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Abstract. The evolution of the mean velocity and the turbulence downstream of wind turbine wakes within the
atmospheric boundary layer has been studied over the past decades, but an analytical description is still missing.
One possibility to improve the comprehension of this is to look into the modeling of turbulent bluff body wakes.
There, by means of the streamwise scaling of the centerline mean velocity deficit, the nature of the turbulence
inside a wake can be classified. In this paper, we introduce the analytical model of classical wake theory as
introduced by Albert Alan Townsend and William Kenneth George. To test the theories, data were obtained from
wind tunnel experiments using hot-wire anemometry in the wakes of a single model wind turbine and a model
wind turbine operating in the wake of an upstream model wind turbine. First, we test whether the requirements
under which the Townsend–George theory is valid are fulfilled in the wake of a wind turbine. Based on this
verification we apply the Townsend–George theory. Further, this framework allows for distinguishing between
two types of turbulence, namely equilibrium and non-equilibrium turbulence. We find that the turbulence at the
centerline is equilibrium turbulence and that non-equilibrium turbulence may be present at outer parts of the
wake. Finally, we apply the Townsend–George theory to characterize the wind turbine wake, and we compare
the results to the Jensen and the Bastankhah–Porté-Agel models. We find that the recent developments from the
classical bluff body wake formalism can be used to further improve the wind turbine wake models. Particularly,
the classical bluff body wake models perform better than the wind turbine wake models due to the presence of
a virtual origin in the scalings, and we demonstrate the possibility of improving the wind turbine wake models
by implementing this parameter. We also see how the dissipation changes across the wake, which is important to
model wakes within wind farms correctly.

1 Introduction

Wind turbines are usually clustered in wind farms with the
consequence that downstream turbines operate depending on
the wind direction and wind speed in the turbulent wakes of
upstream turbines (e.g., Barthelmie et al., 2007; Sun et al.,
2020). These wakes are characterized above all by means
of the mean velocity deficit that decreases in the far wake
with increasing distance from the turbine. Since this velocity
deficit leads to power losses of downstream turbines, knowl-

edge of the recovery of the wind velocity is important. There-
fore, over the past decades, several empirical and engineering
wake models have been derived to describe a single turbine’s
velocity deficit; see for instance the reviews of Porté-Agel
et al. (2020) and Göçmen et al. (2016). All these models
find an application in the layout optimization and, once the
wind farm is built, in the control mechanisms. Ideally, these
models have to be simple, fast, and computationally inex-
pensive despite the complex flow configuration. In addition,
a model describing an axisymmetric turbulent wind turbine
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wake from only a few fundamental and robust assumptions
is still lacking. On the contrary, the axisymmetric turbulent
wake of a bluff body is a canonical turbulent free shear flow
which has been studied intensively during the last decades
and which can be modeled by means of an analytical model.
The modeling of these flows relies on the theories proposed
by Townsend (1976) and George (1989), even though results
have been inconclusive and even sometimes contradictory
(Johansson et al., 2003). While the wake of a wind turbine
does exceed the complexity of historical wake investigations
of bluff bodies due to the turbine’s rotation and active interac-
tion with the background flow, the question arises as to what
extent classical wake models can be applied. So far, only the
power law relationship between the velocity deficit and the
streamwise distance that originates from classical wake the-
ory has been used in empirical wind turbine wake models to
predict the centerline velocity recovery (cf. Porté-Agel et al.,
2020).

Within the framework of turbulence, the prediction of
the centerline mean velocity deficit 1U and the wake
width δ with increasing streamwise distance X of the wake-
generating model are maybe the most fundamental and rele-
vant problems that need to be solved (e.g., George, 1989)1.
Similarly to the standard engineering models derived for
wind turbine wakes, the analytical model for the evolution of
bluff body wakes can only be derived for the far wake. The
far wake is typically identified as the part of the wake where
the shear layers that evolve between the faster ambient flow
and the lee of the object of investigation have met and the tur-
bulence is fully developed. Thus, the Townsend–George the-
ory for free shear flows allows for predicting the downstream
evolution of 1U and δ for the axisymmetric, boundary-free,
turbulent wake of a bluff body sufficiently far downstream.
This analytical model is based on two cornerstone assump-
tions regarding the turbulence evolution. The first one is
the self-similar behavior of the one-point turbulence statis-
tics. The second cornerstone assumption focuses on the en-
ergy cascade: in the Richardson–Kolmogorov phenomenol-
ogy, the energy is injected on the large scales, i.e., large vor-
tex structures, and when these vortices decay, the energy is
transferred towards smaller scales, and therefore the inter-
scale energy transfer is balanced by the turbulent dissipation
rate ε. This cascade is therefore in equilibrium (i.e., the en-
ergy that is injected into the system on large scales is trans-
ferred completely to smaller and smaller scales until it dis-
sipates), while the power spectral density shows the famous
E(f )∝ f−5/3 decay in the inertial sub-range (where f is the
frequency in Hz). In this case, the dissipation rate scales as
ε = CεK

2/3
c /L along the centerline with Cε “being constant”

1Note that a fundamental difference between the engineering
wake models and the analytical bluff body wake model is the mod-
eling of the wake width: in wind turbine models, a growth rate is
derived empirically, while in the bluff body wake analysis, an ana-
lytical model for the wake width is derived.

at high Reynolds numbers2. Kc denotes the centerline turbu-
lent kinetic energy, and L denotes an integral length scale
describing the energy-containing structures. Cε being con-
stant is therefore one of the most critical points in the theory.
The scaling of the dissipation rate ε is a scaling used in many
aspects of turbulence theory and in the modeling and under-
standing of many turbulent flows (see for example Tennekes
and Lumley, 1972). As better detailed in Sect. 2, the closure
provoked by this assumption leads to the standard equilib-
rium streamwise scalings for 1U and δ.

Yet, in the last years, evidence has been found that some
axisymmetric turbulent wakes do not follow the standard
scalings of 1U and δ. Different experimental studies and
direct numerical simulations of bluff plates with both reg-
ular and irregular peripheries found that Cε is not constant,
but instead it goes as Cε ∼ RemG/Re

n
L (e.g., Vassilicos, 2015;

Dairay et al., 2015; Obligado et al., 2016; Nedic et al., 2013;
Es-Sahli et al., 2020). ReG is a Reynolds number that de-
pends on the inlet conditions, and ReL is a local, stream-
wise, position-dependent one (Vassilicos, 2015). The expo-
nents n andm have been found to be very close to unity;m=
n= 1 for large values of the Taylor Reynolds number Reλ
(cf. Eq. A4). For an axisymmetric wake, ReG =

√
3U∞/ν,

where 3 is the frontal area of the plate, U∞ is the inlet ve-
locity, and ν the kinematic viscosity of the flow. The local
Reynolds number is defined as ReL = δu

′/ν, where u′ is the
RMS value of the fluctuating streamwise velocity. Within
these definitions, the non-equilibrium dissipation scaling can
also be written as Cε ∼ Re

1/2
G /Reλ. These anomalous non-

equilibrium scalings of 1U and δ have been reported for ex-
periments at X/

√
3< 50; therefore there is a range of inter-

est within some wind energy applications.
This illustrates that an investigation of Cε in the wake

gives us a new tool to classify the turbulence in the
wake with Cε being constant being an indication of “stan-
dard” equilibrium turbulence with properties of homoge-
neous isotropic turbulence and Cε ∼ Re

m
G/Re

n
L (or equiv-

alently Cε ∼ Re
1/2
G /Reλ) indicating non-equilibrium turbu-

lence with its own set of properties.
The presence of a different dissipation scaling of ε within

wind turbine wakes would have important consequences re-
garding the modeling of wind farms and numerical simu-
lations: many different numerical models implicitly assume
the standard dissipation scalings (for more details, see Vas-
silicos, 2015). However, a different dissipation scaling also
implies different streamwise scalings for 1U and δ (see
Sect. 2). The disregard of this point shows that we have not
yet fully understood the physics underlying the simplest pos-
sible configuration in wind energy: a single turbine facing a
uniform, stationary, laminar flow. Therefore, we follow a dif-
ferent path in this paper than the one engineering models are

2Cε may change for different flows, but for a certain set of
boundary conditions, Cε is constant independently of the Reynolds
number
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based on, namely the conservation of mass and momentum to
describe the mean quantities. The wake of a wind turbine can
only be fully understood if the turbulence evolution is prop-
erly characterized, and the presented approach can help to
integrate turbulent fluctuations in the wake. Furthermore, the
fact that different dissipation scalings (the dissipation being
a small-scale parameter) result in different spreading proper-
ties of the wake (a large-scale parameter) shows that the tur-
bulence cascade controls how the wake is evolving. There-
fore, the initial conditions, such as the wake generator and
the background flow, become important, as they ultimately
control the evolution of the cascade. It is thus important to
study how the dissipation scalings are affected by the inflow
conditions.

