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Abstract. The optimal control problem for flight trajectories of Fly-Gen airborne wind energy systems
(AWESs) is a crucial research topic for the field, as suboptimal paths can lead to a drastic reduction in power
production. One of the novelties of the present work is the expression of the optimal control problem in the
frequency domain through a harmonic balance formulation. This allows the potential reduction of the problem
size by solving only for the main harmonics and allows the implicit imposition of periodicity of the solution.
The trajectory is described by the Fourier coefficients of the dynamics (elevation and azimuth angles) and of the
control inputs (onboard wind turbine thrust and AWES roll angle). To isolate the effects of each physical phe-
nomenon, optimal trajectories are presented with an increasing level of physical representation from the most
idealized case: (i) if the mean thrust power (mechanical power linked to the dynamics) is considered as the ob-
jective function, optimal trajectories are characterized by a constant AWES velocity over the loop and a circular
shape. This is done by converting all the gravitational potential energy into electrical energy. At low wind speed,
onboard wind turbines are then used as propellers in the ascendant part of the loop; (ii) if the mean shaft power
(mechanical power after momentum losses) is the objective function, a part of the potential energy is converted
into kinetic and the rest into electrical energy. Therefore, the AWES velocity fluctuates over the loop; (iii) if
the mean electrical power is considered as the objective function, the onboard wind turbines are never used as
propellers because of the power conversion efficiency. Optimal trajectories for case (ii) and (iii) have a circu-
lar shape squashed along the vertical direction. The optimal control inputs can be generally modeled with one
harmonic for the onboard wind turbine thrust and two for AWES roll angle without a significant loss of power,
demonstrating that the absence of high-frequency control is not detrimental to the power generated by Fly-Gen
AWESs.

1 Introduction

Airborne wind energy (AWE) is the branch of wind energy
which aims at harvesting energy from the wind using air-
borne systems. Airborne wind energy systems can be clas-
sified according to the flight operations, which are linked to
the power generation technique. The flight operations can be
divided into crosswind, tether-aligned and rotational, as dis-
cussed by Vermillion et al. (2021). Electrical power can be
generated by a fixed or a moving ground station, or, alter-

natively, it can be directly generated on board and transmit-
ted to the ground through the tether. The wing type, soft or
fixed, additionally classifies the AWES. This paper focuses
on AWESs based on a fixed-wing with onboard generation,
known as Fly-Gen AWESs. However, the methods developed
can be applied to other AWE architectures, after an appro-
priate rework of the dynamic models. These methods are
suitable for investigating the optimal trajectories of AWESs
and, especially when applied to low-fidelity models, for un-
derstanding their physical characteristics. The interpretation
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of the physical characteristics of optimal trajectories and the
analysis of how they are influenced by parameters describing
the system and its operation is the main goal of this work.
With this aim, solutions are compared with analytical results
coming from first-principle models whenever possible.

The first analytical power equation of crosswind AWESs
was derived by Loyd (1980), and additional refinements,
such as the one proposed by Trevisi et al. (2020a), made an
effort to modify analytic equations to include gravitational
and centrifugal effects. This kind of analytical models can be
used to study how power and other relevant trends approxi-
mately scale with design parameters. However, they typically
neglect the system dynamics and its effect on power gener-
ation. These effects can be studied with dynamical models,
ranging from low to high fidelity. Typically, low- to mid-
fidelity models are used to investigate optimal trajectories
of AWE. Low-fidelity dynamic models are characterized by
multiple assumptions, which simplify the models, and by the
low computational cost. The quasi-steady model (van der
Vlugt et al., 2019) assumes the kite as a point mass in steady
state for each point of the loop. This model is validated
with experimental data (Schelbergen and Schmehl, 2020),
and it is considered accurate for soft kites, where the iner-
tia is low and the AWES quickly reaches the steady state. A
similar approach is considered while deriving the Unicycle
model (Fagiano et al., 2014; Vermillion et al., 2021). Also
this model, based on a point mass, is developed for soft-wing
AWESs and computes the velocity vector via quasi-steady
flight equations. The kite orientation is found by a turning
law that is derived from lateral force equilibrium and is val-
idated through a number of experiments. The Unifoil model
(Cobb et al., 2020) is derived by modification of the Unicycle
model in order to be applied to fixed-wing AWESs. Indeed,
the quasi-steady assumption is removed, and the turning ma-
neuvers are modeled with a yaw dynamic equation.

Higher-fidelity, but still computationally efficient, dy-
namic models are developed by Sánchez-Arriaga et al.
(2017, 2019); Sánchez-Arriaga and Serrano-Iglesias (2021)
as a part of the Lagrangian Kite Flight Simulators (LAKSA)
package based on minimal coordinates and by Gros and
Diehl (2013) to study the dynamics of multiple AWES con-
figurations. Moreover, thorough Newtonian dynamic mod-
els are used to compute reference flight paths and the con-
sequent flight path control for soft-wing AWESs (Fechner
et al., 2015; Fechner and Schmehl, 2016) and for fixed-wing
AWESs (Licitra et al., 2019; Malz et al., 2019; Eijkelhof and
Schmehl, 2022).

The dynamic models just introduced are particularly suit-
able to be used within optimal control studies for their com-
putational inexpensiveness and for the reduced number of
nonlinearities compared to even higher-fidelity codes, such
as kiteFAST (Jonkman et al., 2018). The Unicycle and Uni-
foil models, introduced earlier, are mainly used to compute
reference flight paths and for flight path control develop-
ment (Cobb et al., 2020; Fernandes et al., 2021). To ease

the deployment of optimal control problems for AWE, awe-
box (awebox, 2022) is developed and used, for instance by
Leuthold et al. (2018), Haas et al. (2019) and De Schut-
ter et al. (2019), to solve optimal control problems. awebox
solves optimal control problems in time, imposing periodic-
ity constraints. A similar optimal control problem is studied
by Horn et al. (2013) and Malz et al. (2020a, b), where the
optimal trajectory is found in time using a discretization by
direct collocation and a homotopy strategy based on the re-
laxation of the dynamic constraints (Gros et al., 2013). Lic-
itra et al. (2019) solve an optimal control problem with an
experimentally validated dynamic model of a Ground-Gen
AWES. They find that, under some prescribed constraints,
circular and figure-of-eight trajectories produce similar mean
power and that closed-loop control enhances robustness but
decreases power production by about 10 %. Control in all op-
eration phases is studied by Rapp et al. (2019) and Todeschini
et al. (2021): the present work can be understood as a study
of the guidance (or the reference trajectory) used during the
power generation phase of their study.

Pasquinelli (2021) investigates the power losses in a circu-
lar trajectory with a dynamical quasi-analytical model. He
finds that the causes of power losses are mainly two: the
AWES span non-perpendicularity with respect to the incom-
ing wind during the motion and the AWES speed fluctuation
over the loop. The Makani team (Tucker, 2020) studies the
flight trajectories of Fly-Gen AWESs with a simplified quasi-
analytical approach, aiming at describing their physical char-
acteristics. They run their flight simulator for different trajec-
tories and production strategies to derive analytical expres-
sions, which can describe the consequences of different oper-
ational choices. Their production strategy at low wind speed
is to convert part of the potential energy into kinetic and part
into electrical, when the AWES moves downward. To reduce
the potential energy exchange, they suggest to squash the tra-
jectories along the vertical direction. Moreover, they explain
that using electrical power to push the AWES upward drasti-
cally decreases the overall power production, as power needs
to be converted from mechanical to electrical and again from
electrical to mechanical, so that the related efficiencies are
counted twice. They, in accord with the study for Ground-
Gen by Stuyts et al. (2015), conclude that the electrical con-
version losses should be considered when deciding on the
production strategy. Following these conclusions, the present
work also investigates the influence of the power generation
efficiencies on the optimal trajectories.

