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Abstract. Due to the increasing share of wind energy in the power system, minute-scale wind power forecasts
have gained importance. Remote-sensing-based approaches have proven to be a promising alternative to statisti-
cal methods and thus need to be further developed towards an operational use, aiming to increase their forecast
availability and skill. Therefore, the contribution of this paper is to extend lidar-based forecasts to a methodology
for observer-based probabilistic power forecasts of individual wind turbines and aggregated wind farm power.
To do so, lidar-based forecasts are combined with supervisory control and data acquisition (SCADA)-based
forecasts that advect wind vectors derived from wind turbine operational data. After a calibration, forecasts of
individual turbines are aggregated to a probabilistic power forecast of turbine subsets by means of a copula ap-
proach. We found that combining the lidar- and SCADA-based forecasts significantly improved both forecast
skill and forecast availability of a 5 min ahead probabilistic power forecast at an offshore wind farm. Calibration
further increased the forecast skill. Calibrated observer-based forecasts outperformed the benchmark persistence
for unstable atmospheric conditions. The aggregation of probabilistic forecasts of turbine subsets revealed the
potential of the copula approach. We discuss the skill, robustness and dependency on atmospheric conditions of
the individual forecasts, the value of the observer-based forecast, its calibration and aggregation, and more gener-
ally the value of minute-scale power forecasts of offshore wind. In conclusion, combining different data sources
to an observer-based forecast is beneficial in all regarded cases. For an operational use one should distinguish
between and adapt to atmospheric stability.

1 Introduction

With the increasing share of wind and solar power in our en-
ergy system, the need for accurate minute-scale power fore-
casts to support grid stability and electricity trading arises
(Dowell and Pinson, 2016; Sweeney et al., 2020; Würth et al.,
2019). The low geographical dispersion of installed offshore
wind capacity and its consequently high volatility (Malvaldi
et al., 2017) call for skilful forecasts of, in particular, off-
shore wind power. Commonly, statistical methods, such as
the benchmark persistence or AR(I)MA (auto-regressive (in-
tegrated) moving average) methods, are applied on those
timescales (Würth et al., 2019). While those methods are re-

liable in many situations, they underperform, for instance,
during ramp events, i.e. sudden and strong changes in wind
speed or direction. Therefore, recently remote-sensing-based
wind speed and power forecasts have been researched as a
physical-based alternative (Würth et al., 2018; Valldecabres
et al., 2018b, a, 2020; Theuer et al., 2020b, 2021; Pichault
et al., 2021).

Several studies have shown the potential of lidar-based
wind speed and power forecasts to outperform the bench-
mark persistence under specific atmospheric conditions
(Valldecabres et al., 2018b; Theuer et al., 2021; Pichault
et al., 2021). Theuer et al. (2020b) and Valldecabres et al.
(2018b) found that atmospheric stability can influence fore-
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cast accuracy in particular with respect to the wind speed
height extrapolation. Theuer et al. (2021) showed that overall
lidar-based forecasts are more accurate during stable condi-
tions; however, they can only outperform persistence during
unstable stratification because persistence is also more skilful
during stable situations. Valldecabres et al. (2020) introduced
a dual-Doppler radar-based forecast that was able to outper-
form persistence in terms of probabilistic scores during ramp
events and for free-stream turbines. Two lidar-based meth-
ods, one based on a neural network and one on a smart per-
sistence approach, introduced by Pichault et al. (2021) were
able to exceed persistence, as well as an ARIMA method dur-
ing ramp events and non-ramp situations, for different wind
directions and atmospheric conditions onshore. In their work
the authors focus on deterministic forecasts and wind farm
power forecasts that do not distinguish forecasts at turbine
level.

Driven by these promising results, the methods’ develop-
ment now needs to be directed towards an operational use.
Besides the fact that there are many situations during which
persistence outperforms the lidar-based forecast, low fore-
cast availability is a main issue with the technology and con-
cepts available so far. Hence, depending on the wind farm
layout, scanning trajectories, lidar availability and wind con-
ditions, no or only low-quality forecasts can be generated
(Theuer et al., 2020b). This problem can be reduced by opti-
mizing scanning trajectories, increasing the lidar’s measure-
ment range and possibly commissioning additional devices.
However, during situations with reduced lidar sight due to,
for example, fog or rain or when devices fail, one would need
to fall back to an alternative data source. For that purpose,
hybrid methods are worth being considered. In the context
of lidar-based methods, Theuer et al. (2021), for instance,
showed that the additional use of wind turbine operational
data can contribute to the forecast accuracy. Also Pichault
et al. (2021) included wind farm operational data in the form
of a smart persistence approach in their forecast and achieved
promising results.

Currently, lidar-based methods have been evaluated with
regard to their probabilistic characteristics in a few cases
only (Theuer et al., 2020b) but mainly with respect to their
deterministic characteristics and for individual wind tur-
bines (Würth et al., 2018; Valldecabres et al., 2018b; Theuer
et al., 2021). However, for end-users in power trading and
system operation, uncertainty information is of high value
as it aids decision-making processes (Dowell and Pinson,
2016; Sweeney et al., 2020). One way to increase the reli-
ability and sharpness of probabilistic forecasts is statistical
post-processing, i.e. forecast calibration (Thorarinsdottir and
Gneiting, 2010). Commonly, ensemble model output statis-
tics (EMOS) is used. EMOS was first developed for temper-
ature and pressure forecasts (Gneiting et al., 2005) but has
successfully been applied to the prediction of precipitation
(Scheuerer, 2014), wind speed (Thorarinsdottir and Gneit-

ing, 2010), wind vectors (Schuhen et al., 2012) and power
(Späth et al., 2015).

Considering the different areas of application of minute-
scale forecasts, both individual turbines’ power output and
aggregated wind farm power or power at the grid connec-
tion point, i.e. aggregated power of a subset of individual
wind turbines, are important. While the former are mainly
required for wind turbine control (Würth et al., 2019), the lat-
ter are of interest for trading and system operation purposes.
So far, lidar-based forecasts of individual wind turbines fo-
cused on free-stream situations. In a next step, these method-
ologies need to be extended to wake-influenced turbines. A
main challenge is hereby the propagation technique, which
assumes constant wind vector trajectories and is therefore
unable to account for wakes. Valldecabres et al. (2020) cir-
cumvent this by applying a directional turbine efficiency that
significantly improved the skill of their radar-based forecast.

Individual turbines’ power forecasts can also be helpful
when determining wind farm power. In this context, recently
hierarchical forecasting on both temporal and spatial lev-
els has gained attention, aiming to achieve coherency be-
tween different levels of the hierarchy and thereby improv-
ing forecast performance at each level (Bessa, 2016; Gilbert
et al., 2020). A common method in the context of coher-
ent probabilistic forecasts is copula approaches. Gilbert et al.
(2020) successfully implemented and tested a variety of cop-
ulas to aggregate the probabilistic power forecasts of individ-
ual wind turbines to the probabilistic forecast of wind farm
power.

Our objective in this paper is to develop a probabilistic
observer-based forecast of aggregated wind farm power. To
do so, we first introduce an observer-based power forecast
of individual wind turbines that combines lidar and turbine
operational data. This method accounts for variable wake
conditions and increases forecast availability and skill. Addi-
tional calibration further improves the forecast’s probabilis-
tic characteristics. In the second step, we aggregate individ-
ual probabilistic wind turbine power forecasts to probabilis-
tic wind farm power forecasts by applying a copula approach.

