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Abstract. Wind plant wake impacts can be estimated with a number of simulation methodologies, each with
its own fidelity and sensitivity to model inputs. In turbine-free mesoscale simulations, hub-height wind speeds
often significantly vary with the choice of a planetary boundary layer (PBL) scheme. However, the sensitivity of
wind plant wakes to a PBL scheme has not been explored because, as of the Weather Research and Forecasting
model v4.3.3, wake parameterizations were only compatible with one PBL scheme. We couple the Fitch wind
farm parameterization with the new NCAR 3DPBL scheme and compare the resulting wakes to those simulated
with a widely used PBL scheme. We simulate a wind plant in pseudo-steady states under idealized stable, neutral,
and unstable conditions with matching hub-height wind speeds using two PBL schemes: MYNN and the NCAR
3DPBL. For these idealized scenarios, average hub-height wind speed losses within the plant differ between
PBL schemes by between − 0.20 and 0.22 m s−1, and correspondingly, capacity factors range between 39.5 %–
53.8 %. These simulations suggest that PBL schemes represent a meaningful source of modeled wind resource
uncertainty; therefore, we recommend incorporating PBL variability into future wind plant planning sensitivity
studies as well as wind forecasting studies.
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1 Introduction

Despite a large demand to build offshore wind turbines in the
United States, the wind resource at many potential construc-
tion sites suffers from a large degree of uncertainty. Wind
resource assessments for new wind plants often involve gath-
ering multi-year measurements of hub-height winds (Brower
et al., 2012). While this approach is common for onshore
sites, hub-height wind measurements are more challenging
to collect offshore, and public offshore measurements are
sparse within the United States. While the Bureau of Off-
shore Energy Management (BOEM) is considering or has al-
ready allowed commercial development in 33 renewable en-
ergy areas (BOEM, 2020), to the best of the authors’ knowl-
edge, public offshore yearlong hub-height wind speed mea-
surements are available today in the vicinity of six sites –
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four due to deployments by the US DOE (accessible at https:
//a2e.energy.gov/data, last access: 14 October 2022) and two
due to deployments by the New York State Energy Research
and Development Agency (accessible at https://oswbuoysny.
resourcepanorama.dnvgl.com, last access: 14 October 2022).
The US is rapidly developing its offshore wind industry, re-
cently expanding its offshore wind generation goal to 30 GW
by 2030 (White House, 2021). Thus, it is critical to be able to
accurately and confidently characterize wind resource in the
absence of high-quality measurements for the rapidly devel-
oping offshore wind industry in the United States.

Due to limited observations, offshore wind resource as-
sessments in the United States rely more heavily on numeri-
cal weather prediction (NWP) models. NWP-based wind re-
source assessments have been used to characterize wind re-
source in turbine-free environments (simulating winds prior
to wind plant construction) as well as turbine-including en-
vironments (simulating winds after wind plant construction).
While NWP models provide useful predictions of wind re-
source, their estimates are also accompanied by a large de-
gree of uncertainty. As such, uncertainty quantification of
offshore wind resource has been established as a key com-
ponent of the US offshore wind research agenda. Shaw et al.
(2019) assert that uncertainty quantification represents a crit-
ical area of offshore wind research, as “quantification and
reduction of uncertainty represents a significant opportunity
to reduce costs”. This sentiment was also echoed in a wind
energy workshop that brought together stakeholders from
industry, academia, and the US government (Haupt et al.,
2020). Finally, Archer et al. (2014) underscored two major
research needs for coastal and offshore wind energy research
in the United States – more offshore observations and un-
certainty characterization, in particular uncertainty charac-
terization through ensembles of NWP simulations. Archer
et al. (2014) also emphasized the need for research on turbine
wake losses. The research in our paper directly responds to
the need for ensembles of NWP simulations as well as the
need to quantify wake losses.

Wind resource uncertainty in turbine-free NWP simula-
tions stems from, in part, the large number of plausible
model options that can be used to drive a simulation. Hub-
height wind speeds in turbine-free NWP simulations have
been shown to be significantly sensitive to a number of mod-
eling options. Simulated wind resource has been shown to
often be most sensitive to the choice of planetary bound-
ary layer (PBL) parameterization, and PBL schemes have
also been shown to be sensitive to other factors such as grid
resolution (Storm and Basu, 2010; Carvalho et al., 2012;
Yang et al., 2013; Carvalho et al., 2014; Draxl et al., 2014;
Olsen et al., 2017; Yang et al., 2017; Fernández-González
et al., 2018; Yang et al., 2019; Optis et al., 2020). PBL
schemes govern turbulent fluxes (typically just vertical tur-
bulent fluxes) and mixing within the atmospheric boundary
layer. At present, 13 different PBL schemes are available
within the Weather Research and Forecasting (WRF; Ska-

marock et al., 2021) model, and there is no single-best PBL
scheme for wind resource assessment. As just one example,
Draxl et al. (2014) evaluated seven PBL schemes using mea-
surements from a meteorological mast at the Høvsøre wind
energy test site. They found that the optimal PBL scheme
varies with stability: at this site, MYJ (Janjić, 1994) per-
formed best under stable conditions, ACM2 (Pleim, 2007)
performed best under neutral conditions, and YSU (Hong
et al., 2006) performed best under unstable conditions. Wind
atlases that characterize model uncertainty often employ en-
sembles of simulations where model inputs, such as PBL
scheme, are varied (Bodini et al., 2021a).

