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Abstract. Hourly modeled wind turbine power output time series – modeled based on outputs from the
mesoscale numerical weather prediction system Weather Research and Forecasting Model (WRF) – are used to
examine the spatial smoothing of various wind farm portfolios located on a complex isolated island group with
a surface area of 1400 km2. Power spectral densities (PSDs), hourly step-change functions, and duration curves
are generated, and the 5th and 95th percentiles and the standard deviations of the hourly step-change functions
are calculated. The spatial smoothing is identified from smaller high-frequency PSD amplitudes, lower hourly
fluctuations, and more flat duration curves per installed wind power capacity, compared with single wind turbine
outputs. A discussion on the limitation of the spatial smoothing for the region is included, where a smoothing
effect is observed for periods of up to 1–2 d, although it is most evident at higher frequencies. By maximiz-
ing the smoothing effect, optimal wind farm portfolios are presented with the intention of minimizing overall
wind power fluctuations. The focus is mainly on the smoothing effect on the 1–3 h timescale, during which the
coherency between wind farm power outputs is expected to be dependent on how the regional weather travels
between local sites, thereby making optimizations of wind farm portfolios relevant – in contrast to a focus on
either lower or higher frequencies on the scale of days or minutes, respectively, during which wind farm power
output time series are expected to be either close to fully coherent due to the same weather conditions covering a
small region or not coherent as the turbulences in separate wind farm locations are expected to be uncorrelated.
Results show that an optimization of the wind farm capacities at 14 pre-defined wind farm site locations has a
minimal improvement on the hourly fluctuations compared with a portfolio with equally weighted wind farm
capacities. However, choosing optimized combinations of individual wind farm site locations decreases the 1–
3 h fluctuations considerably. For example, selecting a portfolio with four wind farms (out of the 14 pre-defined
wind farm site locations) results in 15 % lower 5th and 95th percentiles of the hourly step-change function when
choosing optimal wind farm combinations compared with choosing the worst wind farm combinations. For an
optimized wind farm portfolio of seven wind farms, this number is 13 %. Optimized wind farm portfolios consist
of distant wind farms, while the worst portfolios consist of clustered wind farms.
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1 Introduction

Most nations strive to make their electricity generation less
dependent on fossil fuels. Wind power is an attractive so-
lution, being environmentally friendly, mature, and afford-
able. However, an increase in the wind power contribution
to the power grid can cause challenges as wind varies across
various timescales. Measures are required to mitigate natu-
ral wind power fluctuations in order to balance and keep the
grid stabilized. One possible measure is spatial distribution
of wind farm siting, see, e.g., Beyer et al. (1990) or Katzen-
stein et al. (2010). Isolated grids face special challenges, as
they usually span across small areas. Therefore, the available
wind resource is partly or fully co-varying, which poses a
serious challenge for maintaining the energy balance of the
grid.

The wind power fluctuations in a confined isolated region
are examined in this study, in which the Faroe Islands are
used as a case study. The Faroe Islands are a small isolated
mountainous island group (1400 km2) in the north east of
the Atlantic Ocean, ∼ 300 km away from any mainland; see
Fig. 1. The topography is complex, and the climate is windy.
Battery systems have been installed in the Faroe Islands
and can handle wind variability up to timescales of several
minutes. Manual set-point control of hydropower and fossil
power plants is presently used to compensate for wind vari-
ability on timescales from several minutes to several days.
In the future, the contribution from wind power will increase
rapidly, and the present manual-control regime will be put
under pressure. There is therefore considerable local interest
in limiting the inherent wind variability on hourly timescales
in the Faroe Islands.

The aim of the study is to analyze and optimize the
smoothing effect caused by the nature of dispersed wind farm
sites in the region. Wind farm portfolios are optimized with
the objective of minimizing the 2–3 h power output fluctua-
tions.

There are numerous studies in the literature on analyzing
the smoothing effect of spatially distributed wind farm sites
on various time and spatial scales, applying different tech-
niques, e.g., correlation analysis (Beyer et al., 1993; Katzen-
stein et al., 2010; Pearre and Swan, 2018; Giebel, 2000),
step-change analysis (Beyer et al., 1990, 1993; Katzenstein
et al., 2010; Pearre and Swan, 2018; Giebel, 2000), visual-
ization of duration curves (Giebel, 2000; Barasa and Aganda,
2016; Katzenstein et al., 2010), and analysis in the frequency
domain (Beyer et al., 1990, 1993; Nanahara et al., 2004a, b;
Katzenstein et al., 2010; Poulsen and Beyer, 2020). One ad-
vantage of frequency analysis is the ability to characterize
the extent of the smoothing effect for many frequencies. The
reduction in the total variance of aggregated wind farm data
can be small even though a significant smoothing effect oc-
curs at higher frequencies, as observed by Beyer et al. (1990).
In contrast, time domain analysis – such as step-change anal-
ysis and duration curves – may be more intuitive to inter-

Figure 1. Map generated with the software © Google Earth Pro
(see affiliation on the map). The red circle marks the position of the
Faroe Islands.

pret. Other examples of studies analyzing the smoothing of
spatially distributed wind farms in the time domain include
Palutikof et al. (1990), Wan et al. (2003), and Giebel (2001).

The study by Frank et al. (2021) is an example of a recent
study examining the smoothing effect of the natural variabil-
ity in both wind and solar power. They analyzed daily data
from 11 European countries. Although their focus was both
on wind and solar power, the smoothing effect of spatially
distributed wind power can be seen in their results, based on
the low correlation coefficients and low joint probabilities of
the minimum and maximum wind power between countries.
In addition, they optimize the installation ratio between so-
lar and wind power in order to reduce extreme fluctuations.
Even though their results cannot be directly compared with
the results in this study, their study demonstrates the potential
of balancing the natural fluctuations from renewable energy
resources by considering the configuration of the resources.