In contrast to the axisymmetric turbulent wake of a bluff
body, no systematic work on the turbulence decay and on
the energy cascade has been made yet in the turbulent wind
turbine wake. However, Okulov et al. (2015) applied the
standard equilibrium bluff body wake scalings derived from
the Richardson–Kolmogorov phenomenology to experimen-
tal data to justify the presence of power law decays for 1U
and δ. In addition, Stein and Kaltenbach (2019) performed a
systematic study on the nature of the dissipation scaling, test-
ing also the non-equilibrium scaling, but with neither mea-
suring nor taking Cε into account in the discussion. Further-
more, for the latter, the turbine studied was within a turbulent
boundary layer background flow, which means that the turbu-
lence evolution was additionally influenced by the turbulent
background flow.

In this paper, we present an experimental study on the ax-
isymmetric turbulent wake generated by a wind turbine in
a wind tunnel via hot-wire anemometry. We study the wake
produced by a single turbine in uniform laminar inflow. Fur-
thermore, we also analyze the behavior of a turbine within
a turbulent background: this is achieved by placing a sec-
ond turbine downstream of the first one. The second tur-
bine is tested at two different radial positions, allowing us
to explore the behavior of a turbulent wake within two dif-
ferent, relevant configurations within a wind farm. As this
work serves as a proof of the applicability of the Townsend–
George theory, we do not include an investigation of the
influence of an atmospheric boundary layer (ABL) profile
where inflow characteristics may differ. However, it is gener-
ally assumed that the wake of a wind turbine in an ABL can
be seen as a superposition between the ABL profile and the
mean velocity deficit (cf. Bastankhah and Porté-Agel, 2014).
This is in agreement with Neunaber et al. (2021), where the
Townsend–George theory also gives good results in the case
of field measurements obtained in the wake of a full-scale
turbine using a lidar.

We perform a systematic study on the applicability of the
Townsend–George theory to wind-turbine-generated wakes
for the different incoming flows. For this, we explore the
streamwise range in which the requirements are fulfilled. We
also study the behavior of Cε for this flow (i.e., whether Cε is

constant) and therefore of the scalings of1U and δ. By doing
so, we identify the nature of the energy cascade for the differ-
ent wind turbine configurations. We find that all three turbine
configurations are in good agreement with the Richardson–
Kolmogorov energy cascade. Furthermore, we verify that, to
some extent, they also are within the conditions and hypothe-
ses required to apply the Townsend–George theory.

In the following, we will introduce the Townsend–George
theory in Sect. 2. Here, the framework and the necessary re-
quirements to apply the theory are introduced. Also, two im-
portant engineering wake models are introduced for a com-
parison. Then, the setup is presented in Sect. 3.1, and the ful-
fillment of the requirements is investigated in Sect. 3.2. The
theory is applied in Sect. 4, and the results are discussed in
Sect. 5. This paper ends with a conclusion in Sect. 6.

2 Theory

2.1 Bluff body wakes

Bluff body wakes have been the object of intensive analyses
for the past 60 years, and similarly to the study of wind tur-
bine wakes, the downstream evolution of the centerline mean
velocity deficit 1U and the wake width δ are of interest.

In this work, we will follow the revisited Townsend–
George theory (Dairay et al., 2015). The classical equilib-
rium predictions and the non-equilibrium predictions rely
on the axisymmetry of turbulence wake statistics, the self-
preservation of (U∞−U (X,Y ))/1U (where U (X,Y ) is the
streamwise mean velocity, Y is the spanwise coordinate,
1U = U∞−Uc is the centerline velocity deficit, and Uc is
the streamwise centerline mean velocity), the turbulent ki-
netic energyK , the Reynolds shear stress Rxr, the turbulence
dissipation ε, and a scaling law for the centerline turbulence
dissipation that is determined by the behavior of Cε due to
ε = CεK

2/3
c /L. Both sets of predictions are obtained from

the Reynolds-averaged streamwise momentum and turbulent
kinetic energy equations leading to a closed set of equations
for 1U (X) and the wake width δ(X).

These hypotheses also allow for expressing the momen-
tum conservation within the wake as (θ/δ)2

=1U/U∞. The

momentum thickness θ is defined by θ2
=

1
U2
∞

∞∫
0
U (U∞−

U )rdr , which is constant with X, and the wake’s width is
characterized here by the integral wake width δ defined by

δ2(X)= 1
1U

∞∫
0

(U∞−U )rdr (both quantities are linked via

momentum conservation as (θ/δ)2
=1U/U∞).

The equilibrium predictions for axisymmetric turbulent
wakes (see Townsend, 1976; George, 1989) for the stream-
wise evolution (along X) of 1U and δ are

1U (X)= AEQU∞
((
X−X0,EQ

)
/θ
)−2/3

, (1)
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δ(X)= BEQθ
((
X−X0,EQ

)
/θ
)1/3

, (2)

where A and B are dimensionless constants and X0 is a vir-
tual origin (that appears naturally from the mathematical for-
mulation and has to be the same for 1U and δ).

In contrast, the non-equilibrium predictions are

1U (X)= ANEQU∞
((
X−X0,NEQ

)
/θ
)−1

, (3)

δ(X)= BNEQθ
((
X−X0,NEQ

)
/θ
)1/2

. (4)

The only difference between equilibrium and high-
Reynolds-number non-equilibrium scalings for 1U and δ is
in the scaling of the centerline value of ε: as discussed in the
Introduction, the non-equilibrium turbulence dissipation law
is εc = CεK

3/2
c /δ, where Kc is centerline turbulent kinetic

energy, εc is the centerline turbulence dissipation, and Cε is
a dimensionless coefficient which is constant in equilibrium
turbulence but proportional to the ratio of two Reynolds num-
bers (RemG/Re

n
L) in the case of non-equilibrium turbulence.

Another important assumption used throughout the theory
is that the large scales of the turbulence are represented by the
wake width δ and therefore δ ∝ L (Cafiero et al., 2020). This
is an important and frequently overlooked assumption within
the Townsend–George theory. To the authors’ knowledge, it
has not been verified for wind turbine wakes.

To summarize, the Townsend–George theory of axisym-
metric turbulent wakes relies on the following flow proper-
ties.
Requirements to apply the Townsend–George theory.

1. The flow has to be decaying turbulence: we will focus
on the range for which the turbulent kinetic energy is a
decreasing function of the streamwise distance.

2. The flow has to be turbulent. A way to verify this re-
quirement is to check that the velocity signal has

a. a large value of Reλ (i.e., Reλ > 200) and

b. a power spectral density with an inertial sub-range
that decays according to the E(f )∝ f−5/3 power
law.

3. The mean streamwise velocity and the turbulence quan-
tities discussed above also have to be self-preserving
and thus show a self-similar scaling (for a more detailed
study on this point, we refer the reader to Dairay et al.,
2015).

4. The mean velocity components and the turbulence
quantities have to be axisymmetric.

5. As stated, the flow has to be in a streamwise range for
which the longitudinal integral length scale is propor-
tional to the wake width (L∝ δ).

If all conditions are fulfilled, the theory predicts power law
decays for the velocity deficit and the wake width. Further-
more, the exponents of such power laws can be related to the
dissipation scaling of ε in the flow.

