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Abstract. The article presents a symbolic framework (also called computer algebra program) that is used to
obtain, in symbolic mathematical form, the linear and nonlinear equations of motion of a mid-fidelity multibody
system including rigid and flexible bodies. Our approach is based on Kane’s method and a nonlinear shape
function representation for flexible bodies. The shape function approach does not represent the state of the art
for flexible multibody dynamics but is an effective trade-off to obtain mid-fidelity models with few degrees of
freedom, taking advantage of the separation of space and time. The method yields compact symbolic equations
of motion with implicit account of the constraints. The general and automatic framework facilitates the creation
and manipulation of models with various levels of complexity by adding or removing degrees of freedom. The
symbolic treatment allows for analytical gradients and linearized equations of motion. The linear and nonlinear
equations can be exported to Python code or dedicated software. There are multiple applications, such as time
domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers,
and digital twins. In this article, we describe the method we used to systematically generate the equations of
motion of multibody systems and present the implementation of the framework using the Python package SymPy.
We apply the framework to generate illustrative land-based and offshore wind turbine models. We compare
our results with OpenFAST simulations and discuss the advantages and limitations of the method. The Python
implementation is provided as an open-source project.
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1 Introduction

The next generation of wind turbine digital technologies and
control systems require versatile aero-servo-hydro-elastic

models, with various levels of fidelity, suitable for a wide
range of applications. Such applications include time do-
main simulations, linearization (for controller design and
tuning, or frequency domain analyses), analytical gradients
(for optimization procedures), and generation of dedicated,
high-performance or embedded code (for stand-alone simu-
lations, state observers or digital twins). Current models are
implemented for a specific purpose and are usually based on
an heuristic structure. Aeroelastic tools, such as Flex (Øye,
1983; Branlard, 2019) or ElastoDyn (Jonkman et al., 2021),
rely on an assumed chain of connections between bodies,
a given set of degrees of freedom, and predefined orienta-
tions of shape functions. It is not straightforward to extract
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reduced-order models from these tools or extend the models
to additional degrees of freedom.

Tools with linearization capabilities, such as HAWCStab2
(Sønderby and Hansen, 2014) or OpenFAST (Jonkman et al.,
2021), are dedicated to horizontal-axis wind turbines, and the
evaluation of the gradients are limited to hard-coded analyt-
ical expressions or numerical finite differences. Small im-
plementation changes often require extensive redevelopment,
and the range of applications of the tools remains limited
(Simani, 2015). The linear models generated by these tools
are numerical models that are evaluated for a given set of
numerical input parameters. It is therefore difficult to ob-
tain gradients of the linear models as function of the input
parameters, information which is becoming increasingly im-
portant in optimization frameworks and controls co-design
approaches (Jonkman et al., 2022).

To address these issues, we propose a symbolic frame-
work (also called a computer algebra program) for the auto-
matic derivation, processing, and parameterization of mod-
els with granularity in the level of fidelity. Our approach
is based on Kane’s method (Kane and Wang, 1965) and a
nonlinear shape function representation of flexible bodies
(Shabana, 2013) described using a standard input data (SID)
format (Wallrapp, 1994; Schwertassek and Wallrapp, 1999).
The method yields compact symbolic equations of motion
with implicit account of the constraints. Similar approaches
have been presented in the literature: Kurz and Eberhard
(2009), Merz (2018), Lemmer (2018), and Branlard (2019).
Our framework differs in the fact that all equations are pro-
cessed at a symbolic level, and therefore the model can be
used in its nonlinear or linearized form. The linear mod-
els are obtained using analytical differentiation. They can be
evaluated for various sets of input parameters directly and
therefore be used in optimization frameworks or control co-
design approaches. We implemented an open-source version
in Python using SymPy (SymPy, 2021), leveraging its me-
chanical toolbox. Alternative symbolic frameworks found in
the literature are usually limited to rigid bodies (Verlinden
et al., 2005; Kurz and Eberhard, 2009; Gede et al., 2013;
Docquier et al., 2013) or are closed-source or using propri-
etary software (Reckdahl and Mitiguy, 1996; Kurtz et al.,
2010; MotionGenesis, 2016; Lemmer, 2018).

Kane’s method and the nonlinear shape function approach
presented in this article do not represent the state of the
art of multibody dynamics with flexible bodies. The geo-
metrically exact beam theory (Simo, 1985; Jelenić and Cr-
isfield, 1999; Géradin and Cardona, 2001; Bauchau, 2011)
is more precise than the shape function approach because
it represents the beam kinematics exactly. Linearization of
the geometrical exact beam theory equations is possible and
also more precise than the shape function approach, but it
leads to larger and more involved expressions. Similarly,
multipurpose multibody software exists (Lange et al., 2007),
such as ANSYS (ANSYS, 2022), SIMPACK (SIMPACK,
2022), or MBDyn (MBDyn, 2022). These more advanced ap-

proaches target different applications than those envisioned
in this study: they are suitable for numerical simulations, but
they cannot provide symbolic mid-fidelity models in com-
pact form.

In Sect. 2, we present the formalism used to derive the
equations of motion in a systematic and unified way for flex-
ible and rigid bodies. In Sect. 3, we give an overview of how
the symbolic calculation framework was implemented. Ex-
ample of applications relevant to wind energy are given in
Sect. 4. Discussions and conclusions follow.

2 Method to obtain the equations of motion

In this section, we present the formalism used to set up the
equations of motion.

2.1 System definition and kinematics

We consider a system of nb bodies, rigid or flexible, con-
nected by a set of joints. For simplicity, we assume that no
kinematic loops are present in the system and the masses
of the bodies are constant. An inertial frame is defined to
express the positions, velocities, and accelerations of the
bodies. We adopt a minimal set of generalized coordinates,
q, of dimension nq, to describe the kinematics of the bod-
ies: joint coordinates describing the joints displacements and
Rayleigh–Ritz coordinates for the amplitudes of the shape
functions of the flexible bodies (see, e.g., Branlard, 2019).
The choice of coordinates is left to the user, but it is assumed
to form a minimal set. We will provide illustrative examples
in Sect. 4.

At a given time, the positions, orientations, velocities, and
accelerations of all the points of the structure are entirely de-
termined by the knowledge of q, q̇, and q̈, where (˙) repre-
sents the time derivative. For a given body i and a point P
belonging to the body, the position, velocity, and accelera-
tion of the point are given by (see, e.g., Shabana, 2013)

rP = r i+ sP = r i+ sP0 +uP, (1)
vP = vi+ωi× sP+ (u̇P)i, (2)

aP = ai+ωi× (ωi× sP)+ ω̇i× sP

+ 2ωi× (u̇P)i+ (üP)i, (3)

where r i, vi, and ai are the position, velocity, and accelera-
tion of the origin of the body, respectively; sP0 is the initial
(undeformed) position vector of point P with respect to the
body origin; the subscript P is used for the deformed posi-
tion of the point and P0 for the undeformed position; uP is
the elastic displacement of the point (equal to 0 for rigid bod-
ies); ωi is the rotational velocity of the body with respect to
the inertial frame; and (˙) and (˙)i refer to time derivatives
in the inertial and body frame respectively. Throughout the
article, we use bold symbols for vectors and matrices and
uppercase symbols for most matrices. The elastic displace-
ment is obtained as a superposition of elastic deformations
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(see Sect. 2.4). We define the transformation matrix Ri that
transforms coordinates from the body frame to the inertial
frame, and by definition [ω̃i] = ṘiR

T
i , where [ ˜ ] represents

the skew symmetric matrix, and the exponent T denotes the
matrix transpose. We assume that vectors are represented as
column vectors to conveniently introduce matrix-vector mul-
tiplications. We use the notation “·” to indicate the dot prod-
uct between two vectors (irrespective of their column or row
representation).

2.2 Introduction to Kane’s method

Kane’s method (Kane and Wang, 1965) is a powerful and
systematic way to obtain the equations of motion of a system.
The procedure leads to nq coupled equations of motion:

fr + f
∗
r = 0, r = 1. . .nq, (4)

where f ∗r is associated with inertial loads and fr is associated
with external loads, and these components are obtained for
all generalized coordinates. The components are obtained as
a superposition of contributions from each body:

fr =

nb∑
i=1

fri, f ∗r =

nb∑
i=1

f ∗ri . (5)

The terms fri and f ∗ri can be obtained for each body indi-
vidually and assembled at the end to form the final system
of equations. We will present in Sects. 2.3 and 2.4 how these
terms are defined for rigid bodies and flexible bodies, respec-
tively.

2.3 Rigid bodies

We assume that body i is a rigid body and proceed to de-
fine the terms fri and f ∗ri . The inertial force, f ∗i , and inertial
torque, τ ∗i , acting on the body are

f ∗i =−miaG,i, τ ∗i =−IG,i · ω̇i−ωi× (IG,i ·ωi), (6)

where mi is the mass of the body, aG,i is the acceleration of
its center of mass with respect to the inertial frame, and IG,i
is the inertial tensor of the body expressed at its center of
mass. Equation (6) is a vectorial relationship; it may there-
fore be evaluated in any coordinate system. The component
f ∗ri is defined as

f ∗ri = J v,ri ·f
∗

i +Jω,ri · τ
∗

i , (7)

with

J v,ri =
∂vG,i

∂q̇r
, Jω,ri =

∂ωi

∂q̇r
, (8)

where vG,i is the velocity of the body mass center with re-
spect to the inertial frame. The partial velocities, or Jaco-
bians, J v and Jω, are key variables of Kane’s method. They

project the physical coordinates into the generalized coordi-
nates (q), inherently accounting for the kinematic constraints
between bodies. In numerical implementations, the Jaco-
bians are typically stored in matricial forms, referred to as
“velocity transformation matrices”. The terms f ∗ri can equiv-
alently be obtained using the partial velocity of any body
point (e.g., the origin) by carefully transferring the inertial
loads to the chosen point.