While the sensitivity of hub-height winds to PBL scheme
has been explored in turbine-free NWP simulations, the re-
sulting impacts on wake simulations have not been explored.
To date, all published mesoscale WRF simulations with ex-
plicitly represented wind turbines have been conducted with
the MYNN PBL scheme (Nakanishi and Niino, 2009; Olsen
et al., 2017). Thus, while PBL schemes have been shown to
be key elements for uncertainty quantification in NWP-based
wind resource assessments in turbine-free environments, it is
unknown if PBL schemes are similarly important in turbine-
including environments. It is critical to accurately predict
wake effects in order to accurately predict annual energy pro-
duction. Lee and Fields (2021) summarize the large degree of
uncertainty regarding the impact of wake-associated losses
on annual energy production: some estimates predict aver-
age total wake losses as low as 6.1 %, whereas others have
predicted losses as high as 40 %. The uncertainty in individ-
ual wake loss estimates has also been estimated to be 10 %–
40 %. These losses and uncertainties incur significant finan-
cial impact on the wind industry, potentially translating to
millions of US dollars of economic benefits (Lee and Fields,
2021).

While turbine-including NWP sensitivity studies have not
examined the impact of PBL schemes on mesoscale wakes,
they have shown that NWP-modeled wakes can be sensitive
to a number of other inputs. Turbine wakes are modeled in
NWP simulations with wind farm parameterizations (WFPs;
for a review see Fischereit et al., 2022), such as the Fitch
WFP (Fitch et al., 2012), the Explicit Wake Parametrisation
(EWP; Volker et al., 2015), and the hybrid WFP (Pan and
Archer, 2018). Wind resource in turbine-including simula-
tions has been shown to be sensitive to the same model inputs
that are important in turbine-free simulations, such as verti-
cal and horizontal grid resolution, as well as the option to
have the MYNN PBL scheme advect turbulent kinetic energy
(TKE; Redfern et al., 2019; Tomaszewski and Lundquist,
2020; Archer et al., 2020; Siedersleben et al., 2020; Larsén
and Fischereit, 2021). We note that most if not all Fitch WFP
simulations with TKE advection turned on prior to Archer
et al. (2020) were subject to a bug in the WRF code. As such,
the results from these studies should be interpreted with cau-
tion, as it is possible that this bug may have significant im-
pacts. Modeled wake impacts have also been shown to be
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sensitive to inputs specifically associated with the WFP, such
as the choice of WFP and the degree of explicitly added TKE
in the Fitch WFP (Fitch et al., 2012; Vanderwende et al.,
2016; Siedersleben et al., 2020; Tomaszewski and Lundquist,
2020; Archer et al., 2020; Pryor et al., 2020; Shepherd et al.,
2020).

In this paper, we begin to address the following question:
how sensitive are modeled mesoscale wakes to the choice of
PBL parameterization? Ideally, this question would be ad-
dressed by studying all 13 PBL schemes in WRF with the
Fitch WFP insofar as that is possible. Here, as a first step, we
compare two PBL schemes: MYNN (Nakanishi and Niino,
2009) and the recently developed NCAR 3DPBL (Kosović
et al., 2020; Juliano et al., 2022). We chose the latter as it
has a prognostic equation for TKE, which is important as the
Fitch WFP modifies TKE fields. We make substantial modi-
fications to the WRF code to enable the Fitch WFP to work
with the NCAR 3DPBL and then conduct a set of idealized
numerical experiments based on the Fitch et al. (2012) exper-
iments. We simulate wakes in pseudo-steady idealized envi-
ronments with MYNN and the NCAR 3DPBL under stable,
neutral, and unstable conditions. We also examine the role of
explicitly added TKE in this set of simulations. In Sect. 2, we
describe the two PBL schemes, the integration of the NCAR
3DPBL with the Fitch WFP in the WRF code, and the setup
of the simulations. In Sect. 3, we discuss the results of the
simulations. In Sect. 4, we conclude and discuss the impli-
cations of the idealized results for real-world wind resource
assessments.

2 Methods

2.1 MYNN and the NCAR 3DPBL

The simulations in this paper are carried out using
WRF v4.3.0 with two PBL schemes: MYNN (Nakanishi
and Niino, 2009; Olson et al., 2019) and the NCAR 3DPBL
(Kosović et al., 2020; Juliano et al., 2022). To avoid confu-
sion regarding nomenclature of new turbulence models, we
note that the NCAR 3DPBL is different from the 3DTKE
PBL scheme (Zhang et al., 2018). The WRF v4.3.0 code in
this study was modified to include the NCAR 3DPBL code,
which is being prepared for public release. For simplicity,
we refer to the NCAR 3DPBL as simply the “3DPBL.” Both
MYNN and the 3DPBL share a common origin – they are
fundamentally rooted in the turbulence modeling of Mellor
and Yamada (1974). Here, we use the level 2.5 MYNN and
3DPBL schemes, which both treat TKE as a prognostic vari-
able, thus improving their utility for wind turbine modeling,
because generated TKE is advected by the PBL schemes.
This behavior stands in contrast to other PBL schemes, such
as YSU, which does not treat TKE as a prognostic variable.

