the k–ε model because it is tradition-
ally used for atmospheric flows (e.g., Crespo et al., 1985;
Richards and Hoxey, 1993; Sørensen, 1995), but the widely
used k–ω model could as well have been used. They can both
be categorized as linear EVMs because they use the Boussi-
nesq hypothesis to obtain the Reynolds stresses. Several em-
pirical constants are also present for both models, though
they are related to each other (Sogachev and Kelly, 2012);
for the k–ε model there are Cµ, σk , Cε1, Cε2, and σε (see
review by Weaver and Mišković, 2021, for the most popular
sets of constants used in the past). We shall use different sets
of constants throughout the paper and remark the choice at
each usage of the k–ε model.

To simplify the Boussinesq hypothesis, Eq. (1), we can use
the anisotropy tensor also mentioned in the introduction:

a= aij ≡
u′iu
′

j

k
−

2
3
δij . (4)

It is dimensionless, symmetric, and traceless, and Eq. (1) can
then be re-written as

aij =−2CµSij (linear EVM), (5)

where S= Sij ≡ 1
2
k
ε

(
∂Ui
∂xj
+
∂Uj
∂xi

)
is the normalized strain

rate tensor. The k–ε model is independent of the normal-
ized rotation rate tensor, �=�ij ≡

1
2
k
ε

(
∂Ui
∂xj
−
∂Uj
∂xi

)
; hence

it will be unable to predict turbulence effects associated with
rotation or curvature, e.g., damping/enhancement of turbu-
lence in rotating homogeneous shear flow (Wallin and Jo-
hansson, 2002). The more advanced EARSMs also need to
solve the k and ε transport equations because they depend on
Sij and �ij and hence depend on the turbulence timescale
k/ε. The key difference between these more advanced mod-
els and the standard k–ε closure is that the Boussinesq hy-
pothesis is replaced by a more general constitutive relation.

Finally, it can be noted that the time derivative is retained
in the transport equations, Eqs. (2)–(3), to allow for unsteady
RANS (URANS) simulations, e.g., homogeneous shear flow.
URANS is generally only advisable when there is a clear sep-
aration between the timescale of the turbulence and the mean
unsteadiness (see, e.g., Wallin, 2000) and should therefore be
used with care.

2.2 The k–ε–fP model

The k–ε–fP model by van der Laan (2014) is equivalent to
the first-order model of Apsley and Leschziner (1998), ex-
cept for a re-tuning of the model coefficients. To summarize,

aij =−2CµfP︸ ︷︷ ︸
Ceff
µ

Sij (k–ε–fP model). (6)

Compared with the Boussinesq hypothesis, Eq. (5), we see
that the only difference is that the k–ε–fP model uses a vari-
able or “effective” Ceff

µ , which is flow-dependent and thereby
makes aij non-linear in the velocity gradient tensor; how-
ever, the k–ε–fP model is still referred to as a “linear EVM”
(e.g., van der Laan, 2014) because the direction of aij is
aligned with Sij and not any other higher-order tensors. The
fP function is

fP =
2f0

1+
√

1+ 4f0 (f0− 1)(σ/σ̃ )2
,

σ ≡
k

ε

√(
∂Ui

∂xj

)2

=

√
IIS − II�, f0 = 1+

1
CR − 1

. (7)

In the above equation σ is the “shear parameter”, which can
be re-written using velocity gradient tensor invariants (see
Eq. 14), while σ̃ is the shear parameter of the freestream cal-
ibration flow. Instead of using DNS channel flow data for the
calibration, as was done by Apsley and Leschziner (1998),
van der Laan (2014) chose to calibrate with a neutral ASL
(logarithmic wind profile), which simply gives σ̃ = C−1/2

µ .
Finally, van der Laan (2014) took the Rotta constant as a free
parameter and tuned it to CR = 4.5 using LES data of wake
velocity and TI (pressure-strain data were not used) extracted
from eight different wind turbine wake cases.

In the freestream of a neutral ASL, fP = 1, so it reduces to
the standard k–ε model, while fP < 1 in regions with rapid
strain compared to the turbulence timescale (i.e., large nor-
malized velocity gradients), hence attenuating mixing in the
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Table 1. Model constants for the k–ε–fP model as recommended
by Sørensen (1995) and van der Laan (2014). Referred to later as
“ABL coefs”.

Cε1 Cε2 σk σε Cµ κ CR

1.21 1.92 1.00 1.30 0.03 0.4 4.5

wake shear layers and improving predictions of wind tur-
bine wakes as found by van der Laan (2014). The fP cor-
rection reduces mainly the turbulence length scale (but also
the turbulence velocity scale) in the near wake and can there-
fore be interpreted as a local turbulence-length-scale lim-
iter, as discussed by van der Laan and Andersen (2018). In
fact, the damping introduced through fP will preserve real-
izability for rapid shear (large normalized velocity gradient);
i.e., in the rapid distortion theory (RDT) limit it will pre-
dict a13 >−1, whereas the standard k–ε model would pre-
dict a13 <−1 (unrealizable turbulence); see Fig. 2.

Table 1 summarizes the model constants of the k–ε–fP
model, where one can notice that Cµ = 0.03 is used instead
of the established value of Cµ = 0.09 (e.g., Launder and
Spalding, 1974). Several measurements of atmospheric flow
in flat terrain (e.g., Panofsky and Dutton, 1984) point to a
lower Cµ, and Bottema (1997) argues that this is due to “in-
active” low-frequency atmospheric turbulence; see also dis-
cussion by Richards and Norris (2011). As a compromise
Cµ =

√
0.09 · 0.03≈ 0.052 is used in WAsP-CFD (Bech-

mann, 2016).

2.3 Wallin and Johansson (2000) EARSM

The EARS model of Wallin and Johansson (2000) is de-
rived from the ARSM of Rodi (1976) and therefore inherits
the constants, c1 and c2, which are the Rotta coefficient and
rapid pressure-strain coefficient of the Launder et al. (1975)
model, respectively. The particular choice c2 = 5/9 reduces
the model expressions significantly and is adopted in this
study. This choice is also supported by the DNSs of Shab-
bir and Shih (1993). Moreover, we only consider the incom-
pressible, high-Reynolds-number version (without near-wall
corrections) due to the high Reynolds number and the use of
rough-wall function boundary conditions at the ground in the
considered flow cases of this paper. Additionally, we make
comparisons between the 2D and 3D models. It is important
to stress that the 2D model is fully general and invariant and
can be used for simulation of three-dimensional mean flows
as noted by Hellsten and Wallin (2009); this has for example
also been commonly done with the EARSM of Gatski and
Speziale (1993). Another important point to mention again is
that all EARSMs are based on combinations of Sij and �ij
(which depend on the turbulence timescale, τ = k/ε), so one
still needs to solve either the k–ε model (used in this paper),
k–ω model (used by Wallin and Johansson, 2000), or some
other combination for obtaining the turbulence timescale.