2 Methods

The basis of this work is the lidar-based forecasting ap-
proach introduced and analysed in more detail in Theuer
et al. (2020a, b, 2021). The method is briefly described in
Sect. 2.1. In this work this approach is significantly extended
further as described in the following. Using SCADA (super-
visory control and data acquisition) data, it is first extended
to an observer-based forecast (OF) to increase forecast avail-
ability and skill (see Sect. 2.2). In a next step, observer-based
forecasts are calibrated by means of ensemble model output
statistics (EMOS) (see Sect. 2.3). Finally, probabilistic power
forecasts of individual wind turbines are aggregated using
different copula approaches (see Sect. 2.4).
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2.1 Reference method lidar-based forecast (LF)

The reference method probabilistic lidar-based power fore-
cast (LF) using single lidar measurements was developed
by Theuer et al. (2020b) and is based on the work of
Valldecabres et al. (2018a) who applied dual-Doppler radar.
Lidar-based power forecasts utilize horizontal or slightly el-
evated plan position indicator (PPI) lidar scans measuring
the inflow of an offshore wind farm. Typically, lidar devices
are positioned on the transition piece (TP) of a wind tur-
bine or alternatively a nearby platform and record line-of-
sight (LOS) wind speed measurements and the carrier-to-
noise ratio (CNR) at each scanned azimuth angle and range
gate along with a time stamp. Using that information, li-
dar scans are filtered applying a data density approach on
normalized CNR values and LOS wind speed measurements
similar to Beck and Kühn (2017). By means of a velocity az-
imuth display (VAD)-like fit, the wind direction χ is then de-
termined dependent on range gate r (Werner, 2005) and used
to reconstruct a wind field with the horizontal wind speed uh
from the line-of-sight wind speed measurements uLOS and
the lidar’s azimuth angle ϑ :

uh(r,ϑ)=
uLOS(r,ϑ)

cos(ϑ −χ (r))
. (1)

After wind field reconstruction, the individual lidar scans are
interpolated to a Cartesian grid and synchronized in time
(Beck and Kühn, 2019). Time synchronization refers to the
propagation of individual parts of the lidar scans measured at
different times to the same time step using semi-Lagrangian
advection. It aims at accounting for the large time shift within
each scan. A Lagrangian advection technique is then applied
to propagate wind vectors, i.e. horizontal wind speed and
wind direction information at each grid point. Hereby, it is
assumed that vectors travel with their local wind speed and
wind direction and do not change their trajectory while trav-
elling. Wind vectors reaching the area of influence around
the target turbine within a time interval of k± 30 s with lead
time k are selected to contribute to the target turbine’s prob-
abilistic forecast. For each forecasted time step, wind data
recorded during a time interval previous to forecast initial-
ization are taken into account. That means that for each
forecast several time-synchronized scans are considered, and
the travelling time of wind vectors can therefore exceed the
lead time. Considering also previous scans is important to
be able to forecast turbines positioned further away from
the lidar-scanned area. Wind speed forecasts at measurement
height um are transformed to hub height assuming a loga-
rithmic stability-corrected wind speed profile (Emeis, 2018).
Here, we apply a methodology introduced as tendency-based
forecast in previous work (Theuer et al., 2021). It determines
the wind speed tendency at measuring height and applies it to
wind speed at hub height uhh after performing a correction of
measuring height zm and atmospheric conditions defined by
the Obukhov length L and the roughness length z0 between

time steps ti and ti−1 (see Eq. 2). 9(z,L) describes the sta-
bility correction term (Emeis, 2018). Measuring heights vary
along the range gate due to the curvature of the Earth and
dynamically due to a thrust-dependent tilt of the lidar device
(Rott et al., 2022). The hub height wind speed at the future
time step ti is then defined as

uhh (ti)=
ln
(
zm(ti−1)
z0(ti )

)
−9

(
zm(ti−1)
L(ti )

)
ln
(
zm(ti )
z0(ti )

)
−9

(
zm(ti )
L(ti )

) um (ti)
um (ti−1)

uhh (ti−1) . (2)

In a final step, the wind speed forecast is transformed to a
power forecast using power curves extracted individually for
each wind turbine from 1 min mean SCADA wind speed and
power data. In this case, the wind speed values are not mea-
sured but estimated from power, pitch angle and the SCADA
system’s turbine power curve.

Details on this forecasting methodology can be found in
Theuer et al. (2020b, 2021).

2.2 Extension to an observer-based forecast (OF) by
integrating a SCADA-based forecast (SF)

If the LF is invalid due to missing data, the prevailing wind
conditions, the lidar trajectory or wind farm layout, one
needs to fall back to an alternative forecasting approach. For
that purpose we introduce the observer-based forecast, which
combines the LF and a SCADA-based forecasting approach.

The SCADA-based power forecast (SF) modifies the
methodology introduced in Rott et al. (2020), adapting its
wind vector weighting approach and timescales to match
the LF. The 1 Hz wind speed and wind direction data of all
wind turbines of the wind farm are propagated using La-
grangian advection. In accordance with the LF, only wind
vectors v arriving within a certain area of influence around
our target turbine j are selected. The selected vectors origi-
nating at time tv,j are then weighted according to their age
t − tv,j using an inverse temporal distance weighting to de-
termine the weighting factor ŵv,j (t):

ŵv,j (t)=
wv,j (t)∑
v

wv,j (t)
, (3)

with

wv,j (t)=
1(

t − tv,j
)p (4)

and the tuning parameter p ∈ N that determines the strength
of the weighting factor’s decrease with increasing temporal
distance (Rott et al., 2020). The selected wind vectors are
resampled to a predefined number of wind vectors with their
individual contribution given by the weighting factor. As sug-
gested by Rott et al. (2020) a bias correction with the ob-
served wind speed uobs,j and the ensemble average of the
forecast at turbine j , i.e. usc,j , is applied to all members v
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of the forecast at this turbine usc,v,j to account for possible
systematic errors and wake effects. The bias-corrected wind
speed vectors ucorr,v,j then yield

ucorr,v,j (t)= usc,v,j (t)−

(
1
Nt

Nt∑
l=0

usc,j (t − k− l1τ )

−uobs,j (t − k− l1τ )
)
, (5)

with Nt the number of time steps with length 1τ prior to
forecast initialization t − k, with lead time k, considered to
determine the bias. Wind speed forecasts are transformed to
power forecasts as described for the LF (Sect. 2.1).

In this work we extend the LF to an observer-based power
forecast (OF) by integrating the SF. If both LF and SF are
valid, they are weighted equally in the OF; otherwise only
the valid forecast is considered. To be considered valid we
require a minimum number of wind vectors to reach the tar-
get turbine for both methods. In that way, we avoid individ-
ual wind vector outliers being given too much weight. To ac-
count for the varying number of wind vectors contributing as
a consequence of different temporal and spatial resolutions
of the lidar and SCADA data, we resample each forecast to
contain the same predefined number of members.

2.3 Calibration of the observer-based forecast

In a next step, the OF is calibrated using ensemble model
output statistics (EMOS). EMOS is commonly used to cali-
brate ensemble forecasts; in our work it is applied to minute-
scale remote-sensing-based power forecasts for the first time.
Hereby, a truncated Gaussian distribution,

f (x,µ,σ )=
1
σ

φ
(
x−µ
σ

)
8
(
Pr−µ
σ

)
−8

(
0−µ
σ

) , (6)

for 0≤ x ≤ Pr and f (x < 0)= 0 and f (x > Pr)= 0 with
rated power Pr is used to model the wind speed distribution
(Thorarinsdottir and Gneiting, 2010). The probability den-
sity function of the standard normal distribution is defined
by φ and its cumulative distribution function (cdf) by8. The
mean µi,j ,

µi,j = a+ bfci,j , (7)

and the variance σ 2
i,j of the distribution,

σ 2
i,j = c+ d fcσ 2

i,j
, (8)

are modelled as a linear function of the ensemble mean fci,j
and variance fcσ 2

i,j
, respectively, with time index i and turbine

index j as suggested by Thorarinsdottir and Gneiting (2010).
The cdf of the ensemble members at time i and for turbine j
is defined as Fi,j (µi,j (a,b),σi,j (c,d)) and referred to as Fi,j

in the following. The parameters a, b, c and d are optimized
to minimize the cost function,

Jj
(
xi,j ,a,b,c,d

)
=

1
Nc

Nc∑
i=1

crps
(
Fi,j ,xi,j

)
, (9)

based on the continuous ranked probability score (crps) of
the forecast,

crps
(
Fi,j ,xi,j

)
=

Pr∫
0

[
Fi,j (x)−H (x− xi,j )

]2dx , (10)

with the observation xi,j , the number of time steps consid-
ered Nc and the Heaviside step function H (Gneiting et al.,
2007). A sliding window approach is applied; thus a training
interval with optimized length before forecast initialization
is used to calibrate the forecast.

