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Abstract. Uncertainty quantification is necessary in wind turbine design due to the random nature of the en-
vironmental inputs, through which the uncertainty of structural loads and response under specific situations can
be quantified. Specifically, wind turbulence (described by the standard deviation of the longitudinal wind speed
over a 10 min time duration) has a significant impact on the extreme and fatigue design envelope of the wind tur-
bine. The wind parameters (mean and standard deviation of longitudinal wind speed over 10 min time duration)
are not independent stochastic variables, and structural reliability analysis or uncertainty quantification therefore
requires these wind parameters to be correlated stochastic parameters. An accurate probabilistic model should be
established to model the correlation among wind parameters. Compared to univariate distributions, theoretical
multivariate distributions are limited and not flexible enough to model the wind parameters from different sites
or direction sectors. Copula-based models are often used for correlation description, but existing parametric cop-
ulas may not model the correlation among wind parameters well, due to limitations of the copula structures. The
Gaussian mixture model is widely applied for density estimation and clustering in many domains, but limited
studies have been conducted in wind energy and few have used it for density estimation of wind parameters. In
this paper, the Gaussian mixture model is used to model the joint distribution of mean and standard deviation of
longitudinal wind speed over 10 min time duration, which is calculated from 15 years of wind measurement time
series data. As a comparison, the Nataf transformation (Gaussian copula) and Gumbel copula are compared with
the Gaussian mixture model in terms of the estimated marginal distributions and conditional distributions. The
Gaussian mixture model is then adopted to estimate the extreme wind turbulence (wind parameters for extreme
load), which could be taken as an input to design loads used in the ultimate design limit state of turbine structures.
The wind parameter contour associated with a 50-year return period computed from the Gaussian mixture model
is compared with what is used in the design of wind turbines as given in IEC 61400-1. The Gaussian mixture
model is able to model the joint distribution of wind parameters well, where the estimated tail distributions of
both the marginal distributions and conditional distribution have good accuracy, and it is a good candidate for
extreme turbulence estimation.

Wind turbulence is characterized by the turbulence kinetic
energy, its dissipation rate, and the length scale. This is mod-
eled using three-dimensional anisotropic spectra that cap-
ture the auto-correlation and cross-correlation of the spatio-
temporal wind speed variation, such as through the Mann
model (Mann, 1994). Such models assume the wind turbu-

lence is a Gaussian process, whereby several frequencies
of wind velocity variations may occur, resulting in different
wind velocities distributed as a function of time and space.
Usually, the wind turbulence for wind turbine design is spec-
ified over a 10 min time window and the stochastic process
is assumed to be stationary. The occurrence of extreme tur-
bulence can then be categorized based on its return period.
In wind turbine design, the wind turbulence with a 50-year

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.




2136

return period is used in ultimate limit state analysis (IEC,
2019).

Many uncertainties exist in the evaluation of the design
loads of wind turbine components. The IEC 61400-1 stan-
dard lists several load cases of the relevance of ultimate limit
state analysis, wherein the load cases under normal operation
usually require a partial safety factor (PSF) of 1.35 applied to
the characteristic loads. Such PSFs are determined by quan-
tifying the uncertainties in the load evaluation and the under-
lying distributions of the relevant inputs. An important load
case towards determining ultimate design loads on wind tur-
bine structures is the design load case (DLC) 1.3, in which
the turbine is under normal operation under 50-year extreme
wind turbulence. While relationships to evaluate the extreme
turbulence level are provided in IEC 61400-1, there has been
much debate on its accuracy and quantification, with edition-
3 of IEC 61400-1 specifying a lognormal distribution for tur-
bulence and edition-4 specifying it as a Weibull distribution.
Several studies (Dimitrov et al., 2017; Abdallah et al., 2016)
have proposed different models for extreme wind turbulence
based on site measurements, and a large uncertainty can be
seen in determining the long-term behavior of wind turbu-
lence. Mathematically, an issue with the modeling of wind
turbulence has been that the IEC 61400-1 standard and the
literature are mainly focused on the probability distribution
of the standard deviation of the wind speed (o, ) conditional
on the mean of the longitudinal wind speed over a 10 min
time duration (u#), whereas it is required that the joint distri-
bution of ¢, and u is properly modeled.