2.3.1 2D WJ-EARSM

Using the complete two-dimensional tensor basis for the
anisotropy tensor (Pope, 1975), an exact self-consistent 2D
EARSM was found independently by Johansson and Wallin
(1996), Girimaji (1996), and Ying and Canuto (1996). It was
more thoroughly elaborated and tested by Wallin and Johans-
son (2000), where derivation details also can be found. With-
out loss of generality, and for the reason of numerical im-
plementation, the anisotropy is split into linear and “extra”
terms:

aij =−2Ceff
µ Sij + a

(ex)
ij , (8)

where

Ceff
µ =−

1
2
β1, a

(ex)
ij = β4

(
Sik�kj −�ikSkj

)
. (9)

The tensor coefficients are

β1 =−
6
5

N

N2− 2II�
, (10)

β4 =−
6
5

1
N2− 2II�

, (11)

while N is the real and positive root of a cubic polynomial
related to the non-linearity of the EARSM:

N =
c′1
3 +

(
P1+
√
P2
)1/3
+ sign

(
P1−
√
P2
)
|P1−

√
P2|

1/3, P2 ≥ 0

c′1
3 + 2

(
P 2

1 −P2
)1/6
+ cos

(
1
3

(
P1√
P 2

1 −P2

))
, P2 < 0

(12)

P1 =

(
1
27
c′

2
1+

9
20
IIS −

2
3
II�

)
c′1,

P2 = P
2
1 −

(
1
9
c′

2
1+

9
10
IIS +

2
3
II�

)3

,

c′1 =
9
4

(c1− 1) . (13)

The model only depends on the first two velocity gradient
tensor invariants:

IIS ≡ SijSji, II� ≡�ij�ji . (14)

The solution procedure is more thoroughly described in
Sect. 2.4, but one can just notice that given Sij and �ij ,
there is a closed and explicit solution of aij . Since N ,
Eq. (12), is an exact solution of the underlying cubic poly-
nomial problem, aij is an exact solution of the ARSM; hence
it is a self-consistent EARSM, which ensures good model
predictions in non-equilibrium conditions for P/ε > 1. We
suspect that the treatment of the EARSM non-linearity by
Taulbee (1992), Gatski and Speziale (1993), and Apsley and
Leschziner (1998) is one of the main causes for the numeri-
cal instability when these EARSMs/NLEVMs are employed
to model wind turbine wakes (van der Laan, 2014).
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Table 2. Model constants for the WJ-EARSM as recommended by
Želi et al. (2020). Referred to later as “Zeli coefs”.

Cε1 Cε2 σk σε κ c1 c2

1.44 1.82 1.00 1.30 0.38 1.8 5
9

Cµ is not an input parameter but an output parameter as
a result of applying the WJ-EARSM; see Eq. (9). However,
one still needs it for the rough-wall boundary condition (BC)
used in our code and for the diffusion terms in the k and
ε transport equations in our implementation; here we shall
use Cµ = 0.087, which is the equilibrium value (the value
obtained by fixing P/ε = 1 and considering the log-layer
relations) with the current set of constants in Table 2; see
Sect. 4.1. Also note that κ = 0.38 is not an input parameter
but is calculated from the other model constants in order to
satisfy the log-layer balance; see Eq. (23).

2.3.2 3D WJ-EARSM

The 3D model is derived in an analogous way to the 2D
model (Wallin and Johansson, 2000) but with the complete
three-dimensional tensor representation of aij , which gives

aij =−2Ceff
µ Sij + a

(ex)
ij , (15)

with

Ceff
µ =−

1
2

(β1+ II�β6) ,

a
(ex)
ij = β3T

(3)
ij +β4T

(4)
ij +β6

(
T

(6)
ij − II�Sij

)
+β9T

(9)
ij .

(16)

The tensor coefficients and basis tensors are

β1 =−
N
(
2N2
−7II�

)
Q

T(3)
=�2

−
1
3II�I

β3 =−
12N−1IV

Q
T(4)
= S�−�S

β4 =−
2
(
N2
−2II�

)
Q

T(6)
= S�2

+�2S− 2
3IV I

β6 =−
6N
Q

T(9)
=�S�2

−�2S�,
β9 =

6
Q

where

Q=
5
6

(
N2
− 2II�

)(
2N2
− II�

)
, (17)

IV = Sij�jk�ki . (18)

Unfortunately, there does not exist an analytical solution
for N in the 3D model; therefore the cubic N solution from
2D, Eq. (12), is used; hence the 3D model is not exactly self-
consistent, but the cubic N solution is however still a quite
good approximation in many cases. The same model con-
stants are also used; see Table 2.

One can show that the 3D model reduces to the 2D
model in two-dimensional mean flows, where T(6)

− II�S=
0, IV = 0, and T(9)

=−
1
2II�T(4) are valid.

2.4 Implementation details

The flow cases are simulated with EllipSys3D, which is a
finite-volume CFD solver developed and described in detail
by Michelsen (1992) and Sørensen (1995). The solver al-
ready has implementations of the standard k–ε model and
the k–ε–fP model (van der Laan, 2014), so the following
focuses on the implementation of the WJ-EARSM. As em-
phasized in the previous sections, both the 2D and 3D mod-
els can be written in the same form; see Eqs. (8) and (15)
(although with different expressions for Ceff

µ and a(ex)
ij ). The

splitting of the anisotropy tensor into a linear and an extra
part makes the implementation relatively straightforward in
codes that already have a k–ε model implemented, as also
noted in Appendix A of Wallin and Johansson (2000); for
the momentum equations, simply use νeff

t = C
eff
µ
k2

ε
instead

of νt = Cµ k
2

ε
, and add −

∂a
(ex)
ij k

∂xj
as a source term:

−
∂u′iu

′

j

∂xj
=−

∂
(
aijk+

2
3kδij

)
∂xj

=
∂2Ceff

µ kSij

∂xj︸ ︷︷ ︸
Treat implicit

−
∂a

(ex)
ij k

∂xj︸ ︷︷ ︸
Treat explicit

−
∂ 2

3kδij

∂xj︸ ︷︷ ︸
Absorb into pressure

. (19)

For numerical stability, it is recommended to include the first
term in the system matrix and the second term in the source
vector (i.e., treat the terms implicitly and explicitly, respec-
tively). The third term is isotropic and can be absorbed into a
modified pressure.

In the k and ε transport equations, we use the standard
νt in the diffusion terms (D(k) and D(ε) in Eqs. 2–3) since
these are calibrated using the standard model. This practice is
also used by Apsley and Leschziner (1998), Myllerup (2000),
and Menter et al. (2009). In the original paper of Wallin and
Johansson (2000), it was proposed to use the Daly–Harlow
diffusion model or an eddy-diffusion model with the effec-
tive νeff

t , which was later abandoned for the standard eddy-
diffusivity model (see, e.g., Menter et al., 2012). The TKE
production is calculated consistently as P =−εaikSki with
the full anisotropy tensor; this expression is in fact valid for
all turbulence models (see for example Wallin and Johans-
son, 2000).

A segregated solver (i.e., solving the U equation, then the
V equation, then the W equation, etc.) is used in EllipSys,
and the same shear production P is used in both turbulence
transport equations; an overview of the procedure is sketched
in Fig. 1. The boundary conditions for each variable depend
on the type of boundary (rough wall, inlet, outlet, cyclic, or
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Figure 1. Segregated solver procedure for WJ-EARSM in Ellip-
Sys3D. Note that P is the mean pressure, while P is the TKE shear
production.

symmetric), and the implementation of these in EllipSys3D
is described by Sørensen (1995) and Sørensen et al. (2007).

The 1D version of EllipSys3D, EllipSys1D (van der Laan
and Sørensen, 2017), is used for the 1D verification cases
in Sect. 3. Its code structure is very similar to EllipSys3D’s,
but it has no W momentum equation (W = 0) and no pres-
sure correction equation (∂/∂x = ∂/∂y = 0, so continuity is
ensured already), and it is written using 1D simplifications
(mean variations only in time and z direction), which makes
it possible to run 1D simulations, or so-called “single-column
models”, on a regular laptop in a few seconds.

For both EllipSys1D and EllipSys3D, the procedure of
calling the WJ-EARSM is as such:

1. Use the most recent solution of momentum and turbu-
lence transport equations to calculate the normalized
strain rate and rotation rate tensors, Sij and �ij .

2. Calculate tensors and invariants.

3. Calculate N .

4. Calculate coefficients, β1, . . . ,β10.

5. Calculate anisotropy tensor, aij .

6. Calculate TKE shear production, P =−εaikSki .

7. Calculate Ceff
µ and a(ex)

ij .

3 Verification cases

As is clear from the previous section, the expressions in the
WJ-EARSM are considerably longer compared to the ones of
the k–ε and k–ε–fP models. Three canonical flows (homo-
geneous shear flow, half-channel flow, and square duct flow)

are therefore used as verification cases to gain confidence in
the numerical implementation (verification is the process of
ensuring correct implementation, whereas validation is the
process of assessing a model’s accuracy; see Réthoré et al.,
2014); full three-dimensional wind turbine wake simulations
are first considered in Sect. 4. The first two cases can be
simulated in a 1D setup, which make them ideal for initial
testing, while the last case needs to be simulated in 3D due
to the phenomenon of secondary motions. For the latter, a
quasi-2D setup – homogeneous in the streamwise direction
– would be possible, but a fully three-dimensional setup is
chosen for verification of the 3D implementation. All cases
are compared to either analytic expressions or DNS data to
verify correct behavior of the implementation.