2.4 Aggregated wind turbine power forecast using a
copula approach

The observer-based forecast provides probabilistic power
forecasts of individual wind turbines, i.e. one cdf Fi,j for
each time index i and individual wind turbine j . Here, we
aim to derive a joint predictive distribution of wind power
production from a subset of wind turbines in a wind farm us-
ing a copula approach following the work of Gilbert et al.
(2020) and Bessa (2016). In our work we apply the method
to a data set with higher temporal resolution and shorter
forecast horizon. This approach is based on Sklar’s theorem,
which states that am-dimensional cumulative distribution F ,
with the number of turbines m and the length of the training
data set tn, can be expressed using a copula function C of the
individual marginal distributions Fi,j as

F
(
x1,1,x1,2, . . ., xtn,m

)
= C

(
F1,1

(
x1,1

)
,F1,2

(
x1,2

)
,

. . ., Ftn,m
(
xtn,m

))
, (11)

conditional on well-calibrated forecasts with uniformly dis-
tributed marginals uj = Fj (xj ) (Gilbert et al., 2020). In this
work, we apply a Gaussian copula,

C
(
F1,1

(
x1,1

)
,F1,2

(
x1,2

)
, . . ., Ftn,m

(
xtn,m

))
=86

(
8−1 (F1,1

(
x1,1

))
,8−1 (F1,2

(
x1,2

))
,

. . ., 8−1 (Ftn,m (xtn,m))) , (12)

with the m-dimensional normal distribution 86 with co-
variance matrix 6 and a mean of µ1 = µ2 = . . . = µm = 0.
To determine the joint predictive distribution of the individ-
ual turbines and finally the probabilistic aggregated power,
we proceed as follows. First, marginal distributions of all
wind turbines to be considered for the aggregation are de-
termined from the cdfs and observations as Fi,j (xi,j ), and

Wind Energ. Sci., 7, 2099–2116, 2022 https://doi.org/10.5194/wes-7-2099-2022



F. Theuer et al.: Observer-based power forecasts of individual and aggregated offshore wind turbines 2103

their uniformity is verified (Pinson et al., 2009). Marginals
are then transformed into the Gaussian domain described by
8−1(Fi,j (xi,j )). Based on these transformed and normally
distributed marginals, the covariance matrix 6 of the train-
ing data set can be determined. This multivariate distribution
can be used to generate M random samples, which are then
transformed back to the uniform domain. Finally, for each
turbine j and time step within the test data set i, the sam-
ples are transformed into the power domain using its cdf Fi,j
and summed over all turbines to yield a set of aggregated
power samples. Based on these M aggregated power sam-
ples, a power distribution, i.e. a probabilistic forecast, can be
derived.

To enlarge the test data set, we estimate covariance matri-
ces using a sliding window approach. This also allows us to
determine a joint predictive distribution that flexibly adapts
to changing atmospheric conditions. A change in wind direc-
tion, for example, will affect the wake situation of the tur-
bines and is consequently expected to have an impact on the
turbine subset’s joint distribution too.

In addition to the empirical covariance determined as de-
scribed above, we define and test parametric covariance ma-
trices based on an exponential relation,

6j,h = exp
(
−
1rj,h

ν

)
, (13)

with the covariance between two turbines6j,h and the spatial
distance1r between the position of turbines j and h (Gilbert
et al., 2020). The parameter ν is fitted using a least-squares
regression and the empirically determined covariance matrix.
The advantage of parametric copulas is their lower sensitivity
to reduced data availability, avoiding noisy covariances and
overfitting (Gilbert et al., 2020).

We further evaluate vine copulas as a more flexible option
compared to Gaussian copulas. Vine copulas describe a set of
bivariate copulas with variable distribution families for each
(turbine) pair (Bessa, 2016). Here, we determined vine cop-
ulas using the MATLAB framework developed by Coblenz
(2021). Distribution families are chosen using the Akaike in-
formation criteria (AIC) (Aas et al., 2009).

3 Results

After the general description of the methodological steps in
the previous section, we introduce the case study analysed
in this work and its case-specific parameters in Sect. 3.1. In
Sect. 3.2 the results of the LF and SF for individual wind
turbines are presented. Further, we assess the value of the
OF compared to the LF, SF and persistence (Sect. 3.3) and
evaluate the calibrated OF compared to the raw, i.e. the un-
calibrated, one (Sect. 3.4). Finally, we determine the forecast
skill of the aggregated probabilistic power of several wind
turbines and compare it against a probabilistic version of per-
sistence (Sect. 3.5).

3.1 Case study at the offshore wind farm Global
Tech I (GT I)

The methodology described in the previous sections is ap-
plied to and evaluated at the offshore wind farm Global
Tech I (GT I) in the German North Sea. The wind farm con-
sists of 80 turbines of type Adwen AD 5-116, with a hub
height of zhh = 92 m, a rotor diameter of D = 116m and a
rated power of Pr = 5 MW. The lidar was placed on the tran-
sition piece of turbine GT58 at a height of zTP = 24.6 m.
Horizontal plan position indicator (PPI) lidar scans were per-
formed with a WindCube 200S (serial no. WLS200S-024)
and with an elevation of 0◦, an azimuth angle spanning
150◦, an azimuthal resolution of 2◦, range gates from 500 to
7950 m in 35 m intervals and an accumulation time of 2 s. In-
cluding the measurement reset time, the scanning duration
was 156 s. The scanning trajectories, which were adjusted
manually according to four wind direction sectors, and the
wind farm layout are depicted in Fig. 1. Figure 1a addition-
ally depicts the layout of the wind farms Albatros and Hohe
See, which were under construction but not yet operational
during the time of the analysis. Those turbines did not cause
any wakes but were visible as hard targets in the lidar scans
occasionally, which were omitted during data filtering and
thus did not impact the forecast. More details on the mea-
surement campaign are available in Schneemann et al. (2020)
and Theuer et al. (2020b, 2021).

Each forecasted time step of the LF considered the six
most recent scans and thus can contain wind data measured
during the last 15 min. This ensures that also turbines posi-
tioned far away from the lidar scans can be reached by low
wind speeds, and their forecasts will not be biased. Wind
vectors contributing to the SF were weighted using a tun-
ing parameter of p = 4. The choice of this parameter is fur-
ther discussed in Sect. 4.1. The SF’s bias correction was per-
formed considering a number of Nt = 5 time steps prior to
forecast initialization. This ensures that there is enough data
for bias estimation while keeping the correlation high. The
step length was chosen as 1τ = 156 s in accordance with
that of the lidar scans. LF and SF were generated with an
area of influence of 2D and a minimum of 20 required wind
vectors (Theuer et al., 2021) and were resampled to contain
500 members. Forecast calibration was performed with a 5 h
training interval before forecast initialization. The time win-
dow was optimized in a sensitivity analysis. A calibration
was only performed for situations with at least 60 % valid
data within that training period.

To construct a joint predictive distribution of all turbines of
GT I a sufficiently large training data set with simultaneously
available forecasts of all turbines is required. As a conse-
quence of the limited forecast availability, we therefore only
considered subsets of turbines to generate and evaluate ag-
gregated power forecasts in this work. Turbine subsets were
selected based on the availability of simultaneously avail-
able forecasts and their proximity to each other (see Fig. 1b).
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Figure 1. Layout of the wind farm Global Tech I with turbine positions visualized as black dots. Further, the neighbouring wind farms
Albatros (+) and Hohe See (×) are shown. The lidar location is depicted as a red diamond and lidar trajectories as coloured dashed lines.
The Cartesian grid is centred around the lidar’s position. Grey horizontal lines mark turbine rows referred to in this work. The blue rectangle
indicates the zoomed-in region shown on the right. It displays turbine numbers of the wind farm’s centre region.

Here, a 6 h training window was used, again determined us-
ing a sensitivity analysis.

For forecast calibration, training of the copula and fore-
cast evaluation, 1 Hz SCADA power data, averaged to 1 min
intervals, were used.