MYNN and the 3DPBL treat turbulent mixing differently.
MYNN computes the vertical turbulent mixing by calcu-
lating the vertical turbulent stress divergence, and it allows

the horizontal turbulent mixing to be handled externally
with a Smagorinsky-type approach (Skamarock et al., 2021,
Sect. 4.2 therein). In contrast, the 3DPBL directly accounts
for horizontal turbulent mixing by explicitly computing the
turbulent flux divergences for momentum, heat, and mois-
ture. The 3DPBL has been implemented into WRF to al-
low for three different configurations following the origi-
nal Mellor–Yamada developments: (i) a full 3D model, (ii) a
quasi-3D model using the so-called PBL-approximation, and
(iii) a 1D model using the PBL-approximation. In this anal-
ysis, we employ the second option, as the full 3D parameter-
ization is currently too computationally expensive for year-
long wind resource assessments. When using the second op-
tion, the 3DPBL scheme handles both the vertical and hori-
zontal turbulent mixing by computing the 3D turbulent stress
divergence, in addition to the 3D turbulent flux divergence of
heat and moisture. The vertical turbulent fluxes in the 3DPBL
are calculated similarly to MYNN, and the horizontal turbu-
lent fluxes are calculated analytically following Mellor and
Yamada (1982) after applying the PBL approximation (i.e.,
neglecting the horizontal derivatives of mean quantities in
addition to the vertical derivative of vertical velocity).

Aside from different approaches for horizontal mixing, the
two PBL schemes also employ different master length scales
and closure constants. Both schemes employ one “master”
length scale, although they calculate them differently. In the
simulations in this study, the 3DPBL master length scale fol-
lows Mellor and Yamada (1982), whereas the MYNN mas-
ter length scale uses a different approach that simultane-
ously accounts for length scales that characterize buoyancy,
the surface layer, and the PBL depth. The closure constants
for the 3DPBL length scale come from Mellor and Yamada
(1982), whereas the MYNN closure constants were updated
in Nakanishi and Niino (2009).

While the values of empirical constants are different,
MYNN and the quasi-3DPBL use the same formulation to
parameterize turbulent momentum, heat, and moisture fluxes.
For example, they parameterize the vertical flux of the u
component of wind speed as

〈uw〉 = −LqSm
∂U

∂z
, (1)

where L is the master length scale, q is
√

2TKE, Sm is a sta-
bility function, and U is zonal velocity (Mellor and Yamada,
1982).

2.2 Integration of the Fitch WFP with the 3DPBL

To simulate wakes with the 3DPBL, we first integrated the
Fitch WFP with the 3DPBL inside the WRF code. The Fitch
WFP modifies flow in two key manners (Fitch et al., 2012;
Archer et al., 2020):
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by slowing winds
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and by adding TKE

∂TKEk
∂t

=
1
2
AkαCTKEU

3
k

zk+1− zk
. (4)

In the above equations, k is the vertical level that intersects
the rotor, Ak is the area of the rotor on this vertical level,
CT is the thrust coefficient, Uk is the wind speed, uk is the
zonal wind, vk is the meridional wind, and zk is the height.
The turbulence coefficient CTKE is calculated as the differ-
ence between the thrust coefficient CT and the power coeffi-
cient CP. The thrust and power coefficients are functions of
wind speed that are unique to a particular wind turbine, and
their values are specified in the input file wind-turbine.tbl.
The coefficient α was introduced by Archer et al. (2020) to
empirically modify the amount of explicit TKE addition, and,
in this study, we set it to either 0 or 1.

The major challenge in integrating the Fitch WFP and the
3DPBL is that the 3DPBL code is housed in the dynam-
ics (dyn_em/) part of the code, as opposed to the physics
(phys/) part of the code, where most other PBL schemes
reside. As such, the code base was substantially modified
to account for the user-selected PBL scheme. A call to the
Fitch WFP’s dragforce subroutine was added to the end of
dyn_em/module_first_rk_step_part2.F. When called for the
3DPBL, the velocity tendencies and TKE tendencies are ad-
ditionally scaled by the column mass in order to match the
identical scaling that happens to the phys/-calculated tenden-
cies earlier within dyn_em/module_first_rk_step_part2.F.
Additionally, whereas the Fitch WFP code modifies the
MYNN TKE field directly (including a time step factor
of ∂t), the new code modifies the 3DPBL TKE tendency field
(omitting a factor of ∂t and letting the rest of the code carry
out the time integration).

2.3 Configuration of simulations

We carry out a series of idealized simulations to study the
effect of the PBL scheme on simulated wake dynamics in a
simple offshore environment. All simulation inputs can be
found on Zenodo (https://doi.org/10.5281/zenodo.5565399).
We use the neutral idealized simulations of Fitch et al. (2012)
as inspiration for our simulations, but we make a number
of modifications. All simulations use two domains, each
202× 202 grid points in the horizontal. MYNN is always
used in the outer domain, whereas the inner domain is either
MYNN or the 3DPBL. The outer domain uses a horizontal
grid spacing of 3 km and a time step of 9 s, whereas the in-
ner domain uses a horizontal grid spacing of 1 km and a time

Table 1. A summary of boundary conditions and spinup times for
the turbine-free idealized simulations.