Even before running the verification cases, we consider
the general class of “simple shear flows” (a.k.a. 1D paral-
lel flows), where the normalized strain rate and rotation rate
tensors are

Ssimple =

 0 0 S13
0 0 0
S13 0 0

 ,
�simple =

 0 0 S13
0 0 0
−S13 0 0

 . (20)

Prescribing S13 enables us to evaluate the turbulence mod-
els analytically and obtain the anisotropy tensor, aij . The a13
component is shown in Fig. 2, and from the Cauchy–Schwarz
inequality one can show generally that−1≤ a13 ≤ 1; if a tur-
bulence model violates this, then it predicts “unrealizable”
turbulence, meaning unphysical turbulence. For large S13, the
k–εmodel leads to unrealizable turbulence, while both the k–
ε–fP model and WJ-EARSM (the 2D and 3D WJ-EARSMs
are identical in 1D) are realizable even for large S13. This
is very desirable because large normalized velocity gradients
are typically encountered in regions of non-equilibrium tur-
bulence, e.g., in the vicinity of the rotor and in the wake
shear layers. Indeed Réthoré (2009) noted large regions of
unrealizable turbulence near the wind turbine when using the
standard k–ε model. Also note that the k–ε–fP model (using
Cµ = 0.03) predicts a similar a13 as the WJ-EARSM solu-
tion for large strains, while the main difference between the
models is found for small strains.

3.1 Homogeneous shear flow

Homogeneous shear flow (see review by Pope, 2000,
pp. 154–157) has a simple setup but can be challenging to
simulate and is conceptually a strange case. The momen-
tum equations are not solved, and instead a constant velocity
gradient is artificially fixed at all times; see Fig. 3. This is,
indeed, rather unphysical since the velocity gradient should
gradually decrease as turbulence is created until the velocity
gradient eventually becomes zero, and turbulence dies out.
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Figure 2. Analytical off-diagonal anisotropy in simple shear flow.

Figure 3. Mesh and the prescribed velocity profile in EllipSys1D
for the homogeneous-shear-flow case.

Nevertheless, homogeneous shear flow constitutes an inter-
esting test case because it only involves the solution of the
turbulence transport equations and turbulence closure; hence
it is a “pure” test of the turbulence model. Moreover, free-
shear layers can locally be approximated with homogeneous
shear. Only EllipSys1D is used for this case.

In principle, homogeneous shear flow is an unsteady 0D
case. The turbulence evolves identically at all positions in
space; hence there is actually no need for a spatial discretiza-
tion as shown in Fig. 3 (one could simply integrate the k and
ε equations forward in time, given an initial turbulent state, as
done by for example Taulbee, 1992), but this extra complex-
ity is chosen for the present case since the goal is to verify
the turbulence model implemented in a finite-volume CFD
code. In practice this means that BCs need to be set at the top
and bottom of the domain: a fixed velocity, U , is used as il-
lustrated in Fig. 3, while symmetry BCs are used for k and ε.

The implicit Euler scheme is used for time integration, while
the second-order central scheme is used for diffusive terms.

The simulation parameters used are as follows.

– Height of domain, Lz = 100 m. Uniform spacing and
10 finite-volume cells are used (if ghost cells are
counted in, there are 12 cells); hence grid spacing is
1z= 10 m.

– Fixed velocity profile, U (z)= Sz, where S = 0.1 s−1.
This gives U (z= 0)= 0 and U (Lz)= 10 m s−1.

– Normalized time step, 1t∗ ≡1tS = 0.1 (in physical
time1t = 1 s). Ten subiterations per time step are used,
and the total normalized simulation time is t∗ = 80 (in
physical time t = 800 s).

– Initial turbulent state, S k
ε
= 3.4 at t∗ = 0. This non-

dimensional quantity determines the evolution of the
non-dimensional metrics, i.e., anisotropy components,
production-to-dissipation ratio, etc.; it is the same ini-
tial turbulent state as used in the homogeneous shear
flow simulations by Bardina et al. (1983), Gatski and
Speziale (1993), Girimaji (1996), and Wallin and Jo-
hansson (2002).

The RANS model equations here are independent of ρ and ν
because no momentum equation is solved, and the diffusion
terms in the k and ε equations (D(k) and D(ε)) in Eqs. (2)–(3)
will be zero.

A nice feature of homogeneous shear flow for verification
purposes is that it evolves to an asymptotic state and that
an analytic solution exists for this state; e.g., the asymptotic
production-to-dissipation ratio can be derived to be (see for
example Gatski and Speziale, 1993)

P
ε
=

1−Cε2
1−Cε1

(asymptotic limit t→∞). (21)
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Figure 4. Simulation of homogeneous shear flow with WJ-EARSM (full line) and the model’s analytical asymptotic values (dashed lines)
with different sets of constants. The simulation data are extracted at z/Lz = 0.45, but the evolution is identical at all grid points.

Table 3. Analytic, asymptotic homogeneous shear flow formulas.
In homogeneous shear flow, S13 = S31 =�13 =−�31, while all
other components are 0. When P

ε is known, one can use the di-
rect definition of N ≡ c′1+

9
4
P
ε instead of Eq. (12); see Wallin and

Johansson (2000).

k–ε WJ-EARSM

P
ε Eq. (21) Eq. (21)

S13
1
2C
−1/2
µ

√
P
ε N

(
12
5
N
P
ε

− 4
)−1/2

S kε 2S13 2S13
a13 −2CµS13 β1T

(1)
13

a11 0 β1T
(4)
33

a22 0 0
a33 0 −a11

In 1D parallel flows, P/ε =−2a13S13, and this gives a
second equation for P/ε. By inserting the expression for a13
(the expression differs depending on the turbulence model),
one can isolate and obtain a value for S13 =

1
2
k
ε
S. This

value can then be used to obtain Sij and �ij and hence
the anisotropy tensor. The asymptotic formulas are summa-
rized in Table 3, where one can note that the asymptotic WJ-
EARSM formulas only depend on Cε1 and Cε2, while the
k–ε formulas additionally depend on Cµ. Figure 4 shows the
time evolution of the WJ-EARSM as well as the theoretical
asymptotic values for three common sets of coefficients (Cε1,
Cε2). All simulations indeed go to the analytical asymptote,
which gives some confidence in the implementation of the
WJ-EARSM. For validation purposes we also include some
LES (Bardina et al., 1983) and experimental (Tavoularis and
Corrsin, 1981) data in Fig. 4, which show that the Zeli con-
stants perform better for all quantities except a11. The choice
of c2 = 5/9 makes a22 = 0 for all simulations.

Wind Energ. Sci., 7, 1975–2002, 2022 https://doi.org/10.5194/wes-7-1975-2022



M. Baungaard et al.: Wind turbine wake simulation with explicit algebraic Reynolds stress modeling 1983

Figure 5. Half-channel EllipSys1D setup. The sketch to the right shows the convention of the coordinate system used for rough-wall
simulations.

3.2 Half-channel flow

The second reference flow is the fully developed, steady-
state half-channel flow, a.k.a. pressure-driven boundary layer
(PDBL) flow, and can be solved in 1D using a grid as
sketched in Fig. 5. The lower BC is a rough wall imple-
mented as in Sørensen et al. (2007), while the upper BC uses
symmetry; hence turbulence now depends on the z coordi-
nate contrary to in the homogeneous-shear-flow case. The
flow is driven by a constant streamwise pressure gradient
force, which is an input parameter for the simulation (if one
does not use such a forcing, then the rough wall will ex-
tract momentum from the flow, and the velocity eventually
becomes zero throughout the domain).