3.2 Evaluation of lidar-based and SCADA-based power
forecasts for individual wind turbines

We evaluate 5 min ahead power forecasts generated within
the period 8 March to 21 June 2019 against 1 min mean
SCADA data. In total, 9438 valid forecasts were generated,
and 6753 were successfully calibrated. Hereby, we consid-
ered only situations during which both lidar and SCADA data
were available for forecast generation and evaluation and per-
sistence forecasts were available as a reference. The bench-
mark persistence assumes the future value equals the current
observation. A probabilistic version of persistence was con-
structed by adding forecasting errors of the past 19 time steps
to the current forecast as described by Gneiting et al. (2007).
Further, forecasts of individual turbines not in normal opera-
tion mode were neglected. The wind conditions of the 9438
analysed time steps are summarized as a wind rose in Fig. 2.
Wind speed and wind direction were extracted from the hori-
zontal PPI lidar scans. The Obukhov length L reaches values
as small as −27 m in unstable and 11 m in stable cases. Me-
dian values of L are −266 m for L < 0 and 268 m for L > 0.
In the following analysis we will distinguish between sta-
ble (L > 0) and unstable (L < 0) atmospheric conditions in
accordance with the definition of the stability-corrected log-
arithmic wind speed profile.

The forecast skill was determined by means of the average
continuous ranked probability score:

Figure 2. Wind speed and wind direction distribution extracted
from horizontal PPI lidar scans of the 9438 analysed time steps.

crps=
1
N

N∑
i=1

crpsi . (14)

To compare the skill of two forecasts the crps skill score (crps
ss),

crps ss= 100
(

1−
crps

crpsref

)
, (15)

with the reference forecast crpsref is applied.
To understand the impact of lidar coverage and turbine lo-

cation on the forecast skill and forecast availability of LF
and SF, we depict the number of available forecasts for each
method in Fig. 3a and b. In Fig. 4 we further compare the
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Figure 3. Forecast availability for (a) the lidar-based forecast, (b) the SCADA-based forecast, (c) the observer-based forecast and (d) the
observer-based forecast after filtering situations during non-normal operation. The subset of turbines shown in colours in (d) is analysed in
more detail in this work, while turbines marked in grey are not considered for further analysis. The colour scale and magnitude of the dots
visualize the number of valid forecasts.

crps ss of the LF and SF with persistence as reference for
individual turbines of GT I and distinguish between unsta-
ble and stable atmospheric conditions. Based on the number
of available forecasts the turbines GT30–GT75 (see Fig. 1)
were selected for further analysis. Grey vertical lines mark
horizontal wind turbine rows, with the turbine to the left of
the line located on the easterly side of the wind farm.

The westerly corner of the wind farm shows high LF avail-
ability (see Fig. 3a). In agreement with this, the LF was able
to outperform persistence during unstable atmospheric con-
ditions for those turbines covered well by the lidar scans
(e.g. GT52, GT58, GT64). Its forecast availability is reduced
for turbines located further away from the lidar. Here, also
the forecast skill is low. This can be attributed to the longer
time and distance wind vectors need to travel before reach-
ing these turbines. Even though we consider in addition to the
current lidar scan also previous ones, missing or low-quality
scans increase the risk of wind vectors not reaching the tur-
bines and negatively impact forecast skill. Moreover, high
uncertainty might be related to wake effects. Wind turbines
located in the northerly region of the wind farm show a low
skill score due to insufficient lidar coverage. The SF mainly
covers the easterly part of the wind farm and consequently

performs well for easterly located turbines (e.g. GT50, GT57,
GT63; see Fig. 4), also during unstable conditions. It can-
not predict free-flow turbines, considering the main westerly
wind direction, as no upstream turbines are available to prop-
agate from. Hence, skill scores are lower for turbines po-
sitioned close to the first row. Overall, the results indicate
that both methods are able to predict power of not only free-
stream turbines but also wake-influenced turbines more ac-
curately than persistence under unstable conditions. During
stable stratification both methods fail, in particular the SF.

Other than the SF, the LF is not bias-corrected to account
for systematic errors possibly related to wakes. We there-
fore consider it worthwhile to analyse the impact of wakes
on the LF in more detail. To do so, the crps and the bias
of GT30–GT75 are depicted in Fig. 5 for wind directions of
260–280◦ (Fig. 5a and b) and 170–190◦ (Fig. 5c and d). To
capture in particular situations strongly impacted by wakes,
we included only stable atmospheric conditions and situa-
tions operating below rated power (< 0.9Pr) in this anal-
ysis. The crps deteriorates, i.e. is growing, with increasing
distance to the free-stream turbines. In accordance with the
wind directions, forecasts are most accurate for westerly lo-
cated turbines in Fig. 5a and for southerly located ones, with
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Figure 4. The crps ss of LF and SF with persistence as reference for individual turbines of GT I and distinguishing between (a) unstable and
(b) stable atmospheric conditions. Grey vertical lines mark horizontal wind turbine rows.

the exception of GT75, in Fig. 5c. The bias is not distinctly
affected by the individual turbines’ position in the wind farm
and fluctuates closely around zero for westerly winds. For
southerly winds, scores are generally slightly larger, and the
bias of most turbines lies between 0.5 % and 1.5 %.

The LF’s dependency on lidar coverage was already shown
in previous work (Theuer et al., 2020b). Here, we focused
on the SF’s sensitivity to missing turbine data. In the case
of failing measurement devices or maintenance operations,
wind speed and wind direction information might be missing
or inaccurate for some turbines during periods of time. Here,
we analysed how the SF’s forecast skill is affected by miss-
ing turbines. To do so, we randomly excluded an increasing
amount of wind turbines as the origin of wind vector prop-
agation for the whole analysed time period. We will refer to
the number of turbines considered as turbine availability in
the following. In Fig. 6 we compare the forecast availability
and the crps normalized with respect to 100 % turbine avail-
ability for a number of exemplary turbines that have shown
high forecast availability. The normalized crps in Fig. 6b only
considers simultaneously available forecasts for all filter cri-
teria. A reduction in turbine availability clearly causes a de-
crease in forecast availability and skill for all of the anal-
ysed turbines. The impact of missing turbines increases with
lower turbine availability. For GT36, for instance, a reduc-
tion in turbine availability from 100 % to 50 % reduces the
forecast availability to 97 % and increases the crps by 4.8 %.
Further reducing turbine availability to only 25 % lowers the
forecast availability by another 10.6 % and increases the crps
by 11.5 %. A similar behaviour can be observed for turbines
GT35 and GT42. Only for turbine GT56 do the forecast
availability and crps change rather linearly.

3.3 Extension to an observer-based power forecast of
individual wind turbines

A main advantage of the OF compared to the LF or SF is
its increased forecast availability. This is visualized in Fig. 3,
where the number of available forecasts for the 80 turbines
of GT I for LF, SF and OF is shown. It becomes clear that
the LF and SF complement each other well in terms of data
availability (see Sect. 3.2) from which the OF can benefit.
It shows high availability in the wind farm’s centre, which
decreases when approaching the north-westerly and south-
easterly region of the wind farm. This is a consequence of
lidar trajectories, wind farm layout and wind conditions at the
site. The OF’s availability for the selected turbines, GT30–
GT75, after filtering turbines during non-normal operation
(see Sect. 3.2) is depicted in Fig. 3d.

In addition to the forecast availability also the forecast
skill can benefit from a combination of the two forecasting
methodologies. Figure 7 depicts the crps for the OF com-
pared to the LF, the SF and persistence for the 46 remaining
turbines. To be able to compare OF and LF with SF we only
consider situations for which both of the forecasts are avail-
able. That means that in Fig. 7a we only take those OFs into
account that consist of either a combination of LF and SF or
solely the LF. We distinguish between unstable atmospheric
conditions (L < 0) in blue and stable ones (L > 0) in red.
The dot size represents the number of available forecasts at
the respective turbine and is scaled with the maximal value
of available forecasts within each subplot. Data positioned
below the diagonal black line indicates an improvement of
the OF’s forecast skill compared to the reference method.

In addition, in Fig. 8 we present the crps skill score for
the individual wind turbines, distinguishing between atmo-
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Figure 5. The crps and bias of the LF for turbines GT30–GT75 in percent of rated power for stable atmospheric conditions, situations below
rated power, and wind directions of (a, b) 260–280◦ and (c, d) 170–190◦. The colour scale and magnitude of the dots visualize the magnitude
of the scores.