The external forces and torques acting on the body are
combined into an equivalent force and torque acting at the
center of mass, written as f i and τ i. The component fri is
then given by

fri = J v,ri ·f i+Jω,ri · τ i. (9)

Equivalently, the contributions from each individual force,
f i,j , acting on a point Pj of the body i, and each torque,
τ i,k , can be summed using the appropriate partial velocity to
obtain fri:

fri =
∑
j

∂vPj

∂q̇r
·f i,j +

∑
k

Jω,ri · τ i,k, (10)

where vPj is the velocity of the point j with respect to the
inertial frame. Equations (7) and (9) are inserted into Eq. (5)
to obtain the final equations of motion.

2.4 Flexible bodies

We assume that body i is a flexible body and proceed to de-
fine the terms fri and f ∗ri . The dynamics of a flexible body
are described in standards textbooks such as Shabana (2013)
or Schwertassek and Wallrapp (1999). Unlike rigid bodies,
the equations for flexible bodies are typically expressed with
respect to a reference point different from the center of mass.
We will call this point the origin and write it Oi. The elas-
tic displacement field of the body is written as u. It defines
the displacement of any point of the body with respect to its
undeformed position. Using the zeroth-order1 Rayleigh–Ritz
approximation, the displacement field at a given point, P , is
given by the sum of shape function contributions:

u(P )=
ne,i∑
j=1

8ij (P )qe,ij (t), (11)

where 8ij are the shape functions (displacement fields) of
body i, and qe,ij is the subset of q consisting of the elas-
tic coordinates of body i, of size ne,i . The principles of the
shape function approach applied to beams are given in Ap-
pendix B. The shape functions are more easily represented in
the body coordinate system. Vectors and matrices that are ex-
plicitly written in the body frame will be written with primes.
The equations of motion of the flexible bodies are (Wallrapp,

1We address the first-order approximation in Appendix D4.
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1994)M ′xx M ′xθ M ′xe
M ′θθ M ′θe

sym. M ′ee


i

 a′iω̇′i
q̈e,i

+
k′ω,xk′ω,θ
k′ω,e


i

+

 0
0
ke


i

=

f ′xf ′θ
f e


i

,

(12)

where the x, θ , and e subscripts respectively indicate the
translation, rotation, and elastic components; M is the mass
matrix of dimension 6+ ne,i made of the block matrices
Mxx, . . .,Mee; ai and ω̇i are the linear and angular acceler-
ation of the body (origin) with respect to the inertial frame;
kω represents the centrifugal, gyration, and Coriolis loads,
also called quadratic velocity loads; ke represents the elastic
strain loads, which may contain geometric stiffening effects;
and f represents the external forces, torques, and elastic gen-
eralized forces. The different components of M , kω, ke, and
f are given in Appendix A. These terms depend on q, q̇, and
8i . The inertial force, torque, and elastic loads are

f ∗i =−Ri
[
M ′xxa

′

i+M
′
xθ ω̇
′

i+Mxeq̈e,i+ k
′
ω,x
]
, (13)

τ ∗i =−Ri
[
M ′θxa

′

i+M
′
θθ ω̇
′

i+Mθeq̈e,i+ k
′
ω,θ

]
, (14)

h∗i =−
[
M ′exa

′

i+M
′
eθ ω̇
′

i+Meeq̈e,i+ k
′
ω,e
]
. (15)

The external and elastic loads are

f i =Rif
′
x, (16)

τ i =Rif
′
θ , (17)

hi = f e− ke. (18)

The components of f ∗ri and fri, for r = 1. . .nq, are then
defined as

f ∗ri = J v,ri ·f
∗

i +Jω,ri · τ
∗

i +J e,ri ·h
∗

i , (19)
fri = J v,ri ·f i+Jω,ri · τ i+J e,ri ·hi, (20)

with

J v,ri =
∂vO,i

∂q̇r
, Jω,ri =

∂ωi

∂q̇r
, J e,ri =

∂qe,i

∂qr
, (21)

where vO,i is the velocity of the body with respect to the
inertial frame. The term J e,ri consists of 0 and 1 because qe,i
is a subset of q. Equations (19) and (20), once evaluated for
body i, are inserted into Eq. (5) to obtain the final equations
of motion.

2.5 Nonlinear and linear equations of motion

The nq equations of motion given in Eq. (4) are gathered into
a vertical vector e. They are recast into the form

e(q, q̇, q̈,u, t)= f +f ∗ = F (q, q̇,u, t)−M(q)q̈ = 0 (22)

or

M(q)q̈ = F (q, q̇,u, t), (23)

whereM =− ∂e
∂ q̈

is the system mass matrix and F is the forc-
ing term vector – that is, the remainder terms of the equation
(F = e+Mq̈). In this section, we introduce the vector u to
represent the time-dependent inputs that are involved in the
determination of the external loads (not to be confused with
the displacement field introduced in Eq. 11). Both sides of
the equations are also dependent on some parameters, but this
dependency is omitted to shorten notations. The stiffness and
damping matrices may be obtained by computing the Jaco-
bian of the equations of motion with respect to q and q̇, re-
spectively. The nonlinear equation given in Eq. (23) is easily
integrated numerically, for instance by recasting the system
into a first-order system or by using a dedicated second-order
system time integrator.

In various applications, a linear time-invariant approxima-
tion of the system is desired. Such approximation is obtained
at an operating point, denoted with the subscript 0, which is
a solution of the nonlinear equations of motion, namely

e(q0, q̇0, q̈0,u0, t)= 0. (24)

The linearized equations about this operating point are ob-
tained using a Taylor series expansion:

M0(q0)δq̈ +C0(q0, q̇0,u0)δq̇

+K0(q0, q̇0, q̈0,u0)δq =Q0(q0, q̇0,u0)δu,
(25)

with

M0 =−
∂e
∂ q̈

∣∣∣∣
0
, C0 =−

∂e
∂ q̇

∣∣∣∣
0
, K0 =−

∂e
∂q

∣∣∣∣
0
,

Q0 =
∂e
∂u

∣∣∣∣
0
, (26)

where M0, C0, and K0 are the linear mass, damping, and
stiffness matrices, respectively; Q0δu is the linear forcing
vector (Q0 is the input matrix); δ indicates a small pertur-
bation of the quantities; and |0 indicates that the expressions
are evaluated at the operating point. In practical applications,
linearization is done at an operating point where the accel-
eration is zero (q̈0 = 0) and most velocities are also zero.
Examples of applications of the linear equations of motion
are controller design, frequency domain analyses, and stabil-
ity analyses. The symbolic system matrices also allow for the
easy formulation of linear parameter-varying models used in
many advanced control applications.

3 Implementation into a symbolic framework

In this section, we discuss the Python open-source symbolic
calculation framework that we implemented according to the
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equations given in Sect. 2. A Maxima implementation from
the same authors is also available (Geisler, 2021).

The Python library YAMS (Yet Another Multibody
Solver) started as a numerical tool published in previous
work (Branlard, 2019). The library is now supplemented with
a symbolic module so that both numerical and symbolic cal-
culations can be achieved. The new implementation uses
the Python symbolic calculation package SymPy (SymPy,
2021). We leveraged the features present in the subpackage
“mechanics”, which contains all the tools necessary to com-
pute kinematics: the definition of frames and points and the
determination of positions, velocities, and accelerations. The
subpackage also contains an implementation of Kane’s equa-
tions for rigid bodies (i.e., Sect. 2.3). We were also inspired
by the package PyDy (Gede et al., 2013), which is a conve-
nient tool to export the equations of motion to executable
code and directly visualize the bodies in 3D. The core of
our work consisted of implementing a class to define flexible
bodies (FlexibleBody) and the corresponding Kane method
for this class (Sect. 2.4).

For the FlexibleBody class, we followed the formalism
of Wallrapp (1994) and implemented Taylor expansions for
all the terms defined in Appendix A, allowing the symbolic
computation with Taylor expansions to any order. In practice,
a zeroth- or first-order expansion is used. The use of Taylor
expansions is presented in Appendix D3. The different Tay-
lor coefficients may be kept as symbolic terms or replaced
early on by numerical values provided by a SID, for instance.

We structured the code into three layers.

1. The low-level layer integrates seamlessly with SymPy
and PyDy by using the FlexibleBody class we provide.
It is the layer that offers the highest level of granular-
ity and control for the user, since arbitrary systems with
various kinematic constraints can be implemented, at
the cost of requiring more expertise.

2. The second level automates the calculation of the kine-
matics by introducing simple connections between rigid
and flexible bodies. The connections may be rigid, with
constant offsets and rotations, or dynamic. A connection
from a flexible body to another body is assumed to occur
at one extremity of the flexible body. Some knowledge
of SymPy mechanics is still required to use this layer.