The input parameters for the simulations are as follows:

– Height of domain, Lz = 6000 m. The grid is stretched
using the hyperbolic tangent function (Thompson et al.,
1985), and 192 finite-volume cells are used (if ghost
cells are counted in, there are 194 cells).

– Aerodynamic roughness height, z0 = 0.03 m. This is
used for the rough-wall BC in the first wall-adjacent
cell, which has a height of 1z= 0.10 m.

– Streamwise pressure gradient force per unit mass,
Fp = 1.5× 10−5 m s−2. One can show that the squared
friction velocity then becomes u2

∗ ≡−u
′w′s = FpLz =

0.09 m s−1.

The flow is independent of ν because a rough-wall BC is used
and the flow is fully turbulent, hence ν� νt .

The region in the lower part of the domain is known as
the “log layer”, which is characterized by equilibrium turbu-

Table 4. Analytical values in the log layer of the half-channel flow.

k–ε WJ-EARSM

P
ε 1 1

S13
1
2C
−1/2
µ

√
P
ε N

(
12
5
N
P
ε

− 4
)−1/2

a13 −2CµS13 β1T
(1)
13

a11 0 β1T
(4)
33

a22 0 0
a33 0 −a11

lence, i.e., P
ε
≈ 1. As in the homogeneous-shear-flow case,

we can use this ratio to obtain analytical results for shear and
anisotropy; see Table 4.

The flow profiles with the analytical log-layer values are
plotted in Fig. 6. Both sets of model constants, Tables 1
and 2, are used for the k–ε model, which explains the differ-
ent U profiles. A spike in the k profiles is seen near the wall,
which is a well-known problem (see Blocken et al., 2007),
but the value of k(z≈ 0) is nevertheless close to the equilib-

rium value keq =
u2
∗

C
1/2
µ

for both models (again reminding that

Cµ differs between the two sets of model constants; compare
Tables 1 and 2). The kinematic wall shear stress, u′w′(z= 0),
is close to −u2

∗ for both models, confirming that the pressure
gradient force is applied correctly, and the respective analyt-
ical log-layer solutions are also approximately obtained for
both models at z/Lz < 0.3 in accordance with Pope (2000).
One can notice that a feature of the WJ-EARSM is that the
normal streamwise and vertical anisotropies are non-zero;
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Figure 6. Half-channel simulation results (full lines) and analytical log-layer solutions (dashed lines).

this means u′u′ > v′v′ = 2
3k > w

′w′. This behavior is also
seen in the neutral ASL (Panofsky and Dutton, 1984), which
we return to in Sect. 4.

3.3 Square duct flow

The square duct geometry and boundary conditions are
shown in Fig. 7. Similar to the half-channel flow, the flow is
driven by a streamwise pressure gradient, but the difference
is that the duct flow has walls on all four sides. Due to sym-
metry, we only simulate the lower left quadrant of the duct.
As this paper focuses on high-Reynolds-number turbulence
models, we choose to model the walls as rough walls instead
of smooth walls, which are traditionally used in square duct
flow simulations.

Although, the fully developed square duct flow might ap-
pear as a two-dimensional problem, it in fact features a full
three-dimensional flow field, due to the secondary corner
flows, also sketched in Fig. 7, which were first observed ex-
perimentally by Nikuradse (1930) and later with DNS by

Gavrilakis (1992). The secondary motions are only on the
order of V

U
∼

W
U
∼O(10−2) but still have a notable effect on

the bulk flow as they transport momentum from the center of
the duct toward the corners. Perhaps the most interesting as-
pect of square duct flow from a turbulence modeling perspec-
tive is that linear EVMs are unable to predict the secondary
corner flows because the secondary motions are caused by
the normal anisotropy components, which are zero in linear
EVMs for fully developed flow; see Eq. (5) and discussions
by Menter et al. (2009) and Emory et al. (2013). However
more sophisticated turbulence models such as EARSM and
uncertainty quantification models (Emory et al., 2013) are
able to predict this physical phenomenon.

In this paper, we simulate a fully turbulent square duct
flow (high Reynolds number) with rough-wall BCs; hence
the flow is independent of ν similar to the half-channel flow.
Currently, the DNS of Pirozzoli et al. (2018) is the most tur-
bulent DNS available (Reτ ≡

〈u∗〉h
ν
= 1055), so this is cho-

sen for reference, although it uses smooth walls and might
not correspond exactly to our high-Reynolds-number case.
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Figure 7. Square duct geometry and a cross-section showing the secondary corner flows. Sketch made with inspiration from Wu et al. (2016).

Figure 8. Streamwise (a–c) and vertical (d–f) velocity contours in the lower left quadrant of the square duct. Normalized by the bulk velocity,
Ubulk =

1
A

∫
UdA.

For this reason the RANS and DNS should not be compared
directly, but the DNS will at least show typical characteristics
and the order of magnitude to be expected. The parameters
for the RANS simulation are given in Table 5, and a recti-
linear 32× 64× 64 grid is used, which is stretched towards
the walls to obtain a first wall-adjacent cell height on the or-
der of the roughness length (no stretching used in streamwise
direction).

The streamwise and vertical velocities (U and V compo-
nents) are shown in Fig. 8, which shows that the 2D WJ-
EARSM is indeed capable of predicting secondary flows
similar to the DNS of Pirozzoli et al. (2018). Both Figs. 8
and 9 clearly show that the prediction of the secondary flow
is necessary to capture the correct shape of theU distribution.

Table 5. Parameters used for simulation of square duct flow in El-
lipSys3D. The brackets 〈〉 signify the average over the wall.

h [m] Lx/h [–] z0/h [–] 〈u∗〉 [m s−1
]

640 4 7.81× 10−5 1.24× 10−2

In contrast, the standard k–ε model predicts zero vertical ve-
locity and therefore no secondary flow.

The 3D WJ-EARSM performed similarly to the 2D WJ-
EARSM, although with a slightly weaker secondary flow,
which can be seen in Fig. 9, where the velocity profiles are
extracted on the corner bisector line (the diagonal line). Both
WJ-EARSMs predict similar profiles to the DNS, although
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Table 6. Simulation parameters for the single-wake V80 case. Note that the LES uses neutral PDBL for the atmospheric model.

Inflow Turbine

Uref Iref Atmospheric D zref Force Tangential CT Control
[m s−1

] [%] model [m] [m] distribution forces [–]

8.0 5.7 Neutral ASL 80 70 Uniform No 0.77 CT fixed

Figure 9. Streamwise velocity (a) and vertical velocity (b) on the corner bisector line. Results extracted at x/Lx = 0.5.

without the near-corner peak, which according to Pirozzoli
et al. (2018) is caused by scale separation (this phenomena
only occurs at higher Reτ and is thus not visible in the earlier
DNSs by Gavrilakis, 1992, and Huser and Biringen, 1993),
and this effect is not captured by RANS.

This concludes the verification studies, where the WJ-
EARSM has been seen to give expected results for three
canonical flows. Furthermore, the last case of square duct
flow clearly demonstrates that EARS models are able to pre-
dict physical phenomena that two-equation models based on
the linear Boussinesq hypothesis cannot do.

4 Single-wind-turbine wake

This section concerns the application of the EARS model to a
single-wind-turbine wake. The numerical CFD setup is simi-
lar to that used in many previous RANS studies (e.g., van der
Laan, 2014; van der Laan et al., 2021; Baungaard et al.,
2022): the RANS equations are solved using the SIMPLE
method using a modified Rhie–Chow algorithm (Troldborg
et al., 2015), while the convective terms are discretized with
the QUICK scheme; see more details in Sørensen (1995). To
model the wind turbine, an AD with uniform distribution of
forces is used (the thrust forces are fixed, and no tangential
forces are present), and the forces are transferred to the recti-
linear flow domain with the intersectional method of Réthoré
et al. (2014). The flow domain has a finely resolved “wake
domain” in the center with uniform spacing of D/8, and the
grid is stretched outwards in all directions from this using the
hyperbolic tangent method of Thompson et al. (1985); see

Fig. 10. A grid convergence study was made to confirm that
this grid resolution is also suitable for the EARS turbulence
model; see Appendix A.