As the aim of this work is to interpret optimal trajectories
in a physical way, a low-fidelity dynamic model, similar to
the one proposed by Fernandes et al. (2021) (reformulated
for Fly-Gen AWESs), is selected. Instead of solving the dy-
namics and the optimal control problem in time, the present
approach models the problem in the frequency domain, mak-
ing use of a harmonic balance method, which expands the pe-
riodic solution as a Fourier series (Lau et al., 1982; Pierre and
Dowell, 1985; Dimitriadis, 2017). Working with the Fourier
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coefficients and not with the time series themselves allows
the potential reduction of the problem size depending on the
problem at hand, the search for periodic solutions implicitly
and the study of the solution in an intuitive way by look-
ing at the contribution of the different harmonics. To the best
of the authors’ knowledge, this is the first work on AWESs
where an optimal control problem aided by a harmonic bal-
ance methodology is formulated.

Even though the frequency-domain formulation can be
used for any periodic flight trajectories (i.e., circular and fig-
ure of eight), only circular trajectories are analyzed here to
limit the paper scope and length. Figure-of-eight trajectories
are intended to be analyzed and intensively compared with
circular trajectories in a future work.

The paper is organized as follows: in Sect. 2 the flight dy-
namic model, the harmonic balance and the optimal control
statement are introduced. In Sect. 3, the main results from
steady-state analytical models are recalled from literature,
together with the introduction of some key non-dimensional
numbers used later in the analyses. In Sect. 4, the solution
obtained with the harmonic balance formulation is validated
against the time integration. In Sect. 5, optimal control prob-
lems with constant wind inflow and no constraints on the
mean elevation angle are analyzed. This extreme idealization
allows the understanding of some optimal trajectory charac-
teristics which are also present in more realistic cases. Sec-
tion 6 focuses on the results of a more realistic optimal con-
trol problem where the wind shear and a constraint on the
minimum elevation angle are included in the analyses. Fi-
nally, in Sect. 7 the results are discussed and the main con-
clusions summarized.

2 Methodology

2.1 Flight dynamic model

Two coordinate systems (Fig. 1a) are defined to derive the
equations of motion. The ground coordinate system (denoted
by FG) is inertial and centered at the ground station: ex
points downwind, ez toward the zenith and ey completes the
right-handed frame. For convenience, spherical coordinates
are used to describe the position of the airborne unit, with
Lt the tether length, φ the azimuth angle and β the elevation
angle. The spherical reference frame (denoted by FS) is un-
equivocally defined at every position with the origin at the
AWES center of mass, er pointing outward the sphere in the
radial direction, eφ normal to er and contained on a plane par-
allel to x–y, and eβ = er×eφ . The position p, velocity v and
acceleration a vectors projected into the spherical reference
frame FS are

p = Lter,

v = Ltφ̇ cosβeφ +Ltβ̇eβ ,

a =
(
−Ltφ̇

2cos2β −Ltβ̇
2
)
er

+
(
Ltφ̈ cosβ − 2Ltφ̇β̇ sinβ

)
eφ

+

(
Ltβ̇

2 sinβ cosβ +Ltβ̈
)
eβ . (1)

The wind velocity is in the positive x-axis direction of FG,
and projected into the spherical reference frame is

vw = vw
(
cosφ cosβer− sinφeφ − cosφ sinβeβ

)
,

vw(h)= vw,0

(
h

h0

)αs

= vw,0

(
Lt

h0
sinβ

)αs

, (2)

where the wind speed vw as function of the altitude h is
modeled with an exponential law: vw,0 is the reference wind
speed at the reference altitude h0 and αs is the wind shear ex-
ponent. The relative speed between the AWES and the wind
is

vr = vw− v. (3)

To describe the AWES attitude, a non-sideslip velocity
constraint is included in the modeling. Indeed, the wing op-
erates at the highest performance under this condition. To
impose this constraint implicitly, the unit vector e1 is defined
to point to the direction opposite to the relative wind speed:

e1 =−
vr

|vr|
. (4)

The spanwise unit vector s (with origin at the center of
mass and pointing in the right-wing span direction) is defined
perpendicular to e1 with the procedure illustrated in Fig. 1b.
A second vector e3 is defined as a unit vector in a plane par-
allel to the x–z plane with elevation βs (and negative sign):

e3 =− (ex cos(βs)+ ez sin(βs)) ,

ex = cosφ cosβer− sinφeφ − cosφ sinβeβ ,
ez = sinβer+ cosβeβ . (5)

Note that e3 points upwind when βs = 0. The unit vec-
tor e2 is then defined as

e2 =
e3× e1

|e3× e1|
, (6)

where |e3× e1| can take values smaller than one because e3
and e1 are not defined to be perpendicular in general. In this
way, e2 is perpendicular to the plane e3–e1. Rodrigues’ for-
mula is then used to define s through a rotation of ψ around
e1, starting from e2:

s = e2 cosψ + (e1× e2) sinψ + e1 (e1 · e2) (1− cosψ). (7)
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Figure 1. (a) Ground reference frame FG (ex − ey − ez) and spherical reference frame FS (er− eφ − eβ ) and (b) sketch for the spanwise
unit vector s definition.

With this formulation, s is defined to be always perpendic-
ular to the relative wind, and its components are defined by a
unique angle ψ , called hereafter roll angle. When ψ = 0, s is
perpendicular to e3.

The aerodynamic lift L and the drag D take the standard
form

L=
1
2
ρACL |vr|vr× s, D =

1
2
ρACD |vr|vr, (8)

where ρ is the air density, A is the wing area, and the lift and
drag coefficients CL and CD are considered constant. The
drag coefficient CD includes the contribution from the tether
drag (Trevisi et al., 2020a). The gravitational force F g and
the tether force T are

F g =−mg
(
sinβer+ cosβeβ

)
, T =−T er, (9)

where m is the AWES mass, g is the gravitational acceler-
ation and T is the norm of the tether force. The thrust pro-
duced by the onboard wind turbines Dt is expressed as a lin-
ear function of the aerodynamic drag with gain γ :

Dt = γD. (10)

The dynamic equations of motion in compact form read

ma = L+D+Dt+F g+T , (11)

recalling that a is given by Eq. (1).
As the objectives of the optimal control problems are

linked to the power production, three different power quan-
tities are defined. The thrust power Pt (i.e., the power linked
to the AWES dynamics) is estimated as a dot product of Dt
and the relative velocity:

Pt =Dt · vr. (12)

The shaft power Ps (i.e., the mechanical power that can be
converted to electrical power) is modeled using 1D momen-
tum theory (actuator disc) as

Ps = (1− a)Pt =

(
1
2
+

1
2

√
1− γCD

A

At

)
Pt, (13)

where the induction a is found by setting the thrust given
by momentum theory (T d =

1
2ρAt(4a(1−a)) |vr|vr) equal to

Dt, as in Trevisi et al. (2020b), and At is the total turbine
area.