3. The third level consists of template models such as
generic land-based or offshore wind turbine models.
Degrees of freedom are easily turned on and off for
these conceptual models depending on the level of fi-
delity asked by the user, and generic external forces can
be implemented or declared as external inputs.

The overall workflow for typical usage of the symbolic
framework is illustrated in Fig. 1. The symbolic framework
takes as input a conceptual model of the structure, which is
assembled using one of the three layers previously described.

The nonlinear and linear equations of motion can be exported
to LaTeX and Python-ready scripts for various applications
(see Sect. 5.1). Using the third layer, as little as three lines
of code are required by the user to perform the full step from
derivation of the equations, optional linearization, and expor-
tation. To obtain numerical results from the exported Python
code, the user needs to provide the arrays with the degrees of
freedom values q and q̇, their initial conditions, a dictionary
with inputs (u) that are functions of time, and a dictionary of
parameters (p) containing all the numerical constants such as
mass, acceleration of gravity, and geometric parameters. We
implemented various preprocessing tools in YAMS to facil-
itate the calculation of numerical parameters, typically from
a set of OpenFAST input files or by using structural param-
eters defined by the users. YAMS contains tools to compute
the flexible bodies parameters (mass matrix, stiffness matrix,
shape integrals) using integrals over the shape functions or
using a finite-element beam formulation. YAMS also con-
tains tools to compute the rigid body inertia of different com-
ponents of a wind turbine or the full system. Postprocessing
tools are also included to readily time-integrate the generated
model using numerical values (including initial values).

The source code of YAMS is available on GitHub as a
subpackage of the Wind Energy Library, WELIB (Branlard,
2022a). The repository contains tests and working examples,
including the ones presented in Sect. 4.

4 Wind energy applications

4.1 Approach

In this section, we present different wind energy applica-
tions of the symbolic framework. We focus on models with
at least one flexible body because the rigid body formula-
tion of SymPy has been well verified (Gede et al., 2013). For
each example, the equations of motion are given and their re-
sults are compared with OpenFAST (Jonkman et al., 2021)
simulations. This is readily achieved because our frame-
work can export the equations of motion to Python func-
tions, load input files from an OpenFAST model, and inte-
grate the generated equations using the same conditions as
defined in the OpenFAST input files. In this article, we do not
focus on the modeling of the external loads, but we include
them in the equations of motion. It is the responsibility of
the user to define these functions, for instance through aero-
or hydro-force models. For the verification results presented
in this section, we only include the gravitational and iner-
tial loading. In all examples, the National Renewable Energy
Laboratory (NREL) 5 MW reference wind turbine (Jonkman
et al., 2009) is used. The examples below are provided on
the GitHub repository where the YAMS package is provided
(Branlard, 2022a).

https://doi.org/10.5194/wes-7-2351-2022 Wind Energ. Sci., 7, 2351–2371, 2022
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Figure 1. Typical workflow for the usage of the symbolic framework, going from numerical inputs and a conceptual model to numerical
packages that can be used for various applications.

4.2 Notations

We adopt a system of notations where the first letter of a
body is used to identify the parameters of that body. As an
example, the tower is represented with the letter T, and the
following body parameters are defined: T , origin;MT, mass;
LT, length; (Jx,T,Jy,T,Jz,T), diagonal coefficients of the in-
ertia tensor about the center of gravity and in body coordi-
nates; rTG, vector from body origin to body center of mass
of coordinates (xTG,yTG,zTG) in body coordinates. We also
define θt, the nacelle tilt angle about the y axis; g, the accel-
eration of gravity along −z; and O, the origin of the global
coordinate system.

4.3 Rotating blade with centrifugal stiffening

We begin with the study of a flexible blade of length LB = R,
rotating at the constant rotational speed �. We use this test
case to familiarize the reader with the key concepts of the
shape function approach given in Appendix B. A sketch of
the system is given in Fig. 2. We model the blade using a sin-
gle shape function, assumed to be directed along the x axis
(in the “flapwise” direction): 81 =81,xex =8ex, where ex
is the unit vector in the x direction, and 8 (without sub-
scripts) is used to shorten notations. The undeflected blade
is directed along the radial coordinate r and rotates around
the x axis. We assume that the shape function is known, de-
noted 8(r). It can be computed as the first flapwise mode
of the blade using tools provided in YAMS. The expres-
sion 8(r)= (r/R)3 is a simple approximation that can be
used for hand calculations. The displacement at a given ra-
dial position and a given time is given by Eq. (11): u(r, t)=
81(r)qe,1(t)=8(r)q(t)ex, where qe,1 is the generalized co-

Figure 2. Sketch of a rotating blade with the restoring centrifugal
force. Points are indicated in green, degrees of freedom in blue, and
loads in orange.

ordinate associated with81, and we use q without subscripts
to shorten notations. The aerodynamic force per length in
the flapwise direction is denoted px(r). The generalized mass
and stiffness are computed based on the mass per length (m)
and flapwise bending stiffness (EIy) of the blade, according
to Eq. (B1):

Me =

R∫
0

m(r)82(r) dr, (27)

Ke =

R∫
0

EIy(r)
[

d28

dr2 (r)
]2

dr. (28)
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The generalized force is obtained from Eq. (B3):

fe =

R∫
0

px(r, t)8(r) dr. (29)

The important consideration for this model is the axial
load, N . The main axial load at a radial station r comes from
the centrifugal force acting on all the points outboard of the
current station:

N (r)=

R∫
r

m(r ′)�2r ′ dr ′. (30)

The geometric stiffness contribution of the axial load is
obtained from Eq. (B5) as

Kg(�)=

R∫
0

N (r)
[

d8
dr

]2

dr

=�2

R∫
0

R∫
r

m(r ′)r ′ dr ′
[

d8
dr

]2

dr. (31)

The geometric stiffness, Kg, is positive and increases with
the square of the rotational speed. This restoring effect is
referred to as “centrifugal stiffening”. In this example, the
beam rotates with respect to a fixed support, the influence
of gravity is omitted, and no force other than the centrifugal
force is assumed in the radial direction (the Coriolis force
contribution to the radial force is assumed to be negligible
for simplicity). Therefore, the only geometric stiffness comes
from the centrifugal force. For a wind turbine blade mounted
on a flexible support and under the influence of gravity, the
different geometric stiffening terms presented in Appendix C
should be used. Adding the elastic and geometric stiffness,
the natural frequency of the blade increases with the rota-
tional speed as follows:

ω0(�)=

√
(Ke+Kg(�))

Me
=

√
ω2

0(0)+
Kg(�)
Me

=

√
ω2

0(0)+ k��2, (32)

where k� is referred to as the “rise factor” or “Southwell
coefficient”, and in our approximation, it is found to be
constant: k� =Kg(�)/Me/�

2. The coefficient provides the
variation of the blade frequency with rotational speed, which
is something that is observed on a Campbell diagram when
performing stability analyses. In general, the mode shapes
of the blade will also change as a function of the rotational
speed, and different shape functions should preferably be
used for simulations at different rotational speeds. The effect
is fairly limited, and most OpenFAST practitioners only use

one shape function corresponding to the value at rated rota-
tional speed. Similarly, the Southwell coefficient is a function
of the rotational speed, but the variation is negligible as long
as the rotational speed is small compared to the natural fre-
quency (e.g., (�/ω)2 . 5; see Bielawa, 2006), which is the
case for wind energy applications.

The treatment for a shape function purely in the blade
edgewise direction is similar, using 82 =82eθ , where eθ is
the unit vector in the edgewise direction. In this case, the cen-
trifugal force also has a component in the tangential direc-
tion, pθ,centri(r)=−�2uθ (r)dm(r), with uθ =82q2. This
leads to a generalized force equal to

∫ L
0 pθ,centri82dr =

−�2Meq2, or, equivalently, to a stiffness term: Kω =
−�2Me. It can be verified that this generalized force cor-
responds to the contribution Oe,11ω

2
x, from kω,e, given in

Eq. (A10). For an edgewise mode, the frequency therefore
evolves as

ω0(�)=

√
(Ke+Kg(�)+Kω(�))

Me

=

√
ω2

0(0)+ (k�− 1)�2, (33)

with k� =Kg(�)/Me/�
2 and with Kg computed using

Eq. (31).
We apply the method to the NREL 5 MW wind turbine

using the blade properties and shape functions provided in
the ElastoDyn input file. We order the degrees of freedom
as first flap, first edge, and second flap, assuming no cou-
pling between the shape functions, so that each can be treated
individually using the results from this section. The diag-
onal coefficients of the mass matrix are diag(Me)= [9.5×
103,1.5× 104,5.7× 103

], and for the stiffness matrix they
are diag(Ke)= [1.7×104,6.7×104,8.7×104

], computed ac-
cording to Eqs. (27) and (28). The coefficients k� of each
degree of freedom are obtained as k� = [1.7, 1.4, 5.5]. We
compare the frequencies obtained with the present method
against OpenFAST linearization results in Fig. 3. The sim-
ulations were run in vacuum (no gravity, no aerodynamics)
and with a cone angle of 0◦. Strong agreement is found for
the evolution of the different frequencies with the rotational
speed. The stiffening is less pronounced for edgewise modes
as a result of the softening introduced by Kω.