The case simulated is similar to the case used by Hornshøj-
Møller et al. (2021), namely a single V80 turbine subject to
neutral inflow; see Table 6. The authors of the aforemen-
tioned study have provided LES data to us, which are used
as a reference in the following. It should be noted that their
RANS simulations use ASL inflow (like we shall also use for
our RANS simulations), while their LES is based on PDBL
inflow. Although there will be differences between ASL and
PDBL inflow, the latter is likely a good approximation of the
former in the lower part of the domain, but its bias on wake
simulations could be a subject for future studies.

4.1 Inflow

The neutral ASL inflow profile (Panofsky and Dutton, 1984)
is prescribed at the inlet BC and top of the domain:

U (z)=
u∗

κ
ln
(
z

z0

)
, k(z)=

u2
∗√
Cµ
, ε(z)=

u3
∗

κz
. (22)

This type of inflow is routinely used in wind energy applica-
tions, and for a wake simulation it can be adopted to give a
desired hub height velocity, Uref, and hub height turbulence
intensity (TI), Iref, by adjusting u∗ and z0 (van der Laan
et al., 2015b). One could alternatively adjust Cµ instead of
z0 to obtain a desired Iref, but this was shown by van der
Laan (2014) to give inconsistent results with the k–ε–fP
model and NLEVMs, so this practice is not recommended.
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Figure 10. Flow domain (a), finely resolved wake domain (b), x–y cut at hub height (c), and x–z cut at centerline (d). Every fourth cell is
displayed in panels (c) and (d), and green arrows show velocity profile (not to scale).

Although the adjusted u∗ and z0 do not correspond to the
physical values at the site, it is of higher priority to have the
correct Uref (and thereby correct thrust coefficient) and Iref.

In the freestream, the neutral ASL profiles, Eq. (22),
should satisfy Dk/Dt = 0 and Dε/Dt = 0 to be in balance
and mitigate development of the inflow profiles in the stream-
wise direction. There will inevitably be a slight development
(see Blocken et al., 2007), and for this reason a long do-
main is used to ensure fully developed profiles at the entrance
of the wake domain. To satisfy the balance criteria, the tur-
bulence constants should follow the relation (Richards and
Hoxey, 1993)

Cε1 = Cε2−
κ2√
Cµσε

. (23)

Indeed, both sets of constants in Tables 1 and 2 satisfy
Eq. (23).

In the neutral ASL, we have P/ε = 1, similar to the log
layer of the half-channel flow but at all heights. By utiliz-
ing the WJ-EARSM the equilibrium relations between the
c1 constant and various other variables, as shown in Fig. 11,
can be derived analytically. For example, the standard value
of c1 = 1.8, which is used in this paper, gives Cµ = 0.087
(the “equilibrium value” mentioned in Sect. 2.3.1). A closer
agreement of the velocity standard deviation ratios, σv/σu
and σw/σu, is seen with the WJ-EARSM, when benchmark-
ing against the ASL ratios of Panofsky and Dutton (1984);
the k–ε and k–ε–fP models have σv/σu = σw/σu = 1, while
the WJ-EARSM has σv/σu = 0.85 and σw/σu = 0.68 for
c1 = 1.8. In fact, the WJ-EARSM underpredicts the stream-
wise fluctuations due to the simplification introduced by set-
ting c2 = 5/9 (this is also the case for half-channel flow; see
Wallin and Johansson, 2000), resulting in the observed over-

prediction of the σv/σu and σw/σu ratios. Other c1 values
(three other choices than the standard value are marked with
dots in Fig. 11) will enhance/decrease the ASL anisotropy
(see details in Appendix B), but for the present simulations
the standard model coefficients of Table 2 are used.

The inflow profiles of the LES and RANS simulations are
shown in Fig. 12. Since the k–ε and k–ε–fP models are iden-
tical in the freestream, which is also true for the 2D and 3D
WJ-EARSMs, only one of the other is shown in the figure.
The LES is driven with a streamwise pressure gradient and
thus differs in the stress profiles compared to the pure ASL
profiles used in our RANS, but Uref and Iref do match. As in
the half-channel case, the velocity shear differs due to the dif-
ferent κ and Cµ used in the k–ε–fP model and WJ-EARSM,
and the stress profiles are also different between the two be-
cause of the anisotropic nature of WJ-EARSM. In terms of
turbulence anisotropy, quantified as the distribution of TKE
between the normal stress components in Fig. 12, the WJ-
EARSM is clearly closer to the LES data as was also ex-
pected from the analytical results in Fig. 11.

Eigendecomposition of the Reynolds stress tensors can
be used to describe the turbulence state through its three
real eigenvalues, which describe the fluctuations in the three
orthogonal, principal directions. Several techniques (e.g.,
eigenvalue map, invariant map, barycentric map, and Lumley
triangle) combine the eigenvalues and visualize them with
two-dimensional maps; in Fig. 13 the barycentric map is
used with the RGB color scheme of Emory and Iaccarino
(2014). Both RANS models use ASL inflow; hence the tur-
bulence state is the same at all heights, whereas the LES state
varies with height due to its PDBL inflow. The k–ε–fP tur-
bulence is mostly isotropic (the x3c corner) as is expected
for all Boussinesq-type models because normal stresses are
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Figure 11. WJ-EARSM dependence on c1 in the neutral ASL (P/ε = 1).

Figure 12. Inflow profiles for the single-wake V80 case.

u′αu
′
α =

2
3k, whereas the WJ-EARSM turbulence is perturbed

more towards 2D turbulence (the line connecting x2c and x1c)
and thereby closer to LES turbulence.

4.2 Velocity and turbulence intensity

Wake data in the form of velocity and TI contours at hub
height and profiles at three downstream positions are shown

in Figs. 14 and 15. In addition to the 2D WJ-EARSM, re-
sults using the 3D WJ-EARSM with/without tangential AD
forces are also shown in Fig. 15, and the first conclusion to
draw from this is that the 2D and 3D versions of the WJ-
EARSM give similar wake profiles, and we therefore focus
on the simpler 2D WJ-EARSM in the following. A simple
diffusion correction to the WJ-EARSM was suggested by
Wallin and Johansson (2000) to correct the model in regions
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Figure 13. RGB-colored barycentric triangle, with RANS/LES inflow data shaded by height; white lines at right mark (zref−R), zref, and
(zref+R), respectively.

Figure 14. Streamwise velocity (a–c) and TI (d–f) contours at hub height for the single-wake V80 case. Full lines mark ADs, while dashed
lines mark where wake profiles are extracted.

with low normalized velocity gradients (e.g., at the top of
the half-channel), but it only has a small effect on velocity
deficit and TI, as seen in Fig. 15, so it is not considered in
the following discussions. Finally, results of the standard k–
ε model are also shown in Fig. 15 to show its overly diffusive
behavior.

Overall the wake velocity contours in Fig. 14 appear sim-
ilar, while the TI contours of the WJ-EARSM are improved
over the k–ε–fP model; however, similar to the k–ε–fP
model, it still fails to predict the TI delay in the near wake
seen in the LES, which is also clearly visible in the disk-
averaged TI recovery profiles in Fig. 16b. Also, there is a
TI induction zone in both RANS simulations, which is not
present in the LES; these two effects seem to be a general
issue of k–ε-based RANS models as this was also observed

with the standard k–ε, realizable k–ε, and re-normalization
group (RNG) k–ε models by Hornshøj-Møller et al. (2021).