Figure 6. (a) Forecast availability (in %) and (b) crps normalized with respect to 100 % turbine availability (in %) for reduced turbine
availability and selected example turbines. The wind farm layout visualizes the turbines’ positions.

spheric conditions for the same cases as visualized in Fig. 7.
The OF shows higher forecast skill for all turbines in both
stable and unstable situations compared to the LF. It benefits
strongest from additional SFs for turbines located far away
from the lidar scans, which are most affected by the LF’s
long wind vector travelling distances and times and possi-
bly by wake effects. A number of turbines for which the ef-
fect almost disappears (e.g. GT44, GT51, GT58), indicated
by dots positioned close to the diagonal line and a crps ss
close to 0, are visible. Those correspond to free-stream tur-
bines for which the amount of valid SFs is small and the OF
consists mainly of LFs. Also compared to the SF, the OF’s

crps is improved for almost all analysed turbines. The ef-
fect is most distinct during stable atmospheric conditions and
for turbines close to the free-stream region of the wind farm
(e.g. GT39, GT54, GT60), thus with few upstream turbines
for the SF available. Here, the SF can benefit strongly from
additionally available lidar data. The OF is able to outper-
form persistence during unstable stratification for most tur-
bines; however, it fails to do so during stable cases. Turbines
for which the OF underperforms during unstable cases are
positioned in the northerly region of the wind farm. Those
located in the centre of the wind farm (e.g. GT50–GT58) can
be forecasted best due to the beneficial data basis.
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Figure 7. Comparison of crps of the observer-based forecast to the (a) lidar-based forecast, (b) SCADA-based forecast and (c) persistence
(% of the turbines’ rated power). Each dot represents crps for one of GT I’s wind turbines (GT30–GT75) both for stable and unstable
atmospheric conditions. The dot size scales with the number of forecasts considered. Only situations with forecasts available for both
methods are considered.

Figure 8. The crps ss of the OF with LF, SF and persistence as reference for individual turbines of GT I and distinguishing between
(a) unstable and (b) stable atmospheric conditions. Grey vertical lines mark horizontal wind turbine rows.

3.4 Calibration of observer-based power forecasts of
individual wind turbines

Forecast calibration aims to improve the probabilistic char-
acteristics of forecasts. Moreover, well-calibrated forecasts
are a prerequisite for the application of the copula approach
(see Sect. 2.4). In Fig. 9a we therefore compare the crps of
the raw and calibrated observer-based power forecast. As in
Fig. 7, we distinguish between atmospheric conditions and
scale the marker size according to data availability. For al-
most all of the analysed turbines the OF’s skill was consider-
ably improved by calibration. The effect seems most distinct
for turbines with less accurate forecasts, which often coin-
cide with lower data availability. A comparison of the OF
and persistence in Fig. 9b reveals that persistence is outper-
formed only for few of the turbines during stable atmospheric
conditions. However, the OF is now more skilful than persis-
tence during unstable situations for all analysed turbines.

In addition to crps we use reliability diagrams to evaluate
the consistency between the statistics of the forecast and the
observation. The reliability diagrams in Fig. 10 visualize the
analysed quantile steps [0, 0.1, . . . , 1] on the x axis. For each
time step the likelihood that a certain threshold is exceeded
is determined from the forecast members and assigned to its
specific quantile bin. The fraction of observations actually
exceeding the threshold for those time steps is shown on the
y axis. In this case, we define a threshold of 0.9Pr. Accurate
probabilistic forecasts of high-power regimes are particularly
important for grid integration and trading. The 95 % confi-
dence intervals of the reliability diagrams are determined by
means of a bootstrapping approach and visualized as error
bars. Due to the limited number of available forecasts, we
did not distinguish between atmospheric stability when eval-
uating reliability diagrams.
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Figure 9. Scatterplots as described in Fig. 7. In (a) calibrated and raw observer-based forecasts are compared, and in (b) the calibrated
observer-based forecasts in colour and the raw observer-based forecasts as black markers are compared to persistence.

Figure 10. Reliability diagrams of the raw observer-based forecast (purple), the calibrated observer-based forecast (green) and persistence
(grey) for turbines GT30, GT57 and GT64. The 95 % confidence intervals are visualized as error bars. The diagonal black line indicates
perfect reliability. Histograms show the number of valid forecasts per quantile step for the calibrated forecast.

To analyse differences in reliability dependent on turbine
location we selected the exemplary turbines GT30, GT57
and GT64. The reliability diagram of GT30 fluctuates more
strongly around the diagonal, and its confidence intervals are
broad compared to GT57 and GT64. As visible in the his-
togram, this is related to a smaller number of valid forecasts,
which in turn is a consequence of the turbine’s location in the
northerly region of the wind farm. In general, the data basis
is too poor to draw any conclusions from comparing the dif-
ferent methods or turbine locations. Overall, the OF seems
reasonably well calibrated.

3.5 Evaluation of aggregated wind turbine power
forecasts

As explained in Sect. 3.1, the aggregation of individual tur-
bines’ power forecasts requires a large number of simulta-
neously available turbine forecasts. Furthermore, these in-
dividual forecasts need to be well-calibrated (Bessa, 2016).
To have sufficiently large data sets that also allow for a dis-

tinction between atmospheric stability available we therefore
limited our analysis to a maximum number of seven turbines
per subset. Turbines within one subset were selected as those
in close proximity to each other to increase the number of si-
multaneously available forecasts. To test the copula approach
for a number of different circumstances, we selected subsets
covering different parts of the wind farm, e.g. the westerly
part in subset 1 and the easterly part in subset 3, and arranged
in different shapes, e.g. an elongated turbine cluster stretch-
ing from the wind farm’s south-westerly to north-easterly re-
gion in subset 2, a more dense cluster of turbines near the
free-flow region in subset 4 or a horizontal wind turbine row
in subset 5.

In addition to probabilistic forecasts of aggregated wind
turbine power, we also evaluated deterministic power fore-
casts using the root-mean-squared error (RMSE),

rmse=

√√√√ 1
N

N∑
i=1

(fci − obsi)2 , (16)
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Table 1. Turbine subsets, number of valid forecasts considered and
crps (% of the subsets’ rated power) for the vine, empirical and
exponential copula approach and persistence for unstable and stable
atmospheric conditions. The lowest scores are shown in bold.

Subset 1 2 3 4 5

Turbines 45, 46, 40, 45, 42, 43, 51, 52, 51, 52,
52, 58, 46, 52, 48, 50, 58, 59, 53, 54,
59, 65 58 55, 56, 64, 65 55, 56,

57 57

N 1012 1101 612 1074 876

crps [%] Persistence 2.32 2.99 3.39 2.29 2.20
unstable Vine 2.20 2.68 2.82 2.42 2.05

Empirical 2.21 2.68 2.83 2.42 2.07
Exponential 2.21 2.67 2.85 2.42 2.08

N 529 489 279 537 350

rps [%] Persistence 2.88 2.31 2.89 2.57 2.81
stable Vine 2.94 2.61 3.14 2.80 3.04

Empirical 2.94 2.59 3.12 2.80 3.03
Exponential 2.95 2.59 3.12 2.80 3.02

Table 2. The RMSE (% of the subsets’ rated power) for the vine,
empirical and exponential copula approaches, the deterministic ap-
proach, and persistence for unstable and stable atmospheric condi-
tions. The lowest scores are shown in bold.

Subset 1 2 3 4 5

Persistence 5.17 6.12 6.32 4.59 4.80
Deterministic 5.08 5.59 5.58 5.07 4.92

RMSE [%] Vine 5.11 5.65 5.56 5.09 4.92
unstable Empirical 5.11 5.67 5.54 5.10 4.94

Exponential 5.11 5.66 5.58 5.09 4.94

Persistence 5.25 4.21 5.41 4.51 5.01
Deterministic 5.59 5.02 5.81 5.24 5.58

RMSE [%] Vine 5.61 5.03 5.84 5.27 5.59
stable Empirical 5.62 5.01 5.86 5.29 5.61

Exponential 5.62 5.01 5.82 5.28 5.59

with forecasts fci and observations obsi with time index i and
number of analysed forecasts N .