Reichenberg et al. (2014) and Cassola et al. (2008) are ex-
amples of studies focusing on minimizing fluctuations in the
total wind power production through wind farm optimiza-
tion. Reichenberg et al. (2014) developed a method for opti-
mizing the locations of wind farms by minimizing the coeffi-
cient of variation of the total wind power output time series.
Their method is based on sequential optimization of site lo-
calization, and it is applied in the Nordic countries and Ger-
many. Cassola et al. (2008) proposed a procedure for opti-
mally distributing the relative size of considered wind farms
either by minimizing the variation in the total wind power
output time series or by minimizing the ratio between the
variation and the total wind energy production. Their method
was tested with regards to wind power data at 10 locations
in Corsica (France), a complex island in the Mediterranean
Basin stretching 175 km in the latitude direction and 80 km
in the longitude direction with a mountain chain crossing the

Wind Energ. Sci., 7, 2335–2350, 2022 https://doi.org/10.5194/wes-7-2335-2022



T. Poulsen et al.: Optimization of wind farm portfolios for minimizing overall power fluctuations 2337

islands in the north–south direction and peaks higher than
2000 m. However, the results from these studies cannot be
directly compared to the results obtained in this study, as the
methodologies are different as well as the geography.

The results in the present study are based on hourly mod-
eled wind turbine power output data, which are analyzed
by generating power spectral densities (PSDs), hourly step-
change functions, and duration curves for individual and
lumped power output time series. Moreover, the 5th and 95th
percentiles and the standard deviations of the hourly step-
change functions are extracted for quantitatively comparing
the results. The PSDs are further used to optimize wind farm
portfolios by identifying the wind farm combinations with
the lowest 2–3 h wind power fluctuations.

The methodology applied in the presented wind farm port-
folio optimization study is unconventional – using spectral
results as the objective function for minimizing the over-
all wind power fluctuations, a powerful methodology in the
sense that the optimization focuses solely on the preferred
frequencies. No such optimization study has ever been con-
ducted for the Faroe Islands region.

The datasets used in this study are introduced in Sect. 2,
the methods applied are described in Sect. 3, the results are
presented in Sect. 4, and a summary and conclusions are
given in Sect. 5.

1.1 A note on ignoring the wind farm smoothing effect –
paper assumption

In this study, turbine outputs are analyzed, thus neglecting
the potential smoothing effects within wind farms. Various
studies investigate the coherence function between time se-
ries on a wind farm scale (Schlez and Infield, 1998; Vigueras-
Rodríguez et al., 2012; Vincent et al., 2013); the coherence
function can be used as a measure of the smoothing effect be-
tween time series as a function of frequency. If the coherence
is high, the smoothing effect is small in the considered fre-
quency range. If the coherence is small, a smoothing effect
occurs.

The distance between the two farthest turbines in the
largest wind farm in the Faroe Islands at the time of the
preparation of this paper – with thirteen 0.9 MW turbines
– is about 670 m. For a wind speed of 10 m s−1 (approx-
imate average values as observed for the Faroe Islands re-
gion by Poulsen et al., 2021), a distance of 670 m, and a fre-
quency of (2 h)−1, the analytical coherence model presented
by Vigueras-Rodríguez et al. (2012) yields squared coher-
ence values of 0.81 and 0.92 in the lateral and longitudinal
directions, respectively, and the wind farm smoothing effect
is therefore expected to be small for frequencies of up to
(2 h)−1. For larger wind farms, a wind farm smoothing effect
is expected. Although this is outside the scope of this study, a
more detailed study could apply methods such as those pre-
sented by Nørgaard and Holttinen (2004) or Sørensen et al.
(2008) when scaling up turbine outputs to large wind farms.

2 Data

Hourly Weather Research and Forecasting Model (WRF)-
generated wind speed data are the primary dataset used
throughout this study. Time series are extracted at locations
with favorable wind farm conditions. In addition, available
empirical data are used for comparison.

2.1 WRF-generated wind speed data

WRF-generated data were simulated by Kjeller Vindteknikk
and made available to us by SEV (the local power com-
pany of the Faroe Islands). The model setup is documented
in Haslerud (2019). Multiple output parameters were gener-
ated, including the wind speed data used in this study, vali-
dated by Poulsen et al. (2021). WRF version v3.8.1 was used
for the simulations, with 51 vertical levels (8 in the lower
200 m). Three nested domains were used, with horizontal
resolutions of 500× 500, 1500× 1500, and 7500× 7500 m,
for the innermost, middle, and outer domains, respectively.
The innermost domain covered the entire Faroe Islands. Data
were stored every hour during the period from 1 July 2016 to
30 June 2018. The Thompson scheme, the Mellor–Yamada–
Janjić scheme, and the NOAH scheme were applied for mi-
crophysics, boundary layer mixing, and the surface, respec-
tively. Every 3 h, ERA5 reanalysis data with a horizontal
resolution of approximately 0.25 ◦ were used as boundary
condition (available from the European Centre for Medium-
Range Weather Forecasts, ECMWF).

2.2 Empirical data

During the period from 1 July 2016 to 30 June 2018, hourly
power production data from three wind farms operating on
the Faroe Islands are available. The hub heights of all tur-
bines (except one smaller) are 45 m a.g.l. In addition, 10 min
averaged wind speed measurements from an additional site at
a height of 52.8 m a.g.l. during the period from 21 July 2016
to 30 June 2018 are available. The locations of the four sites
are pinpointed in Fig. 2.

2.3 Favorable wind farm site locations

Magnussen (2017) presented a map with current and poten-
tial wind farm site areas on the Faroe Islands; see Fig. 2. The
areas were selected based on modeled wind resource, dis-
tance from the road, distance from the high-voltage grid, ter-
rain slope, populated areas, and presence of water and rivers.
These considerations were weighted and merged. Based on
additional considerations, as expected turbulent areas, some
locations were rejected, and a selection of favorable wind
farm sites was composed.

Data at these favorable locations are used throughout the
study.
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Figure 2. Gray areas mark the terrain of the Faroe Islands. Red
patches mark current and potential wind farm locations as se-
lected by Magnussen (2017). Black markers pinpoint sites from
which actual measured data are available for the period of July
2016 to June 2018, denoted by the letters A to D. The area of
the terrain was created using a 10 m raster map extracted from
https://www.foroyakort.fo/ (last access: 16 October 2022), created
in Denmark from satellite data from 2017.