Stability PBL Geostrophic Surface Spinup Final
scheme wind heat duration ABL∗

speed flux [d] height
[m s−1

] [W m−2
] [m]

Stable MYNN 10 −15 6 250
Stable 3DPBL 10 −15 5.25 250
Neutral MYNN 10 0 4 550
Neutral MYNN 10 0 4 550
Unstable MYNN 9 20 2 600
Unstable 3DPBL 10 20 2 600

∗ ABL means atmospheric boundary layer.

step of 3 s. The vertical grid uses 81 cells, up to a height of
20 km. Vertical grid stretching is employed to provide finer
resolution near the surface, thereby allowing 28 vertical lev-
els below a height of 300 m, following the recommendation
of Tomaszewski and Lundquist (2020) for nominally 10 m
of resolution near the surface. All simulations have a rough-
ness length of 0.0001 m, which is characteristic of offshore
environments (Stull, 1988).

In order to eventually simplify wake comparisons, we
force all turbine-free simulations in such a manner that aver-
age hub-height wind speeds are roughly equal (∼ 9.35 m s−1)
after they are spun up (Table 1). In principle, we could have
matched the geostrophic winds instead of the hub-height
winds in the idealized simulations, but the resulting different
hub-height wind speeds would have made it more difficult to
isolate the different turbulent recovery effect that comes with
using the 3DPBL instead of MYNN.

Simulations for each stability case are initialized with a
neutral temperature profile of 285 K within the boundary
layer up to 500 m. The boundary layer is capped with a two-
layer inversion: a strong inversion (5 K warming between
500 and 600 m) and a weaker inversion (3 K km−1 lapse rate
above 600 m). Depending on the case, each simulation was
forced with either 9 or 10 m s−1 geostrophic winds. Stable
simulations are additionally forced with −15 W m−2 surface
cooling, and unstable simulations are forced with 20 W m−2

surface heating. These sensible heat flux values were cho-
sen based on typical simulated conditions at a planned off-
shore plant in the US mid-Atlantic (Rybchuk, 2022) and
are smaller than typical values over land. After spinup, the
boundary layer height as determined through the turbine-free
temperature profile (Fig. 2) is approximately 250 m in the sta-
ble simulations, 550 m in the neutral simulations, and 600 m
in the unstable simulations.

After spinning up turbine-free simulations, we run three
cases of simulations for each of the stabilities and each of
the PBL schemes for 24 h. The first case is simply a contin-
uation of the turbine-free simulations and is referred to as
the no-wind-farm (NWF) case. The second case (100TKE)
starts after the respective NWF simulation has spun up and
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Figure 1. Hub-height wind speed at the center of each domain dur-
ing spinup in the idealized turbine-free simulations. The last 24 h
of each simulation is taken as the performance period for the NWF
simulations.

shares its boundary conditions, but it includes a 10× 10
grid of turbines based on the 12 MW International Energy
Agency (IEA; Beiter et al., 2020) reference offshore wind
turbines placed in the center of the inner domain. The tur-
bine hub height is 138 m, and the rotor diameter is 215 m.
Cut-in speed is 3 m s−1, rated speed is 10.9 m s−1, and cut-
out speed is 30 m s−1. Turbines are placed 2 km apart, which
is close to 1-nautical-mile spacing. In this case, 100 % of ex-
plicit TKE is generated by the Fitch WFP (α = 1). In the third
case (0TKE), we explore the sensitivity to explicitly added
TKE by duplicating the setup of the second case, but turning
off explicit TKE generation (α = 0).

3 Results

3.1 Turbine-free conditions

We spin up the idealized turbine-free simulations so that hub-
height wind speeds achieve a pseudo-steady state as well as
a value of approximately 9.35 m s−1 (Fig. 1). As was ob-
served in Fitch et al. (2012), inertial oscillations occur in neu-
tral conditions, but they sufficiently dampen out in our sim-
ulations after 4 d. Unstable simulations initially show hub-
height wind speed behavior that is similar to the neutral sim-
ulations. However, surface warming initiates thermal turbu-
lence during the first day of spinup, and after 24 h of spinup,
the hub-height wind speed behavior becomes stationary. Sta-
ble simulations show an initial hub-height wind speed spike
due to the development of a low-level jet (LLJ; Fig. 2), but
the wind speeds linearly decay over time as the nose of the
LLJ moves upward. The stable MYNN and 3DPBL simula-
tions achieve the target wind speed after 6 and 5.25 d, respec-
tively.