Finally, the electrical power exchanged with the grid P
takes into account the generator and transmission effi-
ciency ηel:

P =

{
Ps− (1− ηel)Ps for γ ≥ 0
Ps+ (1− ηel)Ps for γ < 0 . (14)

When power is generated (γ > 0), the electrical power dis-
tributed to the grid P is lower than the shaft power Ps be-
cause of electrical efficiencies. When power from the grid is
used, the electrical power requested to the grid P is instead
higher in absolute value compared to the shaft power Ps. To
model the discontinuity in a continuous optimization frame-
work, the logistic function is used:

P = Ps−

(
1− e−f γ

1+ e−f γ

)
(1− ηel)Ps, (15)

where f is taken equal to 100.

2.2 Frequency-domain formulation

Frequency-domain formulations may present clear advan-
tages when solving for periodic solutions of dynamic and
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control problems. They have the capability of solving for
both stable and unstable branches of periodic solutions in an
efficient way. Moreover, they potentially use fewer variables
to describe the same problems. Since the problem of opti-
mal trajectories for AWESs has a periodic nature, the flight
dynamic model just introduced is expressed in the frequency
domain. The harmonic balance methodology is then used to
transform the differential equations of motion into a set of
nonlinear algebraic equations (Dimitriadis, 2017). The equa-
tions of motion (Eq. 11) can be written as a set of second-
order nonlinear differential equations in the form

f(x, ẋ, ẍ,u)= 0,

x =
[
β(t), φ(t)

]T
, u=

[
ψ(t), γ (t)

]T
, (16)

where x is the state vector and u is the control vector. By as-
suming that Eq. (16) accepts periodic solutions, every vari-
able of the state vector is expanded as a Fourier series of
order Nx :

x(t)≈
X0

2
+

Nx∑
k=1

Xk,s sin(kωt)+Xk,c cos(kωt),

X=
[
X0, X1,s, X2,s, . . .X1,c, X2,c, . . .

]T
, (17)

with ω = 2π
T being the fundamental frequency of the motion

and T the period. Alternatively, the state vector can be ex-
pressed as

x(t)≈
A0

2
+

Nx∑
k=1

Ak cos(kωt − θk) ,

A=
[
A0, A1, . . .

]T
, θ =

[
θ1, θ2, . . .

]T
, (18)

where

A0 =X0, Ak =

√
X2
k,s+X

2
k,c, θk = arctan

(
Xk,s

Xk,c

)
. (19)

The first and second time derivatives of the state vector can
be found analytically:

ẋ(t)≈
Nx∑
k=1

kω
(
Xk,s cos(kωt)−Xk,c sin(kωt)

)
,

ẍ(t)≈−
Nx∑
k=1

(kω)2 (Xk,s sin(kωt)+Xk,c cos(kωt)
)
. (20)

Similarly, the control inputs, assumed to be periodic, can
also be expressed as a Fourier series of order Nu:

u(t)≈
U0

2
+

Nu∑
k=1

Uk,s sin(kωt)+Uk,c cos(kωt),

U=
[
U0, U1,s, U2,s, . . .U1,c, U2,c, . . .

]T
, (21)

where Nu <Nx because the equations of motion need to be
solved at frequencies higher than the control inputs order.
By introducing Eqs. (17), (20) and (21) into Eq. (16), the
equations of motion can be expanded as a Fourier series of
order Nx :

f
(
Xβ ,Xφ,Uψ ,Uγ ,ω, t

)
≈

F0

2
+

Nx∑
k=1

Fk,s sin(kωt)

+Fk,c cos(kωt)= 0. (22)

The Fourier coefficients of the equations of motion are
found numerically by applying the Fourier coefficient defi-
nition to the time series, which should have a minimum size
of 2Nx + 1. A Galerkin methodology is then applied by pre-
multiplying Eq. (22) by 1, sin(kωt), and cos(kωt) and sub-
sequently integrating the resulting equation over one period.
The result is a set of 2× (2Nx +1) nonlinear algebraic equa-
tions as a consequence of the orthogonality properties of the
selected basis of trigonometric functions:

F=
[
F0; F1,s; F2,s; . . .F1,c; F2,c; . . .

]
= 0, (23)

which can be understood as the residuals of the equations of
motion expressed in the frequency domain. For given peri-
odic control inputs and a given fundamental frequency, the
periodic solution can be found by looking for the Fourier co-
efficients [Xβ ; Xφ] of the dynamics which solve Eq. (23).

2.3 Optimal control problem (OCP)

In this work, the frequency-domain formulation is included
within an optimal control problem (OCP). A generic opti-
mization problem can be written as

X ∗ = arg
(

min
X

obj(X )
)
,

s.t. : lb≤ X ≤ ub
g(X )≤ 0
h(X )= 0, (24)

where X represents the unknown optimization variables, X ∗
their optimal values, “obj” the objective function, lb and ub
the lower and upper bounds of X , g the inequality, and h the
equality constraints. In the present formulation, the optimiza-
tion variables are the Fourier coefficients of the state vari-
ables, of the control inputs and the fundamental frequency:

X =
[
Xβ;Xφ;Uψ ;Uγ ;ω

]
. (25)

The negative value of the mean thrust power P̂t (Eq. 12),
shaft power P̂s (Eq. 13) or electric power P̂ (Eq. 15) over the
loop is taken as objective function, where the symbol .̂ stands
for the mean value over the loop. The equality constraints are
the aggregation of the residuals of the equation of motion in
the frequency domain F (Eq. 23) and additional physical con-
straints R in the frequency domain (e.g., certain quantities
can be imposed to be constant over the loop):
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Figure 2. Graphical representation of the optimal control problem setup.

h(X )= [F(X );R(X )] = 0. (26)

Inequality constraints g, expressed in the time domain, can
also be included in the problem (e.g., the minimum eleva-
tion angle over the loop can be bounded). A graphical rep-
resentation of the OCP setup is given in Fig. 2. The deriva-
tives of flight dynamic model with respect to the optimiza-
tion variables can be taken analytically and provided to the
solver, allowing for a deep and fast convergence of the solu-
tion. The OCP is implemented in a MATLAB® environment
and solved with the interior-point algorithm implemented in
fmincon. As the chosen optimization algorithm (gradient-
based) can only look for local optima, the initial guess may
influence the solution. In this work, the initial guesses are
taken to be circular trajectories, leading to circular-shaped
optimal trajectories. Figure-of-eight trajectories can be im-
plemented as initial guesses, which may lead to figure-of-
eight-shaped optimal trajectories. A detailed comparison be-
tween these two trajectory types is left for future works. The
OCPs are solved on an Intel Core i7-9700 3.0 GHz, 16 GB
RAM, system. The computation times of the presented ex-
amples require from a few seconds to tens of seconds. For
example, OCP A in Sect. 6 takes approximately 25 s, and
OCP B takes approximately 12 s.

3 Steady-state model

To compare the results of the optimal control problem with
idealized analytical expressions, the main results from a re-
fined version of the Loyd power equation (Loyd, 1980) are
here briefly recalled. The thrust power equation, with the as-
sumption of linear crosswind motion (Trevisi et al., 2020b),
is

Pt,L =
1
2
ρAv3

wγ
CL

G

(
1+

(
G

1+ γ

)2
)3/2

=
1
2
ρAv3

wγ
CL

G

(
1+G2

t

)3/2
, (27)

where the system glide ratio (including tether drag) is G=
CL
CD

, and, for readability, a modified glide ratio is defined

as Gt =
CL

CD(1+γ ) by including the drag of the onboard pro-
pellers. The shaft power takes into account the onboard wind
turbine induction a:

Figure 3. Normalized power PL
PL(CD

A
At
=0)

as a function of CD
A
At

for high glide ratios G.