3 Method

Modeled wind turbine power output data at a height of
45 m a.g.l. from the period of July 2016 to June 2018 are ex-
amined. The data processing of the time series is explained
in the following subsection. The applied analytical methods
are defined in the second and third subsections.

3.1 Data processing

WRF-generated wind speed time series for selected sites are
vertically interpolated to a height of 45 m a.g.l. This height is
chosen because all operating wind turbines in the Faroe Is-
lands at the time of the preparation of this paper had a hub
height of 45 m a.g.l. The interpolated time series are subse-

quently corrected for the aliasing effect, as elaborated on in
the Appendix.

The wind speed time series are modeled to power output
time series using the power curve of an Enercon E-44 wind
turbine with a storm control function (Enercon, 2012) and a
rated power of 0.9 MW. This turbine model is chosen because
most of the currently operating wind turbines in the Faroe
Islands are of the type Enercon E-44.

To be able to compare results, all power output time series
are normalized by their rated wind power capacity. When
time series are aggregated, the lumped time series is com-
puted prior to normalization.

3.2 Approaches for the characterization of the power
output time series

In this study, three analyzing techniques are applied to the
time series – spectral analysis, step-change analysis, and the
generation of duration curves – each of which is elaborated
on in the following subsections. The first two characterize
the time series fluctuations, while the latter characterizes the
distribution of the power generation.

3.2.1 Spectral analysis

PSDs are generated for normalized power output time series
using discrete Fourier transform. Only the amplitudes corre-
sponding to the positive frequencies of the discrete Fourier
transform are extracted. Thus, the integral of the raw spectra
with respect to frequency yields about half of the variance of
the time series. Due to the inherent uncertainty of raw spec-
tral estimates, smoothed PSDs are generated by dividing the
time series into chunks, calculating the spectral results for
each chunk, and then averaging over all chunks. For each
chunk, the average value is subtracted, and a hamming win-
dow is applied. A 50 % overlap between chunks is used.

The length of the chunks is a compromise between the
accuracy of the PSD estimates (smaller chunks, i.e., more
chunks) and the frequency resolution and the lowest resolv-
able frequency (longer chunks). In this study, a length of 256
data points was chosen (10 d and 16 h), giving 135 overlap-
ping chunks for the 2-year-long hourly time series. The PSD
estimates will therefore be generated for frequencies between
(256 h)−1 (thus, including PSD estimates for the 3–4 d pe-
riod of the timescale of migratory low-pressure systems at
mid and high latitudes) and the Nyquist frequency of (2 h)−1

with a resolution of (256 h)−1.

3.2.2 Step-change analysis

The step-change function of the wind power time series is
calculated as given in Eq. (1).

1Pt = Pt+1−Pt , (1)

where Pt is the wind power production at time t , Pt+1 is the
wind power production of the consecutive time step, and1Pt
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is the corresponding change in the wind power production
between these two time steps. The distribution of the wind
power step-change function is presented with its probabil-
ity density function (pdf). In addition, the 5th and 95th per-
centiles and the standard deviation of the step-change func-
tion are identified. Although the hourly step-change function
is not normally distributed, the standard deviation is a mea-
sure for characterizing the hourly fluctuations of the time se-
ries. The higher the standard deviation, the more frequently
large hourly fluctuations occur, and vice versa. The 5th and
95th percentiles are measures characterizing the more ex-
treme hourly fluctuations, whereby the hourly fluctuations
are beyond either of these values 10 % of the time.

3.2.3 Extraction of power duration curves

The power output time series data are sorted according to
descending magnitude to extract the fraction of exceedance
of the power levels, presenting the power duration curve.

3.3 Optimization method

By optimizing wind farm portfolios with the aim of mini-
mizing the fluctuations of the total time series, the most sta-
ble wind farm configurations are derived. For this purpose,
modeled wind turbine power output time series are used, po-
sitioned at the favorable wind farm site locations shown in
Fig. 2, and modeled as described in Sect. 3.1. The overall
power output time series of the wind farm portfolio, Plumped,
is generated by aggregating the turbine power output time se-
ries of the combination of wind farms in the given portfolio,
as demonstrated in Eq. (2).

Plumped(t)=
n∑
i=1

Pinst,iPi(t), (2)

where Pi(t) is the modeled wind turbine power output time
series at location i, and n is the number of considered wind
farm site locations in the given portfolio. Pinst,i is the rela-
tive wind farm capacity at location i with respect to the total
capacity of the wind farm portfolio. The relative capacity is
used in order to normalize the aggregated time series, so it
represents wind power output data per installed wind power
capacity, as mentioned in Sect. 3.1. Thus, by definition, the
sum of Pinst,i must equal one:

n∑
i=1

Pinst,i = 1, (3)

where Pinst,i is always greater than or equal to zero:

∀i ≤ n, Pinst,i ≥ 0. (4)

As PSD estimates represent time series fluctuations with
respect to frequency, the objective function in the optimiza-
tion is set to minimize the integral of the PSD estimates of

the aggregated power output time series from the wind farm
portfolio (Eq. 2) for frequencies between (2h)−1 and (3h)−1:

minimize

(2h)−1∫
(3h)−1

PSD df, (5)

with the constraints given in Eq. (3) and (4). Thus, the opti-
mization minimizes the 2–3 h fluctuations of the wind farm
portfolio power output time series. These are the highest re-
solvable spectral frequencies when working with hourly data.
Lower frequencies could also be considered but are not cho-
sen because larger periods, on the scale of days, are expected
to be close to fully correlated across the Faroe Islands, as the
same weather systems are expected to cover the small island
region (1400 km2). This is discussed further in Sect. 4.3 and
4.5. The optimized parameters are set to be one of the fol-
lowing:

1 the normalized wind power capacities, Pinst,i , where the
locations of the wind farms in the portfolio, i, are fixed;

2 the locations of the wind farms, i, where the total num-
ber of wind farms in the portfolio, n, is fixed, and the
normalized wind power capacities are equal at all site
locations (1/n).

Optimized portfolios using the first mentioned parameters
are presented in Sect. 4.2, while optimized portfolios using
the latter mentioned parameters are presented in Sect. 4.4.