Having discussed the initial transient phase of the ideal-
ized simulations, it is also necessary to characterize the base-
line wind speeds and TKE values in the turbine-free simula-
tions (NWF) before analyzing turbine impacts (Fig. 2). The
differences and similarities in the wind and TKE profiles of
the NWF simulations will dictate the comparison of the wake

Figure 2. Averaged wind speed profiles (a–c), TKE profiles (d–f),
and temperature profiles (g–i) in different stabilities for the ideal-
ized NWF runs. Profiles have been horizontally averaged over the
extent of the plant and time-averaged over the 24 h performance
period. Hub-height values of wind speed and TKE for each PBL
scheme are noted.

effects between the PBL schemes in turbine-including simu-
lations. In general, MYNN and the 3DPBL will predict dif-
fering wake effects because of two primary factors: different
predictions of turbine-free wind speed profiles and differing
wake recovery behavior, which is linked to parameterizations
of turbulent fluxes (Gupta and Baidya Roy, 2021). Due to the
experimental configuration of our idealized simulations, the
plant inflow wind speeds are similar, and thus we expect the
largest wake differences to arise from differing turbulent re-
covery behavior.

During the performance phase, all simulations have sim-
ilar average hub-height wind speeds: between 9.3 and
9.4 m s−1. The wind speed profiles for both PBL schemes
match expected canonical behavior for each stability (Stull,
1988). Across the rotor disk, the neutral and unstable wind
speed profiles have similar values for both MYNN and the
3DPBL. However in the stable simulations, wind speed pro-
files slightly differ between the two PBL schemes. The
nose of the MYNN low-level jet achieves a wind speed of
11.6 m s−1 and sits at the top of the rotor disk. In contrast, the
nose of the 3DPBL LLJ achieves a wind speed of 12.3 m s−1

https://doi.org/10.5194/wes-7-2085-2022 Wind Energ. Sci., 7, 2085–2098, 2022
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Figure 3. Hub-height wind speed deficits in varying stabilities (left–right) and PBL configurations (up–down). Average hub-height wind
speed deficits inside the plant are noted – in both absolute magnitude and as a percentage relative to the NWF winds. The 1 m s−1 deficit
contour is highlighted only for the stable simulations, as it obscures internal wakes for other stabilities. Wakes are rotated from the u-
geostrophic wind due to the combination of friction and the Coriolis force.

and sits about 40 m below the top of the rotor disk. Thus,
we later see that the height of maximum wind speed deficits
differs between the two simulations (Fig. 4).

While MYNN and the 3DPBL produce near-identical
TKE profiles in neutral conditions, their TKE profiles differ
in stable and unstable conditions. In stable conditions, the
MYNN TKE profile linearly decays when moving from the
surface to the capping inversion, whereas the 3DPBL pro-
file shows an irregular shape that somewhat resembles the
wind speed profile of an LLJ. In unstable conditions, the
TKE profiles are relatively constant over the height of the
rotor disk, but the 3DPBL TKE values are 2–3 times larger
than the MYNN values. Contrary to what might be expected,
we note that hub-height values of TKE are weaker in the un-
stable MYNN simulations than in the neutral MYNN simu-
lations. We hypothesize that these low TKE values occur due
to the very weak heat fluxes.

3.2 Hub-height wind speed deficits

Wakes within the extent of the plant are sensitive to the
choice of PBL scheme, presence of explicit TKE generation,
and stability (Fig. 3). We quantify wind speed deficits inside
the plant by finding the daylong time-averaged hub-height
wind speeds within the plant in the turbine-including simu-
lations (“WFP”, which is a generic stand-in for “100TKE”
or “0TKE”) relative to hub-height winds in the turbine-free
simulations (“NWF”). We also calculate the percentage of
wind speed loss with reference to the NWF winds inside
the plant. Before discussing the impact of PBL scheme, we
reiterate that previous work at offshore wind farms demon-
strates that stability impacts waking (Hansen et al., 2012),
and our idealized wakes follow expected trends: stable wakes
are strongest (1.17–1.54 m s−1, 12.4 %–16.3 %), followed by
neutral wakes (0.93–1.27 m s−1, 10.0 %–13.5 %), followed
by unstable wakes (0.89–1.19 m s−1, 9.4 %–12.7 %).
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Figure 4. Side view of horizontally averaged wind speed deficits in varying stability conditions (left–right) and PBL configurations (up–
down). Horizontal averaging was taken between the northernmost and southernmost turbines. The height of the ABL is conveyed with
θ contours.

Average wind speed deficits inside the plant can vary
quite substantially between MYNN and the 3DPBL. Across
all simulations, MYNN predicts internal waking that dif-
fers from the 3DPBL by between −0.20 m s−1, or −2.2 per-
centage points (pp; in the stable 100TKE simulations), to
+0.22 m s−1, or +2.4 pp (in the unstable 100TKE simula-
tions). This large spread induces significantly different pre-
dictions of power production (Sect. 3.6).

While these simulations show that wakes within the plant
can substantially differ, they do not reveal any obvious pat-
terns of how they will differ across conditions. At times,
the MYNN simulations produce stronger wakes internally
than the 3DPBL, whereas MYNN wakes are weaker at other
times. Sometimes, turning explicit TKE addition off de-
creases the internal wake magnitude (e.g., stable conditions),
whereas other times it increases internal wake strength (e.g.,
neutral and unstable conditions). Sometimes MYNN internal
wake strength changes more substantially when explicit TKE
addition is turned off (e.g., neutral and unstable conditions),

whereas 3DPBL internal wake strength changes more sub-
stantially at other times (e.g., stable conditions). Thus, this
variability within the idealized runs suggests that real-world
case studies should be tailored to a specific region and tur-
bine configuration.