In order to disentangle the different dissipation scalings
and thus identify equilibrium and non-equilibrium turbu-
lence, two criteria have to be checked.
Criteria for equilibrium and non-equilibrium turbulence.

i. Does Cε being constant hold? In this case, no Reynolds
number dependence of Cε should be seen.
Yes: There is equilibrium turbulence.
No: There is indication for non-equilibrium turbulence.

ii. The Taylor Reynolds number Reλ and the local
Reynolds number ReL need to change with downstream
distance in order to verify criterion (i). More specifi-
cally, ReL has to decrease according to George (1989)
in the case of non-equilibrium turbulence.

If ReL and Reλ do not change, it is therefore not pos-
sible to draw conclusions on the occurrence of equilib-
rium and non-equilibrium turbulence, and the results are
inconclusive.

In the following, we will refer to the equilibrium scaling as
EQ scaling and the non-equilibrium scaling as NEQ scaling.

2.2 Wind turbine wake models

In the past, a lot of effort was put into the understanding and
finding a description of the wake flow of wind turbines, espe-
cially its recovery on the centerline and the wake expansion,
by carrying out experiments and simulations. Additionally,
different theories have been underlain. However, an analyti-
cal model that is capable of including different inflow con-
ditions and turbine operations does still not exist. In the fol-
lowing, we will briefly introduce two commonly used wake
models that we will compare to the EQ and NEQ wake mod-
els.

The first model we discuss, developed by
Niels Otto Jensen in 1983, is based on the conserva-
tion of momentum (cf. Jensen, 1983). It is assumed that the
normalized velocity deficit is

1U

U∞
=
U∞−UW

U∞
, (5)

where the wake velocity UW is top hat shaped and evolves
with increasing downstream distance X according to

1U

U∞
=

(
1−

√
1− cT

)
·

(
1+

2kJX

D

)−2

, (6)

where U∞ denotes the unperturbed inflow velocity; UW de-
notes the streamwise wake velocity; cT denotes the tur-
bine’s thrust coefficient; D denotes the turbine’s diameter;
and kJ denotes the wake expansion, which is assumed to be
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constant. While Jensen suggests kJ = 0.1, kJ = 0.075 is sug-
gested in Barthelmie et al. (2006).

A more recent model that includes the conservation of
mass in addition to the conservation of momentum is the one
derived by Bastankhah and Porté-Agel (2014). Here, the re-
covery of the centerline velocity deficit is combined with a
Gaussian velocity profile:

1U

U∞
=

1−
√

1−
cT

8
(
kBP ·X/D+ 0.2

√
β
)2


︸ ︷︷ ︸
centerline velocity deficit

· exp

(
−

((Z−Zh)/D)2
+ (Y/D)2

2
(
kBP ·X/D+ 0.2

√
β
)2
)

︸ ︷︷ ︸
Gaussian velocity profile

. (7)

In this formula, Y and Z denote the spanwise and wall-
normal coordinates; Zh denotes the hub height; and kBP is
the wake growth rate that needs to be specified and is on the
order of magnitude of 0.03± 0.02 (Bastankhah and Porté-
Agel, 2014; Okulov et al., 2015). β is given by the following
equation:

β =
1+
√

1− cT

2
√

1− cT
. (8)

In the following, we will call this wake model the
BP model.

It can be seen that the two approaches that were presented
above to describe the wind turbine wake differ significantly
from the classical wake models that were derived from the
perspective of turbulence.

3 Experimental setup and verification of
requirements

3.1 Setup

In the following, the experimental setup used to carry out the
experiments evaluated in this study is introduced.

The experiments have been performed in Oldenburg’s
Large Wind Tunnel (OLWiT) at the University of Oldenburg
that has an inlet of 3 m×3 m and a closed test section of 30 m
length (cf. Kröger et al., 2018). In the empty test section,
the background turbulence intensity of the flow is TI= 0.3 %
(where TI= u′/U ), and velocities of up to 42 m s−1 can be
reached. A closed-loop control keeps the velocity constant,
and to correct for changes, the flow temperature, the ambient
pressure, and the humidity are constantly monitored. During
all experiments presented here, the uniform inlet velocity was
U∞ = (7.55± 0.05) m s−1.

Two three-bladed horizontal-axis model wind turbines of
the same type have been used in the experiments (cf. Schot-
tler et al., 2018). In the following, they will be referred to as

turbine 1 and turbine 2. Both turbines have a rotor diameter
of D = 58 cm and a hub height of h= 72 cm (resulting in an
inlet Reynolds number of ReG = 3×105 based on the square
root of the rotor surface). The rotor load is controlled using a
closed-loop control to ensure a performance of the turbine at
the optimal tip speed ratio of TSR≈ 5.8 in the full-load range
(cf. Petrović et al., 2018; Neunaber, 2019). This is achieved
be measuring the rotor torque and adapting it to achieve the
optimal rotational speed that can be taken from a lookup ta-
ble. The thrust coefficient of the whole turbine was measured
by placing the turbines on a force balance, and it is cT,t1 ≈ 1
for turbine 1 and cT,t2 ≈ 1.07 for turbine 2 (see Neunaber,
2019). The thrust coefficient of the tower and the nacelle
were also measured and yield cT,n ≈ 0.12 so that the turbine
operates close to the ideal thrust coefficient of cT,id = 8/9
derived from the Betz limit.

As shown in Fig. 1, an array of six one-dimensional hot-
wire probes with sensor lengths of 1.25 mm and a sensor
diameter of 5 µm was used to measure the wake down-
stream of three different wind turbine array configurations
at the hub height with a very high downstream resolution
of 1X/D = 0.17. The data were collected using a Stream-
Line 9091N0102 frame with 91C10 CTA (constant tempera-
ture anemometry) modules. A temperature correction, as pro-
posed by Hultmark and Smits (2010), was applied to the data.
At each position, 1.2× 106 data points were collected with
a sampling frequency of fs = 15 kHz. A hardware low-pass
filter with a cutoff frequency of 10 kHz has been used.

Three wake configurations were investigated (cf. Fig. 1):

1. The wake of turbine 1 is exposed to the uniform, laminar
inflow in the range between X/D = 0.55 and X/D =
12.62. This configuration will be referred to as tur-
bine 1. Based on the rotor, the blockage of the wind
tunnel is 3 % in this configuration.

2. The wake of turbine 2 is positioned 5.17D downstream
in the wake of turbine 1 between X/D = 0.55 and
X/D = 8.66 with respect to turbine 23.

a. First, turbine 2 is exposed to the wake of turbine
1. Both are aligned and therefore share the center-
line axis. As shown in Neunaber (2019), the inflow
is thus turbulent with an average inflow velocity of
3.4 m s−1 (2.1 m s−1 in the center, 5.5 m s−1 at the
blade tip). This configuration will be referred to as
turbine 2 mid.

b. Then, turbine 2 is moved 0.5D to the side so that it
is exposed to an inhomogeneous half-wake inflow.
As shown in Neunaber et al. (2020), the inflow is
thus turbulent and intermittent. The average inflow
velocity is 5.1 m s−1 with a gradient from 2.1 m s−1

at one side of the rotor to 7.4 m s−1 at the other side

3This is equal to X/D = 13.82 with respect to turbine 1.
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Figure 1. Setup (modified from Neunaber, 2019): a hot-wire array is used to measure the wakes of (1) a single turbine (plot color: dark
purple), (2) a turbine exposed to the wake of an upstream turbine (plot color: turquoise), and (3) the half-wake of an upstream turbine (plot
color: green).

of the rotor. This configuration will be referred to
as turbine 2 side.

In the cases of turbine 1 and turbine 2 mid, we measure
one-half of the wake because the wake is expected to be ax-
isymmetric in uniform inflow (Stevens and Meneveau, 2017).
The horizontal position of the hot-wire array is not changed
in the case of turbine 2 side so that the full wake is measured
in this case.