We generated deterministic forecasts of turbine subsets by
aggregating deterministic forecasts of individual turbines and
refer to this method as deterministic OF in the following. De-
terministic forecasts of individual turbines were determined
by averaging their ensemble members. Additionally, the en-
semble members of the subsets’ probabilistic power fore-
casts determined using the three different copula approaches,
namely the empirical Gaussian copula, the parametric Gaus-
sian copula and the vine copula (see Sect. 2.4), were aver-
aged. The turbine subsets used, the number of valid forecasts
considered within each subset, and the results for the differ-
ent copula approaches and persistence are summarized in Ta-
bles 1 and 2 for unstable and stable atmospheric conditions.
Further, reliability diagrams of all subsets and approaches are
shown in Fig. 11. The average absolute difference between

empirical and nominal coverage for quantile steps q and their
number Nq is summarized as quantile mean absolute error
(mae),

quantile mae=
1
Nq

Nq∑
q=1
|empirical coverageq

− nominal coverageq |, (17)

and is additionally shown in Fig. 11f.
In terms of crps, four out of five subsets are able to out-

perform the benchmark persistence during unstable atmo-
spheric conditions. For stable atmospheric conditions, per-
sistence performs best. Generally, forecast skill is higher for
the aggregated forecasts compared to those of individual tur-
bines due to the smoothing of power fluctuation averaging.
For three subsets unstable atmospheric conditions can be pre-
dicted more accurately than stable situations by all evaluated
methods, contradicting previous results. A comparison of the
different approaches and subsets with regard to their reliabil-
ity and quantile mae is not conclusive, considering the over-
lap of the wide confidence intervals. This is a consequence of
the small number of available forecasts. In terms of RMSE,
the copula approaches are able to outperform persistence for
three and the deterministic OF for only one of the evaluated
subsets during unstable atmospheric conditions (see Table 2).
During stable cases, persistence is most accurate for all five
subsets. Overall, scores are very similar for the three tested
approaches, and none of them can be identified as superior.

The analysis of the covariance matrices revealed their dy-
namic behaviour over time. The sliding-window approach al-
lows the covariances to adapt to changing atmospheric con-
ditions. In Fig. 12 we show average empirical and exponen-
tial covariance matrices of subset 1 for different conditions.
We distinguish between atmospheric stability, average power
production of free-flow wind turbines (GT30, GT37, GT44,
GT51, GT58, GT64, GT69, GT73) and average wind direc-
tion of turbines GT30–GT75. We select covariances consid-
ering conditions during the 6 h time window used for copula
training.

A comparison of empirical (left, Fig. 12a, c, e, g, i and k)
and exponential covariance matrices (right, Fig. 12b, d, f, h, j
and l) makes clear that covariances are smoothed by the pa-
rameterization. For exponential covariances, a distinct de-
pendency on the turbines’ spacing can be observed. Fig-
ure 12a–d show that, as expected, covariances are on aver-
age higher during stable atmospheric conditions than during
unstable cases. In Fig. 12e–h we compare covariances of sit-
uations with turbines operating below rated power (< 0.9Pr)
and those running at rated power (≥ 0.9Pr). Slightly larger
values can be observed below rated power. In Fig. 12i–l we
analyse the covariances’ dependency on wind direction. To
exclude the impact of atmospheric stability and power pro-
duction, we only consider cases with stable stratification and
turbines operating below rated power here. To maximize the
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Figure 11. (a–e) Reliability diagrams for the different turbine subsets (1–5) and copula approaches summarized in Table 1 and persistence.
The turbine subsets are marked in red in the small wind farm layouts. Histograms show the number of valid forecasts per quantile step for
the empirical copula approach. The diagonal black line indicates perfect reliability. In (f) the corresponding quantile maes are shown. For all
subfigures 95 % confidence intervals are visualized as error bars.

number of valid covariance matrices, relatively large wind
direction intervals of 240–300 and < 240◦ are chosen. Over-
all, covariances are higher for westerly winds as compared
to south and south-westerly winds. We relate this mainly
to changing wake situations. We exemplarily analyse the
covariances’ dependency on wind direction using turbine
pairs GT45–GT46, GT45–GT52 and GT46–GT52. While
for westerly winds the average covariance of GT45–GT52
is higher than that of GT45–GT46 and GT45–GT52, it is
lower for south and south-westerly winds. This can be ex-
plained because for westerly winds, GT45 and GT52 expe-
rience similar wake conditions and are positioned approxi-
mately perpendicular to the incoming wind. In contrast, for
south and south-westerly winds, their wake situation is dif-
ferent, with GT52 placed upstream of GT45. Here, GT45–
GT46 and GT46–GT52 are subject to more similar wake ef-
fects and exhibit higher covariances. It should be noted that
the number of covariance matrices considered for the differ-
ent filter criteria varies considerably.

4 Discussion

In the following, we review the lidar- and SCADA-based
forecasting methodologies with regard to the impact of

wakes and data availability. Further, the generation and cali-
bration of the observer-based forecast, as well as the aggre-
gation of individual power forecasts by means of a copula ap-
proach, are discussed. Finally, we assess the value of minute-
scale power forecasts of offshore wind in a broader context.

4.1 Lidar- and SCADA-based power forecasts of
individual wind turbines

In previous work (Theuer et al., 2020b, 2021) we have fo-
cused on the forecast of the first row of wind turbines, with
respect to the main wind direction, only. Here, we extended
the forecast to all wind turbines of the wind farm, also includ-
ing waked wind turbines. Generally, the LF’s skill is high-
est for free flow turbines and areas covered well by the lidar
scans. As discussed in more detail in Theuer et al. (2020b),
lidar range, scanning trajectory and wind farm layout do
not only influence the forecast availability but can also im-
pact forecast uncertainty and relate to, for example, a fore-
cast bias. Our analysis has revealed that forecasting errors
are larger for wind turbines and wind directions directly im-
pacted by wakes, while a systematic over- or underestima-
tion of wind speed was not observed. That means that the
LF is generally able to capture the mean wake effect; how-
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Figure 12. Average covariances of turbine subset 1 determined using the empirical (left: a, c, e, g, i, k) and exponential (right: b, d, f, h, j, l)
copula approaches. Unstable (a, b) and stable (c, d) cases and situations with turbines operating below (< 0.9Pr) (e, f) and at rated power
(≥ 0.9Pr) (g, h) are compared. In (i)–(l) stable situations with turbines operating below rated power with wind directions ranging from
240–300◦ (i, j) and < 240◦ (k, l) are depicted. The turbine subset 1 is marked in red in the small wind farm layout.

ever, it is not able to forecast small-scale fluctuations asso-
ciated with it. The LF considers, just like persistence, past
observations at the turbine of interest that are then multi-
plied with the wind speed tendency determined from lidar
data (see Sect. 2.1). It is thus able to account for wakes
to some extent. We assume that the higher errors observed
are mainly related to turbulence in wake regions that cannot
be represented well by Lagrangian advection. Furthermore,
wind vectors reaching turbines positioned in the easterly and
north-easterly region of the wind farm were typically propa-
gated over a longer distance and time compared to turbines
closer to the lidar scans. These vectors can be associated with
higher uncertainty. For the SF, forecasts are most accurate
in the region of the wind farm opposite to the prevailing
wind direction, i.e. the north-easterly region. Here, the ap-
plied bias correction prevents systematic errors. Wind vector
propagation of the SF is affected more strongly by wakes
than the LF as it is performed at hub height. Also Vallde-
cabres et al. (2020) accounted for wakes in their work by
applying a directional turbine efficiency, which significantly
improved their results. However, the forecast was only able to
outperform persistence in terms of crps for wake-influenced
turbines during ramp events.

The SCADA-based forecast introduced in this work is
based on a high-frequency (0.2 Hz) flow reconstruction and
prediction methodology developed by Rott et al. (2020). We
extended this work to a probabilistic approach by resampling
the selected wind vectors by also considering the weights as-
signed to them and included a power transformation. Rott
et al. (2020) applied and validated their model to a high-
frequency data set, aiming at applications in wind turbine
control. In our work, we focus on 1 min mean forecasts
with a temporal resolution of 2.5 min, in accordance with
the lidar scans. Therefore, we adjusted the methodology to
pre-select wind vectors following the lidar-based forecasting
methodology, considering only those reaching an area of in-
fluence within a certain time window before applying the in-
verse temporal distance weighting. As opposed to Rott et al.
(2020), we neglected the spatial distance weighting and re-
lied solely on the temporal distance weighting, using a Shep-
ard parameter of p = 4. Rott et al. (2020) state that the usage
of large Shepard parameters results in a more accurate repre-
sentation of wind speed fluctuations, while lower parameters
allow a robust forecast of average wind speeds. We chose a
medium parameter as a good compromise between robust-
ness and temporal resolution of wind speed fluctuations.
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While the flow reconstruction method was applied only to
forecasts with lead times up to 120 s, the results indicated
that an application to forecasts with larger lead times might
be valuable. Rott et al. (2020) showed that forecast accu-
racy decreases with lead time; however, its skill compared to
persistence increases. Our results confirm the methodology’s
benefit compared to persistence for lead times of 5 min. In-
accurate wind direction data might impact the accuracy of
SCADA-based forecasts. Wind direction was determined us-
ing the absolute yaw position and wind vane of each turbine,
both of which are subject to uncertainties (Mittelmeier and
Kühn, 2018; Simley et al., 2021). Rott et al. (2020) identi-
fied the model’s approach to consider wakes and disturbances
of the sonic anemometers and consequently wind direction
measurements as additional sources of uncertainty.