A joint distribution model could be used for modeling
multivariate random variables and generating random sam-
ples. Theoretical bivariate distributions are limited and not
flexible enough. Monahan (2018) modeled the joint proba-
bility distribution of wind speeds at different locations us-
ing bivariate Rice distribution and bivariate Weibull distribu-
tion. The joint distribution of random variables could also be
described by the univariate marginal distribution functions
and a copula. A copula is a multivariate cumulative distri-
bution function, where the marginal distribution follows a
uniform distribution on the interval [0, 1]. Copulas are used
for modeling the dependency among the random variables.
Several families of copulas have been proposed in the lit-
erature, e.g., Gaussian copula (Nataf transformation (Xiao,
2014)) and Archimedean copulas (Bouyé et al., 2011). Using
marginal distributions and copula to model the multivariate
distributions is feasible, but the marginal distributions should
be flexible enough to represent the wind inflow under vary-
ing environmental conditions, and the tail of the fitted distri-
bution should be well representative of the actual inflow be-
havior. The copula structures should also be flexible enough
to model different correlation structures. It is not clear which
copula model (Abdallah, 2015) to choose to determine the
joint distribution given marginal distributions.

To model extreme turbulence well, both the main body
and the tail of the joint probability distribution of ¢, and u
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should be accurately represented. The Gaussian mixture
model (GMM) is broadly used for clustering tasks (Zhang
et al., 2021). GMM is a flexible model which can also per-
form density estimation on multivariate data with different
marginal distributions and correlation structures. It is widely
applied to different fields of study, e.g., speech and audio
processing (Reynolds and Rose, 1995), image classification
(Permuter et al., 2003), density estimation of microarray data
in bioinformatics (Steinhoff et al., 2003), cancer classifica-
tion (Prabakaran et al., 2019), and finance (Miyazaki et al.,
2014). GMM is less commonly applied in wind energy com-
pared to other domains, although Chang et al. (2017) used
a GMM-based neural network for short-term wind power
forecast, Cui et al. (2018) used GMM for fitting the prob-
ability distribution of wind power ramping features, Zhang
et al. (2019) used GMM for wind turbine power dispatch-
ing, Li et al. (2020) used GMM for electrical loads fore-
cast, and Srbinovski et al. (2021) used GMM for model-
ing the site-specific wind turbine power curves. GMM has
been rarely adopted for wind parameter modeling, although
Wahbah et al. (2018) used univariate GMM for wind speed
probability density estimation, where the joint distribution
of wind speed with other parameters was not investigated.
Scarce published literature uses GMM for density estimation
of wind inflow parameters and GMM has not been used for
modeling the joint distribution of u and o,.

In this paper, GMM is used for modeling the joint dis-
tribution of the wind parameters u and o,,. GMM is firstly
used for density estimation of a random sample from a the-
oretical bivariate ¢ distribution. It is then used for modeling
the wind parameters from both offshore and onshore sectors.
GMM is benchmarked to the measurement data by compar-
ing the marginal distributions and the conditional distribu-
tions. The wind parameter contour with a 50-year return pe-
riod is also computed from a GMM model with IFORM anal-
ysis (Winterstein et al., 1993). For the wind parameters from
the offshore sector, Gaussian copula (Nataf transformation)
and Gumbel copula are also compared.

2 Gaussian mixture model

GMM (McLachlan et al., 2019) is a mixture of several
weighted Gaussian distributions and has been used for clus-
ter analysis (Janouek et al., 2015) and density estimation
(Steinhoff et al., 2003). GMM could be used for hard clus-
tering and soft clustering of data. For hard clustering, each
observation is assigned to the component returning the high-
est posterior probability, where each observation is assigned
to exactly one cluster. Soft clustering, as opposed to hard
clustering, assigns each observation to more than one clus-
ter and each observation is assigned a responsibility (relative
density). In terms of density estimation, the GMM is use-
ful for multivariate distribution representations with multi-
ple modes, but this does not prevent it from also being used
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for single-mode distributions. GMM is a linear combina-
tion of multivariate Gaussian distribution components, where
each component is defined by its mean and covariance. Even
though a weighted sum of Gaussian random variables is a
Gaussian random variable, a weighted Gaussian distribution
is not necessarily Gaussian. When there are more than two
components for GMM, it is multi-modal and the distribution
is not Gaussian. The probability distribution function (pdf)
of a d-dimensional multivariate Gaussian is