3.2 Verification of the requirements

As explained in Sect. 2, certain requirements have to be
fulfilled to justify the use of the Townsend–George theory.
Therefore, in the following, we will verify that the listed cri-
teria are accomplished.

3.2.1 Turbulence intensity

In Fig. 2, the centerline evolution of the turbulence intensity
is plotted for the three inflow scenarios. As also discussed
in Neunaber et al. (2020), the turbulence intensity first de-
creases in the nacelle’s lee, then increases when the turbu-
lence builds up due to the expansion of the shear layers evolv-
ing between the faster ambient flow and the slower wake and
afterwards decreases in the far wake where the turbulence
decays. The first requirement that has to be fulfilled in or-
der to apply the Townsend–George theory is fully developed,
decaying turbulence which is indicated by a decreasing tur-
bulence intensity. Therefore, the data points in the near wake
prior to the local maximum of the turbulence intensity will
be masked in the following. In the plots, this is indicated by
hatched areas.

3.2.2 Taylor Reynolds number

In order to apply the Townsend–George theory, we are look-
ing for a region with fully developed turbulence whereReλ >
200 holds, as stated in requirement 2a. In Appendix A, the
calculation of Reλ is detailed in Eqs. (A2)–(A4). In Fig. 3,
Reλ is therefore plotted in the downstream region where the
turbulence intensity decays. Therefore, this requirement of
the Townsend–George theory is fulfilled.

3.2.3 Energy spectral density

Next, the energy spectral density has to be checked. It is
important to have an energy spectrum with a clear inertial
sub-range that decays according to a power law, as explained
in requirement 2b. In Fig. 4, the energy spectral density is
plotted for the three inflow scenarios at the respective max-
imum of the turbulence intensity. Clearly, an inertial sub-
range that decays according to E(f )∝ f−5/3 is present in
all three wake scenarios. In Neunaber et al. (2020), it is also
shown how the energy spectral density has an inertial sub-
range decaying with E(f )∝ f−5/3 for all positions farther
downstream. Therefore, the next criterion is fulfilled in the
chosen downstream region.

3.2.4 Self-similarity

As the Townsend–George theory originates in classical bluff
body wake analysis, another important assumption is that of
the self-similarity of the wake, as stated in requirement 3. To
verify the self-similarity in this study, the normalized veloc-
ity deficit U∞−U (X,Y/δ)

U∞−Uc
is plotted over the normalized radial

component Y/δ. In the case of a self-similar behavior of the
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Figure 2. Centerline turbulence intensity TI for the three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid –
turbulent, and (c) turbine 2 side – turbulent and intermittent. The vertical lines mark the maximum of the TI (X/D = 6.24 for turbine 1,
X/D = 1.79 for turbine 2 mid, and X/D = 2.45 for turbine 2 side); the hatched regions upstream of the turbulence intensity maximum mark
the regions that will be omitted in the following; and the colored area marks the region where the Taylor Reynolds number is changing
(cf. Fig. 3).

Figure 3. Downstream evolution of the Taylor Reynolds number Reλ for the three different inflow conditions at the centerline in the decay
region of the TI: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent, and (c) turbine 2 side – turbulent and intermittent. The vertical
lines mark the maximum of the TI, and the colored area marks the region where the Taylor Reynolds number is changing.

turbulence, the curves are expected to collapse. For the two
cases of turbine 1 and turbine 2 mid (cf. Fig. 5a and b) the
curves collapse as required, and thus, a self-similar behavior
is confirmed. To show that the profiles collapse to a Gaus-
sian curve as often implied when assuming a constant eddy
viscosity, a fit according to

U∞−U (X,Y/δ)
U∞−Uc

= a · exp
(
−b · (Y/δ)2

)
(9)

was applied. In addition, the following modified constant
eddy viscosity (MCEV) model discussed in Cafiero et al.
(2020) was applied:

U∞−U (X,Y/δ)
U∞−Uc

= a · exp
(
−b · (Y/δ)2

− c · (Y/δ)4

−d · (Y/δ)6
)
. (10)

With root mean square (RMS) errors of 0.013 and 0.027
for turbine 1 and 2 mid, respectively, the MCEV model per-
forms indeed better than the Gaussian fit with RMS errors

of 0.033 and 0.054, respectively. In the asymmetric, more
complex wake of turbine 2 side (cf. Fig. 5c), a self-similar
behavior can not be found, and therefore, we do not expect
the Townsend–George theory to fully hold there.

As we present results obtained from 1 d hot-wire anemom-
etry, the test for self-similarity is restricted here to the mean
velocity profile. However, Stein and Kaltenbach (2019) did
investigate the self-similarity of the added Reynolds stress
tensor components and the added turbulent kinetic energy in
the wake of a model wind turbine exposed to an ABL profile.
We assume therefore that this requirement also holds here.

3.2.5 Axisymmetry

In addition to self-similarity, also axisymmetry of the wake
is required, as explained in requirement 4. As the measure-
ments that we present have been carried out in one-half of
the wake, we are not able to directly verify the axisymmetry.
However, based on the symmetric setups for turbine 1 and
turbine 2 mid and other studies with similar conditions (see,

https://doi.org/10.5194/wes-7-201-2022 Wind Energ. Sci., 7, 201–219, 2022



208 I. Neunaber et al.: Application of the Townsend–George theory for free shear flows

Figure 4. Energy spectral density E(f ) over frequency f at the maximum turbulence intensity (X/D = 6.24 for turbine 1, X/D = 1.79 for
turbine 2 mid, and X/D = 2.45 for turbine 2 side) for the three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid
– turbulent, and (c) turbine 2 side – turbulent and intermittent. In blue, the E(f )∝ f−5/3 decay is marked.

Figure 5. Plot of the wake deficit over the normalized spanwise position Y/δ for the three different inflow conditions: (a) turbine 1 – laminar
inflow, (b) turbine 2 mid – turbulent inflow, (c) turbine 2 side – turbulent and intermittent inflow. Only curves in the decay region of the
turbulence intensity are included, and the downstream position is indicated by means of the color map.

e.g., Stevens and Meneveau, 2017), we conclude that the re-
quirement of axisymmetry can be taken as valid for these
inflow conditions.

It should be noted that the axisymmetry may be influenced
by the presence of the ground and an ABL profile when in-
vestigating the wake of a wind turbine in the field. However,
as the mean far wake evolving downstream a turbine exposed
to an ABL inflow is often described as the superposition of an
ABL profile with an axisymmetric wake, it can be assumed
that the requirement also holds for these cases (Bastankhah
and Porté-Agel, 2014; Stein and Kaltenbach, 2019).

3.2.6 Integral length scale over wake width

The last requirement that needs to be fulfilled is the behavior
of L/δ; see requirement 5. As explained above, δ ∝ L is as-
sumed in the Townsend–George theory for bluff body wakes.
In Fig. 6, L/δ is therefore plotted overX/D for the three sce-
narios, and error bars are included. The errors for L/δ were
calculated using error propagation. As the calculation of L is
quite sensitive, the error bars are rather large. Downstream of
turbine 1 and turbine 2 mid, L/δ increases in the colored re-
gion where Reλ changes, and it is approximately constant in
the far wake. This shows how the wake turbulence has a ten-

dency to develop towards symmetry. In the far wake, the data
points are quite shattered because the integral length scale
fluctuates in this region, especially downstream of turbine 2
where L tends to fluctuate due to the turbulent background
inflow (for the evolution of L, see Neunaber et al., 2020, and
Neunaber, 2019). Downstream of turbine 2 side in the com-
plex inflow, the points are scattered, and an increase of L/δ
is visible, but far downstream, L/δ appears to tend to a con-
stant value. This indicates that despite the highly complex,
sheared, and asymmetric inflow the turbulence appears to
drive the evolution of the wake towards symmetry. A deeper
analysis of this will be visited in future work. Briefly, we can
conclude that the condition L/δ is approximately constant is
fulfilled in the far wake case of turbine 1 and turbine 2 mid
but not in the case of turbine 2 side.