This section focused on the analysis of individual shape
functions, expressed purely in one direction. In the general
case, multiple shape functions are present, and couplings
might exist between them (due to the structural twist or
nonorthogonality of the shape functions, or if the shape func-
tions have components in multiple directions). For instance,
if the blade is represented by two shape functions defined in
both the x and y direction, we have 81 =81,xex+81,yey,
82 =82,xex+82,yey, and u=81q1+82q2. The develop-
ments of appendices A and B should be used for general
cases.
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Figure 3. Variation of the natural frequencies of the NREL 5 MW
turbine blade with rotational speed. Results from YAMS and Open-
FAST, with mean relative error, ε, are reported on the figure.

4.4 Two-degrees-of-freedom model of a land-based or
fixed-bottom turbine

We consider a system of three bodies: tower (or support
structure), nacelle, and rotor. The system represents a land-
based wind turbine or a fixed-bottom offshore wind turbine.
A sketch of the system is given in Fig. 4. The nacelle and ro-
tor blades are rigid bodies, whereas the tower is flexible and
represented by one shape function2 in the fore–aft direction,
denoted 81 =81ex. For hand calculations and as a first ap-
proximation, the first mode shape of a massless beam with a
top mass may be used: 81(z)= 1− cos(zπ/L/2). Increased
accuracy is obtained when the shape function matches the
actual first tower fore–aft bending mode, accounting for the
effect of the rotor–nacelle mass and inertia. The degrees of
freedom are q = (q,ψ), where q is the generalized (elas-
tic) coordinates in the fore–aft direction and ψ is the az-
imuthal position. The slope of the tower shape function at
the tower top is a key coupling parameter of the model, de-
noted νy. When the tower deflects 1 m in the x direction,
the nacelle rotates by an angle νy. The method assumes that
the tower-top point remains along the x axis, neglecting the
so-called nonlinear geometric effect. However, nonlinear ge-
ometric effects can be included using geometric stiffening
corrections (see Appendix C or Branlard, 2019). The aerody-
namic thrust and torque are denoted fa and τa, respectively,
and act at the rotor center (point R). The low-speed shaft
generator torque is written as τg. The distributed loads on the
tower, px (from aerodynamics and hydrodynamics), are pro-
jected against the shape function to obtain the generalized
forces fe =

∫ LT
0 px(z, t)81(z)dz. The moments of inertia of

the rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R). We note
that Me,Ke, and De are the generalized mass, stiffness, and
damping, respectively, associated with a given shape function

2The relevant equations of the shape function approach for a
beam are given in Appendix B.

Me =
∫ LT

0 m(z)82
1(z)dz, Ke =

∫ LT
0 EI(z)

[
d281
dz2 (z)

]2
dz, De =

2ζMeωe, where m(z) and EI(z) are the mass per length and
bending stiffness of the tower, respectively, and ωe and ζ
are the frequency and damping ratio, respectively, associated
with the shape function (assuming the shape function approx-
imates a mode shape). The geometric softening of the tower
due to the tower-top mass (Kgt) and its own weight (Kgw) is
obtained using Eq. (B5), as Kg =Kgt+Kgw, with

Kgt =−g

LT∫
0

(MR+MN)
[

d81

dz
(z)
]2

dz, (34)

Kgw =−g

LT∫
0

 LT∫
z

m(z′) dz′

[d81

dz
(z)
]2

dz. (35)

The tower is assumed to be fixed and under no significant
vertical external loads, and therefore the only geometric stiff-
ness comes from the gravitational force. For a tower mounted
on a moving support (fixed-bottom foundation or floater), ad-
ditional geometric stiffening terms would be present (see Ap-
pendix C). The shape function frequency is obtained as

ωe =
√

(Ke+Kg)/Me. (36)

The application of the symbolic framework leads to the
following equations of motion (rearranged for interpretabil-
ity):[
Mq 0
0 Jx,R

][
q̈

ψ̈

]
=

[
fq

τa− τg

]
, (37)

where

Mq =Me+MN+MR (38)

+

(
JyN+ J⊕,R+MN

(
x2

NG+ z
2
NG

)
+MR

(
x2

NR+ z
2
NR

))
ν2

y (39)

+ 2
[
(MNzNG+MRzNR)cos(νyq)

−(MNxNG+MRxNR) sin(νyq)
]
νy (40)

and

fq = fe− (Ke+Kg)q −Deq̇ (41)
+ gνy

[
(MNxNG+MRxNR)cos(νyq)

+(MNzNG+MRzNR) sin(νyq)
]

(42)

+ ν2
y q̇

2 [(MNxNG+MRxNR)cos(νy)

+(MNzNG+MRzNR) sin(νyq)
]

(43)
+ faνy(xNR sinθt+ zNR cosθt) (44)
+ fa cos

(
θt+ νyq

)
. (45)

Details on the derivations are given in Appendix E1. The
mass matrix consists of three main contributions: Eq. (38)
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Figure 4. Model of a land-based or fixed-bottom wind turbine using 1 to 3 degrees of freedom (fore–aft and side–side flexibility of the
support structure, as well as shaft rotation). Points are indicated in green, degrees of freedom in blue, and loads in orange.

represents the elastic mass and the rotor nacelle assembly
(RNA) mass, Eq. (39) is the generalized rotational inertia
of the RNA, and Eq. (40) is the inertial coupling between
the tower bending and the rotation of the nacelle. The forc-
ing terms are identified as follows: Eq. (41) consists of the
elastic load resulting from the external forces on the tower,
the elastic and geometric stiffness loads, and the damping
load on the tower; Eq. (42) is the gravitational load from the
RNA, which will contribute to the stiffness of the system;
Eq. (43) is the centrifugal force of the RNA (Mω2r with
ω = νyq̇); Eq. (44) is the generalized torque from the aero-
dynamic thrust; and Eq. (45) is the thrust contribution acting
directly along the direction of the shape function degree of
freedom (along x). The RNA center of mass plays an impor-
tant part in the equations (see the terms (MNxNG+MRxNR)
and (MNzNG+MRzNR)).

The equations of motion given in Eq. (37) can be used
to perform time domain simulations of a wind turbine. It is
noted that the 2 degrees of freedom are only coupled by the
aerodynamic loads. The nonlinear model was used in pre-
vious work for time domain simulations, and its linear ver-
sion was used for state estimations (Branlard et al., 2020a, b).
In this section, we apply the linearized form to compute the
natural frequency of the turbine tower fore–aft mode. The
linearized stiffness is obtained by taking the gradient of the
forcing with respect to q and using a small angle approxima-
tion for νy to the second order:

Kq,lin = (Ke+Kg)− ν2
yg(MNzNG+MRzNR

− faq cosθt)+ νyfa sinθt. (46)

For the NREL 5 MW reference turbine (Jonkman
et al., 2009), the different numerical values are g =

9.807 ms−2, θt = 5◦, xNR =−5.0 m, zNR = 2.4 m, LT =

87.6 m, zNG = 1.75 m, xNG = 1.9 m, MR = 1.1× 105 kg,
Jx,R = 3.86× 107 kgm2, J⊕,R = 1.92× 107 kgm2, MN =

2.4× 105 kg, Jy,N = 1.01× 106 kgm2, and MRNA = 3.5×
105 kg. The first fore–aft shape function of the NREL 5 MW
turbine tower and its derivatives are

81(z)=
(
a2z

2
+ a3z

3
+ a4z

4
+ a5z

5
+ a6z

6
)
/

(a2+ a3+ a4+ a5+ a6),
d81

dz
(z)=

1
LT

(
2a2z+ 3a3z

2
+ 4a4z

3
+ 5a5z

4

+6a6z
5
)
/(a2+ a3+ a4+ a5+ a6), (47)

d281

dz2 (z)=
1
L2

T

(
2a2+ 6a3z+ 12a4z

2
+ 20a5z

3

+30a6z
4
)
/(a2+ a3+ a4+ a5+ a6),

with z= z/L, a2 = 0.7004, a3 = 2.1963, a4 =−5.6202,
a5 = 6.2275, and a6 =−2.504. The material properties and
the shape function are illustrated in Fig. 5. The scal-
ing of the shape functions given in Eq. (47) is impor-
tant to obtain the correct numerical values for the flex-
ible tower, namely νy = 0.0185, Me = 5.4× 104, Ke =

1.91×106,Kg =−5.2×104
−1.0×104

=−6.20×104, ωe =√
(Ke+Kg)/Me = 5.85 rads−1. These numerical values,

with q = 0, lead toMq = 4.375×105 andKq = 1.849×109.
The first fore–aft mode of the wind turbine has a natural fre-
quency of f =

√
Kq/Mq = 0.3272 Hz. This value was com-

pared with results obtained using OpenFAST linearization.
Both methods are in strong agreement, with differences only
arising at the fifth decimal place.
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Figure 5. Properties of the NREL 5 MW turbine tower: mass per
length (m), bending stiffness (EI), shape function displacement (8),
slope (d8/dz), and curvature (d28/dz2).