The SF is able to account for missing data to some extent.
It can thus be considered robust against the lack of data of
individual wind turbines that might occur during daily oper-
ation of a wind farm due to maintenance or failing measure-
ment devices. Only with more distinct reductions in turbine
availability were forecast skill and forecast availability sig-
nificantly reduced. In that case, gaps are too large, and impor-
tant information is lost. How strongly missing turbine data
impact forecast accuracy is also dependent on wind speed,
wind direction and the target turbine’s position. They could,
just like insufficient lidar coverage, cause systematic fore-
casting errors.

4.2 Extension to an observer-based power forecast,
forecast calibration and aggregation

The lidar- and SCADA-based forecasts complement each
other well in terms of data availability. Further, the forecast
skill of the observer-based forecast outperforms both individ-
ual methods. Our analysis clearly showed that both forecast-
ing methods, LF and SF, profit from the additional data set
considered in the OF. While we relate this mainly to an im-
proved data basis for certain areas of the wind farm, a com-
bination can also benefit from the individual forecasts’ me-
thodical differences. During unstable situations the SF was
most significantly improved for turbines close to free-flow
turbines due to significantly improved coverage. For stable
stratification, the largest improvement shifts to turbines lo-
cated further downstream. We relate this to more pronounced
wake effects during stable stratification. As suggested previ-
ously, the LF is able to account for wakes more accurately
than the SF (see Sects. 3.2 and 4.1), which means it can sig-
nificantly increase the SF’s value in such situations. For tur-
bines located far away from the lidar, when propagated li-
dar wind vectors are associated with high uncertainty due to
wakes and their increased propagation distance and time, the
OF mainly benefits from more recent SCADA wind vectors.

It is common practice in (power) forecasting to combine
different forecasting approaches to improve performance.
Junk et al. (2015), for instance, combined different ensem-

ble prediction systems to multi-model ensembles. They in-
troduced different weighting approaches, namely implicit
weighting, equal weighting and optimized weighting. The
authors found that optimized weighting did not improve fore-
cast calibration, while implicit weighting, which is based on
the different number of ensemble members of the models,
performed best. In our work, we were not able to apply im-
plicit weighting as the number of wind vectors selected for
the forecast strongly depends on the different spatial and tem-
poral scales of the data sources. Future work should anal-
yse how the different numbers of wind vectors reaching a
certain turbine using the LF or SF can be considered in the
weighting, thus moving from the equal weighting approach
to a more implicit one.

Forecast calibration by means of ensemble model output
statistics allows us to correct for systematic errors, as well as
ensemble spread. By using a moving-time-window approach
it is also possible to account for systematic errors varying
with atmospheric conditions, for instance wind-direction-
dependent wake losses. Varying atmospheric stability and
turbulence intensity that might impact power fluctuations can
be addressed by adapting the forecast spread.

As we were only able to aggregate a maximum of seven
turbines, it is not yet possible to draw any conclusion regard-
ing the copula approach’s ability to predict the total wind
farm power. Results indicate, however, that copulas can be a
valuable tool to support the generation of probabilistic fore-
casts. Even though we generally expect persistence to have
an advantage compared to observer-based methods for ag-
gregated wind power forecasts as power fluctuations are aver-
aged out, persistence underperformed for four out of five sub-
sets in terms of crps during unstable conditions. The higher
skill during unstable situations compared to stable ones for
three of the analysed subsets contradicts previous results
(Theuer et al., 2020b, 2021). It is likely related to a higher
number of situations with turbines operating at rated power,
which are associated with a higher forecast skill. Gilbert et al.
(2020) applied a similar methodology to aggregate individual
wind turbines’ power forecasts and were also able to beat two
benchmarks, namely a quantile regression model and an ana-
logue ensemble method. However, their forecast’s lead time
was much larger, its temporal resolution was much lower, and
a distinction between stability cases was not made, making a
comparison difficult. The high temporal resolution of the OF
might be one reason why covariances in our study are gener-
ally lower compared to the results of Gilbert et al. (2020). We
found the magnitude of covariances to be dependent on atmo-
spheric stability, turbine spacing, power production and wind
direction. The small data set makes a more detailed distinc-
tion between different conditions difficult. Covariances are
lower in situations with many power fluctuations, as expected
during unstable atmospheric conditions and when turbines
are subjected to wakes. Also for high-power regimes, when
typically the ensemble spread is narrow, quantiles are less
correlated, and thus the covariances are low. In cases where
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power forecasts and actual power production of neighbouring
turbines can be expected to be rather similar, covariances are
higher. This might happen due to more homogeneous wind
fields upstream, typically during stable atmospheric condi-
tions, and when the impact of wakes on the neighbouring
turbines is similar.

An analysis of the RMSE revealed that for deterministic
forecasts of turbine subsets it is more skilful to aggregate
individual deterministic wind turbine forecasts. The compar-
ison of different copula approaches suggests the use of an
empirical or parametric copula instead of a vine copula. Vine
copulas are more computationally expensive; however, they
are able to achieve only marginally better results. Similar
conclusions were drawn by Bessa (2016) and Gilbert et al.
(2020). Results also varied for different turbine subsets. This
is possibly related to different numbers of turbines consid-
ered, the different skill of the individual turbines’ forecasts
or varying distributions of atmospheric conditions within the
data sets. For Sklar’s theorem to hold, marginal distributions
of forecasts need to be uniformly distributed. While our fore-
casts were reasonably well calibrated, further improvement
would possibly also have benefits in the copula generation.

4.3 Future value of minute-scale offshore wind power
forecasts

For future minute-scale forecasts of offshore wind power,
considering, for example, the large number of wind farms in
the North Sea and also their close proximity to each other,
it might be beneficial to include operational data of sev-
eral wind farms into the observer-based forecast. We expect
that these additional data sources could further increase data
availability, enhance forecast skill and in particular enlarge
the forecast horizon. In such a case, however, one would need
to carefully calibrate the forecast to include operational data
from different wind farms. The availability of lidar-based
forecasts could further be increased by deploying several li-
dar devices and by developing more powerful lidars, e.g. with
considerably increased range or scanning speed. This might
facilitate multi-elevation scans with a better resolution of the
rotor swept area of future very large offshore turbines.

The forecast skill of lidar-based, SCADA-based and con-
sequently observer-based forecasts is expected to decrease
with increasing lead time as a consequence of assumptions
made during Lagrangian advection as discussed in previ-
ous studies (Würth et al., 2018; Rott et al., 2020; Theuer
et al., 2020b). An observer-based forecast covering large ar-
eas of, for example, the North Sea is therefore not expected
to be able to forecast small-scale structures very accurately.
However, it would likely be able to predict the occurrence
of power ramps caused, for example, by passing fronts. It
was shown in numerous studies and confirmed in this work
that remote-sensing-based forecasts are able to outperform
persistence in particular during unstable or turbulent situa-
tions and also during ramp events (Valldecabres et al., 2020;

Theuer et al., 2021). We expect this to be true also for fore-
cast horizons larger than 5 min, which we were restricted to
in this work (Theuer et al., 2020b). The development of an
early warning system of potentially grid-critical power ramps
based on observer-based forecasts covering the North Sea is
therefore considered a valuable extension to persistence. To
this end, further analysis will investigate how the forecast
skill for larger horizons compares to that of persistence dur-
ing different conditions.

The overall value of observer-based forecasts compared to
persistence for longer time periods will strongly depend on
typical atmospheric conditions at the wind farm site. During
stable atmospheric conditions forecasts are generally more
accurate, but the OF is not able to outperform persistence
(Theuer et al., 2021). In those cases, applying persistence
should be considered instead or possibly a hybrid model that
includes persistence (Theuer et al., 2022).