Ps,L = (1− a)Pt,L =

(
1
2
+

1
2

√
1− γCD

A

At

)
Pt,L. (28)

Finally, the power generated and sent to the grid takes into
account the efficiencies of the electrical conversion:

PL = ηelPs,L. (29)

For high G, the power equation simplifies to

PL ≈
1
2
ρAv3

wCLG
2ηel

(
1
2
+

1
2

√
1− γCD

A

At

)
γ

(1+ γ )3 . (30)

For this expression, the value of γ which maximizes the
power is only a function of the non-dimensional quantity
CD

A
At

. In Fig. 3, the electrical power PL, normalized with
the maximum electrical power at CD

A
At
= 0, is plotted as a

function of γ and CD
A
At

. For increasing values of CD
A
At

, the
value of γ which maximizes power production decreases.
The maximum normalized power as a function of CD

A
At

is
shown in Fig. 4, highlighting that the analytical expression
predicts a decrease in power production for increasing CD

A
At

.
The tether force can be evaluated as

TL =
1
2
ρAv2

w
CL

Gt

(
1+G2

t

)3/2
. (31)

Trevisi et al. (2020a) showed that for high G, neglect-
ing gravity and with constant incoming wind, there exists
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Table 1. Reference values for the examples (values from the Makani MX2 description; Tucker, 2020), associated non-dimensional parameters
and quantities evaluated with the steady-state model for γ maximizing Eq. (29).

m 2000 kg A 54 m2 At 35 m2 Lt 300 m CL 1.8 CD 0.15
ηel 0.8 ρ 1.225 kg m−3 g 9.81 m s−2 vw 6 m s−1

G 12 M 0.1120 CD
A
At

0.231 γ 0.488 a 0.029 Gt 8.06
Fr 0.1106 Gr 0.1408 PL 218.0 kW TL 142.6 kN vL 48.4 m s−1 TL 12.6 s

Figure 4. Maximum normalized power PL
PL(CD

A
At
=0)

as a function

of CD
A
At

for high glide ratios G.

an opening angle 8̃ (angle swept by the AWES during the
circular trajectory; see Fig. 5) which erases the power losses
due to centrifugal forces and that it is only a function of the
non-dimensional mass parameter:

M =
m

1
2ρACLLt

. (32)

In this idealized case, the turning radius is R = Lt sin8̃
and the revolution period is

TL =
2πR
vL
=

2πR
vwGt

, (33)

where vL is norm of the AWES velocity.
In addition to the non-dimensional mass parameter, the

Froude number, which weights the fluid inertial forces to
gravity forces, is used in this work:

Fr =

√
v2

w
g ·Lt

, (34)

where the reference velocity is the wind velocity and the ref-
erence length is the tether length. By combining the previ-
ously introduced non-dimensional parameters, the gravity ra-
tio Gr is defined as

Gr =
M

Fr2G2
t
=

mg

1
2ρACLv2

wG
2
t
, (35)

which represents the ratio between gravitational force
and aerodynamic lift, similarly to the one introduced in
Pasquinelli (2021).

In the following sections, the results will be generalized
as a function of the non-dimensional parameters just in-
troduced. Input parameters from the Makani MX2 design
(Tucker, 2020) will be used as reference values to present
the results (Table 1).

4 Validation of the frequency-domain formulation
against time integration

To make sure the frequency-domain formulation is well im-
plemented and finds solutions which respect the equations of
motion, they are compared with the solution coming from a
time integration scheme. The model described in Sect. 2.1 is
solved with the MATLAB® ode45 integration scheme. Af-
ter solving the periodic solution with the harmonic balance
methodology, the Fourier coefficients of the state and con-
trol vector are retrieved. The state vector at t = 0 is used as
an initial condition for the numerical integration. The control
inputs must be computed from their Fourier series at every
step of the integration. In Appendix B, a comparison for a
circular and a figure-of-eight trajectory is shown. The solu-
tion of the dynamics, represented by the azimuth and eleva-
tion, for the two cases is equivalent, demonstrating that the
frequency-domain formulation is accurate enough to be used
in the present optimal control problem framework.

5 Optimal control problems with constant inflow
and no elevation angle constraints

As the analysis is limited to circular trajectories, a cylindri-
cal reference frame FC, similar to the one employed in Tre-
visi et al. (2020a, 2021) and Pasquinelli (2021), is used to
present the results. A graphical representation of FC is given
in Fig. 5. The longitudinal axis of FC is aligned with the
mean elevation angle β̂. The angle βm denotes the minimum
elevation angle and 8 the opening angle. The angular posi-
tion of the AWES is defined by α, and when α = 0 the AWES
moves upward (i.e., α̇ > 0).

To increase complexity incrementally, the optimal control
problems (OCPs) are modified from the most idealized case
to a realistic one. For the idealized cases analyzed in this
section, uniform incoming wind speed (αs = 0) and no min-
imum elevation angle constraints are considered. In this sec-
tion, βs (Eq. 5) is set equal to zero, such that e3 points up-
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Figure 5. Cylindrical reference system FC used to analyze circular trajectories.

Figure 6. Optimal trajectory.

wind. In this way, when the roll is equal to zero (ψ = 0◦),
the span direction is perpendicular to the incoming wind.

5.1 Optimizing for the mean electrical power in the
absence of gravity

For the most idealized case, the gravity is null g = 0, such
that Fr→∞ and Gr = 0. The objective function is taken
as the mean electrical power, given in Eq. (15). By solving
the OCP for the example (Table 1), it is found that the solu-
tion has constant values over the trajectory and the average
power output is equal to the one evaluated with the analytical
expression in Eq. (29). Figure 6 shows the evolution of β and
φ, highlighting that the solution is a circle. Due to the con-
stant values of the solution, quantities such as tether force
along the axial symmetry axis, γ , AWES velocity and oth-
ers can be found with the formulation assuming a crosswind
straight motion, as Sect. 3.

For the solution to be optimal, it is found that the AWES
span is perpendicular to the wind speed, or, in analytical
terms, that ψ = 0. Figure 7 shows the optimal opening an-
gle 8∗ as a function of a modified non-dimensional mass
parameter Mt found by solving a number of OCPs with

Figure 7. Optimal opening angles8∗ (x) found by solving multiple
OCPs and analytical expression (–) as a function of the modified
non-dimensional mass parameter Mt.

different G (G ∈ [10 30]), M (M ∈ [0.025 0.15]) and CD
A
At

(CD
A
At
∈ [0 0.4]).

The values of 8∗ can be accurately described by

8̃= arccos

−Mt

2
+

√
M2

t + 4

2

 , Mt =
M

1+ 1
G2

t

, (36)

which for high glide ratios coincides with the analytical for-
mulation given in Trevisi et al. (2020a).

5.2 Optimizing for the mean thrust power considering
gravity

Gravity is now included in the modeling, and the objective
function is taken as the mean thrust power P̂t (Eq. 12). The
results of two slightly different OCPs are shown for the sake
of understanding the results, and they are summarized in Ta-
ble 2. In OCP A, the control inputs are modeled with five
harmonics. In OCP B, the time series of the control input
ψ is modeled as a constant, and only one harmonic is used
for the control input γ . Additionally, the norm of the AWES
velocity v = |v| is imposed to be constant (additional equal-
ity constraint). As the control inputs act up to the first har-
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Table 2. Settings of the two optimal control problems maximizing the mean thrust power considering gravity. V1,s and V1,c are the first
Fourier coefficients of the norm of the AWES velocity v.