In addition to characterizing wakes within the extent of
the plant, we analyze wakes outside the plant. There is no
singular standard approach that is used to characterize wakes
external to a plant (Fischereit et al., 2022), so we adopt three
approaches: by identifying the contours of the 1 m s−1 deficit,
by identifying the contours of the 0.5 m s−1 deficit, and by
identifying the e-folding contour. We calculate the e-folding
contour as 1/e times the average internal wake strength, or
about 36 % (Fitch et al., 2012), and as such, this uses a rela-
tive metric, whereas the other contours use an absolute met-
ric. We employ the 1 m s−1 contour to highlight regions of
strong external waking and the 0.5 m s−1 contour to empha-
size moderate external waking. We only include the 1 m s−1

deficit contour in the stable simulations, as this contour ob-
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scures internal wakes in the neutral and unstable simulations.
We note that choosing one definition versus the other can
lead to definitions of wake lengths that differ by tens of kilo-
meters.

Wake behavior outside the plant varies just as much as it
did inside the plant (Fig. 3). The most severe waking, de-
marcated by the 1 m s−1 deficit contour, varies with stability
as expected from previous work, with the strongest wakes in
stable conditions. The 1 m s−1 contours extend the farthest in
stable conditions, whereas they travel at most about 10 km
downwind in neutral and unstable conditions. We note that
MYNN predicts wakes that are tens of kilometers longer than
the 3DPBL does in stable conditions. The addition of ex-
plicit TKE consistently increases the wake length, regardless
of what metric is used to define the boundary of the wake.
This increase is seen most clearly in the neutral MYNN sim-
ulations (Fig. 3b and e), where wake length grows by dozens
of kilometers. All stable and all unstable simulations show a
growth in wake lengths, roughly on the scale of about 10 km.
We also note that neither MYNN nor the 3DPBL show con-
sistently longer wake lengths across all stabilities. Stability
impacts on moderate-intensity wakes (either the 0.5 m s−1

contour or the e-folding contour) are more varied. For ex-
ample, the e-folding contour is smaller in the stable 3DPBL
simulations than in the neutral 3DPBL or unstable 3DPBL
simulations.

We briefly digress from the discussion on wakes to dis-
cuss two effects that are secondary to the primary analysis of
this study: upwind blockage and flow acceleration. Upwind
blockage (Schneemann et al., 2021; Sanchez Gomez et al.,
2021) occurs in some of the idealized simulations. Blockage
is strongest in the stable conditions, where 0.5 m s−1 deficits
extend 5–10 km upwind of the plant. Under neutral condi-
tions, blockage of up to 0.25 m s−1 extends 3–5 km upwind
of the plant. Blockage does not appear in the unstable sim-
ulations. In general, blockage here is a function of stability
but not PBL scheme or TKE addition. Tangential flow ac-
celerations, similar to the speed-ups seen by Nygaard and
Hansen (2016), can be observed adjacent to the wakes. The
hub-height wind acceleration neighboring the wakes is also a
function of stability (strongest in stable conditions, weakest
in unstable conditions), but it also varies with TKE addition
(stronger acceleration when TKE addition is turned on).

3.3 Vertical structure of wind speed deficits

While hub-height winds are particularly important to quan-
tify, it is also helpful to characterize wakes over the vertical
extent of the rotor disk. We calculate the wind speed deficit
averaged across the y extent (predominantly crosswind) of
the plant for each simulation (Fig. 4). Just as the top-down
view (Fig. 3) of wind speed deficits suggested, the stable
simulations produce the strongest wind speed deficit profiles.
Blockage is also visible upwind of the plant in stable condi-
tions. In contrast, the neutral and unstable simulations pro-

duce wind speed deficits that are relatively similar to one an-
other. The stronger stable wind speed deficits occur, in part,
because of the shallow capping inversion that sits just above
the top of the rotor disk. The wakes in the neutral and unsta-
ble simulations are able to mix with stronger ambient winds
above the plant, thereby eroding the wake, whereas this be-
havior is not possible in the stable simulations.

The side view of wind speed deficits shows that verti-
cal mixing of wind speed deficits increases when explicit
TKE generation is turned on. This behavior consistently oc-
curs across all simulations. The wind speed deficits above
the wind plants are stronger in the neutral 100TKE simula-
tions and in the unstable 100TKE simulations than in their
counterparts with 0TKE. As a result, the neutral and unsta-
ble 0TKE simulations have stronger maximum wind speed
deficits within the rotor disk than their 100TKE counterparts.
For example, the neutral 100TKE MYNN simulation shows
a maximum wind speed deficit of 1.125 m s−1 within the ro-
tor disk, whereas the neutral 0TKE MYNN has a maximum
deficit of 1.625 m s−1. While the shallow capping inversion
in the stable simulations obscures the effects of explicit TKE
addition above the plant, the TKE effects can be seen below
the plant. When explicit TKE addition is turned on in the
stable simulations, flow acceleration occurs below the rotor
disk, but this acceleration does not occur when TKE addi-
tion is turned off. We note that acceleration under the rotor
disk was observed in Bodini et al. (2021b) but not in Archer
et al. (2019). Correlating with the presence of flow acceler-
ation below the rotor disk, the stable 100TKE simulations
show stronger wind speed deficits within the rotor disk than
the stable 0TKE simulations.