Summary of Sect. 3.2

In order to fulfill the first requirement of the Townsend–
George theory, we first chose the downstream regions in
which the turbulence intensity is decaying. In this region,
the other requirements have been tested, and by means of
the Taylor Reynolds number, the energy spectral density, the
self-similarity and, particularly in the far wake, also the be-
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Figure 6. Downstream evolution of L/δ for the three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent,
and (c) turbine 2 side – turbulent and intermittent. The vertical lines mark the maximum of the TI, and the colored area marks the region
where the Taylor Reynolds number is changing.

Figure 7. Downstream evolution of the local Reynolds number ReL for the three different inflow conditions at the centerline in the decay
region of the TI: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent, and (c) turbine 2 side – turbulent and intermittent. The vertical
lines mark the maximum of the TI, and the colored area marks the region where the Taylor Reynolds number is changing.

havior of L/δ, we can conclude that the Townsend–George
theory can be applied to the wakes downstream of turbine 1
and turbine 2 mid. In the wake of turbine 2 side, the require-
ments are partially fulfilled (fully developed turbulence that
is indicated by the decaying turbulence intensity, the high
Taylor Reynolds numbers, and a decay of the energy spec-
tral density has been verified, while self-similarity, axisym-
metry, and L/δ being approximately constant are not given).
Table 1 summarizes this again. With the confirmation that the
requirements are met for turbine 1 and turbine 2 mid and par-
tially for turbine 2 side, we will apply the Townsend–George
theory to the data.

4 Results

After verifying the requirements that need to be fulfilled in
order to apply the Townsend–George theory, the next step is
to check whether non-equilibrium turbulence is present at the
centerline. For this, we will first discuss the behavior of Reλ
and ReL, and afterwards, Cε will be investigated.

As stated above, the Taylor Reynolds number is sup-
posed to change so that the presence of equilibrium and non-
equilibrium turbulence can be disentangled. In Fig. 3, it can
be seen that Reλ changes in the region directly downstream
of the local maximum turbulence intensity that was identi-
fied as the decay region in Neunaber et al. (2020) but then
remains constant in the far wake. Therefore, non-equilibrium
turbulence could be present in the region just after the turbu-
lence intensity peak that is underlain in color (6.24≤X/D ≤
9.86 for turbine 1, 1.79≤X/D ≤ 3.14 for turbine 2 mid,
and 2.45≤X/D ≤ 3.48 for turbine 2 side). We remark that
Reλ is increasing in the region of interest, and while there
is no specification in the Townsend–George theory of how
Reλ has to change, George (1989) writes that ReL has to
decrease. Therefore, we also show the downstream evolu-
tion of the local Reynolds number ReL in Fig. 7. It can be
seen that ReL increases in the marked region where Reλ is
also increasing. Farther downstream, ReL is constant down-
stream of turbine 1, and it decreases downstream of turbine 2
mid and turbine 2 side. Since Reλ remains constant in the
far wake where ReL is decreasing, the results regarding the
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Table 1. Summary of the investigation of which requirements are fulfilled at the centerline in the three wake scenarios: X denotes the
fulfillment of a criterion; (X) denotes the sufficient fulfillment of a criterion; and x denotes that the criterion is not fulfilled.

Turbine 1 Turbine 2 mid Turbine 2 side

R1 Decaying turbulence X/D ≥ 6.24 X/D ≥ 1.79 X/D ≥ 2.45
R2a) Reλ > 200 X X X

R2b) E(f )∝ f−5/3 X X X
R3 Self-similarity X X (X)
R4 Axisymmetry (X) (X) x
R5 L∝ δ (X) (X) x

existence of non-equilibrium turbulence are inconclusive in
that range. The results also suggest that we capture the onset
of the streamwise decay of ReL and Reλ, in agreement with
the theoretical prediction.

The next step is to additionally verify whether there is
a dependence of Cε on the Taylor Reynolds number in or-
der to differentiate between the equilibrium scaling and the
non-equilibrium scaling. In Fig. 8, Cε(Reλ) is therefore plot-
ted for the three inflow conditions in the range where the
turbulence intensity is decaying. Cε is calculated according
to Eq. (A5) in Appendix A. The data points in the down-
stream region where Reλ is changing are plotted in color,
while the data points in the downstream region where Reλ is
approximately constant are masked in grey, and the average
over all masked points is plotted in blue. It can be seen that
while the values for Cε scatter about±15 % around the mean
value, which is normal due to the sensitivity of the calcula-
tion of Cε, no clear dependency of Cε(Reλ) is present. Since
this would be expected in the case of non-equilibrium turbu-
lence, together with the inconclusive results from the inves-
tigation of Reλ and ReL, we can conclude that equilibrium
turbulence occurs and that we do not find evidence of non-
equilibrium turbulence in any of the inflow scenarios in the
evaluated region in the wake of a wind turbine.

It can also be seen that the three different wakes have a dif-
ferent average Cε. This indicates inhomogeneity of the dissi-
pation constant of the turbulence inside of a wind farm. An-
other consequence is that the dissipation may be instationary:
when the wind direction changes, the wake of an upstream
turbine may pass over a downstream turbine with the conse-
quence that Cε in the inflow changes, e.g., from the wake to
the ABL inflow. In such a scenario Cε changes with time.

These consequences show the importance of the analysis
ofCε in the wake of a wind turbine, since computational fluid
dynamics models normally rely on a constant dissipation co-
efficient.

After verifying all requirements and testing for the occur-
rence of non-equilibrium turbulence, finally, Fig. 9 shows
the downstream evolution of the normalized velocity deficit
1U/U∞ overX/D at the centerline for all inflow conditions.
An error for the velocity deficit has been calculated from er-
ror propagation, where the error ofU (X) comes from the cal-

ibration uncertainty and the error of U∞ is a statistical esti-
mation of the inflow variation. The error bars are included in
the plot, but the error bars are very small, with the maximum
relative errors being 0.0054 in the case of turbine 1, 0.0035 in
the case of turbine 2 mid, and 0.0043 in the case of tur-
bine 2 side. In the following, we apply the EQ and NEQ scal-
ings from the Townsend–George theory to the data without
any preference. In addition, the two introduced wind turbine
wake models, namely the Jensen model and the BP model,
are fitted to the data. Here, we simplify the fitting of the
EQ and NEQ scalings by using1U = AEQ ·(X−X0,EQ)−2/3

and1U = ANEQ·(X−X0,NEQ)−1, whereA andX0 are fitted.
For the Jensen and the BP models, the wake expansions kJ
and kBP are used as fit variables. The residual standard errors
of the respective fits are given in the legends in Fig. 9. The
fit parameters can be found in Table 2. Note that we do not
apply superposition wake models for the wakes of turbine 2
mid and turbine 2 side here but treat the wakes individually
because we are interested in the difference a turbulent inflow
has on the fit. With the hypothesis that a final universal turbu-
lence state can be reached within a wind farm where multiple
wakes are overlapping, the modeling of these multiple wake
scenarios is not a question of superposition but rather of how
and where this final turbulence state is reached. Regarding
this line of thinking, the investigation of the individual wakes
is thus of interest.

In the case of turbine 1, the NEQ wake model and the
EQ wake model predict a similar evolution of the mean cen-
terline velocity deficit and show the best results based on the
residual standard error. As the maximum error for this data
set is ∂1U/U∞ = 0.0054, we can conclude that they per-
form similarly. The BP wake model performs less well, and
it can be seen that there are deviations in the evolution of
the normalized velocity deficit. The Jensen model does not
capture the evolution of the mean centerline velocity deficit.
It should be noted that, since the Jensen model uses a top-
hat-shaped wake to calculate the average wake velocity, it
was never designed to accurately model the centerline ve-
locity deficit. To give a specific example of the consequence
of making an error in the estimation of the mean velocity,
we will look at the BP model: in the beginning, the velocity
deficit is underestimated by 10 %, and at the end of the mea-

Wind Energ. Sci., 7, 201–219, 2022 https://doi.org/10.5194/wes-7-201-2022



I. Neunaber et al.: Application of the Townsend–George theory for free shear flows 211

Figure 8. Cε(Reλ) at the centerline for the three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent,
and (c) turbine 2 side – turbulent and intermittent. In grey, data points within the downstream region where Reλ does not change are masked,
and their mean value is plotted in blue.