Considering the wake profiles in Fig. 15, it is clear that
WJ-EARSM produces more “top-hat-shaped” profiles simi-
lar to the classic Jensen model (Jensen, 1983). This has also
been seen with other EARSMs (van der Laan, 2014) and
with full differential RSMs (Cabezón et al., 2011; Tian et al.,
2019). One can either apply the previously mentioned diffu-
sion correction or increase the c1 constant to obtain a more
Gaussian-shaped profile for the WJ-EARSM, but the latter is
not recommended as it will deteriorate the ASL anisotropy;
see Appendix B. Another view is that the top-hat-shaped pro-
file is a consequence of not taking various physical phenom-
ena into account, e.g., large-scale atmospheric turbulence and
wake instabilities, and applying a unidirectional wind direc-
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Figure 15. Streamwise velocity (a–c) and TI (d–f) profiles extracted at various downstream positions for the single-wake V80 case.

Figure 16. Disk-averaged streamwise velocity and TI for the single-wake V80 case.

tion in our idealized RANS setup (in the transient LES there
will be a varying instantaneous wind direction throughout the
simulation). These types of effects could be interpreted as a
Gaussian filter on the wake profiles; see discussion in Ap-
pendix C. Note that the k–ε–fP model already accounts for
at least the wind direction effect as it has been calibrated with
LES, which includes a wind direction distribution (van der
Laan, 2014), and that it could be recalibrated to obtain a bet-
ter match with the velocity deficit of the present LES case
(since the latter LES was simulated with a different solver
and AD implementation).

Lastly, we want to emphasize that the turbulence model
is not solely responsible for the wake results: the same tur-
bulence model applied for the same case but with different
codes/solvers can yield significantly different results, as can
be seen in the comparison of the k–ε–fP results in Fig. 16.
This reminds us to be careful with general conclusions on
which is the better turbulence model.

4.3 Stresses

For more insights on the wake mixing and turbulence, we
now turn to the second-order statistics of turbulence, namely
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Figure 17. Normal stresses at hub height for the single-wake V80 case.

Figure 18. Lateral U momentum flux at hub height x–y plane (a–c) and vertical U momentum flux at the center x–z plane (d–f) for the
single-wake V80 case.

the individual Reynolds stress components. The normal com-
ponents are shown in Fig. 17, which shows that the WJ-
EARSM correctly dampens the lateral and vertical compo-
nents, which are otherwise overestimated severely by the k–
ε–fP model due to its Boussinesq closure. This also explains
the lower TI of the WJ-EARSM in Fig. 14–16 as the TI is
composed of the sum of the normal components. On the other
hand, the normal stress contours seem too elongated in the
streamwise direction with the WJ-EARSM; for example the
low u′u′ core in the center of the wake in Fig. 17b extends too
far downstream compared to the LES data in Fig. 17c, which
is possibly connected with the decreased turbulence mixing
also causing the top-hat profiles of wake deficit shown in
Fig. 15. Increasing the c1 constant will alleviate this specific
issue; see Appendix B.

Transport of U momentum by turbulence, −∂u′uj/∂xj ,
from the ambient high-speed surroundings to the low-speed
wake region is mainly determined by the off-diagonal com-
ponents of the Reynolds stress tensor, u′v′ and u′w′, i.e., the
lateral and vertical turbulent fluxes of U , respectively, which
are shown as contours in Fig. 18. Both are larger in absolute
magnitude for the k–ε–fP model compared to WJ-EARSM,
leading to larger gradients of the stresses and explaining the

increased wake recovery of the former, but when compar-
ing to the LES data, it can be noticed that the magnitude of
u′w′ is overestimated, hence the overestimated wake recov-
ery of the k–ε–fP model in Fig. 16. On the other hand, the
WJ-EARSM underestimates the magnitude of the fluxes, es-
pecially notable in the u′v′ contours, hence the slight under-
estimation of wake recovery compared to LES in Fig. 16.

To conclude, we see some advantages but also disadvan-
tages with using WJ-EARSM over the k–ε–fP model for
prediction of the Reynolds stresses, which also has direct
consequences for the prediction of the velocity deficit and
turbulence intensity.

4.4 Turbulence state

In the inflow section, Sect. 4.1, it is shown that the turbulence
state of the freestream turbulence was mainly isotropic in the
k–ε–fP model, while both the WJ-EARSM and LES data
were more perturbed towards 2D turbulence (the lower edge
in the barycentric triangle). This is also seen in the RGB-
colored x–y plane at hub height in Fig. 19, where one can
see that the ambient flow of the k–ε–fP model is predom-
inantly colored blue and is hence isotropic. As also alluded
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Table 7. Simulation parameters for the aligned-row case from TotalControl. The AD scaling and 1D mom’m control methods are described
in detail by van der Laan et al. (2015a).

Inflow Turbine

Uref Iref Atmospheric D zref Force Tangential Control
[m s−1

] [%] model [m] [m] distribution forces

9.8 4.5 Neutral ASL 178.3 119 Scaling Yes 1D momentum method

Figure 19. RGB-colored turbulence componentiality at hub height
for the single-wake V80 case.

to in Sect. 4.1, the ambient WJ-EARSM turbulence is more
oblate (left edge of barycentric triangle), while the LES is
more prolate (right edge of barycentric triangle), hence the
green and purple coloring, respectively, of the ambient flow
in Fig. 19. In the wake shear layers, both RANS models pre-
dict perturbations towards 2D turbulence, while LES is more
perturbed towards 1D turbulence (the x1c corner). These ob-
servations fit with the increase in u′u′ and strong damping of
v′v′ and w′w′ in the LES shown in Fig. 17. To improve the
prediction of the turbulence state, we therefore suspect that
normal stress predictions are essential, especially the ratios
of those – the WJ-EARSM definitely has some improvement
from the overly isotropic k–ε–fP model but does not capture
the completely right ratio between normal stresses. We note
that a resolution of 20 cells per diameter was used in the ref-
erence LES, which might be sufficient for first-order statis-
tics and shear stresses but could bias the normal stresses and
therefore also the turbulence state.

5 Aligned row of wind turbines

To test the WJ-EARSM in a wind farm scenario, we simulate
the lower row in the TotalControl rot90 reference wind farm,

which consists of eight aligned wind turbines with 5D inter-
spacing; see Fig. 20. The DTU 10 MW turbines of the wind
farm are modeled with the scaling AD method with 1D mo-
mentum control (van der Laan et al., 2015a) and including
tangential forces (hence there will be wake swirl), and the
thrust, rotational speed, and power curves are taken from the
DTU 10 MW report (Bak et al., 2013). We compare the re-
sults with LES conducted at KU Leuven (the “PDk90 case”;
Sood and Meyers, 2020), where the turbines were modeled
with an actuator surface (AS) model coupled to an aeroelas-
tic code; hence the LES and RANS are not directly compa-
rable but nevertheless give a reference to compare against.
Due to the natural streaks appearing in LES, we choose to
calculate Uref and Iref with planar averages of the LES data
in the region upstream of the lower row rather than using
the time-averaged precursor profiles. The overview of the
simulation parameters is given in Table 7. The numerical
setup of the RANS simulation is identical to the one used
for the single-wake case, except that tangential forces and
non-uniform thrust forces are applied on the AD, the domain
is scaled with the new rotor diameter, and the wake region is
extended to encompass all eight turbines.

The velocity contours in Fig. 21 show that both the k–ε–
fP model and WJ-EARSM qualitatively share some of the
same flow features as the LES; e.g., a faster wake recovery
is seen on the left side of the first wake (seen from upstream)
because of the combined effect of wind shear and wake rota-
tion (a.k.a. swirl), and they predict the largest wake deficit in
the second wake. Neither of these effects are predicted by the
standard k–ε model, but it can capture other phenomena as
for example the induction zones and the expanding wake tube
surrounding the whole row. Figure 23a shows the streamwise
velocity along the axial line of the ADs and shows that the
WJ-EARSM is closer to the LES in the near wake of each
turbine, while the k–ε and k–ε–fP models are better at the
far wake of each turbine. The RANS models become more
similar further down in the row, and the recovery behind the
last turbine (a.k.a. the wind farm recovery) is very similar. In
van der Laan et al. (2015c), a similar observation was made
when comparing the standard k–ε and k–ε–fP models for
wind farm cases since the difference between both turbulence
models reduces with increased levels of turbulence.