Finally, the side view of wind speed deficits also shows
that the choice of PBL scheme can be important. The most
pronounced differences between PBL schemes occur in sta-
ble conditions. For example, the wind speed deficit in the
0TKE 3DPBL simulation stays stronger than 2 m s−1 for
50 km downwind of the plant, whereas the wake recovers
more quickly in the 0TKE MYNN simulation.

3.4 Difference in momentum tendencies

In large part, the two PBL schemes produce different wind
speed deficits in their wakes because the schemes parame-
terize turbulent fluxes differently, as we visualize here. The
u and v components of wind speed are modified by mech-
anisms such as advection of the mean wind, the Coriolis
force, and the divergence of the turbulent momentum fluxes
(Stull, 1988, Eq. 3.4.3c therein). We expect all these terms,
aside from the divergence of turbulent momentum fluxes, to
be similar for both MYNN and the 3DPBL, as the NWF
wind speeds are similar, but two PBL schemes parameter-
ize momentum fluxes uniquely. We calculate the u tendency
due to the turbulent flux divergence as the vertical derivative
of u′w′, neglecting the horizontal components of flux diver-
gence because they are significantly smaller in the 3DPBL
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Figure 5. (a) Side view of the difference in wind speed deficits in
the stable 100TKE simulations. For example, (a) was calculated as
the difference between the results in Fig. 4a–g. (b) The u-tendency
deficits in the 100TKE simulations are calculated using a similar
procedure involving tendencies. Potential temperature θ values that
have been averaged over the y extent of the plant are taken from the
MYNN simulations.

than u′w′, and they are not computed in the MYNN param-
eterization. We also omit visualizations of v tendency be-
cause they are substantially smaller than the u tendency in
these idealized simulations forced with a u-geostrophic wind.
We investigate the relationship of wind speeds and turbulent
fluxes between the two PBL schemes in the stable 100TKE
simulations by comparing two fields in the wakes – the wind
speed deficits and the turbulent flux divergence u-tendency
“deficits” (Fig. 5). The u-tendency deficits are defined as ten-
dencies in the turbine-free simulations subtracted from ten-
dencies in the turbine-including simulations.

The differences in tendency deficits between the two PBL
schemes drive the differences in the wind speed wakes. As
winds advect primarily along the x direction, wind speed
magnitudes are modified by the tendency. For example, the
u tendency is more negative for MYNN above the rotor disk.
Correspondingly, the MYNN wind speed deficits in this re-
gion as well as downwind of this region are more negative.
The same pattern of behavior occurs in the upper half of the
rotor disk, where the u tendency for the 3DPBL is more neg-
ative, and therefore the 3DPBL wind speed deficits are more
negative. Thus, the modeled wind speed deficits in the wake

of a plant depend on how the PBL scheme parameterizes tur-
bulent momentum fluxes.

3.5 Total TKE

Just as wind speed deficits are sensitive to the choice of PBL
scheme, TKE associated with the wind plant also varies as
a function of PBL scheme, stability, and explicit TKE gen-
eration (Fig. 6). The WFP induces changes in TKE, and the
changes are primarily constrained within the horizontal ex-
tent of the plant and tend to not advect far downwind. In
contrast, the real onshore WRF WFP simulations of Man-
gara et al. (2019) saw substantial TKE changes 20–30 km
downwind. The 100TKE simulations produce substantially
more TKE than the 0TKE simulations, as would be ex-
pected. The 100TKE 3DPBL simulations also consistently
predict stronger levels of additional TKE than their MYNN
counterparts. For example, the maximum added TKE in the
100TKE stable simulations was 1.375 m2 s−2 for the 3DPBL
and 0.750 m2 s−2 for MYNN.

The behavior of the 0TKE simulations was more varied. In
neutral conditions, both the 0TKE MYNN and 0TKE 3DPBL
simulations create a moderate amount of shear-generated
TKE at the top of the rotor disk. However in unstable con-
ditions, the 0TKE 3DPBL simulation shows shear-generated
TKE, whereas the 0TKE MYNN simulation does not. In sta-
ble conditions, the 0TKE simulations lack shear-generated
TKE at the top of the rotor disk due to the low capping in-
version. However, the stable 0TKE 3DPBL turbine-including
simulation actually has less TKE than the turbine-free simu-
lation. The LLJ in the turbine-free simulation exhibits strong
wind speed shear, and the presence of the wind farm reduces
that shear, leading to this behavior.

3.6 Power

Power production and power losses due to internal waking
change with PBL scheme (Fig. 7). We calculate the capac-
ity factor for each turbine, the average capacity factor of the
plant, and the average power deficit due to internal wakes
with reference to the NWF hub-height wind speed. Capacity
factor is defined as the ratio of actual power output relative
to the maximum possible power output. Across all simula-
tions, the average capacity factor for the plant ranged be-
tween 39.5 % and 53.8 %. Capacity factor losses due to in-
ternal wakes ranged between 16.7 and 31.6 pp.