OCP Nx Nγ Nψ Size X R Size h P̂t (kW) T (s)

A 10 5 5 65 – 42 285.4 12.8
B 10 1 0 47 [V1,s;V1,c] 44 284.5 12.7

L analytical model 280.4 12.8

Figure 8. Optimal trajectory for OCP A (−), B (− −) and a circle
with radius 8̃ (− .).

Figure 9. Optimal ψ as a function of the angular position.

monic, this constraint is set by imposing the first Fourier co-
efficients of the AWES velocity to zero (R= [V1,s;V1,c]),
while no constraints are imposed on the higher-order har-
monics. In Table 2, the mean thrust power (objective func-
tion) is also reported and compared with the analytical for-
mulation (Eq. 27). The objective function of the two OCPs is
almost the same, showing that the two problems are basically
equivalent.

By solving the OCPs, it is found that the optimal solu-
tions have a negative mean elevation of β̂A ≈−8.2◦ and
β̂B ≈−7.8◦. The trajectories, shown in Fig. 8, have a cir-
cular shape (a circle with radius 8̃ is marked as− .), but it is
no longer a perfect circle.

Figure 9 shows the trends of the control input ψ as a func-
tion of α (see Fig. 5 for definition). For OCP A, it fluctuates

Figure 10. Optimal γ as a function of the angular position.

with small amplitude about the mean value, which is close to
zero. For this reason, it is modeled as a constant in OCP B.
The optimal constant value is also close to zero, meaning that
the AWES span is perpendicular to the wind speed direction.
Since the two OCPs present similar optimal values of power,
it is found that the optimal solutions are not sensitive to the
fluctuations of the roll angle ψ .

Figure 10 shows the evolution of γ as a function of α.
The mean values for the two OCPs are close to the value
maximizing Eq. (27), denoted in figure as γL. γ takes values
higher than the mean in the descending leg of the loop and
negative values in the ascendant leg. This means that in the
ascendant leg the onboard wind turbines are operated as pro-
pellers. In OCP A γ is modeled with five harmonics, while
in OCP B it is modeled with just one. As the objective func-
tion of the two optimal solutions is similar, it is found that
the trend of γ can be modeled with just one harmonic.

Figure 11 shows the norm of the optimal AWES velocity v
for the two OCPs. In OCP B, this value is constrained to be a
constant by imposing only its first harmonic null. Since it is
not possible to impose constraints at frequencies where the
control (γ and ψ) is not acting, higher-order harmonics are
not constrained. The mean values of v are similar the one pre-
dicted by the steady model. Since the fluctuations for OCP A
are small compared to the mean, the influence of the veloc-
ity fluctuations on the overall performances is investigated in
OCP B, showing that they impact weakly the optimal solu-
tion. As the two OCPs are basically equivalent, it is found
that optimal trajectories are characterized by a AWES con-
stant velocity.
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Figure 11. Norm of the optimal AWES velocity v as a function of
the angular position.

Figure 12. Tether force T as a function of the angular position.

Figure 12 shows the magnitude of the tether force for the
two cases. As it scales with the relative wind speed squared,
also the tether force has an almost constant trend (the fluctu-
ations are small compared to the mean).

To compare the two OCPs and draw some conclusions, the
power output, shown in Fig. 13, is to be analyzed. The mean
thrust power output for the two OCPs is slightly higher than
Pt,L. This is due to a nonlinear effect induced by the com-
bination of gravity and mean elevation angle different from
zero as compared to the idealized case. Indeed, for negative
mean elevation, the combination leads to an increase of mean
thrust power, while the opposite occurs in case of positive
mean elevation. As the effects on power is almost negligible
and it does not primarily impact the main outcomes of this
paper, a detailed explanation of this phenomenon is avoided
here, but the reader can find more details in Pasquinelli
(2021). The theoretical thrust power, given in Eq. (27), is
derived neglecting gravity. However, it approximates well
the power output obtained through the OCP, which includes
gravity.

As the two analyzed OCPs are almost equivalent, the op-
timal trajectories are characterized by the perpendicularity
of the AWES span with respect to the wind (ψ = 0) and a
constant AWES velocity. In order to keep the AWES veloc-
ity constant over the loop, the onboard wind turbines balance
the action of the gravitational force. In the descendent leg,
the onboard wind turbines harvest the gravitational potential

Figure 13. Optimal thrust power production and consumption Pt
as a function of the angular position.

Figure 14. Amplitude of the first Fourier coefficient of γ (x) found
by solving multiple OCPs and analytical approximation (–) as a
function of GrG.

energy, and in the ascendant leg, that power is given back to
the system.

Following these considerations, the power trend, as shown
in Fig. 13, can then be approximated as

Pt(α)≈ Pt,L+F g · v ≈ Pt,L−mgvwGt cosα. (37)

The onboard wind turbine thrust can be approximated with
Dt ≈ (γ̂+Aγ,1 cos(α−θγ,1))D, whereD is constant because
the AWES velocity is found to be constant, and from Fig. 10
it is found that θγ,1 ≈ 180◦. As the thrust power can be writ-
ten as the product of Dt and the relative wind speed vr
(Eq. 12), the amplitude of the first Fourier coefficient of γ ,
considering Eq. (37), can be approximated by

Aγ,1 ≈
F g · v

−cosαD · vr
≈

mg

1
2ρACDv2

wG
2
t
=GrG. (38)

Figure 14 shows the comparison of Aγ,1 found numeri-
cally by running the OCP (with the settings of OCP B) for
a different combination of M (M ∈ [0.025 0.15]), G (G ∈
[10 30]), and Fr (Fr ∈ [0.1 0.2]) and the analytical approx-
imation given in Eq. (38).

Figure 15 shows the first Fourier coefficient of elevation
β and azimuth φ as a function of the non-dimensional pa-
rameterMt, as they represent the width and height of the tra-
jectory. The analytical expression given in Eq. (36) is still a
good approximation of the optimal trajectory shape.
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Figure 15. First Fourier coefficient of elevation β and azimuth φ (x)
found by solving multiple OCPs and analytical expression (–) as a
function of the modified non-dimensional mass parameter Mt.

Table 3. Settings of the two optimal control problems maximizing
the mean shaft power considering gravity.

OCP Nx Nγ Nψ Size X Size h P̂s (kW) T (s)

A 10 5 5 65 42 248.6 11.8
B 10 1 2 51 42 248.5 11.8

L analytical model 272.5 12.6

5.3 Optimizing for the mean shaft power considering
gravity

In this section, the onboard wind turbine induction is in-
cluded in the power evaluation, and the mean shaft power
P̂s is considered as objective function. To present the results,
two different OCPs are introduced (Table 3). The mean shaft
power for OCP A and B is almost identical, highlighting that
one harmonic to model the productive drag and two for the
roll are enough. The power for the analytical case is found
by maximizing Eq. (28) with respect to γ . The figures in this
section refer to OCP B.

Figure 16 shows the trajectory in the β–φ plane. The tra-
jectory deviates from a circular shape, especially along the
β axis, and has a mean elevation angle of β̂B =−5.5◦, higher
than for the case without induction.