4.5 Three-degrees-of-freedom model of a land-based or
fixed-bottom turbine

We consider the same system as the one presented in
Sect. 4.4, but the tower is now represented by one shape func-
tion in both the fore–aft and side–side directions,81 =81ex
and 82 =82ey. The degrees of freedom are q = (q1,q2,ψ),
where q1 and q2 are the generalized (elastic) coordinates in
the fore–aft and side–side directions, respectively, and ψ is
the rotor azimuth. A sketch of the system is given in Fig. 4.

The slopes of the shape functions at the tower top are key
coupling parameters of the model, denoted νx and νy. The
aerodynamic thrust and torque are denoted fa and τa, act-
ing at point R. The distributed loads on the tower, px and
py (from aerodynamics and hydrodynamics), are projected
against the shape functions to obtain the generalized forces
fe1 =

∫
81pxdz and fe2 =

∫
82pydz. The moments of iner-

tia of the rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R). We
note thatMe,Ke, andDe are the generalized mass, stiffness,
and damping, respectively, associated with a given shape
function (e.g., Me11 =

∫
82

1m(z)dz, where m is the mass per
length of the tower). The application of the symbolic frame-
work leads to the equations of motion given in Appendix E2.
To simplify the equations and limit their length when printing
them in this article, we have applied a first-order small-angle
approximation for θt and a second-order approximation for
νx and νy. It is observed from Eq. (E14) that a first-order ap-
proximation for νy would have removed the influence of the
rotor and nacelle y inertia on the generalized mass associated
with the tower fore–aft bending.

We performed a time simulation of the model using both
our symbolic framework YAMS and OpenFAST. The time
integration in YAMS currently relies on tools provided in the
SciPy package, which implements several time integrators. A
sufficient level of accuracy was obtained using a fourth-order
Runge–Kutta method, which is the default method. Kane’s

Figure 6. Free decay results for the land-based/fixed-bottom model
using both the symbolic framework (YAMS) and OpenFAST. From
top to bottom: tower fore–aft bending, tower side–side bending, and
shaft rotational speed.

method, which uses a minimal set of coordinates, tends to
lead to stiff systems, and it is possible that implicit integrators
may be needed for other systems. We compare the time se-
ries obtained using our generated functions with results from
the equivalent OpenFAST simulation in Fig. 6. In this simu-
lation, the tower top is initially displaced by 1 m in the x and
y directions, and the rotational speed is 5 rpm. We report the
mean relative error, ε, and the coefficient of determination,
R2, on the figure. We observe that our model is in strong
agreement with the OpenFAST simulation. The differences
in the second tower degree of freedom are attributed to (1)
the handling of the small-angle approximation, which is dif-
ferent in OpenFAST (using the closest orthonormal matrix;
Jonkman, 2009) and in our formulation (two successive rota-
tions, linearized), and (2) the nonlinear geometric corrections
that are implemented in OpenFAST, which we have omitted
here by only selecting shape function expansion to the zeroth
order (see Sect. 5.2). The variation in azimuthal speed, re-
sulting from the coupling between the gyroscopic loads and
the tower bending, is captured well.

4.6 Three-degrees-of-freedom model of a floating wind
turbine

In this example, we demonstrate the applicability of the
method for a floating wind turbine. We model the turbine
using three bodies: rigid floater, flexible tower, and rigid
RNA (labeled “N”). The degrees of freedom selected are
q = (x,φ,qT), where x is the floater surge, φ is the floater
pitch, and qT is the coordinate associated with a selected
fore–aft shape function. A sketch of the model is given in
Fig. 7. The notations are similar to the ones presented in
Sect. 4.5. Lumped hydrodynamic loads at the floater center
of mass are now added. The model can also be used for a
combined tower and floater that is flexible, simply by setting
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Figure 7. Model of a floating wind turbine using 3 degrees of free-
dom. Points are indicated in green, degrees of freedom in blue, and
loads in orange.

Figure 8. Free-decay results for the floating wind turbine model
using YAMS and OpenFAST. From top to bottom: surge, pitch, and
tower fore–aft bending.

the mass of the floater to zero and including the hydrody-
namic loading into the loading px. The equations of motion
are given in Appendix E3. The equations were simplified us-
ing a first-order small-angle approximation of θt and φy and
a second-order approximation for νy.

We performed a numerical simulation of the model gener-
ated by YAMS and compared it with OpenFAST for a case
with gravitational loads only, starting with x = 0 m, φ = 2◦,
and qT = 1 m. The results are presented in Fig. 8. We observe
again that the results from the two models correlate to a high
degree.

We also compared the linearized version of both models.
The symbolic framework can generate the linearized mass,
stiffness, and damping matrices, as described in Sect. 2.5.

The matrices are then combined into a state matrix and com-
pared with the state matrices written by the OpenFAST lin-
earization feature. The eigenvalue analysis of the YAMS
state matrix returned a pitch and fore–aft frequencies of
0.099 and 0.799 Hz, respectively, whereas OpenFAST re-
turned 0.095 and 0.795 Hz. The 4 % error in the pitch fre-
quency appears reasonable in view of the approximations
used.

5 Discussions

5.1 Applications and advantages of the method

The implementation of the symbolic YAMS library was orig-
inally motivated by the need to obtain a simple linearized
model of a floating wind turbine for frequency domain sim-
ulations. There are multiple potential applications of the
framework.

– The generated equations can be used in time domain
simulation tools. The equations can be readily exported
to different programming languages (C, FORTRAN, or
Python) providing computationally efficient tools, par-
ticularly because the method generates compact and
minimal equations. This is in contrast to most other
multibody codes, in which many terms are calculated as
matrix equations and through successive function calls.
Further, the symbolic framework allows us to generate
optimized code, in which common terms and factors
are computed once and stored in temporary variables
for reuse in the different expressions. In our examples,
time domain simulations were observed to be 2 orders
of magnitude faster when using the automatically gen-
erated code in Python compared to OpenFAST simu-
lations that rely on a compiled language. Using such a
framework can be considered in the future to replace the
existing ElastoDyn module of OpenFAST. It can also
be applied to unusual configurations such as multirotor
or vertical-axis turbine concepts. Dedicated code can be
generated for specific applications for increased perfor-
mance. For instance, implicit integrators with iterative
Newton–Raphson-like solvers benefit from the possi-
bility of generating exact and efficient Jacobians along
with the equations of motion.

– The generation of linearized models has a wide range
of applications, such as linear time domain simulations,
controller design and tuning, frequency domain analy-
ses, stability analyses, state observers, or digital twins.
The symbolic approach is severalfold faster than alter-
native approaches because it can be evaluated for all
operating points at once, whereas other methods (e.g.,
OpenFAST, HAWCStab2) require multiple lineariza-
tion calls.

– Analytical linearization with respect to parameters is di-
rectly obtained using our tool, which can be used for
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sensitivity analyses, parameter studies, optimizations,
integrated design approaches, and controls co-design
(e.g., using methods such as linear-matrix-inequality-
based designs; Pöschke et al., 2020). Nonanalytical ap-
proaches require numerous linearizations and evalua-
tions at various operating points (Jonkman et al., 2022).

– In addition to the nonlinear or linear equations of mo-
tion in minimal coordinates, the equations for the con-
straint forces or any auxiliary kinematic variable can
also be generated efficiently by inserting unknown vir-
tual displacements in the equations (see Appendix D5
for an alternative approach). The position of all bodies
in local or global coordinates can be recovered from the
minimal coordinates and, in combination with the flexi-
ble code generation, be used to output data (e.g., for 3D
animations of the turbine).

– Analytical gradients of the equations can be computed
and used in optimizations, nonlinear model predictive
control, or moving horizon estimation. External loads
that cannot be expressed analytically can be defined as
generic functions of the structural degrees of freedom,
inputs, and parameters. After the code generation, the
user can link a numerical implementation of the func-
tion and its numerical gradients to be able to use a mix
of analytical and numerical gradients.

– Another advantage of the presented method is the possi-
bility to quickly generate models with different levels of
detail, ensuring consistency between the different lev-
els of fidelity. This is in contrast to other more heuristic
modeling approaches in which parameters often have to
be retuned for each added degree of freedom.

– The method provides useful insights and can be used as
an educational tool: simple models of a system with few
degrees of freedom can readily be obtained, studied, and
compared to hand-based calculation.

5.2 Advanced consideration

Section 2 addressed the systematic derivation of the equa-
tions of motion for an assembly of rigid or flexible bodies.
Some advanced aspects of the method are discussed here.

– The different terms involved in the equations of motion
of flexible bodies can be decomposed using shape in-
tegrals (see Appendix D3). Our framework readily sup-
ports this optional decomposition: it is the responsibility
of the user to provide the terms and values of the expan-
sion when numerical evaluation is to occur.

– The definition of geometric stiffening requires attention
in the general case. It is accounted for by the term kσ ,
presented in Appendix A. We discuss geometric stiffen-
ing in more detail in Appendix C.

– The treatment of external loads was not addressed in
detail in this article because the loads are application-
specific (aerodynamics, hydrodynamics, etc.). The
framework can accept external loads as arbitrary func-
tions of multiple variables or as analytical expressions.
In the former case, the user will have to provide an im-
plementation of the function during the execution.

– Even though the equations of motion are void of con-
straint forces, the values of these forces can be recov-
ered. They can be expressed as functions of the external
forces and the states of the system. It is not necessary
to compute them by iteratively solving constraint equa-
tions.