Power production in the idealized simulation varies with
the simulation parameters. As discussed earlier (Sect. 3.2),
when explicit TKE addition is turned off, hub-height wind
speed deficits can either increase or decrease. Accordingly,
turning off explicit TKE generation can either grow or shrink
the capacity factor. Turning off explicit TKE generation
changes internal wake losses to the capacity factor by be-
tween −6.9 pp (in the stable 3DPBL) and 5.2 pp (in neutral
MYNN). Changing from one PBL scheme to another results
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Figure 6. Same as Fig. 4, but for TKE in varying stabilities (left–right) and PBL configurations (up–down). The height of the ABL is
visualized in the stable and neutral simulations with θ contours.

in wake loss shifts of a similar magnitude – switching from
MYNN to the 3DPBL changes internal wake losses by be-
tween −3.4 pp (in stable 100TKE simulations) and −9.6 pp
(in unstable 100TKE simulations). Thus, these simulations
emphasize the critical role of PBL scheme on power produc-
tion.

In the end, these power calculations emphasize that the
behavior of modeled power losses is complicated, even in a
simple idealized environment. We stress that these idealized
simulations have been carried out for one set of hub-height
winds in one part of the power curve under pseudo-steady
conditions. To better predict the cumulative non-linear inter-
actions of the effects of these parameters on losses at a real-
world location, it is critical to run real simulations.

4 Conclusions

In this analysis, we studied the sensitivity of NWP-modeled
mesoscale wakes to two PBL schemes: the widely used
MYNN and the recently introduced NCAR 3DPBL. While

prior studies have shown that NWP-modeled wind resource
in turbine-free simulations can significantly vary with PBL
scheme, the same sensitivity has not yet been studied in sim-
ulations with explicitly resolved turbines. We integrated the
NCAR 3DPBL with the Fitch wind farm parameterization
and then examined modeled wake sensitivity through a se-
ries of simulations. We simulated pseudo-steady idealized
stable, neutral, and unstable environments with hub-height
wind speeds of approximately 9.35 m s−1. In this context, we
also examined wake sensitivity to the amount of explicitly
added TKE from the Fitch wind farm parameterization.

We summarize key findings from this analysis.

– In the idealized simulations, both capacity factor and
wake losses were substantially impacted by PBL
scheme, the presence or omission of explicit TKE addi-
tion, and the stability. Average capacity factors ranged
between 39.5 %–53.8 %, and wakes reduced the average
capacity factors by 16.7–31.6 percentage points.
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Figure 7. Heat maps of capacity factor for each turbine, based on the turbine’s position in the plant. The average capacity factor and internal
wake strength are noted for each simulation.

– Similarly, wind speed deficits were significantly im-
pacted by these factors in the idealized simulations.
MYNN predicted average wind speed deficits within the
extent of the plant that differed from those in the 3DPBL
by between−0.20 and 0.22 m s−1 (or between−2.2 and
2.4 percentage points for relative wake magnitude). Ad-
ditionally, MYNN predicted strong external wakes that
traveled dozens of kilometers longer than the 3DPBL in
stable conditions.

– While the magnitude of wind speed deficits typically
varied with PBL scheme, an obvious pattern did not
emerge. At times, MYNN predicted stronger deficits,
whereas sometimes the 3DPBL had stronger deficits. In
contrast, wakes consistently grew longer when explicit
TKE addition was turned on.

Through our study, we begin to address the question of
how sensitive modeled mesoscale wakes are to the choice

of PBL parameterization. We find that, indeed, modeled
mesoscale wakes can be significantly sensitive to the choice
of PBL scheme in idealized simulations. This suggests that
real mesoscale simulations of planned wind plants could
also be significantly sensitive to the choice of PBL scheme.
Indeed, preliminary offshore simulations in the US mid-
Atlantic show that MYNN and the 3DPBL can predict
month-long power production that differs by as much as
7.8 % (Rybchuk, 2022). Due to the model sensitivity dis-
cussed throughout this paper, we recommend that future
wind energy planning studies that examine mesoscale model
sensitivity consider varying the PBL scheme, along with
other model inputs that have been established in the litera-
ture, such as grid resolution, magnitude of explicit TKE ad-
dition, and the choice of wind farm parameterization (Fis-
chereit et al., 2022). By better characterizing the uncertainty
associated with NWP-modeled wind resource, wind plant de-
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velopers will be able to take on less risk when developing
future wind plants.

Code and data availability. Name lists for all simulations, time-
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ysis notebooks to reproduce all figures can be found on Zenodo
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Juliano, T. W., Kosović, B., Jiménez, P. A., Eghdami, M., Haupt,
S. E., and Martilli, A.: “Gray Zone” Simulations Using a
Three-Dimensional Planetary Boundary Layer Parameteriza-
tion in the Weather Research and Forecasting Model, Mon.
Weather Rev., 150, 1585–1619, https://doi.org/10.1175/MWR-
D-21-0164.1, 2022.
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