Figure 17 shows the roll angle as a function of the angular
position in the loop. Even in this case with induction, the
fluctuations are relatively small. When the AWES increases
the turning radius (approximately between −90◦ < α < 0◦

and 90◦ < α <−180◦; see Fig. 16), the roll decreases.
Figure 18 shows γ as a function of the angular position.

The mean value is smaller compared to the value maximiz-
ing Eq. (28). By comparing the trends with Fig. 10, it is clear
that the fluctuations of γ are lower than in the case without
induction. The onboard wind turbine induction a has a sim-
ilar trend to γ , as a and γ are linked through the expression
in Eq. (28). When γ takes negative values – in the ascen-
dant leg – the onboard wind turbines are operated as pro-
pellers and the induction is negative. In the descendent leg, γ

Figure 16. Optimal trajectory (–) and a circle with radius 8̃.

Figure 17. Optimal ψ (blue line) and its mean (red line) as a func-
tion of the angular position.

Figure 18. Optimal γ as a function of the angular position.

takes values larger than the mean and so does the induction.
Higher values of induction result in a lower ratio between
shaft power, which is the power the optimizer maximizes,
and thrust power, which is the power directly linked to the
dynamics. Therefore, high values of γ are not beneficial for
the shaft power production.

In Fig. 19, the AWES velocity is shown, highlighting that
it fluctuates over the loop. When maximizing the mean thrust
power (Sect. 5.2), the optimal AWES velocity over the loop
was found to be constant. Here, it is optimal to convert part
of the potential energy into electrical energy and part into
kinetic energy, letting the velocity fluctuate over the loop.
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Figure 19. Norm of the optimal AWES velocity v as a function of
the angular position.

Figure 20. Optimal shaft power production and consumption Ps
and thrust power Pt as a function of the angular position.

To conclude the analysis of the example, Fig. 20 shows
the shaft and the thrust power. As anticipated, when γ takes
higher values than the mean, the induction grows and the ra-
tio between shaft and thrust power decreases consequently.

In Fig. 4 the dependence of the analytical expression of the
shaft power on CD

A
At

is shown. In Fig. 21, the dependence
of the optimal mean shaft power is analyzed as a function
of the same non-dimensional coefficient for three different
Froude numbers (i.e., three wind speeds). In the current ex-
ample, Fr = 0.1 corresponds to vw = 5.4 m s−1, Fr = 0.15
corresponds to vw = 8.1 m s−1 and Fr = 0.2 corresponds to
vw = 10.8 m s−1. For increasing Froude number, the solution
gets closer to the analytical formulation because the power
fluctuations gradually lose impact on the mean power pro-
duction. Indeed, the aerodynamic forces become dominant
with respect to the gravitational force.

In Sect. 5.2, it was found that the amplitude of the first
Fourier coefficient of γ for CD

A
At
= 0 (i.e., optimizing for

the thrust power) can be approximated by Aγ,1 ≈GrG. In
Fig. 22, the trends of Aγ,1

GrG
, with γ being modeled with a sin-

gle harmonic, for the three investigated Froude numbers, are
shown as a function ofCD

A
At

. ForCD
A
At
→ 0, trends are close

to 1. For increasing Fr , the curves collapse to a unique curve.
In particular, at CD

A
At
= 0.23, which is the value for the ex-

ample, the ratio Aγ,1
GrG
→ 0.54 for increasing Fr . For increas-

Figure 21. Optimal shaft power production normalized with the
analytical expression of thrust power as a function of CD

A
At

.

Figure 22. Optimal values of γ̂ and Aγ,1, normalized withGrG as
a function of CD

A
At

for different Froude numbers.

Figure 23. Optimal values of Aβ,1 and Aφ,1, normalized with the
analytical expression of the opening angle 8̃, as a function of CD

A
At

for different Froude numbers.

ing values of CD
A
At

, the ratio Aγ,1
GrG

tends to zero, highlighting
the fact that a less fluctuating value of γ over the loop is ben-
eficial. The plot shows also the value of γ̂ as a function of
CD

A
At

, highlighting that for increasing Fr the trends collapse
to the value maximizing Eq. (28), indicated as γL.

Finally, Fig. 23 shows the ratio of the first Fourier coeffi-
cient of the elevation angle β and the azimuth angle φ with
the opening angle 8̃ evaluated with Eq. (36). For CD

A
At
→ 0,

values are close to 1, as noted in Fig. 15. As CD
A
At

increases,
the values of Aβ,1 decrease more than Aφ,1, showing that
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Table 4. Settings of the two optimal control problems maximizing
the mean electrical power considering gravity.

OCP Nx Nγ Nψ Size X Size h P̂ (kW) T (s)

A 10 5 5 65 42 196.5 11.5
B 10 1 2 51 42 194.2 11.4

L analytical model 218.0 12.6

Figure 24. Optimal trajectory for OCP A (−), B (− −) and a circle
with radius 8̃ (− .).

the optimal trajectory no longer has a circular shape and the
height decreases more than the width. This effect is visi-
ble also in the example in Fig. 16. At low Froude numbers
(i.e., low wind speeds) this effect is more evident.

5.4 Optimizing for the mean electrical power
considering gravity

In this section, the electrical efficiency is included into the
optimal control problem, and the mean electrical power is
considered as objective function. Two OCPs, whose charac-
teristics are given in Table 4, are introduced to present results.
The power for OCP A and B is almost identical, highlight-
ing that one harmonic to model the productive drag and two
for the roll are enough. The power for the analytical case is
found by maximizing Eq. (29) with respect to γ .

Figure 24 shows the trajectory in the β–φ plane. The tra-
jectories deviate from the circular trajectory with opening an-
gle 8̃ (Eq. 36), especially along the β axis, and have a mean
elevation angle of β̂A =−5.1◦ and β̂B =−4.9◦.

Figure 25 shows the roll angle as a function of the angular
position in the loop. As in the case maximizing mean shaft
power, the fluctuations are relatively small.

Figure 26 shows γ as a function of the angular position.
In OCP A, the time evolution of γ is modeled with five har-
monics. In the ascendant leg, γ takes null values, meaning
that the power is neither spent nor consumed. Indeed, spend-
ing power drastically reduces the overall power production
because of the conversion efficiency from electrical to thrust
power. This is also highlighted by Tucker (2020). In OCP B,

Figure 25. Optimal ψ as a function of the angular position.

Figure 26. Optimal γ as a function of the angular position.

Figure 27. Norm of the optimal AWES velocity v as a function of
the angular position.

the time evolution of γ is modeled with just one harmonic.
The trend is, however, similar to OCP A, with the minimum
value being slightly negative. This means that Aγ,1 is similar
to γ̂ .

Figure 27 shows the norm of the AWES velocity over the
loop, showing that the trend is similar for the two OCPs, and,
as noted in Sect. 5.3, it is optimal to convert part of the poten-
tial energy into electrical energy and part into kinetic energy.

The electrical power as a function of the angular position
is shown in Fig. 28. As expected when analyzing the trend
of γ , the electrical power is null in the ascendant leg and
larger than the mean in the descending part. In OCP B, the
mean power is slightly lower than in OCP A but the power
fluctuations are lower, which could be beneficial from a grid
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Figure 28. Optimal electrical power production as a function of the
angular position.

Figure 29. Optimal values of γ̂ and Aγ,1 as a function of GrG.

and power smoothing perspective. Due to the electrical effi-
ciency, the wind turbines are not used as propellers anymore.
This results in an even more squashed trajectory (Fig. 24)
with respect to the previous Sect. 5.3 (Fig. 16) to partially
limit the potential energy exchange into kinetic energy and
thus the AWES speed fluctuation.