The turbulence intensity contours in Fig. 22 show more
pronounced differences between the models; e.g., the LES
has peaks of TI in the wake shear layers, whereas the RANS
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Figure 20. A x–y cut of the domain with every eighth cell shown (a) and a 3D view of the wake domain (b) for the aligned-row case. The
size of the domain is Lx/D = 104, Ly/D = 60, and Lz/D = 25. A rough-wall BC and an inlet BC are used for the lower and upper BCs,
respectively.

Figure 21. Streamwise velocity contour at hub height for the aligned-row TotalControl case.

models have TI more evenly distributed over the wake. As is
also seen and discussed in the V80 case, there is no induc-
tion zone of TI for the LES, and the development of TI is
delayed. Again also the WJ-EARSM has lower TI compared
to the k–ε and k–ε–fP models and is in better agreement
with the LES.

In conclusion, the WJ-EARSM appears numerically sta-
ble and well behaved (e.g., no monotonic decreasing veloc-
ity deficit or other unphysical effects) for interacting wakes,
and as in the single-wake case, there are both some improve-
ments and some less desirable effects of the model over the
k–ε–fP model.

6 Conclusions

This paper documents and explains our implementation and
application of an EARSM (Wallin and Johansson, 2000) as
a turbulence model for RANS simulations of wind turbine
wakes, in the neutral ASL. To our knowledge, EARSM is
rarely – if ever – used in the wind energy community; but we

show that it is actually relatively straightforward to imple-
ment in CFD codes that already employ two-equation turbu-
lence models and importantly that the WJ-EARSM also ap-
pears to be numerically stable for wake simulations. Previous
attempts by van der Laan (2014) of applying EARSMs (mod-
els of Taulbee, 1992; Gatski and Speziale, 1993; and Apsley
and Leschziner, 1998) for wake simulations showed prob-
lems with numerical stability, even for single-wake cases, but
this appears to not be an issue for the EARSM of Wallin and
Johansson (2000). The reason for the better numerical be-
havior most likely lies in the self-consistent formulation of
particular importance in regions with rapid shear, hence pre-
serving physical realizability.

Three canonical flow cases – homogeneous shear flow,
half-channel flow, and square duct flow – were used to ver-
ify the implementation of the model and also showcased
some of the advantages with an EARSM over traditional lin-
ear EVMs, namely the prediction of freestream turbulence
anisotropy and secondary flow phenomena. All three cases
have either analytical asymptotes or DNS data to compare
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Figure 22. TI contour at hub height for the aligned-row TotalControl case.

Figure 23. Streamwise velocity and turbulence intensity at the axial line going through the AD centers for the aligned-row TotalControl
case.

against and are easy to set up, which makes them ideal for
verification purposes.

For neutral ASL inflow we show that there is a delicate
relationship between the turbulence constants that needs to
be fulfilled to ensure a non-developing freestream solution
and that it also dictates the amount of freestream turbu-
lence anisotropy. It should be noted that this balance of con-
stants is also important for numerical robustness. Compar-
ing the RANS inflow with reference LES data shows that
the WJ-EARSM is capable of predicting similar freestream
anisotropy, whereas the turbulence of the k–ε–fP model is
nearly isotropic (although not exactly) by definition of its
Boussinesq closure. This is also clear from the eigendecom-
position of the Reynolds stress tensor, which was visualized
with the barycentric map technique.

A single-wake case was considered first, and it was ob-
served that the 2D version of the EARSM yielded almost
identical results to the 3D version, even when tangential
forces were applied on the AD; thus we use the 2D model

for the remainder of the paper. It should be noted that the
2D version of the WJ-EARSM is a complete and invariant
model for general three-dimensional mean flows. Only the
particular dependency of pure three-dimensional effects is
simplified, which will have a minor impact on most three-
dimensional mean flows of interest. The wake profiles of
the EARSM were more top-hat-shaped than the profiles ob-
served in the LES data, which might be related to the un-
derlying weak-equilibrium assumption and limitations in the
length-scale-determining ε model equation but could also be
caused by wind direction variations (see Appendix C). The
disk-averaged velocity deficit and turbulence intensity recov-
ery profiles were however improved over the k–ε–fP model
for the specific case considered. It is also possible to obtain
a more Gaussian-shaped wake profile by increasing the c1
constant and re-tuning the turbulence model constants, but
this will deteriorate the prediction of the underlying ASL
anisotropy (Appendix B). A notable difference between the
WJ-EARSM and the k–ε–fP model is also that the latter
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predicts large peaks of lateral and vertical normal Reynolds
stress components in the wake, which are not present in the
LES data, because of the Boussinesq closure; this deficiency
and the low value of Cµ used for the k–ε–fP model are pos-
sibly the reasons why it tends to overpredict turbulence in-
tensity in the wake.

Finally, we simulated a row of eight aligned turbines,
where the trends from the single-wake case could also be
seen, e.g., the top-hat-shaped profiles and better turbulence
intensity prediction with EARSM. There were more uncer-
tainties in the comparison with the LES data in this case be-
cause different turbine modeling techniques were used, but
the case nevertheless shows that the EARSM also behaves
sensibly in cases with wake–wake interaction in the sense
that the code still converges and that no unphysical trends
(such as monotonic increase in wake deficit throughout the
row of turbines) are observed.

In conclusion, the EARSM of Wallin and Johansson
(2000) can be used for wake simulations in a numerically ro-
bust way and only has a small computational overhead com-
pared to standard two-equation models (on the order of 5 %
for the V80 single-wake case); hence it is at least 3 orders
of magnitude faster than LES. It provides an advantage over
two-equation models in the sense that it has more realistic
inflow with anisotropic turbulence and that the wake turbu-
lence also becomes more anisotropic, which indeed is also
observed in LES. The turbulence intensity prediction was im-
proved for both test cases considered, while velocity deficit
was only considerably improved for the single-wake case;
more cases (both LES and experimental data) are needed to
draw general conclusions about its performance in this re-
gard.

Atmospheric conditions in thermally stable stratification
and thermal convection strongly influence the turbulence
states, anisotropies, and in particular the vertical mixing in
the ASL. This will have a fundamental influence on the wake
development and the performance of wind parks. The exten-
sion of the EARSM to non-neutral conditions has over recent
years been developed by Lazeroms et al. (2013), and Želi
et al. (2019) have subsequently demonstrated the model’s ca-
pability of capturing these effects. This will be of interest for
future wind turbine wake studies.

Appendix A: Grid study of WJ-EARSM for wind
turbine wake simulations

Earlier studies (van der Laan et al., 2015b) have shown that
a grid spacing of D/8 in the wake region is sufficient for
grid convergence of wake velocity deficits with the k–ε–fP
model, and the same conclusion can be drawn for the 2D WJ-
EARSM; see Fig. A1. We also plot the TI profiles in Fig. A1,
which are more sensitive to grid resolution, but we never-
theless decide to use D/8 in this paper because it represents

Figure A1. Grid study of streamwise velocity (upper row) and TI
(lower row) profiles at hub height for the V80 case with the 2D
WJ-EARSM using different mesh resolutions.

the typical resolution used in wind farm studies and saves a
considerable amount of computational resources.

Appendix B: Tuning the turbulence model constants
in the WJ-EARSM

The c1 constant, a.k.a. Rotta coefficient, in the WJ-EARSM
originates from the pressure-redistribution term and can
in principle be re-tuned; e.g., the original LRR (Launder–
Reece–Rodi; Launder et al., 1975) model has c1 = 1.5, and
van der Laan (2014) used c1 = 4.5 for the fP model. As
shown in Sect. 4.1, for the neutral ASL the WJ-EARSM can
be used to obtain a direct relationship between c1 and many
other variables in equilibrium; see Fig. 11. From this it is
clear that the ASL anisotropy is enhanced for decreasing c1
and vice versa. It is important to emphasize that the variables
in Fig. 11 are only dependent on c1 and not the other tur-
bulence constants. In this section we test three different c1
values in addition to the standard value of c1 = 1.8; see Ta-
ble B1.