1
N(x|p, )= XP<—§W—1UZ‘Wx—Mf>,

ey

1
@

where u is the 1-by-d mean vector and X is the d-by-d co-
variance matrix. The pdf of GMM is

k
px)=>Y mN (x|n;. %)) . )
j=1

where k is the number of components, which is a hyper-
parameter, and 77 is the component coefficient (weight) and
follows

k
domi=1 0<m<1. 3)
j=1

Some information criteria are proposed in the literature
(Akaike, 1998; Schwarz, 1978) to determine k, where k is
selected as a balance of overfitting and underfitting. Never-
theless, when the sample size is too large, the criteria are not
effective and further research is required. To use GMM for
density estimation and also for random sample generation,
the model parameters {7, R X;,j=1,2,...,k} should be
estimated from the data sample {x,,n =1,2,..., N}, where
N is the sample size. The initial model parameters are calcu-
lated from the clusters evaluated by the k-means clustering
algorithm (Arthur and Vassilvitskii, 2006), and optimized by
the expectation-maximization (EM) algorithm (McLachlan
et al., 2019) as follows:

1. Assign the N observations to the k clusters using the
k-means clustering algorithm. Compute p;, X;, and
7 j from the observations within each cluster.

The k-means clustering assigns N observations to
k clusters, which are defined by the centroids. Each data
point x, with the closest centroid is assigned to the cor-
responding cluster. The centroids are recalculated and
the data points are reassigned until the clusters do not
change or the maximum iteration number is met. This
is a hard clustering, and within each component, the
pj and X are calculated, and the 7; is calculated as
the number of data points in the current cluster divided
by N.
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2. Expectation-maximization (EM) algorithm: the model
parameters {7, R, X;,j=1,2,...,k} are found by an
iterative EM algorithm (Dempster et al., 1977) to have
a maximum likelihood estimation.

a. E step: evaluate the responsibilities using the cur-
rent model parameters. The responsibility y;(x) is
the probability that component j takes for explain-
ing the observation x,, which is calculated as

TN (xnli;. 5)

’ . @)
‘X;niN(xn“Liv 2:i)

Vi (xp) =

b. M step: update the model parameters using the re-
sponsibilities from E step. The mean for compo-
nent j is calculated as

N

Z Vi (xn)xn
Z Vi (Xn)
n=1

The covariance for component j is calculated as

N T
21 i en) (X0 — ;) (X0 — 1)

= (6)

N
Zl Vi (xp)

and the j component coefficient is calculated as

1 N
mj= D Vi) %
n=1

3. Repeat step 2 until the model parameters converge or
the maximum number of iterations is met.

3 Results

GMM is proposed to model the joint distribution of u and o,
where the estimation error is small at both the main body
pdf and the tail distribution. To verify the use of GMM, it is
firstly used to recover the multivariate ¢ distribution from a
t distribution random sample. The flexibility of GMM (espe-
cially for modeling non-Gaussian joint distribution) and the
demonstration of the procedure of using GMM for density
estimation is detailed. To sample from the fitted joint dis-
tribution is very important, as many reliability analysis and
uncertainty quantification applications require random sam-
ples as inputs. The random samples from GMM are com-
pared with the random sample from the ¢ distribution and
wind parameters. To compute the number of components &,
the value is increased from 1 until the estimated density func-
tion converges.
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Table 1. Initial GMM parameters.
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Component 1 2 3 4
number
0]
Wi [-1.972 —2.037] [1.978 1.966] [—-0.552 —0.522] [0.521 0.511]
1.242  0.067 1.237 0.128 0.396  —0.155 0.384  —0.155
,Z [0.067 1.273 ] [0.128 1.128 ] [—0.155 0.396 ] [—0.155 0.396 ]
i 0.107 0.111 0.388 0.395
Table 2. Final GMM parameters.
Component 1 2 3 4
number
@)
i [—1.80 —0.736] [0.016 0.001] [—0.011 —0.004] [0.014 0.015]
24.655 11.076 4.794 2937 1.505 0.891 0.586 0.354
ZZ [1 1.076 21.447 ] [2.937 4.900 ] [0.891 1.508 } [0.354 0.580 }
i 0.004 0.119 0.504 0.373
Using copulas to develop non-Gaussian joint distributions 15
of u and o, is initially attempted. A joint probability distri- é
bution of u and o, is then modeled by GMM. For estimating 10} _—
the extreme turbulence (wind parameter contour with 50-year sl < 4]
return period), the accuracy of the tail distribution is impor-
tant. The probability of exceedance of o, conditional on u S ol
from GMM is thus compared with the measurement data. To
further examine the flexibility of GMM, the wind measure- St
ment data from both the offshore and onshore sectors are in- ,
vestigated and the 50-year wind parameter contours are com- -10r
pared. 15 ‘ ‘ ‘
-15 -10 -5 0 5 10 15