The aggregation of individual wind turbine power fore-
casts using a copula approach was strongly restricted by lim-
ited data availability in this work. As shown in other work
(Valldecabres et al., 2018a; Theuer et al., 2020b) and pre-
viously discussed, the availability of forecasts is strongly de-
pendent on lidar trajectories, wind farm layout and wind con-
ditions. Excluding certain operating conditions of turbines
further reduced the available data set. That means, in partic-
ular for a wind farm as large as Global Tech I, the genera-
tion of reliable simultaneously available forecasts for all tur-
bines is difficult. Further analysis is required to evaluate how
the proposed methods might benefit probabilistic power fore-
casts for wind farms of smaller size or with an overall higher
forecast availability. Also trajectory optimization or the in-
stallation of multiple lidars instead of just one could improve
the applicability of the copula approach. To evaluate the ben-
efit of hierarchical forecasting these methods should also be
compared to wind farm power forecasts that do not con-
sider individual power forecasts on the turbine level (Pichault
et al., 2021).

5 Conclusions

We developed an observer-based minute-scale offshore wind
power forecast by combining a lidar-based and a SCADA-
based approach. To improve probabilistic forecast skill we
calibrated the observer-based approach. Further, a copula
methodology was implemented to generate probabilistic
power forecasts of aggregated turbine subsets.

Our results revealed the high potential of a complemen-
tary use of lidar-based and SCADA-based forecasts regard-
ing both forecast availability and skill. We conclude that a
combination of SCADA- and lidar-based forecasts is benefi-
cial for all turbines in the wind farm and during both stable
and unstable atmospheric conditions. Lidar-based forecasts
were less skilful for wake-influenced turbines than for free-
stream ones; however, they were able to predict the mean
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wake effect. SCADA-based forecasts were found to be very
robust against reduced turbine availability. To guarantee high
availability and skill of lidar-based forecasts a careful plan-
ning of lidar scanning trajectories is required, considering
main wind direction, wind farm layout and lidar capabilities.

Forecast calibration was found to significantly reduce the
forecasts’ average crps; however, as a consequence of the
small data set, no conclusions regarding the calibration’s im-
pact on reliability could be drawn. Even though forecast skill
was significantly improved compared to the raw forecasts,
calibrated observer-based forecasts were only able to out-
perform persistence during unstable rather than stable atmo-
spheric conditions. Based on these results we conclude that
for an operational use of the observer-based forecast a dis-
tinction between atmospheric conditions is useful. Given the
current status of the methodology, during stable conditions
it is recommended to rely on persistence. Also the use of a
hybrid methodology might be beneficial and should be ex-
plored in the future. Applying the copula approach to gener-
ate aggregated probabilistic power forecasts for turbine sub-
sets showed high potential. Empirical and parametric covari-
ance matrices were found advantageous over vine copulas
in particular considering their high computational cost. The
copula approach was not able to add value to deterministic
forecasts.

In future work the copula approach for probabilistic
minute-scale power forecasting needs to be further analysed
for wind farms with higher overall forecast availability.
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Rott, A., Petrović, V., and Kühn, M.: Wind farm flow recon-
struction and prediction from high frequency SCADA Data, J.
Phys.: Conf. Ser., 1618, 062067, https://doi.org/10.1088/1742-
6596/1618/6/062067, 2020.

Rott, A., Schneemann, J., Theuer, F., Trujillo Quintero, J. J., and
Kühn, M.: Alignment of scanning lidars in offshore wind farms,
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-
283-2022, 2022.

Scheuerer, M.: Probabilistic quantitative precipitation forecasting
using Ensemble Model Output Statistics, Q. J. Roy. Meteorol.
Soc., 140, 1086–1096, https://doi.org/10.1002/qj.2183, 2014.

Schneemann, J., Rott, A., Dörenkämper, M., Steinfeld, G.,
and Kühn, M.: Cluster wakes impact on a far-distant off-
shore wind farm’s power, Wind Energ. Sci., 5, 29–49,
https://doi.org/10.5194/wes-5-29-2020, 2020.

Schuhen, N., Thorarinsdottir, T. L., and Gneiting, T.: Ensemble
Model Output Statistics for Wind Vectors, Mon. Weather Rev.,
140, 3204–3219, https://doi.org/10.1175/MWR-D-12-00028.1,
2012.

Simley, E., Fleming, P., Girard, N., Alloin, L., Godefroy, E., and
Duc, T.: Results from a wake-steering experiment at a com-
mercial wind plant: investigating the wind speed dependence
of wake-steering performance, Wind Energ. Sci., 6, 1427–1453,
https://doi.org/10.5194/wes-6-1427-2021, 2021.

Späth, S., von Bremen, L., Junk, C., and Heinemann, D.:
Time-consistent calibration of short-term regional wind
power ensemble forecasts, Meteorol. Z., 24, 381–392,
https://doi.org/10.1127/metz/2015/0664, 2015.

Sweeney, C., Bessa, R. J., Browell, J., and Pinson, P.: The future
of forecasting for renewable energy, WIREs Energ. Environ., 9,
e365, https://doi.org/10.1002/wene.365, 2020.

Theuer, F., van Dooren, M. F., von Bremen, L., and Kühn,
M.: On the accuracy of a logarithmic extrapolation of
the wind speed measured by horizontal lidar scans, J.
Phys.: Conf. Ser., 1618, 032043, https://doi.org/10.1088/1742-
6596/1618/3/032043, 2020a.

Theuer, F., van Dooren, M. F., von Bremen, L., and Kühn, M.:
Minute-scale power forecast of offshore wind turbines using
single-Doppler long-range lidar measurements, Wind Energ.
Sci., 5, 1449–1468, https://doi.org/10.5194/wes-5-1449-2020,
2020b.

Theuer, F., van Dooren, M. F., von Bremen, L., and Kühn, M.:
Lidar-based minute-scale offshore wind speed forecasts analysed
under different atmospheric conditions, Meteorol. Z., 31, 13–29,
https://doi.org/10.1127/metz/2021/1080, 2021.

Theuer, F., Schneemann, J., van Dooren, M. F., von Bremen, L., and
Kühn, M.: Hybrid use of an observer-based minute-scale power
forecast and persistence, J. Phys.: Conf. Ser., 2265, 022047,
https://doi.org/10.1088/1742-6596/2265/2/022047, 2022.

Thorarinsdottir, T. L. and Gneiting, T.: Probabilistic fore-
casts of wind speed: ensemble model output statistics
by using heteroscedastic censored regression, J. Roy. Stat.
Soc. Ser. A, 173, 371–388, https://doi.org/10.1111/j.1467-
985X.2009.00616.x, 2010.

Valldecabres, L., Nygaard, N., Vera-Tudela, L., von Bremen, L., and
Kúhn, M.: On the Use of Dual-Doppler Radar Measurements for
Very Short-Term Wind Power Forecasts, Remote Sens., 10, 1701,
https://doi.org/10.3390/rs10111701, 2018a.

Valldecabres, L., Peña, A., Courtney, M., von Bremen, L.,
and Kühn, M.: Very short-term forecast of near-coastal
flow using scanning lidars, Wind Energ. Sci., 3, 313–327,
https://doi.org/10.5194/wes-3-313-2018, 2018b.

Valldecabres, L., von Bremen, L., and Kühn, M.: Minute-Scale De-
tection and Probabilistic Prediction of Offshore Wind Turbine
Power Ramps using Dual-Doppler Radar, Wind Energy, 23, 1–
23, https://doi.org/10.1002/we.2553, 2020.

Werner, C.: Lidar: Range-Resolved Optical Remote Sensing of the
Atmosphere, in: chap. 12 – Doppler Wind Lidar, Springer, New
York, NY, 325–354, https://doi.org/10.1007/0-387-25101-4_12,
2005.

Würth, I., Ellinghaus, S., Wigger, M., Niemeier, M., Clifton, A.,
and Cheng, P.: Forecasting wind ramps: can long-range li-
dar increase accuracy?, J. Phys.: Conf. Ser., 1102, 012013,
https://doi.org/10.1088/1742-6596/1102/1/012013, 2018.

Würth, I., Valldecabres, L., Simon, E., Möhrlen, C., Uzunoğlu,
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