4 Results

All results represent normalized power output time series
with respect to the total rated power. This enables compar-
isons between results.

First, statistical characteristics of modeled turbine power
output time series from WRF-generated wind speeds are
compared with those of measured data. In the subsequent
subsection, the modeled turbine power output time series are
used to optimize wind farm capacities at selective wind farm
site locations, with the objective of minimizing the high-
frequency fluctuations of the aggregated time series. Limi-
tations of the spatial wind farm smoothing effect in the small
island system are discussed in the third subsection. An op-
timization of the geographical distribution of wind farms is
presented in the fourth subsection. The last subsection in-
cludes a discussion on the potential optimization effects for
minimizing the overall power output time series for a variety
of frequency ranges.

4.1 Comparing statistical characteristics of WRF
modeled and measured dataset

To examine the validity of the modeled turbine power output
data based on WRF-generated wind speeds, these time se-
ries are compared to actual measurements. Three wind farms
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were operating on the Faroe Islands during the period of July
2016 to June 2018, the period of the WRF-generated data.
One additional measured time series is gained by converting
meteorological data into turbine output data.

PSD, pdf of hourly step-change functions, and duration
curves for site-specific and lumped wind farm power out-
put data are calculated and depicted in Fig. 3; the lumped
time series weights the installed capacity at the four site lo-
cations equally. The site-specific PSD and pdf display sim-
ilar behaviors as observed in the measurements. However,
the PSD amplitudes at the highest frequencies are somewhat
overestimated at sites B and C. This is also clear from the
5th and 95th percentiles and the standard deviations of the
hourly step-change functions presented in Table 1. The dura-
tion curves have evident site-specific deviations.

4.2 Optimization of wind farm capacities

By optimizing the wind power capacity of scattered wind
farms with the aim of minimizing the fluctuations of the to-
tal time series, the most stable wind farm configuration is
derived. For this purpose, modeled wind turbine output data
from predefined locations are used – the favorable wind farm
locations in the region as selected by Magnussen (2017); see
Sect. 2.3. The objective of the optimization is to minimize the
2–3 h fluctuations; see Sect. 3.3. The optimization algorithm
is conducted for the following three cases:

– Case I – all 14 favorable wind farm site locations
mapped in Fig. 2 are considered;

– Case II – the two southernmost wind farm site locations
are excluded;

– Case III – upper and lower boundaries for the installed
wind power capacity are given for each of the 14 wind
farms.1

The optimized wind farm configurations for the three cases
are presented in Fig. 4. The distributions of the optimized
wind farm capacities are logical, with generally more capac-
ities at more remote sites and fewer capacities for closely
clustered wind farm sites. However, the effect of the opti-
mization is limited compared with if the wind power ca-
pacities were to be equally distributed over all considered

1Upper bounds are defined based on the site-specific areas as
marked in Magnussen (2017). For every 30 000 m2 (3 ·44 m·5 ·44 m
∼ 30 000 m2), 0.9 MW is added to the possible upper boundary. The
rotor diameter of an Enercon E-44 turbine is 44 m, and it currently is
the most frequently used turbine model on the Faroe Islands. How-
ever, none of the optimized values exceed the upper boundaries,
making the upper boundaries redundant. The lower boundaries are
set to the capacity of the current and committed wind farms on the
Faroe Islands as distributed in the study by Tróndheim et al. (2021),
with a total of 60.63 MW. Values for both the upper and lower
boundaries are normalized by a total power capacity of 168 MW, be-
ing the proposed wind power capacity in 2030 by Tróndheim et al.
(2021).

sites. The reduction in the 5th and 95th percentiles and stan-
dard deviations of the hourly step-change functions is 2 % or
less for the three optimized cases. It may be speculated that
the observed limited hourly smoothing effect is because the
improvement that the optimization adds is small compared
with the smoothing that already occurred by considering the
equally weighted spatial distribution of the wind farms.

To investigate this further, small wind farm portfolios in
the region are examined by looking at combinations of three
wind farms. For the combination of the southernmost site and
the two clustered northernmost sites, optimized wind farm
capacity distribution places around 27 % of the total power
capacity of the wind farm portfolio at each of the northern-
most sites and almost 47 % at the southernmost site. The dis-
tribution is logical, with lower capacities at both of the clus-
tered wind farm sites and higher capacity at the distant site. If
the two clustered sites were fully correlated on a 2–3 h scale
while the distant site was uncorrelated, the capacity distribu-
tion would be expected to be 25 %, 25 %, and 50 %, respec-
tively, which is close to what is observed for this setup. For
the optimized portfolio with this setup, the 5th and 95th per-
centiles and the standard deviation of the hourly power out-
put step-change function are 4 %–5 % lower compared with
if the wind power capacity were to be equally distributed over
the three sites. Comparing the optimized wind farm portfo-
lio to a portfolio in which 40 % of the total wind power ca-
pacity is placed at each of the two northernmost wind farms
and 20 % is placed at the southernmost wind farm – a rather
illogical distribution in terms of spatial smoothing of the
power capacity – the optimized wind farm portfolio contains
12 %–13 % lower 5th and 95th percentiles and standard de-
viation. This indicates that the power capacity distribution of
the wind farms matters.

Going back to Case I (all 14 favorable wind farm sites in
the region), although the optimized portfolio has only limited
effect on the smoothing effect compared with the portfolio in
which the power capacities are equally distributed, compar-
ing the overall power outputs of the optimized distribution of
Case I to the power output of the equally distributed capacity
of Case III with the constraint of the given boundary condi-
tions, the 5th and 95th percentiles and the standard deviation
of the hourly step-change function are 4 % lower. Likewise,
by comparing the power output of the optimized distribution
of Case I to a setup where 11 % of the total wind power ca-
pacity is placed at the four closest clustered sites, as well as
at the two northernmost sites, and 4.5 % at the rest of the
sites (with the intent to distribute the capacity of the wind
farms poorly), the 5th and 95th percentiles and the standard
deviation of the hourly step-change function are 6 % and 8 %
lower, respectively. Again, this indicates that the wind power
capacity distribution matters.