One could try to investigate how the optimal values evolve
for an increasing wind speed. Figure 29 shows the mean
value of γ and its first Fourier coefficient Aγ,1 as a function
ofGrG (see Eq. 35 for definition) for OCP B. As noted when
analyzing Fig. 26, at vw = 6 m s−1 Aγ,1 is slightly larger than
γ̂ . As wind speed increases up to approximately 8.5 m s−1,
Aγ,1 keeps being similar to γ̂ , meaning that the minimum
value of γ is close to zero and so is power (Pmin ≈ 0). If
the wind speed increases again, Aγ,1 becomes lower than
γ̂ , meaning that power is always generated over the loop
(Pmin > 0). The main effect of the electrical efficiency on the
OCP is to prevent the onboard wind turbines from being op-
erated as propellers. Therefore, when the value ofAγ,1 which
maximizes the shaft power Ps is larger than γ̂ , results are ex-
pected to be modified with respect to Sect. 5.3. Instead, when
Aγ,1 is lower than γ̂ , trends are expected to be equal to the
analyses in Sect. 5.3. Indeed, when analyzing Fig. 22, it is
found that Aγ,1

GrG
→ 0.54 for high Fr . This means that for low

GrG, the first Fourier coefficient of γ can be approximated
with Aγ,1 ≈ 0.54GrG, as shown in Fig. 29.

Figure 30. Normalized electrical power for a case with ηel =
0.8 (−) and ηel = 1 (− −) as a function of GrG.

Figure 31. Optimal values of Aβ,1 and Aφ,1 normalized with the
analytical expression of the opening angle 8̃ for a case with ηel =
0.8 (–) and ηel = 1 (– –) as a function of GrG.

In Fig. 30, the mean power normalized with the power
evaluated with Eq. 29 is shown as a function of GrG for a
case with ηel = 1, which is equivalent to the case in Sect. 5.3,
and for a case with ηel = 0.8, as in this section. The two
curves for wind speed lower than 8.5 m s−1 diverge. A low
electrical efficiency ηel not only decreases the power output
as in Eq. (29), but also decreases the efficiency with respect
to the analytical approximation due to its effect on the dy-
namics.

To conclude, Fig. 31 shows the evolution of the first
Fourier coefficient of the elevation angle Aβ,1 and of the
azimuth Aφ,1 as a function of GrG. For high wind speed
(i.e., low GrG), their value is similar to the approximation
given in Eq. (36). As GrG increases, for ηel = 1, Aφ,1 stays
almost constant, while Aβ,1 decreases. Smaller Aβ,1 means
smaller vertical height, which results in lower potential en-
ergy converted into electrical and kinetic energy over the
loop. For ηel = 0.8 after vw = 8.5 m s−1, both Fourier coeffi-
cients decrease rapidly, meaning that smaller loops are per-
formed. Smaller loops are therefore beneficial at low wind
speed as they decrease the energy fluctuations.
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Table 5. Settings of the two optimal control problems maximizing
the mean power considering gravity and wind shear.

Case Nx Nγ Nψ Size X Size h P̂ (kW) T (s)

A 10 5 5 65 42 115.3 11.5
B 10 1 2 51 42 113.3 11.4

Figure 32. Optimal trajectory for case A (−), case B (− −) and a
circle with radius 8 (− .).

6 Optimal control problem considering gravity, wind
shear and elevation constraint

In this section, the wind shear is included in the problem. The
reference altitude is h0 = 100 m, the wind shear exponent is
αs = 0.2 and the reference wind speed is vw,0 = 6 m s−1. To
make the problem more realistic, a constraint on the mini-
mum elevation angle of βm = 10◦ (which is equivalent to a
constraint on the minimum flight altitude) is included. The
value of βs needed to compute e3 and then the spanwise unit
vector s (Eq. 5) is taken as the mean elevation angle βs = β̂.
With this definition, the case of no roll (ψ = 0) is obtained
when the wing span is in the plane perpendicular to the mean
elevation angle, as in Trevisi et al. (2021).

Two OCPs are solved and they are summarized in Table 5.
OCP A features five harmonics to model the control inputs,
while OCP B has one harmonic to model the onboard wind
turbine thrust and two for the roll, as in the previous sections.
The two optimizations have similar mean electric power out-
puts, meaning that they are almost equivalent.

Figure 32 shows the trajectory for OCP A and B and com-
pares it with a circle of radius 8̃ centered at an elevation of
β̂ = arctan

√
αs, as this formulation identifies the elevation of

the center of the wind power window (Argatov et al., 2011).
As for the cases analyzed in Sect. 5.3 and 5.4, the trajectory
is squashed along the vertical direction. The constraint on the
minimum elevation angle is not used, as the trajectory of both
cases is always strictly higher than βm = 10◦.

The roll angle ψ is shown in Fig. 33. In LT-GliDe (Trevisi
et al., 2021) the flight stability of AWESs is studied by lin-
earizing the equations of motion with respect to a fictitious
steady-state condition, where the AWES moves in a circu-

Figure 33. Optimal ψ as a function of the angular position.

Figure 34. Optimal γ as a function of the angular position.

lar trajectory with a constant velocity. This steady state is
characterized by the AWES span being perpendicular to the
mean elevation angle direction. In this section, this condition
is identified byψ = 0. The roll fluctuations, shown in Fig. 33,
are limited in amplitude and might be considered within the
linear bounds of the linearization validity of LT-GliDe. More
analyses to prove this will be carried out in future works.

Figure 34 shows the evolution of the onboard wind turbine
thrust coefficient as a function of the angular position for the
two cases. The trends are similar to the analyses in Sect. 5.4.
It is optimal to use the onboard wind turbines only to gener-
ate power and not as propellers. Even if the trends of γ for
OCP A and B are quite different, the overall power produc-
tion is similar, meaning that power production is not sensitive
to harmonics of γ higher than one.

Figure 35 shows the wind speed that the AWES encounters
over the loop due to the wind shear. Clearly, at the top of the
loop (α = 90◦), the wind speed is the highest, sweeping ap-
proximately 1.5 m s−1 over the trajectory. In this section, the
mean wind speed over the loop is used to evaluate the Froude
number Fr (Eq. 34) and consequently the gravity ratio Gr
(Eq. 35). These numbers will be used later in this section to
generalize results.

Figure 36 shows the AWES velocity as a function of the
angular position. As discussed in the previous sections, in
the descending leg the AWES converts the potential energy
into electrical energy, producing power, and kinetic energy,
accelerating. In the climbing leg instead, electrical power is
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Figure 35. Wind velocity as a function of the angular position.

Figure 36. Norm of the optimal AWES velocity v as function of
the angular position.

not spent and kinetic energy is transformed into potential en-
ergy.

Figure 37 shows the power production as a function of
the angular position. When looking at power and tether
force (not shown here as it follows the AWES velocity trend
squared) to characterize the operations of a real system, the
maximum power and the maximum and minimum tether
force would be constrained not to exceed some given values.
To properly include these constraints, additional control in-
puts, useful to model the de-powering of the AWES (e.g., the
lift coefficient), shall be considered in the analysis.