Figure 9.1U/U∞ for three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent, and (c) turbine 2 side –
turbulent and intermittent. Error bars are included but very small. Different models are fitted to the recovery region, and the residual standard
errors are presented. Note that the axes are logarithmic.

surement range, the velocity deficit is overestimated by 3 %.
This would lead to a difference in the power estimation of
25 % or 10 %, respectively, based on the centerline velocity
for this specific wake scenario.

Downstream of turbine 2 mid, it can be seen that the
EQ model captures the evolution of the velocity deficit best.
The NEQ model performs less well and shows slight devia-
tions from the data. In a systematic way, the model overesti-
mates the velocity up to X/D ≈ 2.5, underestimates the ve-
locity in the range 2.5≤X/D ≤ 6, and overestimates it from
X/D ≈ 6. In the far wake, the velocity is overestimated by
3 %, which would result in an overprediction of the power of
approximately 9 % for this specific wake scenario. The fits
for the Jensen and the BP model show large deviations.

Downstream of turbine 2 side, the EQ and NEQ models
perform best and fit the measurement points well. The Jensen
model does not capture the evolution of the mean centerline
velocity deficit. The BP model is not suitable for this wake
condition with complex inflow, and the deviations are signif-
icant: at the end of the measurement range, the velocity is

overestimated by approximately 6 %, which leads to an over-
estimation of the power by approximately 17 %.

Overall, it is obvious from the presented results that the
EQ wake model performs well for all three wake scenar-
ios, and in combination with the result from above that Cε
is approximately constant (cf. Fig. 8), we conclude that the
EQ model from classical wake theory is a wake that performs
quite well. Note that the EQ model clearly improves the men-
tioned engineering models.

5 Discussion

In this work, we have introduced a different approach to
model the wakes of wind turbines that originates in the the-
ory of bluff body wakes. For this, we verified first that the
requirements necessary to apply these theories are fulfilled
(see requirements 1–5). Then, we searched for turbulence
with non-equilibrium scaling by investigating the evolution
of Cε. While we did not find evidence for non-equilibrium
turbulence, we could show that both the EQ and the NEQ
bluff body wake theories fit the wind turbine wake remark-
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ably well. While it is hard to disentangle the difference in
the power law exponents from the EQ and NEQ models (in
the end, they are both similar in the limited streamwise range
studied), we show that they both predict a functional form
that properly fits our data: a power law with a non-zero vir-
tual origin. Although the power law approach is not new to
the description of the mean velocity deficit (see, e.g., Porté-
Agel et al., 2020), we add new physical aspects to the use, as
the formulas used here are derived from certain assumptions,
and we test the requirements needed to apply the theory be-
fore using it.

To further expand the discussion of the turbulence present
in the wake of a wind turbine, we did calculate Cε for all
measurement positions in the three wake scenarios in the
regions where the energy spectral density shows an inertial
sub-range with a power law decay. The results are presented
as interpolated contour plots in Fig. 10 for the three wake sce-
narios. In addition, the positions of the blade tips are marked
as horizontal red dashed lines, and the position of turbine 2
is marked as a vertical red dashed line in the wake of tur-
bine 1. For all wakes, Cε does not show strong variations in-
side the wake. At the centerline downstream of turbine 1 and
turbine 2 mid, Cε is larger than around the blade tip position.
Downstream of turbine 2 side, the variations of Cε inside
the wake are even less pronounced, and the value is smaller
than that mentioned above. The variation of Cε due to the in-
flow turbulence means that different dissipation scalings are
present inside a wind farm as already discussed in Sect. 4,
and during a change of the wind direction, even a tempo-
ral fluctuation of the dissipation scalings can occur. Another
very interesting effect is visible at some points in these plots:
at the wake edges at the turbulent–non-turbulent interface be-
tween the wake and the laminar inflow, Cε is significantly
higher than inside the wake. While the data presented here
are not sufficient to draw conclusions, we suspect that this
may indicate a large Cε ring surrounding the wake, similar
to the ring of high intermittency that was found to surround
the wake in Schottler et al. (2018) and that was shown to be
traceable along the whole measured range in Neunaber et al.
(2020). However, further investigation on this topic is needed
to confirm this. This shows that beside the wake core that
is characterized by equilibrium turbulence (indicated by Cε
being approximately constant around the centerline), there
are distinctive regions with non-trivial turbulence that can be
found in the wake of a wind turbine. One consequence of the
variation of Cε in the wake is that the dissipation changes
radially. Even with the complex inflow of turbine 2 side that
is also exposed to this Cε ring, the wake center shows equi-
librium turbulence. This confirms again the finding that the
turbine creates its own dominant type of turbulence (Neun-
aber et al., 2020).

With the knowledge that the wake core is characterized by
equilibrium turbulence, we also applied the different wake
models to the evolution of the velocity deficit at another
radial position in the wake core at Y/D =−0.21. For the

Figure 10. Interpolated surface plot of the downstream evolution
of Cε for the three different inflow conditions: (a) turbine 1 – lam-
inar inflow, (b) turbine 2 mid – turbulent, and (c) turbine 2 side
– turbulent and intermittent. Outside of the turbulent wake, Cε is
masked.

BP model, we only use the centerline velocity deficit part of
Eq. (7). The results are presented in Fig. 11 for the three wake
scenarios, and the coefficients are given in Table 3. The plots
include error bars that are obtained similarly to the errors
in Fig. 9, and the maximum errors are 0.0062 for turbine 1,
0.0077 for turbine 2 mid, 0.0066 for turbine 2 side, and in ad-
dition 0.0055 for turbine 2 side at Y/D = 0.31. It can be seen
that all wake models except the Jensen model perform very
well in the case of turbine 1. With respect to the errors, the
NEQ and BP models perform similarly, and the EQ model
shows a slightly worse fit. The Jensen model does not cap-
ture the evolution of the centerline velocity deficit, which is
expected, as it was developed to estimate wake losses for the
whole wake. In the case of turbine 2 mid, the EQ model per-
forms best, and the NEQ shows slight systematic differences,
as discussed above. Both the BP and the Jensen model do
not capture the evolution centerline velocity deficit, but the
Jensen model performs reasonably well in the far wake.

In the case of turbine 2 side, two radial positions, Y/D =
−0.21 and Y/D = 0.31, have been used to test the wake
models. It can be seen that in this complex flow, the models
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Figure 11. 1U/U∞ for the three different inflow conditions at the spanwise position Y/D =−0.21: (a) turbine 1 – laminar inflow, (b) tur-
bine 2 mid – turbulent, and (c) turbine 2 side – turbulent and intermittent. Different models are fitted to the recovery region, and the residual
standard errors are presented. Note that the axes are logarithmic.

have greater difficulties to perform well, and the evolution of
the mean velocity deficit is not captured very accurately in
most cases. At Y/D =−0.21, the bluff body wake theories
perform best. For Y/D = 0.31, the error is the smallest for
the EQ and NEQ models, and the velocity is predicted well at
the end of the measurement range. In the cases of the Jensen
model and the BP model, it can be seen that the evolution of
the velocity deficit is not captured very well, which is also
indicated by the RMS errors. Overall, this test illustrates that
even though most of the models have been designed to fit the
centerline velocity deficit, they also perform quite well in the
wake core at inner radial positions. This is an interesting re-
sult because it is not easy to measure along the centerline in
field measurements, and with the concept of a wake core as
introduced in Neunaber et al. (2020), the application of these
models is expanded.