It is expected that the results are different for other case
studies. The magnitude of the smoothing due to the spatial
distribution of the wind farm capacities depends on the mag-
nitude of the coherences and the details of the shape of the
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Table 1. Standard deviation (σ ) and the 5th and 95th percentiles of the hourly step-change function of the power outputs modeled based on
WRF-generated wind speeds (1PWRF) and empirical data (1PEmp) (see Fig. 2 for site locations). The lumped time series assumes an equal
distribution of the wind power capacity over all four locations. All time series are normalized by their rated power.

Site A Site B Site C Site D Lumped time series

σ 0.124 0.127 0.113 0.108 0.071
1PWRF 5th percentile −0.200 −0.200 −0.183 −0.172 −0.113

95th percentile 0.202 0.201 0.174 0.170 0.117

σ 0.122 0.115 0.097 0.109 0.069
1PEmp 5th percentile −0.194 −0.190 −0.156 −0.180 −0.110

95th percentile 0.199 0.188 0.153 0.180 0.114

Figure 3. PSD (top), pdf of hourly step-change functions (middle), and duration curves (bottom) of hourly wind power output time series per
installed capacity ( P

Pinst
). Black colors represent results developed from WRF-generated data. Red colors represent results developed from

measured data. The first four columns represent data from individual sites. The last column represents the lumped time series of all four sites,
with an equal distribution of the wind power capacity over all four locations.

PSD curves. Other locations with, e.g., simpler terrain are ex-
pected to have larger coherencies. In contrast, larger regions
have the advantage of being able to have scattered wind farms
to a larger extent.

4.2.1 Comparison of optimized portfolios according to
different conditions

PSD, pdf of the hourly step-change functions, and the dura-
tion curves of the optimized lumped time series are displayed
in Fig. 5. For reference, results from single turbine outputs
are superimposed. The 5th and the 95th percentiles and the

Table 2. Standard deviation (σ ) and the 5th and the 95th percentiles
of the hourly step-change functions per rated wind power capacity
for the three optimized lumped power output time series displayed
in Fig. 4.

Percentiles Case I Case II Case III

σ 0.0558 0.0599 0.0574
5th percentiles −0.0892 −0.0954 −0.0917
95th percentiles 0.0900 0.0964 0.0923

standard deviations of the step-change functions are given in
Table 2.
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Figure 4. Optimized wind farm configurations, shown in percentages of site-specific wind power capacity per total installed wind power
capacity. Case I: considering all 14 favorable wind farm locations selected by Magnussen (2017). Case II: excluding the two southernmost
sites. Case III: setting site-specific lower and upper boundaries for the wind farm capacities at the 14 sites. The maps of the terrain are created
using a 10 m raster map extracted from https://www.foroyakort.fo/ (last access: 16 October 2022), created in Denmark from satellite data
from 2017.

Figure 5. PSD (a), pdf of hourly step-change functions (b), and duration curves (c) of lumped hourly wind power output time series per
installed capacity ( P

Pinst
) for the three optimized cases displayed in Fig. 4, as well as for each single turbine output time series (gray).

No clear distinction can be observed in the pdf of the step-
change functions and the duration curves of the three cases.
However, a smoothing effect is observed compared with sin-
gle turbine outputs with lower hourly step-changes and less
frequent intervals with zero and rated power production.

The spectra for all cases are equivalent for low frequen-
cies and similar to those of the single turbine outputs, while
the energy content at higher frequencies differs. A smoothing
effect for the combined time series (Cases I–III) compared
with the single turbine outputs is most evident at the highest
frequencies but noticeable for periods of up to 1–2 d.

Out of the three cases, Case II (the exclusion of the two
southernmost site locations) has the heaviest spectral tail, fol-
lowed by Case III (bound by current and committed wind
farm power capacities as distributed in the study by Trónd-
heim et al., 2021) and finally Case I (all site locations). The

5th and 95th percentiles and the standard deviations of the
hourly step-change functions of the time series show the
same trend, with the highest values for Case II, followed by
Case III and then Case I. Excluding the two southernmost
site locations increases the 5th and 95th percentiles and the
standard deviation of the hourly step-change function by 7 %,
while setting boundaries to the lower and upper wind farm
capacities increases the percentiles and standard deviation by
3 %.

4.2.2 Sensitivity analysis on the PSD of power outputs
with the inclusion of remote sites

As observed in Fig. 5 and Table 2, excluding the two time
series of the southernmost island increases the optimized
lumped time series fluctuation for the highest frequency
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Figure 6. PSD for various optimized combinations of lumped
hourly wind power output time series per installed capacity ( P

Pinst
).

Blue line: Case I. Red line: Case II. Gray lines (66 compressed
lines): PSD for all 66 possible combinations of 12 lumped power
output time series, with the constraint that 2 of the 12 sites are lo-
cated on the southernmost islands.

range considerably. In other words, the inclusion of the two
southernmost site locations smoothes the total time series.

To test if the smoothing effect originates from the inclu-
sion of two additional sites in the given region or whether it
is because the two sites are further away, PSDs for various
optimized site combinations are generated and displayed in
Fig. 6:

– including all 14 sites (Case I);

– excluding the two southernmost sites (Case II);

– all possible combinations of 12 sites with the constraint
that 2 out of the 12 sites are those located on the south-
ernmost islands.

Case II has higher PSD amplitudes in the highest fre-
quency range compared with other combinations of the 12
site locations that include the 2 southernmost site locations.
This indicates that the smoothing effect for the highest fre-
quencies is more pronounced for remote sites.