3.1 Multivariate t distribution

The pdf of the d-dimensional multivariate Student’s ¢ distri-
bution is

1 1 XX x ®)
122 Jur)d v ’

where X is a correlation matrix with a correlation coeffi-
cient 0.6 and v =35 is the degrees of freedom. The multi-
variate Student’s ¢ distribution generalizes the univariate Stu-
dent’s ¢ distribution, and its marginal distributions all have
univariate Student’s ¢ distribution. The marginal distributions
of multivariate Student’s ¢ distribution have fatter tails than
the normal distribution. A random sample with size 10° is
generated from the bivariate ¢ distribution, and GMM is used
to fit the bivariate ¢ distribution.

The estimated density function converges when the num-
ber of components k =4 and, therefore, the k-means clus-
tering algorithm is used to cluster the data points into k =4
components. The mean, covariance, and the component co-
efficient (sample size at each component divided by the to-

f(x,X,v)=

I'((v+d)/2) 1
T(v/2)
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Figure 1. The k-means clustering of the ¢ distribution sample.

tal sample size) calculated from each component are taken
as initial parameters for GMM, which are shown in Table 1.
The four clusters are plotted in Fig. 1, where the means are
plotted in circles.

Following the procedure of the EM algorithm (see Sect. 2),
the model parameters are estimated, which are shown in Ta-
ble 2. Figure 2 shows the random sample from the ¢ distribu-
tion and GMM, and Fig. 3 shows the corresponding contour
plots. The random sample from GMM has a similar correla-
tion structure to the theoretical ¢ distribution. For probabil-
ity densities higher than 10>, GMM agrees well with the
theoretical ¢ distribution; for lower densities, there is some
deviation, which is due to the small sample size and sample
variation.
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t distribution

-15
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Figure 2. Random sample from the ¢ distribution and GMM.

t distribution |
_-- - .GMM

-15 -10 -5 0 5 10 15

Figure 3. Contour plot of the ¢ distribution and GMM.

3.2 Wind measurements

Wind measurements from the Hgvsgre Test Centre for Large
Wind Turbines in western Denmark (Dimitrov et al., 2017,
Hannesdoéttir et al., 2019) are used in this study. The 10 min
high-frequency time series of three-dimensional wind veloc-
ities at a height of 100 m is selected. The period of measure-
ments is from 1 January 2005 to 1 January 2020, i.e., 15 years
of measurement data (Hannesdéttir et al., 2019). Values of
u and o,, which are linearly detrended, are calculated from
10 min time series. The wind parameters from the offshore
sector (225 to 315°) and onshore sectors (150 to 180° and
45 to 135°) are studied here. Outliers and potentially missing
data elements are omitted. The sensors on the Hgvsgre mast
are replaced regularly and calibrated, the data used in this pa-
per are calibrated data (Pefia Diaz et al., 2016). The sample
size is about 2.43 x 10° for the offshore sector, 4.09 x 10* for
the onshore sector (150 to 180°), and 1.41 x 10> for the other
onshore sector (45 to 135°). The wind speed variation is con-
sidered to be stationary, and non-stationary wind conditions
are not included in this study.

https://doi.org/10.5194/wes-7-2135-2022
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The marginal distributions to be used are to be defined and
the correlation between the variables is modeled by the cop-
ula structure. Here, a Weibull distribution is used for mod-
eling the marginal distribution of u, where the scale param-
eter is 11.61 and the shape parameter is 2.35. The plots are
shown in Fig. 4. The lognormal distribution is used for mod-
eling the marginal distribution of o,, where the mean and
standard deviation of logarithmic values are —0.61 and 0.52.
The plots are shown in Fig. 5. Both the linear and logarith-
mic scales are plotted, where the main body pdf and tail dis-
tribution could be compared. It can be seen that Weibull and
lognormal distributions are good fits for # and o,, respec-
tively. The univariate Gaussian distribution is also used here
to fit the distribution of # and o, but it is not a proper fit,
which also indicates that the multivariate Gaussian distribu-
tion is not a good candidate for modeling the joint distribu-
tion of the wind parameters. The Nataf transformation (Xiao,
2014) and Gumbel copula are used here to model the joint
distribution of u and o, and generate random samples. The
generated random sample is shown in Fig. 6, where the left
figure is the scatter plot of the measurement data, the mid-
dle figure is the Nataf transformation-generated sample, and
the right figure is the Gumbel copula-generated sample. The
Nataf transformation- and Gumbel copula-generated samples
have the same sample size as the measurement data. They
have the same fitted marginal distributions but different cop-
ula structures, as demonstrated in Fig. 6.