As carried out in the previous section, trends are studied
as a function of the Froude number for the optimal control
problem B. Figure 38 shows the dependence of γ̂ and Aγ,1
as a function of GrG. γ̂ decreases when GrG increases (i.e.,
the wind speed decreases). At low wind speed, γ̂ takes low
values so that the AWES speed over the loop is higher, which
is beneficial to stay airborne. Aγ,1 for low GrG has a linear
trend, as noted in Sect. 5.4. WhenAγ,1 is equal to γ̂ , the min-
imum power production over the loop is null. For lower wind
speeds (i.e., higher GrG), it is no longer optimal to increase
Aγ,1 because the onboard wind turbines would be used as
propellers with a high penalty on the mean power produc-
tion.

To conclude, Fig. 39 shows the ratio of the first Fourier
coefficient of β and φ with respect to the analytical expres-
sion of the opening angle 8̃ for a case maximizing electrical

Figure 37. Optimal power production P as function of the angular
position.

Figure 38. Optimal values of γ̂ and Aγ,1 as a function of GrG.

Figure 39. Optimal values of Aβ,1 and Aφ,1 normalized with the
analytical expression of the opening angle 8̃ for a case with ηel =
0.8 (−) and ηel = 1 (− −) as a function of GrG.

power (ηel = 0.8) and shaft power (ηel = 1). After the cusp
in Fig. 38, the two trends diverge, and for ηel = 0.8 smaller
loops are optimal so that the exchange of potential energy
over the loop is reduced.

7 Conclusions and discussion

In this work, a novel methodology to study optimal trajec-
tories for Fly-Gen AWESs is introduced. The chosen low-
fidelity dynamic model is characterized by 2 degrees of free-
dom (the AWES is modeled as a point mass with constant
tether length) and two control inputs. The degrees of freedom
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are the elevation and the azimuth angle. The control inputs
are the roll angle, defined as the rotation around the relative
velocity direction, and the onboard wind turbine thrust coef-
ficient. An optimal control problem is formulated in the fre-
quency domain through a harmonic balance method. Work-
ing with the Fourier coefficients of the time series, instead of
the time series themselves, allows the potential reduction of
the problem size, the implicit imposition of periodicity and
the acquisition of an intuitive understanding of the results by
analyzing the harmonic contributions. Moreover, the analyti-
cal gradient of the objective function and the constraints with
respect to the optimization variables can be provided to the
solver, allowing for a deep and fast convergence of the opti-
mal solutions.

The MX2 design from Tucker (2020) is taken as a refer-
ence AWES to introduce the results. To isolate the effects of
each physical phenomenon, results are presented with an in-
creasing level of complexity from the most idealized case,
and they are compared with analytical solutions from lit-
erature, whenever possible. A set of idealized case studies
with no constraint on the minimum elevation angle and uni-
form wind inflow are initially studied. If gravity is neglected,
the solution is steady, and it can be described by analytical
expressions. If gravity is considered, three different optimal
control problems, characterized by three different objective
functions, are solved.

i. If the mean thrust power (mechanical power neglecting
onboard wind turbine induction) is the objective func-
tion, the optimal trajectories are circular, have a con-
stant AWES velocity and the wing span is perpendicular
to the incoming wind. To obtain this condition, all the
potential energy is converted into electrical energy by
the onboard wind turbines. At low wind speed, onboard
wind turbines are then used as propellers in the ascen-
dant part of the loop. The optimal power, the trajectory
shape and the production strategy can be accurately ap-
proximated with analytical expressions.

ii. If the mean shaft power (mechanical power considering
onboard wind turbine induction) is the objective func-
tion, the potential energy, in the descending leg, is par-
tially converted into electrical energy and partially into
kinetic energy. This is because the power conversion pe-
nalizes solutions with high onboard wind turbine induc-
tion. Therefore, the velocity fluctuates over the loop,
and the trajectories are squashed along the vertical di-
rection to decrease the potential energy exchange.

iii. If the mean power electrical provided to the grid is the
objective function (i.e., the electrical efficiency is in-
cluded), the onboard wind turbines never operate as pro-
pellers. If operated as propellers, power would be con-
verted from mechanical into electrical while descend-
ing and from electrical into mechanical while ascend-
ing, leading to large power losses due to the electrical

efficiency. This effect is found only at low wind speed,
when propelling the AWES in the climbing leg maxi-
mizes the mean shaft power. Past a given wind speed,
using the onboard wind turbines as propellers does not
maximize the mean shaft power, and the influence of the
electrical efficiency on the production strategy vanishes.

When the wind shear and a constraint on the minimum el-
evation angle are included in the optimal control problem
for maximizing the electrical power, trends are similar to the
case with uniform inflow. Therefore, the power production
strategy does not heavily depend on the wind shear. For the
analyzed example, the constraint on the minimum elevation
angle is not active.

For all the analyzed cases, additional analytical approxi-
mations characterizing the solution are introduced. These ap-
proximations are found by modeling the control inputs with
the lowest number of harmonics. The onboard wind turbine
thrust can be modeled with just one harmonic and the roll
with two harmonics without loss of generality of the results.

The results of this work align with the discussions in
Tucker (2020) and have a strong mathematical foundation,
as the trajectory and the control inputs are found by solving
optimal control problems. These methods are planned to be
applied, with appropriate modifications, to other AWE archi-
tectures and to other trajectory types. A comparison between
circular and figure-of-eight trajectories is foreseen. Finally,
the physical understanding and methods proposed here are
envisaged to be incorporated into the design, analysis and
optimization framework T-GliDe (Trevisi et al., 2022), with
the aim of improving the power estimation and including an
optimal control module.

Appendix A: Nomenclature

Latin symbols
Lt Tether length
A Wing area
At Total onboard wind turbine area
Aγ,1 Amplitude of the first Fourier harmonic of γ
Aβ,1 Amplitude of the first Fourier harmonic of β
Aφ,1 Amplitude of the first Fourier harmonic of φ
a Onboard wind turbine induction
CL Lift coefficient
CD Drag coefficient
T Norm of the tether force
vw Norm of the wind velocity
v Norm of the AWES velocity
v AWES velocity
vr Relative wind speed
M Non-dimensional mass parameter
Mt Modified non-dimensional mass parameter
m AWES mass
G System glide ratio
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Gt Modified system glide ratio
Gr Gravity ratio
g Inequality constraints
g Gravitational acceleration
h Equality constraints
R Additional equality constraints in the frequency

domain
Nx Order of the Fourier series of the state variables
Nγ Order of the Fourier series of the control input γ
Nψ Order of the Fourier series of the control input ψ
F g Gravitational force
Pt Thrust power
Ps Shaft power
P Electrical power
Fr Froude number
Greek symbols
β Elevation angle
φ Azimuth angle
ψ Roll angle
ρ Air density
γ Onboard wind turbine factor
T Revolution period
ω Revolution frequency
α Angular position in the loop
ηel Electrical conversion efficiency
8 Opening angle of the trajectory
X Optimization variables
Symbols
·L Quantity evaluated with the steady state (Loyd)

model
·̂ Mean value

Appendix B: Figures of comparison between
frequency-domain formulation and time integration

Figure B1. Azimuth and elevation of the trajectory found with the
harmonic balance method and the time integration scheme for a
circular-shaped trajectory.

Figure B2. Time series of the control inputs provided to the
harmonic balance method and the time integration scheme for a
circular-shaped trajectory.

Figure B3. Azimuth and elevation of the trajectory found with the
harmonic balance method and the time integration scheme for a
figure-of-eight-shaped trajectory.

Figure B4. Time series of the control inputs provided to the har-
monic balance method and the time integration scheme for a figure-
of-eight-shaped trajectory.
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