Equation (23) needs to be satisfied to have a balanced
RANS solution; hence when c1 is adjusted, and Cµ thereby
changes, then either κ , σε, Cε1, Cε2, or a combination of all
needs to be adjusted. We choose to adjust Cε1 and fix the oth-
ers, and the resulting sets of constants are shown in Table B1.
The first set (c1 = 1.2) gives anisotropic freestream turbu-
lence close to the Panofsky and Dutton (1984) neutral ASL
values; the second set (c1 = 1.8) is equivalent to the standard
set (see Table 2); the third set (c1 = 4.0) gives Cµ = 0.054,
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Table B1. Tested sets of turbulence model constants and derived variables for the single-wake V80 case. For all sets, we use Cε2 = 1.82,
σk = 1.0, σε = 1.3, κ = 0.38, and c2 =

5
9 .

Constants Derived for general, neutral ASL For V80 case

Case Cε1 Cµ a13 a11 σv/σu σw/σu z0 [m] u∗ [m s−1
]

c1 = 1.2 1.44 0.085 −0.29 0.37 0.80 0.53 2.93× 10−3 0.30
c1 = 1.8 1.44 0.087 −0.30 0.25 0.85 0.68 3.12× 10−3 0.30
c1 = 4.0 1.34 0.054 −0.23 0.11 0.93 0.85 8.88× 10−4 0.27
c1 = 8.0 1.18 0.030 −0.17 0.06 0.96 0.92 1.50× 10−4 0.23

Figure B1. Inflow profiles for the single-wake V80 case with different sets of model constants.

which is close to the value used by WAsP CFD (Bechmann,
2016); and finally the last set (c1 = 8.0) gives Cµ = 0.03,
which is often used for atmospheric applications (Sørensen,
1995; Richards and Hoxey, 1993).

Another consideration is that the roughness length and
friction velocity also need to be modified to give the same
hub height velocity and turbulence intensity according to
Eq. (22), again because Cµ changes with changing c1.
The values of these are therefore also included in Ta-
ble B1 and explain why the velocity inflow profiles differ
slightly in Fig. B1. The figure also clearly demonstrates that
freestream turbulence anisotropy decreases for increasing c1
and vice versa, which is also evident from the combination
of Eqs. (10)–(11):

β4

β1
=N−1

=

(
9
4
c1

)−1

. (B1)

In the derivation of Eq. (B1) we use the definition ofN and c′1
as well as P/ε = 1 in the neutral ASL. From Eq. (B1), we see
that for increasing c1 there is a decreasing a(ex)

ij (see Eq. 9),
which is the part of the closure responsible for anisotropy
and therefore explains why the turbulence becomes more
isotropic with increasing c1.

Figure B2 shows how the wake is effected by the new sets
of constants. The velocity deficit shape is more Gaussian for
larger c1 and thus more similar to the LES shape, while the
turbulence intensity increases. From these observations, one
could argue that c1 = 4.0 would perhaps be a better choice
for modeling of velocity deficit, while c1 = 1.8 is better for
TI and anisotropy predictions.
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Figure B2. Streamwise velocity (a–c) and TI (d–f) profiles extracted at various downstream positions for the single-wake V80 case with
different sets of model constants.

Figure B3. Normal stresses at hub height for the single-wake V80 case with different sets of model constants.

Increasing c1 also has a significant impact on the normal
stress contours as shown in Fig. B3, where one especially
can note how the length of the inner low u′u′ core decreases.
In this regard a larger c1 than the standard c1 = 1.8 also
seems desirable, although we again have to remind the reader
that this will also result in less correct freestream anisotropy.
However, it is notable that although a larger c1 leads to more
isotropic freestream turbulence, in contrast to the k–ε–fP
model (see Fig. 17), there is still significant wake turbulence
anisotropy.

Appendix C: Effect of wind direction uncertainty

As discussed in Sect. 4.2 and Appendix B, the WJ-EARSM
velocity deficit is rather top-hat-shaped, whereas the LES
shape is more Gaussian. This could possibly be a conse-
quence of the unidirectional inflow used in our steady RANS
simulation and hence the lack of wake meandering (Larsen
et al., 2008), which otherwise tends to smear out the time-
averaged wake. For the k–ε–fP model it was effectively in-
cluded in the turbulence model through the calibration of the
CR model constant, but for the WJ-EARSM there is less
room for calibration, and instead one should therefore ide-
ally do a post-processing step to include the effect. It is how-
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Figure C1. (a) Gaussian wind direction distribution and (b) the Gaussian filter width for the convolution with σϕ = 2.8◦.

ever beyond the scope of this paper to carefully design such
a post-processing step, but we can at least qualitatively show
that the effect of wind direction uncertainty is to smoothen
the top-hat-shaped wake profile into a more Gaussian shape.

The wind direction ϕ ≡ arctan
(
V
U

)
≈

V
U

(small angle ap-
proximation) variance is

σ 2
ϕ =

(
∂ϕ

∂U

)2

σ 2
u +

(
∂ϕ

∂V

)2

σ 2
v

=

(
−
V

U2

)2

σ 2
u +

(
1
U

)2

σ 2
v ≈

σ 2
v

U2 . (C1)

For example the hub height LES values for the V80 case
gives σϕ =±0.0484, rad=±2.8◦. However, according to
Larsen et al. (2008) the wake meandering motion is only
caused by the large eddies (the “slow-moving” part of the
wind direction changes), so one should in principle use a
smaller variance to model the meandering motion. However,
as most of the variance is given by the large eddies, the us-
age of σ 2

ϕ is only expected to give a small overprediction of
meandering.

Assuming zero mean wind direction and a Gaussian distri-
bution gives a simple model for the wind direction variabil-
ity:

fϕ(ϕ)=
1

σϕ
√

2π
e
−

1
2

(
ϕ
σϕ

)2

. (C2)

It should be intuitively clear that such a distribution of
wind directions would act to smoothen out the wake pro-
file compared to a simulation with ϕ = 0◦, but we can also
illustrate this by applying a convolution to the ϕ = 0◦ wake
profile:

Ũ (x,y)=

∞∫
−∞

U (x,y− y′)fy(x,y′)dy′. (C3)

To obtain fy from fϕ one could simply make a change in
variables from ϕ to y and assume σy = xσϕ , but the latter

assumption is equivalent to assuming that the ϕ = 0◦ wake is
moved “rigidly” from side to side, which is not realistic for
at least two reasons. First, it assumes “frozen turbulence” in
the sense that a wake released in the ϕ direction continues in
that direction until infinity. Secondly, the yaw mechanism of
a turbine is slower than the turbulence timescale; hence the
wind direction uncertainty corresponds to yaw offsets, which
will bend the wake inwards. It must therefore be presumed
that σy increases more slowly than linearly in x and could
for example be modeled as a quadratic polynomial instead:

fy(x,y)=
1

σy
√

2π
e
−

1
2

(
y
σy

)2

(C4)

σy

D
=

{ (
x
D
− 0.05

(
x
D

)2)
σϕ, 0≤ x/D ≤ 10

5σϕ, x/D ≥ 10
. (C5)

The above model for σy was chosen such that it ap-
proaches the linear filter width model for x/D→ 0, has
dσy/dx ≥ 0, and is continuous; see Fig. C1. The constant
−0.05 is rather arbitrary, and it must again be stressed that
this is just a qualitative model to model the two aforemen-
tioned effects (one could just as well have used any other
simple function to model σy).

Both the linear and quadratic filter width models are used
in Gaussian convolutions of the 2D WJ-EARSM wake pro-
files, and the results are shown in Fig. C2. Although σϕ =
2.8◦ at first might appear as a small number, a significant
smoothing effect is seen, which effectively removes the top-
hat-shaped velocity deficits and shows that missing mean-
dering could actually explain the top-hat shape. The lin-
ear width model overestimates the smoothing as expected
from its inherent frozen turbulence assumption, while the
quadratic model gives results closer to the LES. The TI re-
sults are not improved by the Gaussian convolution correc-
tion.
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Figure C2. Gaussian-filtered (GF) wake profiles.
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