To further test the applicability of the models, in the next
step, we will calculate the velocity deficit at the radial posi-
tion Y/D =−0.21 (and additionally Y/D = 0.31 in the case
of turbine 2 side) from a radial correction: the BP model
already has an implemented radial correction. The Jensen
model is a top-hat-shaped model, and we therefore forego a
radial correction. The EQ and NEQ models can be expanded
by including the radial profile information from Eq. (10) to
calculate the normalized velocity deficit 1U (Y/D)/U∞ as

1U (Y/D)
U∞

= AEQU∞
((
x− x0,EQ

)
/θ
)−2/3

· a

· exp
(
−b(Y/δ)2

− c(Y/δ)4
− d(Y/δ)6

)
(11)

and

1U (Y/D)
U∞

= ANEQU∞
((
x− x0,NEQ

)
/θ
)−1
· a

· exp
(
−b(Y/δ)2

− c(Y/δ)4
− d(Y/δ)6

)
(12)

from the fit parameters obtained for the centerline velocity
deficit and the wake profile. For this, the evolution of the
wake width has to be known, and it is given by Eqs. (2)
and (4). Here, we apply the equations to the evolution
of δ(X/D), which is presented in Fig. 12 for the three sce-
narios, and we apply in addition a linear fit of the form
δ(X/D)= α+β · (X/D). It can be seen that all three models
perform very similarly in the measurement range and also
that δ(X/D) increases almost linearly. From the fit param-
eters given in Table 4, we see that the fit coefficients BEQ
and BNEQ of turbine 1 and turbine 2 mid are similar. As ex-
pected, the results are different for turbine 2 side, where the
prediction of the wake width is not very accurate due to the
complex inflow. In addition, it can be seen that the virtual
origins are different from the ones obtained for the fits of the
normalized velocity deficits. Therefore, while the Townsend–
George theory overall holds for a wind turbine wake, there
are certain details that deviate and that will need further in-
vestigation in the future.

In Fig. 13, the normalized mean centerline velocity deficit
at the radial position Y/D =−0.21 is plotted for the three
scenarios, and the predicted evolutions are added for the dif-
ferent models. In the case of turbine 1, the EQ and NEQ
models capture the evolution very well from X/D ≈ 7. The
best fit is achieved with the NEQ model. The BP model cap-
tures the evolution of 1U/U∞ in the far wake but shows de-
viations closer to the rotor. As expected, the Jensen model
does not perform well. In the case of turbine 2 mid, the
EQ and NEQ models perform similarly well and capture
the evolution of 1U/U∞ in the measurement range, but
the curves start to deviate far downstream. The BP model
shows a big deviation because the centerline velocity deficit
(cf. Fig. 9) was already not captured well. The Jensen model
also shows strong deviations. In the case of turbine 2 side at
Y/D =−0.21, the EQ and NEQ models do underpredict the
velocity deficit in the far wake, but the result is close to the
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Figure 12. δ(X/D) for the three different inflow conditions: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent, and (c) turbine 2
side – turbulent and intermittent. The EQ and NEQ models and a linear fit are applied. Note that the axes are logarithmic.

Figure 13. Modeled1U/U∞ for the three different inflow conditions at the spanwise position Y/D =−0.21: (a) turbine 1 – laminar inflow,
(b) turbine 2 mid – turbulent, and (c) turbine 2 side – turbulent and intermittent. Different models are fitted to the recovery region, and the
residual standard errors are presented. Note that the axes are logarithmic.

Table 2. Fit parameters and RMS errors for the different models
predicting the evolution of 1U/U∞ for the three scenarios at the
centerline.

Turbine 1 Turbine 2 mid Turbine 2 side

EQ AEQ 1.438 1.455 1.385
X0,EQ/D 3.290 −0.654 −0.300
1GEQ 0.008 0.007 0.007

NEQ ANEQ 3.751 3.614 3.437
X0,NEQ/D 0.751 −2.798 −2.457
1GNEQ 0.004 0.014 0.007

Jensen kJ 0.008 0.020 0.022
1J 0.079 0.080 0.067

BP kBP 0.013 0.030 0.024
1BP 0.018 0.097 0.039

measured data. The Jensen model is again strongly deviating.
The BP model fits the evolution of1U/U∞ best in this situa-
tion. In the case of Y/D = 0.31, none of the models perform
well because they all rely on a decreasing velocity deficit to-
wards the free flow, but in the sheared inflow situation, the
velocity deficit actually increases.

As we have seen, the EQ and NEQ bluff body wake mod-
els are significantly better in predicting the normalized mean
velocity deficit at Y/D =−0.21 than the engineering wind
turbine wake models. One reason is that more parameters
need to be obtained from fits of the wake shape and the cen-
terline velocity deficit. Another reason is the implied virtual
origin that is common in free shear flow analysis, as it in-
cludes the transition of the wake to the final turbulent wake
state. It gives these models a high flexibility to adapt to dif-
ferent wakes. While the concept of a virtual origin has been
taken into account in the form of the initial wake width in
other wake models, e.g., the Bastankhah–Porté-Agel model,
a “true” virtual origin that is not limited to a value of the order
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Table 3. Fit parameters and RMS errors for the different models predicting the evolution of 1U/U∞ for the three scenarios at the radial
position Y/D =−0.21. Note that for turbine 2 side, in addition, the parameters for the radial position Y/D = 0.31 are included.

Turbine 1 Turbine 2 mid Turbine 2 side Turbine 2 side
Y =−0.21D Y =−0.21D Y =−0.21D Y = 0.31D

EQ AEQ 1.510 1.474 1.069 1.587
X0,EQ/D 2.237 −1.305 0.364 −1.103
1GEQ 0.009 0.004 0.006 0.013

NEQ ANEQ 4.079 3.870 2.525 4.177
X0,NEQ/D −0.582 −3.870 −1.476 −3.707
1GNEQ 0.006 0.009 0.010 0.009

Jensen kJ 0.009 0.024 0.031 0.020
1J 0.071 0.044 0.053 0.053

BP kBP 0.015 0.030 0.027 0.023
1BP 0.006 0.086 0.017 0.061

Figure 14. 1U/U∞ for the three different inflow conditions at the centerline: (a) turbine 1 – laminar inflow, (b) turbine 2 mid – turbulent,
and (c) turbine 2 side – turbulent and intermittent. The Jensen and the BP models are modified by including a virtual origin in the fits. Note
that the axes are logarithmic.

Table 4. Fit parameters and RMS errors for the different models
predicting the evolution of δ for the three scenarios.

Turbine 1 Turbine 2 mid Turbine 2 side

EQ BEQ 0.251 0.248 0.145
X0,EQ/D 2.875 −2.401 −0.873
1GEQ 0.008 0.007 0.005

NEQ BNEQ 0.152 0.145 0.076
X0,NEQ/D −0.114 −5.963 −17.258
1GNEQ 0.007 0.008 0.005

Linear a 0.468 0.482 0.359
b 0.277 0.294 0.097
1LF 0.007 0.010 0.005

of magnitude of the turbine diameter improves the flexibility.
Therefore, we checked whether the Jensen and BP models
can be improved by including a virtual origin, thus substitut-
ing X for X−X0. The results are shown in Fig. 14, and the
fit parameters are given in Table 5. For both models, the im-
plementation improves the accuracy of the fits significantly
so that they are now on the order of magnitude of the errors
obtained for the EQ and NEQ models in some cases. Nev-
ertheless, a similar systematic deviation can be identified in
the wakes of turbine 2 mid and turbine 2 side where the cen-
terline mean velocity deficit is overpredicted in one part of
the wake and underpredicted in an other part of the wake. A
clear difference in X0 can be seen for laminar and turbulent
inflow. This shows the potential for the concept of a virtual
origin to include the background turbulence conditions.
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Table 5. Fit parameters and RMS errors for the altered Jensen
and BP models with a virtual origin (VO) predicting the evolution
of 1U/U∞ for the three scenarios at the centerline.