– The framework can easily include rheonomous con-
straints – for instance, for the pitch angle – without hav-
ing to supply a dedicated torque. Pitch speed and accel-
erations can be directly introduced into the mechanical
system if they are provided by a generic second-order
pitch actuator model.

5.3 Limitations

In spite of the advantages listed in Sect. 5.1, the symbolic
procedure presented in this work has some potential limita-
tions.

– Constraints and closed loops have currently not been
added to the framework. The SymPy mechanics pack-
age supports additional constraint equations within
Kane’s method. We therefore hope that this limitation
can be lifted in the future.

– Large problems may challenge a symbolic calculation
package: memory impact, calculation time, simplifica-
tion times, and size of expressions may become signif-
icant. Some of these issues may be alleviated by intro-
ducing intermediate variables that are only substituted
for in the numerical implementation or by using a re-
cursive formulation of the solution procedure (Branlard,
2019).

We further note that the shape function approach is an ap-
proximate method: it introduces a separation of space and
time early on in the development of the nonlinear equations
of motion and applies low-order polynomial (usually linear
or quadratic) approximations to eliminate high-order terms
(see, e.g., Table 1 of Wallrapp, 1994). This was presented
as an advantage in Sect. 5.1 because the equations are ob-
tained in compact form and are readily linearized. Yet, the
approximations introduced by the method may imply that
nonlinearities are not well captured, which is why the models
are labeled as “mid-fidelity” throughout this article. The do-
main of validity of the nonlinear or linear models presented
may therefore be limited in time and space as opposed to
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fully nonlinear methods. Advanced methods to obtain high-
fidelity reduced-order models from nonlinear dynamic sys-
tems are beyond the scope of this work; see, e.g., Steindl and
Troger (2001), Benner et al. (2015), and Touzé et al. (2021).

6 Conclusions

We presented a symbolic framework to obtain the linear and
nonlinear equations of motion of a multibody system made
of rigid bodies, flexible bodies, and kinematic joints. Our
approach is based on Kane’s method and a nonlinear shape
function representation of flexible bodies. We provided dif-
ferent wind energy examples and verified the results against
OpenFAST simulations. The framework can readily provide
models suitable to a wide range of applications with competi-
tive computational times. The framework is open source, and
the examples presented are available in the repository. Future
work will focus on applying the framework to dedicated re-
search projects, with more complex systems, and potentially
extend the framework to account for closed-loop systems and
arbitrary constraints.

Appendix A: Equations for a flexible body and shape
integrals

In this section, we detail the equations of motion of a flexi-
ble body. The reader is referred to the following references
for a complete treatment of the equations of motion: Sha-
bana (2013), Schwertassek and Wallrapp (1999), and Wall-
rapp (1994). The subscript i, indicating the body index, is
dropped. All quantities (vectors and matrices) are expressed
in the body frame of reference; therefore, the prime notation
is also dropped in this section. The number of flexible shape
functions associated with the body is ne, the flexible degrees
of freedom are qe, and the shape functions are gathered into
a matrix 8 of size (3× ne). The equations of motion, given
in Eq. (12), are repeated below:Mxx Mxθ Mxe

Mθθ Mθe
sym. Mee

ai
ω̇i

q̈e

+
kω,xkω,θ
kω,e


+

 0
0
ke

=
f x
f θ
f e

 . (A1)

The different terms of the mass matrix are obtained as fol-
lows:

Mxx =

∫
I 3 dm=MI 3 (3× 3), (A2)

Mxθ =−

∫
s̃P dm=−M s̃CM (3× 3), (A3)

Mθθ =−

∫
s̃Ps̃P dm= J (3× 3), (A4)

Mθe =

∫
s̃P8dm= CT

r (3× ne), (A5)

Mxe =

∫
8dm= CT

t (3× ne), (A6)

Mee =

∫
8T8dm (ne× ne). (A7)

The integrals are volume integrals over the volume of the
body (for beams, they reduce to line integrals). The notation
[ ˜ ] represents the skew symmetric matrix. M is the mass of
the body. The vector sCM is the vector from the origin of the
body to undeflected center or mass (CM) of the body. The
notations Ct (ne×3) and Cr (ne×3) are introduced to match
Wallrapp’s notations. The vector sP is the vector from the ori-
gin of the body to a deflected point of the body of elementary
mass dm. The undeflected position of this point is written
as sP0 and the displacement field u, such that sP = sP0 +u.
Typically, the displacement field is given by u=8qe, but
a higher-order expansion can also be introduced (see Wall-
rapp, 1994, and Appendix D4). Wallrapp also includes the el-
ementary mass moment of inertia, which results in additional
terms in the integrals (see Wallrapp, 1994). Such contribu-
tions are relevant, for instance, when considering the torsion
of a beam (see Branlard, 2019). The block matrices Mxx,
Mxe, andMee do not depend on the deformation of the body
and are therefore constant. The other terms are functions of
qe. They may be expressed as linear combinations of con-
stant integrals (see Appendix D3).

The quadratic velocity terms, kω, are given as

kω,x = 2ω̃CT
t q̇e+Mω̃ω̃sCM (3× 1), (A8)

kω,θ = ω̃Mθθω+

[ ∑
j=1..ne

Gr,j q̇e,j

]
ω (3× 1), (A9)

kω,e =
[
ωTOe,jω

]
j=1..ne

+

[ ∑
j=1..ne

Ge,j q̇e,j

]
ω (ne× 1), (A10)

where

Gr,j =−2
∫
s̃P8̃j dm (3× 3), (A11)

Oe,j =

∫
8̃j s̃P dm=−

1
2
GT

r,j (3× 3), (A12)

Ge,j =−2
∫
8T8̃j dm (ne× 3). (A13)

The first term of Eq. (A10) is obtained by vertically stack-
ing the contribution of each shape function. In the standard
input data format, this term is reshaped as the product Oe�,
where

Oe = [Oe,j,11, Oe,j,22, Oe,j,33, Oe,j,12

+Oe,j,21, Oe,j,23+Oe,j,32, Oe,j,13

+Oe,j,31]j=1..ne (ne× 6), (A14)
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�=
[
ω2

x, ω
2
y, ω

2
z , ωxωy, ωyωz, ωxωz

]
(6× 1). (A15)

The body elastic forces are given by

ke = kσ +Keqe+Deq̇e, (A16)

where Ke and De are the elastic stiffness and damping ma-
trices, and kσ represents geometric stiffening terms (see Ap-
pendix C). The elastic damping forces are often given as stiff-
ness proportional damping. For more details, see Wallrapp
(1994), and for more examples with elastic beams, see Bran-
lard (2019). The external loads can be assumed to consist of
distributed volume forces, p (in practice they are primarily
surface forces or line forces), and a gravitational acceleration
field, g. The components of the external loads in Eq. (A1) are
then obtained by integration over the whole body:

f x =

∫
p dV +Mxxg (3× 1), (A17)

f θ =

∫
sP×p dV +Mθxg (3× 1), (A18)

f e =

∫
8Tp dV +Mexg (ne× 1). (A19)

Appendix B: Application of the shape function
approach to an isolated beam

In this section, we illustrate how the elastic equations of Ap-
pendix A can be applied to an isolated beam. Examples of
applications are further given in Sects. 4.3 and 4.4. We con-
sider a beam directed along the z axis and bending in the
x and y directions. Expressions are written in the coordi-
nate system of the beam, and primes are dropped in this sec-
tion. The beam properties are the following: length, L; mass
per length, m; and bending stiffness, EIx and EIy. We as-
sume that the displacement field is such that the shape func-
tions are functions of z only: u(z, t)=

∑ne
i=18i(z)qe,i(t). We

also assume that the shape functions satisfy at least the geo-
metric boundary conditions. The kinetic energy of the beam
is T = 1

2

∫ L
0 mu̇

2dz= 1
2
∑
i

∑
jMe,ij q̇e,j q̇e,i, where Me,ij is

(see Eq. A7)

Me,ij =

L∫
0

m(z)8i(z) ·8j (z) dz, i,j = 1, . . .ne. (B1)

Equation (B1) involves a scalar product of the shape func-
tions at each spanwise position. Integrals over the moment
of inertia can be used to account for torsion (see Branlard,
2019). The potential energy (strain energy) of the beam is ob-
tained as V = 1

2
∑
i

∑
jKe,ijqe,iqe,j , where Ke,ij represents

the elements of the stiffness matrix, which, under the as-

sumption of small deformations, are given by

Ke,ij =

L∫
0

[
EIy

d28i,x

dz2
d28j,x

dz2

+EIx
d28i,y

dz2
d28j,y

dz2

]
dz, i,j = 1, . . .ne. (B2)

Elongation and torsional strains (EA and GKt) can sim-
ilarly be added to the strain energy and the stiffness matrix
if longitudinal and torsional displacement fields are included
in the shape functions. The external loads on the beam are
assumed to consist of a distributed force vector, p(z). The
virtual work done by the force p for each virtual displace-
ment δqe,i provides the generalized force as (see Eq. A17)

fe,i =

L∫
0

8i ·p dz. (B3)

The equations of motion of the isolated beam are then writ-
ten in matrix form as

Meq̈e+Deq̇e+Keqe = f e, (B4)

where qe = [qe,1, . . .,qe,n]. Damping is typically added a
posteriori to the equations, where the Rayleigh damping as-
sumption is often used: De = αMe+βKe (stiffness propor-
tional damping implies α = 0). If the shape functions are
mode shapes, then the shape functions are orthogonal, the
mass and stiffness matrices are diagonal, and the stiffness
values would be Ke,ii = ω

2
e,iMe,ii , with ωe,i =

√
Ke,ii/Me,ii

the eigenfrequency of the beam mode i. The modal damping
is then given byDe,ii = 2ζiMe,iiωe,i, where ζi is the damping
ratio associated with mode i.