4.3 Limitation of spatially distributed wind farms

To test the limitations of the smoothing effect from spatially
distributed wind farms in the Faroe Islands, PSDs are gen-
erated for multiple combinations of up to 14 turbine power
output time series – the 14 favorable site locations marked
in Fig. 2. Each computation considers an equal distribution
of the rated power over all considered sites. Results are dis-
played in Fig. 7. As the number of lumped time series, n,

Figure 7. PSDs for up to 14 lumped hourly wind power output
time series per installed capacity ( P

Pinst
). All computations consider

an equal distribution of the installed capacity over the considered
sites. Colors indicate the number of lumped time series (n). (b) All
possible combinations for n= [1,3,10,14]. (a) Averaged PSD of
all possible combinations for n= [1,2, . . .,14].

increases, the PSD amplitudes at the highest frequencies de-
crease. The smoothing effect is evident for periods of up to 1–
2 d but more evident for the higher frequencies. The smooth-
ing effect observed when adding one additional wind farm to
the lumped time series becomes less pronounced when n is
large. These characteristics are similar to results observed by,
e.g., Katzenstein et al. (2010) and Beyer et al. (1993), who
analyzed the variability of interconnected wind power time
series spatially dispersed in the area of Texas and northwest
Germany, respectively.

The PSDs of the total power output when combining n
wind farms differ for the various combinations of the individ-
ual wind farms. This will be analyzed further in the following
subsection.
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4.4 Optimization of wind farm positioning

As observed in Fig. 7, the same number of lumped wind farm
time series can display different PSDs, depending on which
individual time series are aggregated.

By extracting wind farm combinations with the smallest
integrals of the PSD with respect to frequencies between
(3 h)−1 and (2 h)−1, the wind farm combinations with the
lowest fluctuations are obtained. Figures 8 and 9 give ex-
amples of optimized wind farm combinations for n= 4 and
n= 7, respectively. For reference, the worst wind farm com-
binations are also given – those with the highest integrals. It
is observed that the wind farms appearing in the optimized
combinations, i.e., with the smallest integrals, are scattered,
while the opposite is observed for the worst combinations.

The 5th and 95th percentiles and the standard deviation
of the hourly step-change function of the lumped time series
for each example are also given in Fig. 8 and 9. Both the per-
centiles and the standard deviations of the optimized com-
binations are considerably lower compared with the worst
combinations, around 15 % and 18 %, respectively, for n= 4
and around 13 % and 15 %, respectively, for n= 7. In ad-
dition, the percentiles and standard deviation of the hourly
step-change function of the lumped time series for all com-
binations of n < 14 wind farms are given in Table 3 together
with the corresponding percentiles and standard deviation of
the lumped time series with the smallest integral.

It can be concluded that the combinations of individual site
locations when building n wind farms in the Faroe Islands
have a considerable impact on the hourly fluctuations of the
total power output time series – information that ought to
be of interest to operators. Wind farm portfolios with distant
sites are preferred in order to have the most stable lumped
wind power time series.

4.5 Coherency between pairs of wind farm power output
datasets at various frequency ranges

The focus of this wind farm optimization study has been to
minimize the 2–3 h fluctuations of the overall power output
time series. As argued in the introduction and observed in the
results, optimized wind farm portfolios yield lower fluctua-
tions at these frequencies. For longer periods, longer than a
few days, the results in Sect. 4.3 established that there is a
limited smoothing effect for any wind farm combinations in
the region. The focus of this subsection is on the smoothing
effect for frequencies in between these two.

High wind speeds are associated with high standard de-
viations of the time series, thus high spectral amplitudes, as
the integral of the spectral amplitudes over frequency equals
about half of the variance of the time series. As the spectral
amplitudes are higher for the lower frequencies in the consid-
ered frequency range, it can be expected that the PSDs with
the smallest spectral amplitudes at the lower frequencies are
correlated with time series with smaller standard deviations

and smaller wind speeds, thus smaller capacity factors. This
is not desirable, as minimizing the fluctuations of the over-
all wind power output time series should not be at the cost
of lower power production. Therefore, instead of looking at
the PSD, this subsection will focus on the coherence function
between pairs of wind turbine power output time series.

There is a connection between the coherency between time
series and the smoothing effect of their combined time series.
The higher the coherence, the lower the smoothing. For a co-
herence value of one, there is no smoothing of the combined
time series, while a coherence of zero means that the time
series are uncorrelated, and the fluctuations of the combined
time series will be lower with respect to the produced power.

Figure 10 displays the squared coherence functions of the
turbine power output time series for all possible site pairs out
of the 14 favorable wind farm locations marked in Fig. 2 with
respect to inter-site distances. At the lower frequencies, the
coherences are high, consistent with the fact that the same
weather systems travel across the entire region. As the fre-
quencies increase, the coherence values decrease, which is
why in Fig. 7 in Sect. 4.3 it is observed that the smoothing
effect from combining wind farms is more evident for higher
frequencies. Another general characteristic that can be ob-
served in Fig. 10 is that the closer the inter-site distances
are, the higher their coherence values are, which is consistent
with the fact that the wind flow has had less time to change
when traveling between two closer wind farm sites, which
is why in Sect. 4.4 the optimized wind farm portfolio is a
combination of distant wind farms.

To examine the potential smoothing effect on fluctuations
at selective frequencies when combining wind farm power
output time series, the average squared coherences between
the selected frequency ranges are extracted from Fig. 10 and
displayed in Fig. 11 with respect to the inter-site distances
between site pairs. Reasonably, the same general characteris-
tics can be observed: higher coherence values for closer wind
farms, higher coherence values at lower frequencies, and de-
creasing coherence values with increasing frequencies. The
average squared coherence values for (3h)−1 < f < (2h)−1

decrease rapidly with inter-site distance and are already be-
low 0.02 for all pairs of time series with inter-site distances
larger than 10 km. This means that in order to minimize the
2–3 h fluctuations of aggregated wind farm power output
time series, all wind farms in the portfolio should be placed
at least 10 km apart from each other. In order to do so in a
small region and at the same time include several wind farms
in the portfolio, most of the spatial area in the region has to
be utilized. Although comparably less, the average squared
coherence for (9h)−1 < f < (6h)−1 also decreases rapidly
with inter-site distance, reaching a value of around 0.05 for
an inter-site distance of 30 km. This means that there are still
possibilities for a maximum smoothing effect on the 6–9 h
fluctuations for optimized wind farm portfolios consisting of
a few wind farms, keeping in mind that the largest inter-site
distances are around 90 km.
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Figure 8. Examples of the optimized (top) and the worst (bottom) wind farm portfolios with four wind farms (black filled circles) where the
rated power at each wind farm is the same. The open circles mark the locations that are not selected. These examples are the portfolios with
smallest (optimized portfolios) and largest (worst portfolios) integrals of the PSD with respect to frequencies from (3 h)−1 to (2 h)−1 out
of all possible combinations of four wind farms. The 5th and 95th percentiles (PCTL) and the standard deviation of the hourly step-change
function of the total wind power time series per installed power are given in the bottom left corner of each example.