The different copula structures lead to different condi-
tional distributions. The Nataf transformation- and Gumbel
copula-estimated probabilities of exceedance of o, condi-
tional on u are shown in Figs. 7 and 8, respectively. Only
the distributions u > 16 ms™! are plotted, as they are close
to the tail and affect the 50-year turbulence estimation most.
As is seen in Fig. 7, the probabilities of exceedance of o,
conditional on u deviate from the measurement data signif-
icantly. Using a Gumbel copula, as is shown in Fig. 8, even
though there is a reasonable agreement when u ranges from
16 to 20m s, a larger discrepancy arises for higher mean

Wind Energ. Sci., 7, 2135-2148, 2022
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Figure 4. Marginal distribution of # with Weibull fitting.
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Figure 6. Nataf transformation and Gumbel copula random samples for the offshore sector.

wind speeds. The differences in the conditional distribution
between the copula-estimated and measurement data indicate
that using copula could lead to a biased 50-year turbulence
estimation and large model uncertainty for DLC 1.3 simula-
tions.

Even though other copula structures are available, they are
not flexible enough to represent the joint distribution of u

Wind Energ. Sci., 7, 2135-2148, 2022

and o, from different measurement sites or even the same
site for different wind direction sectors. The correct copula to
use to generate the joint distribution of u and o, for tail esti-
mation requires further research. However, instead of fitting
the joint distribution using copula methods, a multivariate
distribution is another option. To perform density estimation
on univariate random variables, many theoretical probability
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Figure 8. Gumbel copula probability of exceedance of ¢;, conditional on u.

distributions are available, e.g., normal, Weibull, lognormal,
Rayleigh distribution, and the methods described in Zhang
et al. (2020) and Low (2013), etc. On the other hand, fewer
probability distributions are available for multivariate density
estimations. This creates a similar limitation of copula mod-
els, i.e., theoretical multivariate distributions are limited and
not flexible enough to model the u and o, measurements that
possess different correlation structures. GMM on the other
hand is quite flexible, since a number of Gaussian distribu-
tions with corresponding weights could be used to estimate

https://doi.org/10.5194/wes-7-2135-2022

the probability densities for multivariate variables and gener-
ate correlated samples.

3.3 GMM-based estimation of wind parameters for the
offshore sector

It is important to model the joint distribution of wind pa-
rameters, which could be used for uncertainty quantification,
structural optimization, and reliability analysis of wind tur-
bines. The joint distribution should have a small estimation

Wind Energ. Sci., 7, 2135-2148, 2022
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Figure 9. Measurement data and GMM random sample for the offshore sector.
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Figure 10. Marginal distribution of u for the offshore sector.

Linear scale

Probability density

7, (m/s)

Figure 11. Marginal distribution of o;, for the offshore sector.

error for a realistic 50-year turbulence estimation. For the
copula examples in Sect. 3.2, the marginal distributions are
estimated well, but not the correlation structure, which leads
to inaccuracies in the conditional distribution. Using GMM
does not have the same limitation, as a good joint distribu-
tion estimation will estimate both marginal distributions and
correlation structures with small estimation errors.