If the beam is loaded axially by a force N (z) (assumed to
be independent of the elastic degrees of freedom), then this
force produces a distributed load in the transverse direction
equal to n= ∂

∂z

[
N (z) ∂u

∂z

]
, with components in the y and z

directions (see Branlard, 2019). The generalized force asso-
ciated with this loading is then QN,i =

∫ L
0 8i ·ndz. Inserting

the expression of n and u, the generalized force has the form
of a stiffness term: QN,i =−

∑
jKN,ijqe,j , with

KN,ij =−

L∫
0

8i ·
d
dz

[
N (z)

d8j
dz

]
dz

=

L∫
0

N (z)
d8i
dz
·

d8j
dz
−

[
N (z)8i ·

d8j
dz

]L
0
, (B5)

where integration by parts was used to obtain the second
equality. Examples of applications are given in Sects. 4.3
and 4.4. The fact that an axial load leads to a stiffness term
is referred to as “geometric stiffness”, which is the topic of
Appendix C.
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Appendix C: Geometric stiffness

C1 General treatment

Geometric stiffness refers to the apparent change of stiff-
ness of a structure depending on the loading it is subject to.
In this section, we present a linear formulation of geomet-
ric stiffness for a flexible body undergoing motion and sub-
ject to arbitrary loading, inspired by Schwertassek and Wall-
rapp (1999). Additional details may be found in Wallrapp and
Schwertassek (1991). The main component of the geometric
stiffening term kσ can be written as

kσ =Kgqe, (C1)

where Kg is the geometric stiffness matrix of shape ne× ne.
In general, this matrix is time-dependent, as it is a function
of the inertial and external loads acting on the body. The in-
ertial loads consist of contributions from the linear accelera-
tion (a), rotational acceleration (ω̇), and cross products of the
rotational velocity of the body (centrifugal and gyroscopic
terms). The external loads consist of the gravitational force,
distributed forces per unit length (p), point loads (F k), and
point moments (τ k), where k is the node index where the
point loads are applied. Each of these contributions can be
computed at each time step using a linear superposition of
unit geometric stiffness matrices, denoted Kg∗ , as follows:

Kg =

3∑
α=1

[
(aα − gα)Kgt,α + ω̇αKgr,α

]
+

3∑
α=1

3∑
β=1

ωαωβKgω,αβ

+

3∑
α=1

[
pαKgp,α +

∑
k

(
F kαK

k
gF,α + τ

k
αK

k
gτ,α

)]
, (C2)

where the indices α and β run on the x, y, and z coordinates
of the body reference frame. The matrices Kg∗,α or Kg∗,αβ
have the shape ne× ne and are obtained as the geometric
stiffness matrices for unit accelerations, loads, or products
of rotational velocities in the given direction defined by α
and β (x, y, or z). For instance, Kgt,z is the geometric stiff-
ness matrix corresponding to a unit acceleration in the z di-
rection, Kk

gω,xy is the geometric stiffness matrix correspond-
ing to a unit gyration about the x and y directions (centrifu-
gal effect), and Kk

gF,x is the geometric stiffness matrix cor-
responding to a unit force in the x direction applied at the
node k along the body. The effect of the Coriolis force is not
mentioned in the work of Schwertassek and Wallrapp and
not explicitly accounted for in Eq. (C2). The Coriolis force,
2m(z)ω× (

∑
j8j (z)q̇e,j ), is proportional to q̇e. Because the

instantaneous beam slope is proportional to qe, the geomet-
ric stiffening term consists of terms of the form qe,j q̇e,k . In
Table 1 of Wallrapp (1994), it is stated that nonlinear terms
of the form qe,j q̇e,k are neglected. Yet, if the steady-state de-
flection qe is significant, then the influence of the Coriolis

term on the geometric stiffening may be significant. The ef-
fect can be included as an additional term in Eq. (C1) that is
a function of qe and q̇e (expressions are provided in Eq. C2).
We note that the termsKg∗ have different units; for instance,
the terms Kgt,∗ are expressed in Ns2 m−2 .

C2 Expressions for a beam directed along z

The expression for each of these matrices are given in Schw-
ertassek and Wallrapp (1999) in the context of the finite-
element method. The general expressions for a shape func-
tion approach would be beyond the scope of this article, but
we provide the expressions for a beam below.

We adopt the same notations as Appendix B to describe
the flexible beam. Following the developments that led to
Eq. (B5), the geometric correction associated with an axial
load N is given by the generalized force:

kσ,N,i =

L∫
0

N (z)8i ·

[∑
j

d8j
dz

qj

]
dz. (C3)

When the axial load is not a function of the degrees of
freedom, this expression can be expressed as a stiffness ma-
trix, as indicated in Eq. (B5). The different unit geometric
matrices introduced in Appendix C can be determined using
a form of Eq. (B5), where the axial load N is replaced by
the unit inertial or external load. Since the beam is directed
along the z direction, we focus on the terms where the loads
act in the z direction, with all other terms being zero or neg-
ligible. The ij component of the matrix Kgt,z is obtained by
considering a unit vertical acceleration:

Kgt,z,ij =

L∫
0

N (z)
d8i

dz
·

d8j
dz

dz,

N (z)=

L∫
z

m(z)dz. (C4)

We write zk as the coordinate of node k along the beam.
The ij component of the matrix Kk

gF,z is obtained as

Kk
gF,z,ij =

L∫
0

N (z)
d8i

dz
·

d8j
dz

dz,

N (z)= 1 if z < zk,0 otherwise. (C5)

The ij component of the matrix Kgω,αβ is obtained by
considering unit centrifugal loads generated using indepen-
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dent rotations around the unit vectors ex, ey, and ez:

Kgω,αβ,ij =

L∫
0

−ez ·
(
ẽα ẽβN (z)

) d8i

dz
·

d8j
dz

dz,

N (z)=

L∫
z

m(z)sP0dz. (C6)

Similarly, the ij component of the matrix Kgr,α is

Kgr,α,ij =

L∫
0

−ez · (ẽαN (z))
d8i

dz
·

d8j
dz

dz,

N (z)=

L∫
z

m(z)sP0dz. (C7)

The Coriolis force, 2m(z)ω× (
∑
j8j (z)q̇e,j ), can also

have an axial contribution. Using Eq. (C3), the generalized
force is

kσ,Cor,i =

L∫
0

N (z)8i ·

[∑
j

d8j
dz

qj

]
dz,

N (z)= 2

L∫
z

m(z)
∑
k

[
ωx8k,y(z)−ωy8k,x(z)

]
q̇k dz. (C8)

Equation (C8) may be rearranged by introducing a three-
dimensional tensor made of shape integrals that are inde-
pendent of the elastic degrees of freedom and the rotational
speed and therefore speed up the evaluation of this expres-
sion at each time step. The vector kσ,Cor(qe, q̇e) is added to
the right-hand side of Eq. (C1).

C3 Integration into the equations of motion

The term kσ =Kgqe appears on the third block row of the
equations of motion of the flexible body (Eq. A1). Because
of the linearity with respect to the acceleration, rotational ve-
locities, and forces, the different contributions can option-
ally be incorporated into the third block row of the mass
matrix (Me∗ ), the term kω,e, and the term f e, respectively.
For instance, the term

∑
aαKgt,αqe can be reorganized as

[Kgt]qe · a (using loose notations); therefore, the mass ma-
trix can be updated such that Mxe becomes Mxe+ [Kgt]qe.
When a Taylor expansion is used, such integration is easily
implemented as a first-order term (see Appendix D3).

Appendix D: Alternative formulations

Different formulations of flexible multibody dynamics using
shape functions are found in the literature. Some of the alter-
natives are briefly discussed in this section.

D1 Jacobian and velocity transformation matrix

In Eq. (7), the Jacobian terms J and the virtual work are
expressed in vector form. In such form, there is no need to
state in which coordinate system the different vectors are
expressed. This is convenient to reduce the size of the ex-
pressions when using symbolic calculations. In a numerical
framework, the vector will have to be expressed in a com-
mon frame. When such an approach is used (see, e.g., Lem-
mer, 2018, and Branlard, 2019), the Jacobians are sometimes
stacked into a matrix form:

J =

J v
Jω
J e

 . (D1)

Some implementation choices are needed depending on
whether these matrices are expressed in the global frame
or a body frame. The Jacobian matrices are referred to as
“velocity transformation matrix”, and the link between for-
mulations in global and local coordinates is given in Bran-
lard (2019). In the same reference, recursive relationships are
given for tree-like assembly of bodies to help express the Ja-
cobian matrices of each body recursively, based on the ma-
trices of the parent body. It is also noted that the quadratic
velocity terms, kω, can be obtained using the time derivative
of the Jacobian matrix.