Turbine 1 Turbine 2 mid Turbine 2 side

Jensen VO kJ 0.035 0.041 0.042
X0,J/D 7.129 2.490 2.518
1J 0.005 0.023 0.013

BP VO kBP 0.016 0.017 0.018
X0,BP/D 1.460 −1.410 −1.026
1BP 0.004 0.013 0.008

6 Conclusions

In this paper we have introduced a new approach to look
at the evolution of the wake of a wind turbine for the
Townsend–George theory that was originally derived from
bluff body wakes to predict the evolution of the mean cen-
terline velocity deficit in a laminar incoming flow. For this,
we performed wind tunnel measurements of the wake down-
stream of a single turbine exposed to laminar inflow and a
turbine exposed to the wake of an upstream turbine and the
half-wake of an upstream turbine. First, we presented a sys-
tematic study on the applicability of the Townsend–George
theory to wind-turbine-generated wakes for the different in-
coming flows. For this, we explored the streamwise range in
which all requirements are fulfilled; cf. Table 1. We found
that all five requirements are (sufficiently) satisfied in the
cases of turbine 1 and turbine 2 mid. The requirements are
partially fulfilled in the case of turbine 2 side. Next, we stud-
ied the change of Reλ and ReL with downstream distance
to interpret the behavior of Cε for this flow and to draw
conclusions regarding the centerline evolution of 1U and δ
(i.e., equilibrium or non-equilibrium scaling). By means of
Cε(Reλ) being approximately constant, we found evidence
for equilibrium turbulence in the investigated parts of the
wake for all three scenarios. In the following step, we applied
the Townsend–George theory of 1U to estimate the velocity
deficit in the three wake scenarios using the equilibrium and
the non-equilibrium predictions. In addition, two engineer-
ing wind turbine wake models have been applied to the data.
It was found that the Townsend–George theory does describe
the wake of a wind turbine and even a second-row turbine
very well. In particular, the equilibrium scaling gives good
results for all three wake scenarios. Thus, the nature of the
energy cascade is closer to the equilibrium scaling (i.e., the
scalings consistent with the Richardson–Kolmogorov cas-
cade) than to the non-equilibrium scaling for the different
wind turbine wake flows. Especially in the more complex
situation of a wake inflow, the equilibrium bluff body wake
model outperforms the wind turbine wake models despite the
fact that the former has been derived for the wake evolving
downstream of a static bluff body exposed to uniform lam-
inar inflow. This opens up a new perspective, as the wake

of a wind turbine does behave in principal similarly in dif-
ferent inflow conditions. While multiple wake situations are
normally solved by using wake superposition models (which
are not in accordance with the Navier–Stokes equations),
with our interpretation, a final turbulence state within a wind
farm due to the turbulence evolution processes is plausible.
A more precise description of wakes within a wind farm is of
interest, as due to the cubic dependence of the power on the
wind velocity, even rather small deviations in the velocity es-
timation can lead to large deviations in the power prediction.

To further investigate the applicability of the wake models,
we also applied them to a different radial position, Y/D =
−0.21. We saw that the equilibrium bluff body wake model
again outperforms the common wind turbine wake models.
As the centerline is not always captured perfectly in field
measurements, this result is very interesting for the applica-
tion. Also, we could show that a radial correction can be used
to predict the wake at Y/D =−0.21 using the fit coefficients
obtained for the centerline. In comparison to the BP model
that has a built-in radial correction, the Townsend–George
theory again shows better results.

The virtual origin native to the Townsend–George theory
was identified as the one main advantage of the bluff body
wake models. As mentioned above, this virtual origin differs
from the concept of the initial wake width used in some of
the engineering wake models in that it accounts for the tur-
bulence transition (and therefore is common to several tur-
bulence one-point quantity scalings). Therefore, we also dis-
cuss how the implementation of a virtual origin may improve
the Jensen and the BP models, especially as we see that it can
be used to include the inflow turbulence in the wake models.

A final result of this analysis is that Cε does change in the
wake both with respect to the radial position and with respect
to the inflow condition. A consequence is that the turbulence
dissipation inside a wind farm is inhomogeneous and insta-
tionary, which needs to be considered in simulations to fur-
ther improve wind farm modeling. The investigation of Cε
can also be used as a tool to add information on the type of
turbulence present and, thus, has the potential to refine the
understanding of turbulence within a wind farm.

Overall, this work shows in a detailed manner the consis-
tent applicability of the equilibrium turbulence bluff body
wake model from turbulence theory to wind turbine wakes
and thus the importance of correctly taking Cε into account.
While the Jensen model is derived from the conservation of
mass and the BP model includes conservation of mass and
momentum and considers the shape of the wake, we show
that the additional inclusion of the turbulent nature is crucial.
Nevertheless, we also see that the models fail in multi-wake
scenarios where the inflow is not symmetric and where thus
superposition approaches would as well fail. This and the ad-
ditional dependence of the wind turbine wake on the opera-
tional state of the turbine are difficulties occurring inside find
farms that need further investigation.
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For the future, a more detailed investigation of Cε inside a
wind farm will be interesting in order to identify possible re-
gions with non-equilibrium turbulence and their dependence
on the inflow turbulence and the operational state of the tur-
bine (e.g., the thrust coefficient). In addition, the possibility
of expanding engineering wind turbine wake models with a
virtual origin should be further explored, especially with re-
spect to the inflow turbulence. With the extremely asymmet-
ric example of turbine 2 side, we could show that the applica-
tion of the equilibrium wake model works to a certain degree
because the turbulence tends to evolve towards a symmetric
wake as far as possible. This gives a good indication for new
theories to model half-wake and multi-wake scenarios with
asymmetric inflows where Cε can be included.

Another open challenge will be to combine the ideas dis-
cussed here with the broader topic of wind farm wakes which
are for example discussed in Platis et al. (2020) and Volker
et al. (2015), who successfully “use the classical wake theory
(Tennekes and Lumley, 1972) to describe the sub-grid-scale
wake expansion”.

Appendix A: Estimation of turbulence quantities

To estimate the integral length scale L and the Taylor
length λ, we use the one-dimensional energy spectra as pro-
posed by Hinze (1975). As the upper boundary of the inertial
sub-range, the integral length scale can be estimated calculat-
ing the limit of the energy spectrum in the frequency domain
for f approaching 0 as

L= lim
f→0

(
E(f ) ·U

4u′2

)
, (A1)

where u′ is the RMS value of the fluctuating streamwise ve-
locity U (t).

To estimate an error for the integral length scale, we use
the standard deviation σE of the points of the spectrum that
are used to estimate the limit lim

f→0
which is the “flat” part

of the spectrum at low frequencies. σE is then expressed as
a percent of the mean energy in these frequencies, σE,n =

σE/〈E〉, and 1L= L · σE,n.
The Taylor length is defined as

λ=

(
u′

2

〈(∂U ′/∂X)2〉

)1/2

, (A2)

where U ′ = U (t)−U is the fluctuations of the velocity and
〈·〉 denotes the ensemble average. The energy spectrum in the
space domain can be used to calculate 〈(∂U ′/∂X)2

〉 as

〈

(
∂U ′(X)
∂X

)2

〉 =

kmax∫
kmin

k2E(k)dk, (A3)

with the wave number k.

By means of the Taylor length λ, the RMS value of the
fluctuating streamwise velocity u′ and the kinematic viscos-
ity ν, the Taylor Reynolds number is calculated as

Reλ =
u′ · λ

ν
. (A4)

The energy dissipation rate ε can be estimated by ε =
15ν〈(∂U ′/∂X)2

〉 (cf. Pope, 2000) under the assumptions of
isotropy in small scales and the validity of Taylor’s hypoth-
esis of frozen turbulence. The derivative is calculated using
Eq. (A3). Using the RMS value of the fluctuating streamwise
velocity as an estimate of the turbulent kinetic energy, Cε is
calculated:

Cε =
εL

u′3
=

15L
Reλλ

. (A5)

The integral wake width is calculated as

δ2(X)=
1
1U

∞∫
0

(U∞−U )rdr, (A6)

and as the number of radial positions (six) is limited in this
study, we calculate δ by applying linear interpolation be-
tween the points. We do not use Eqs. (9) or (10), as we
wanted to avoid any bias that may occur due to fits deviat-
ing from the measured data. To estimate the error of δ (1δ)
we use the difference between δ calculated with linear inter-
polation and δ calculated from the six positions without any
interpolation. This serves as an estimate of the maximum er-
ror.
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