Wind Energ. Sci., 7, 2135-2148, 2022
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GMM is adopted here to model the joint distribution of u
and o,. The measurement data and GMM random samples
are shown in Fig. 9, where the correlation structure of the
measurement data is well captured. The marginal distribu-
tion of u is shown in Fig. 10 and the marginal distribution
of g, is shown in Fig. 11. Compared to Figs. 4 and 5, the
marginal distributions from GMM have a smaller difference

https://doi.org/10.5194/wes-7-2135-2022



X. Zhang and A. Natarajan: Gaussian mixture model for extreme wind turbulence estimation 2143
u =16 m/s u =18 m/s u =20 m/s
= 1.5 > 1.5 = 15
=} = =
Q Q Q
< 1 < 1 < 1
2 2z oy
<05 £o0s £0s
S © S
g 2 2
~ ~ -9
0 0 0
0 0.5 1 1.5 2 0 1 2 3
o, (m/s) o, (m/s)
u=22m/s u=24m/s
2 2 Measurement 2 2 2 2
‘B | GMM R B2
£15 g LS 515
< < ]
> > >
= 1 = 1 | = 1
£ £ £
© 0.5 © 0.5 < 0.5
= e 2
~ ~ ~
0 0 0 A
0 1 2 3 0 1 2 3 1 1.5 2 2.5 3
7, (m/s) o, (m/s) 7, (m/s)
Figure 12. GMM probability distribution of oy, conditional on u for the offshore sector.
o u =16 m/s o u =18 m/s 0 u =20 m/s
Q Q Q
=} 1 =} 1 = 1
< < <
B B 10! 3 107
o 10 o 10 o 10
S S S
S0 210 210
2 103 2 o3 2 03
210 210 W =10
= 4 = 4 = R
£ 10 Z10 <10 N
2 10° 2 100 2 107
1 =4
&0 05 1 15 2 & 0 SE 1 2
o, (m/s) o, (m/s)
g u=22m/s g ) u =26 m/s
g 1 s 1 = 1
< < <
=] k=] ]
8 10°1 8 191 B 191
o 10 o 10 o 10
P P P
(5] (5] [
B 107 B 107 5 107
2 2 2
E 10-3 Measurement \ E 10-3 E 10—3
I GMM £ g
210 2 10* 210
A~ 0 1 2 3 A~ 0 1 2 3~ 1.5 2 2.5 3
o, (m/s) o, (m/s) o, (m/s)

Figure 13. GMM probability of exceedance of o;, conditional on u for the offshore sector.

to the measurement data at both the main body pdf and the
tails. The univariate Gaussian distribution is not a good fit for
either of the marginal distributions, but GMM is a good fit,
as its marginal distribution is a linear combination of univari-
ate Gaussian distributions (not necessarily Gaussian distribu-
tions), which is more flexible compared to a Gaussian distri-
bution. Which theoretical distribution to choose for marginal
distribution estimation remains a problem, especially when
the sample size is small and the tail might exhibit different

https://doi.org/10.5194/wes-7-2135-2022

shapes. GMM does not have the trouble of selecting distribu-
tions for marginal distribution estimation.

The probability distribution of o, conditional on u is plot-
ted in Fig. 12. The probability of exceedance of o, condi-
tional on u is plotted in Fig. 13. Both the main body pdf and
the probability of exceedance from GMM agree quite well
with the measurement data; for the bins when u =26 ms~!,
the tail of the measurement data is not accurate due to the

small sample size (412).
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Figure 14. GMM and IEC 50-year turbulence estimation for the
offshore sector.

The 10 min turbulence level (wind parameter contours)
associated with a return period of 50 years as provided in
IEC 61400-1 and as computed by GMM are shown in Fig. 14.
The contour labeled IEC (blue “+”) uses a reference tur-
bulence intensity Ief = 0.12 (corresponding to wind turbine
class C) as the input to perform IFORM analysis (Win-
terstein et al., 1993; IEC, 2005), where u is modeled by
Weibull distribution and the probability distribution of o,
conditional on u is modeled by lognormal distribution (IEC,
2005). The IEC (data) (green “x”) is the same as the IEC
(blue “+7) except that I..f = 0.057, which is calculated as
the expected value of turbulence intensity at a mean wind
speed of 15m s~! from the measurement data (IEC, 2005).
The contour labeled IEC (data) has lower values than the con-
tour labeled IEC, since Iir is smaller (0.057 vs. 0.12). The
50-year contour estimated using GMM with IFORM anal-
ysis (Winterstein et al., 1993) is realistic, as it has a simi-
lar shape to the scatter plot of the measurement data and the
most data points are inside the contour. The marginal distri-
butions agree well with the measurement data (as are shown
in Figs. 10 and 11), the conditional distributions are validated
in Figs. 12 and 13. The IEC contour happens to be aligned
with GMM, but IEC 61400-1 does not prescribe a joint prob-
ability distribution or the marginal distribution for o;,. As the
Iier used is much larger than obtained through the measure-
ment data (0.12 vs. 0.057), it could be inferred that the use of
a lognormal distribution conditional on the mean wind speed
or the empirical formulas in IEC (2005) might not be accu-
rate. The fourth edition of the IEC 61400-1 (IEC, 2019) does
not increase the accuracy with the Weibull distribution for
turbulence conditional on the mean wind speed, as the 50-
year turbulence level is still unchanged.
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3.4 GMM-based estimation of wind parameters for the
onshore sectors