Table 3. Range of the 5th (second column) and 95th (third column) percentiles (PCTL) and the standard deviation (fourth column) of the
hourly step-change function of the lumped power output time series for all possible combinations of n wind farms (first column) per installed
wind power capacity; the wind farm capacities are equally distributed over all considered sites. The 5th (fifth column) and 95th (sixth column)
percentiles and the standard deviation (seventh column) of the hourly step-change function for the combinations with the smallest spectral
integral with respect to frequencies from (3 h)−1 to (2 h)−1.

n 5th PCTL 95th PCTL σ 5th PCTLOPT 95th PCTLOPT σOPT

1 [−0.2013; −0.1659] [0.1668; 0.2089] [0.1075; 0.1277] −0.1682 0.1671 0.1080
2 [−0.1793; −0.1301] [0.1288; 0.1789] [0.0817; 0.1096] −0.1339 0.1354 0.0863
3 [−0.1475; −0.1174] [0.1173; 0.1488] [0.0717; 0.0920] −0.1198 0.1255 0.0761
4 [−0.1339; −0.1086] [0.1091; 0.1341] [0.0660; 0.0854] −0.1097 0.1110 0.0670
5 [−0.1251; −0.1017] [0.1029; 0.1248] [0.0630; 0.0797] −0.1043 0.1052 0.0649
6 [−0.1173; −0.0974] [0.0986; 0.1201] [0.0606; 0.0756] −0.0975 0.0999 0.0607
7 [−0.1118; −0.0941] [0.0953; 0.1134] [0.0592; 0.0714] −0.0955 0.0963 0.0594
8 [−0.1068; −0.0928] [0.0939; 0.1094] [0.0581; 0.0679] −0.0950 0.0960 0.0591
9 [−0.1030; −0.0917] [0.0926; 0.1050] [0.0575; 0.0655] −0.0919 0.0938 0.0578
10 [−0.1011; −0.0906] [0.0919; 0.1022] [0.0571; 0.0634] −0.0924 0.0936 0.0571
11 [−0.0985; −0.0902] [0.0913; 0.0995] [0.0568; 0.0619] −0.0907 0.0923 0.0568
12 [−0.0961; −0.0905] [0.0908; 0.0971] [0.0566; 0.0603] −0.0911 0.0908 0.0570
13 [−0.0937; −0.0900] [0.0913; 0.0940] [0.0566; 0.0587] −0.0910 0.0913 0.0566
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Figure 9. Examples of the optimized (top) and the worst (bottom) wind farm portfolios with seven wind farms (black filled circles) where the
rated power at each wind farm is the same. The open circles mark the locations that are not selected. These examples are the portfolios with
smallest (optimized portfolios) and largest (worst portfolios) integrals of the PSD with respect to frequencies from (3 h)−1 to (2 h)−1 out of
all possible combinations of seven wind farms. The 5th and 95th percentiles (PCTL) and the standard deviation of the hourly step-change
function of the total wind power time series per installed power are given in the bottom left corner of each example.

Figure 10. Squared coherence functions for all possible site pairs
out of the 14 turbine power output time series placed at favorable
wind farm locations marked in Fig. 2 (total of 91 pairs). The col-
ors of the coherence functions represent the distances in kilometers
between site pairs; see color bar. The four colors marked at the top
of the figure are added to mark the frequency ranges considered in
Fig. 11.

The average squared coherence values for (24h)−1 < f <

(16h)−1 and (72h)−1 < f < (48h)−1 decrease comparably
more slowly with respect to inter-site distance, and the values
are scattered. The lowest average squared coherence values
for (24h)−1 < f < (16h)−1 and (72h)−1 < f < (48h)−1 are
0.16 and 0.36, respectively. Although a smoothing effect at
these frequencies should be observed for combinations of
two time series with low coherence values, combining more
than a couple of wind farms into a wind farm portfolio is
assumed to result in a limited smoothing effect at these fre-
quency ranges in the given region. Moreover, optimized wind
farm portfolios consisting of more than a couple of wind
farms are speculated to be determined by the standard de-
viation of the power output time serious at the expense of the
total power production rather than by a combination of wind
farms with low coherence values. However, the trend of a de-
crease in the average squared coherence values with inter-site
distance is noticeable. By extrapolating, it is expected that
optimized wind farm portfolios consisting of multiple wind
farms could have a high daily smoothing effect across larger
regions without a reduction in the total power production.
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Figure 11. Average squared coherence for frequencies between
(3 h)−1 and (2 h)−1 (blue color), (9 h)−1 and (6 h)−1 (red color),
(24 h)−1 and (16 h)−1 (yellow color), and (72 h)−1 and (48 h)−1

(purple color) with respect to inter-site distance for all site pairs
considered in Fig. 10. The considered frequency ranges are marked
in Fig. 10.

5 Conclusions

The identification of the best distribution of wind farm pro-
duction within a region has mainly been done in terms of
identifying the energy yield. However, the present study
discusses the use of knowledge on the underlying spatial–
temporal characteristics of the governing wind field to assist
in the search on system configurations for assuring a reduced
variability in the power generation. The natural smoothing
effect from spatially distributed wind farm sites in a small
island system with a complex terrain is investigated in this
study, using the Faroe Islands as a case study. For this, hourly
modeled wind turbine power output data 45 m a.g.l. are ana-
lyzed. The modeled data are converted from WRF-generated
wind speeds at 14 favorable wind farm site locations as se-
lected by Magnussen (2017). All results are presented per
installed wind power capacity, i.e., normalized with respect
to the rated power.

PSD, hourly step-change functions, and duration curves
are generated, and the 5th and 95th percentiles and the stan-
dard deviations of the hourly step-change functions are ex-
tracted. As expected based on the literature, the smooth-
ing from lumped power output time series is evident, with
smaller high-frequency PSD amplitudes, lower hourly fluc-
tuations, and fewer periods with zero and rated power pro-
duction compared with single wind turbine outputs.