It is worth investigating the applicability of GMM to other
wind direction sectors, where the wind parameters have dif-
ferent correlation structures due to different terrains. The
u and o,, in the onshore section (150 to 180°) are modeled us-
ing GMM. The measurement data and a random sample from
GMM are shown in Fig. 15, where the correlation structure
is different from the offshore sector in Fig. 9. The marginal
distribution of u is shown in Fig. 16 and the marginal distri-
bution of o,, is shown in Fig. 17. Negligible differences could
be seen in the comparison of the main body pdfs and the tails.
The probability distribution of ¢, conditional on u is plotted
in Fig. 18. The probability of exceedance of o, conditional
on u is plotted in Fig. 19. Note that the sample size is smaller
than for the offshore sector (4.09 x 10* vs. 2.43 x 10°), so the
tail distribution of the onshore measurement data has lower
accuracy as compared to the offshore sector, but still per-
forms better than using the method of copulas. The 50-year
turbulence contour is shown in Fig. 20, where the left figure
shows the 50-year turbulence estimated from the measure-
ment data from the sector with direction from 150 to 180°,
and the right figure is from the sector with direction from
45 to 135°. A slightly larger 50-year contour is estimated
from the 45 to 135° sector. Figures 18-20 show that GMM is
indeed flexible and can be used to model u and o, for differ-
ent wind conditions, albeit for flat terrains.

Note that the estimated density function converges when
k = 8 for all the joint distribution estimations of wind param-
eters using GMM. More components are needed compared
to the theoretical ¢ distribution (8 vs. 4), as the correlation
structure between u and o,, is more complex.

4 Conclusions

GMM is proposed to model the joint distribution of wind
parameters, i.e., u and oy, and it is readily implementable
and provides realistic 50-year turbulence levels. This model
has been validated using multi-year high-frequency wind ve-
locity measurements at one site for offshore climate and for
flat land terrains. Copula-based joint probability models were
not found to have the flexibility to accurately model the tails
of 0, conditional on u.

A procedure using GMM that properly captures the
joint distribution of wind parameters is proposed. Both the
marginal distributions of # and o;,, and the distribution of o,
conditional on u were shown to reflect the multi-year wind
measurements. This model allows a good estimation of the
50-year turbulence (validated by the marginal and condi-
tional distributions), which serves as an input to wind turbine
design load cases. The procedure of GMM is demonstrated
by fitting the theoretical multivariate ¢ distribution. GMM is
then used to estimate the probability distribution of offshore
wind parameters and two-sector onshore wind parameters.
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Figure 18. GMM probability distribution of o, conditional on u for the onshore sector.
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Figure 19. GMM probability of exceedance of o;, conditional on u for the onshore sector.

There is good agreement between the GMM-estimated prob-
ability distribution and the measurement data. The 50-year
wind parameter contour is estimated from GMM and com-
pared with the corresponding values based on IEC 61400-1.
The applicability to different sectors of the wind measure-
ment data demonstrates its flexibility and shows its poten-
tial for modeling the joint distribution of wind parameters.
Compared to copula methods, it has less estimation error for
the estimated marginal distributions and conditional distribu-
tions.

Wind Energ. Sci., 7, 2135-2148, 2022

Determination of the optimal number of components for
GMM requires further research. In this paper, four compo-
nents were found to be required to sufficiently model the the-
oretical ¢ distribution and eight components were required
to model the wind parameters for both offshore and onshore
sectors of the chosen site. As more components are used, the
pdf of GMM will converge to the target distribution, but will
require more computational effort (several minutes on a stan-
dard laptop computer). Another limitation for GMM is that it
might not extrapolate well for certain correlation structures,
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Figure 20. GMM and IEC 50-year turbulence estimation for two onshore sectors.

especially if the sample size is small, even though the model
is quite flexible.
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