By optimally distributing wind farms, spatial smoothing
can be maximized, resulting in less regulation needed from
the operator. The focus of this study is on the smoothing ef-
fect on the 1–3 h scale. With the composition of the local
power grid, it is considered that limiting the inherent wind
variability on the hourly timescale is of local interest, espe-
cially as installed wind power is expected to increase rapidly
in the future. In addition, it is argued that the hourly co-
herency between wind farm power outputs in a small region
is expected to be dependent on how the regional weather trav-
els between local sites, while, e.g., pairs of wind farm power
output data are expected to be uncorrelated at the scale of
seconds or minutes and close to fully coherent at the scale of
days due to the same weather regime being present across the
country. This study presents optimized wind farm portfolios
for the Faroe Islands, where the objective function is set to be
the integral of the PSD for frequencies between (3 h)−1 and
(2 h)−1, thus minimizing 2–3 h fluctuations.

Wind farm capacities at 14 pre-defined wind farm site lo-
cations are optimized. The results show that the wind farm
capacities at remote sites should be higher and that the wind
farm capacities at clustered sites should be lower. However,
the optimization has only a small influence on the hourly
fluctuations compared with if the wind farm capacities at
the pre-defined wind farm site locations were equally dis-
tributed over all wind farms. The decrease in the 5th and 95th
percentiles and standard deviation of the hourly step-change
function is about 2 %.

The optimization algorithm is performed for two addi-
tional cases: Case II – excluding two distant site locations,
located ≥ 25 km apart from the rest of the sites; and Case III
– setting upper and lower boundaries for the installed wind
power capacity at each site. Also here, the optimization has
only a small influence on the hourly fluctuations compared
with if the wind farm capacities at the pre-defined wind farm
site locations were equally distributed over all wind farms.
However, comparing Case II to the first case, the 5th and
95th percentiles and standard deviation of the hourly step-
change function are increased by 7 %. The increase is found
to be more pronounced when the two distant sites are ex-
cluded compared with if any other two site locations were
to be excluded instead, demonstrating the importance of the
smoothing effect from distant sites.

As the Faroe Islands consist of a limited spatial area sur-
rounded by ocean far from any other land, the possibilities
for the spatial distribution of wind farms are limited. To
examine the achievable smoothing effect, PSDs are gener-
ated for up to 14 aggregated wind turbine time series. Re-
sults show less smoothing as more wind farms are integrated.
The smoothing effect is most evident at the highest frequen-
cies but noticeable for periods of up to 1–2 d. It is also seen
that the high-frequency fluctuations are highly dependent on
which of the individual site locations are considered. Opti-
mized wind farm combinations, in order to minimize the 2–
3 h power output fluctuations, are wind farms that are located
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distant from each other, while the worst wind farm combi-
nations consist of clustered wind farms. When building wind
farms in 4 out of the 14 favorable wind farm areas, optimized
wind farm positioning decreases the 5th and 95th percentiles
and the standard deviation of the hourly step-change func-
tion by 15 % and 18 %, respectively, compared with the worst
wind farm combinations.

By examining the coherency of the power output data be-
tween pairs of wind farms, it is concluded that a general char-
acteristic in order to reach a maximum smoothing effect on
the hourly scale is to place wind farms ≥ 10 km apart from
each other. Although the focus of this study is primarily on
the hourly scale, the coherency between pairs of wind farms
focusing on a variety of lower-frequency ranges is also pre-
sented and used to discuss the potential optimal smoothing
effect for the respective frequencies. As hypothesized, co-
herency on the scale of days is high for all pairs of wind
farms, implying that it is inefficient to conduct the optimiza-
tion algorithm with a focus on minimizing daily-scale fluc-
tuations. However, a decreasing trend in the daily coherency
is observed with respect to distance between site pairs, indi-
cating that an optimization algorithm minimizing daily-scale
fluctuations could be applied for larger regions.

The importance of choosing the best wind farm sites is
emphasized in this study in order to naturally balance wind
power fluctuations. This feature should be of interest to an
operator, as smoother time series result in a lower operating
effort for the power grid.

This study exclusively considers wind power data
45 m a.g.l., being the hub height of all operating turbines in
the Faroe Islands at the time of the preparation of this paper.
However, current and future planned wind farms in the region
consist of taller wind farms. In fact, six turbines with hub
heights of 92 m a.g.l. have recently been installed and started
producing electricity for the power grid. The presented work
cannot be generalized without further calculations to wind
power production at this or other heights, as wind is a func-
tion of height, and so are the time series fluctuations and their
spatial coherencies. A suggestion for a future study is to in-
clude diverse wind turbine models in the analysis in order to
investigate if and how these affect the results.

Appendix A: Filtering for aliasing effect

The WRF-generated wind speed dataset used in this study
displays artificial high-frequency fluctuations from the alias-
ing effect (Poulsen et al., 2021). Thus, before usage, these
time series must be corrected: for each WRF-generated wind
speed time series, the power spectral density is generated and
corrected for the aliasing effect using the method given in
Kirchner (2005), with the parameters fc= 1 and f _limit=

1
1day ; see Fig. A1. By reversing the corrected spectral calcu-
lations and preserving the phase of the discrete Fourier trans-
form of the original time series, a new de-aliased time se-

ries is generated. Finally, the average wind speed value of
the original time series is added to the de-aliased time se-
ries. Figure A2 displays an example of a scatterplot between
the WRF-generated wind speed time series before and after
de-aliasing of the time series.

Figure A1. The black line represents the raw PSD calculated from
the WRF-generated wind speed time series at site C. The yellow
superimposed line is the corresponding PSD corrected for the alias-
ing effect using the method given in Kirchner (2005). Note that the
black line is behind the yellow line. The gray and red lines represent
the averaged PSDs from the black and yellow lines, respectively.

Figure A2. Scatterplot between WRF-generated wind speed time
series at site C before (x axis) and after (y axis) de-aliasing of the
time series.
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