D2 Rotations and torsion

In this article, we have not elaborated on the change of ori-
entation introduced by shape functions. In most applications,
bodies are connected at their extremities, and the deflection
slope at a body extremity will induce a rotation of the sub-
sequent body (e.g., tilting and rolling of the nacelle at the
tower top). The deflection slope can be obtained form the
knowledge of the shape functions. This is readily accounted
for by introducing a time-varying rotation matrix between
bodies, and this is the approach used in our symbolic frame-
work. A formalism of rotations of bodies connected at their
extremities is given in Branlard (2019). A more general for-
mulation, introducing shape function rotations 9, is given
in (Wallrapp, 1994; Schwertassek and Wallrapp, 1999; Lem-
mer, 2018). In such a formulation, the linear rotation field is
obtained as I + 9̃q, where I is the identity matrix.

D3 Shape integrals and Taylor expansion

The results presented in Appendix A consist of integrals over
the displaced points of the structure, sP = sP0+u, where the
displacement field is u=8qe. The undeflected position of
the structure (sP0 ) is constant, and the shape functions are
known at the initialization; the only time-varying terms are
the degrees of freedom qe. Therefore, the integrals can be
precomputed by decomposing them into a constant part and
a part that is linear with respect to the degrees of freedom
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qe. The precomputed integrals are referred to as “shape inte-
grals”. For a given term T (standing, for instance, for Mθ,θ ,
Ct, Cr, Gr, Ge, or Oe), the shape integral expansion is

T (qe)= T 0
+

∑
j=1..ne

T 1
jqe,j . (D2)

If T is an array, T 0 and T 1
j have the same shape as T . As

an example, the application of the shape integral expansion
to the term Mxθ (see Eq. A3) gives

Mxθ =−

∫
s̃Pdm=M0

xθ +
∑

j=1..ne

M1
xθ,jqe,j , (D3)

with

M0
xθ =−

∫
s̃P0dm, M1

xθ,j =−

∫
8̃jdm. (D4)

The zeroth- and first-order shape integrals always consist
of integrals over the components of sP0 and 8, which can
be precomputed for a given flexible body. We note that the
precomputed shape integrals can in turn be obtained from
intermediate integrals (e.g., the S∗ and N∗ terms introduced
by Wallrapp, 1994, or the σ , 6, ϒ , and 9 terms introduced
by Shabana, 2013). The zeroth- and first-order shape inte-
grals are stored using a Taylor object-oriented class in the
standard input data format defined by Wallrapp. The YAMS
library can compute the shape integrals using a direct integra-
tion or using a finite-element formulation (see Schwertassek
and Wallrapp, 1999).

The geometric stiffness introduced in Appendix C is linear
in the elastic degrees of freedom qe. Therefore, the unit geo-
metric stiffness matrices (which are also shape integrals) can
be conveniently added into the first-order terms of Eq. (D2).
For instance, if we write Mex (given in Eq. A6) using a first-
order expansion, Mex =M

0
ex+M

1
exqe, then the geometric

stiffening effect can directly be inserted into the first-order
term, such that M1

ex becomes M1
ex+Kgt. Similarly, the term

Kgr can be inserted intoM1
θe,Kgω intoO1

e ,KgF into81, and
Kgτ into 91 in the calculation of the generalized forces. The
different contributions are summarized in Table 6.9 of the
book of Schwertassek and Wallrapp (1999). A shortcoming
of inserting the geometric stiffness effects into the first-order
coefficient is that it could make the mass matrix symmetric
(if the user code assumesMxe =M

t
ex), instead of acting only

on the third block row of the mass matrix.

D4 Taylor expansion of the displacement field

In the work of Wallrapp (Wallrapp, 1993, 1994), the displace-
ment field is assumed to be a function of the degrees of free-
dom, u=8u(qe)qe, where8u consists of a Taylor series ex-
pansion of the shape functions that contain80 and81 terms.
The resulting equations of motion are still expressed using
shape integrals of the form given in Eq. (D2), but the 1 terms

will contain some additional integrals over 81. The advan-
tage of this method is that the 81 terms effectively account
for the geometric stiffness. In practice, it is equivalent, and
as convenient, to neglect the 81 terms and introduce the ge-
ometric stiffness using the method presented in Appendix C
(and optionally integrate them into the 1 terms as presented
in Appendix D3).

D5 ElastoDyn and the partial loads approach

The ElastoDyn module of OpenFAST (Jonkman et al., 2021)
uses the so-called “partial loads” approach to implement the
equations of motion. The underlying theory used to derive
the equations of motion is the same as Kane’s formalism
presented in Sect. 2, but the partial load approach takes ad-
vantage of the fact that the calculation of reaction loads or
point loads at body extremities requires similar terms to the
ones needed for the equations of motion. In the discussion
below, we assume that the different bodies of the structure
form a tree structure with the root at the bottom and the leaves
above. For a tree-like structure, there is a natural relationship
between loads in the structure and the degrees of freedom. A
virtual displacement of a given degree of freedom will only
displace the structure above it. The equation of motion of
this degree of freedom can therefore be obtained from the
virtual work of the loads at a point located just above the de-
gree of freedom, as if the entire structure above was replaced
by lumped loads. The point loads contain contributions from
the external loads above the point in consideration but also
inertial and gyroscopic loads associated with all the degrees
of freedom of the system. If the point is at a joint, the loads
corresponds to the reaction loads at this point. We write P
as the point located after a given degree of freedom r . The
equation of motion for this degree of freedom is obtained as
if the system was isolated:

fr + f
∗
r = 0= J vP,r ·f P+JωP,r · τP+hr, (D5)

where J vP,r and JωP,r are the partial velocities of point P
with respect to the degree of freedom r , f P and τP are three
vectors containing the force and torque from the structure
above the degree of freedom r (including external and inertial
contributions), and hr is the generalized load associated with
the isolated degree of freedom r (e.g., the elastic loads for a
flexible body, or the spring and damping loads for a degree
of freedom representing a joint). The point loads f P and τP
can be decomposed into terms that are proportional to the
accelerations of all the degrees of freedom (indexed with r)
and additional terms (labeled “t”):

f P =

nq∑
j=1

f P,j q̈j +f P,t , τP =

nq∑
j=1

τP,j q̈j + τP,t . (D6)

The terms f P,r and τP,r act as generalized masses, and
they are referred to as “partial loads”. Combining Eqs. (D5)
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and (D6), the term rj of the mass matrix and the term r of
the right-hand side of the equation of motion (Eq. 23) are
obtained as

Mrj =−J vP,r ·f P,j −JωP,r · τP,j ,

Fr = J vP,r ·f P,t +JωP,r · τP,t +hr. (D7)

Therefore, the knowledge of the partial loads and the par-
tial velocities at key points of the structure (typically, points
where user outputs are desired) can be used to obtain the re-
action loads (Eq. D6) and the equations of motion (Eq. D7).
This is the approach used in ElastoDyn: the loads at key
points of the structure were derived using hand calculations,
and then the partial loads were used for the implementation
of the outputs and the equations of motion. The reader is re-
ferred to the notes provided in the online documentation of
ElastoDyn for more details (Jonkman et al., 2021). A general
procedure to obtain partial loads can be devised (using kine-
matics to find velocities and acceleration in the structure and
computing the loads from the tree top to the root) but would
be beyond the scope of this article.

Appendix E: Equations of motion of simple wind
turbine models

In this section, we present the equations of motion for the
examples presented in Sect. 4.

E1 Two-degrees-of-freedom model of a land-based or
fixed-bottom wind turbine

In this section, we provide some intermediate values to ob-
tain the equations of motion given in Sect. 4.4. We use the
hat notation to indicate unit vectors of a frame, where the
frame is identified as t , n, and r for the tower, nacelle, and
rotor, respectively. For instance, vt̂x is the unit vector in the
x direction of the tower frame. The degrees of freedom are
q = (q,ψ). The kinematics of the tower (at its origin) are
zero:

vO,T = 0, ωT = 0, aO,T = 0. (E1)

All Jacobians are zero except J e,1T = 1. The inertial
force, torque, and elastic force are

f ∗T = CtT x q̈ t̂x+MTgt̂z, τ ∗T = CrT y q̈ t̂y,

E∗T = fe+Deq̇ + (Ke+Kq)q +Meq̈. (E2)

The nacelle kinematics (at its center of mass) are

vG,N = q̇ t̂x+ νyzNGq̇n̂x− νyxNGq̇n̂z, ωN = νyq̇ t̂y, (E3)

aG,N = q̈ t̂x+ (−ν2
yxNGq̇

2
+ νyzNGq̈)n̂x

+ (−ν2
yzNGq̇

2
− νyxNGq̈)n̂z. (E4)

The Jacobians with respect to q are

J v,1N = t̂x+ νyzNGn̂x− νyxNGn̂z, Jω,1N = νy t̂y. (E5)

The inertial force and torque on the nacelle are

f ∗N =MNq̈ t̂x+MN

(
−ν2

yxNGq̇
2
+ νyzNGq̈

)
n̂x

+MN

(
−ν2

yzNGq̇
2
− νyxNGq̈

)
n̂z,

τ ∗N = Jy,Nνyq̈n̂y. (E6)

The kinematics of the rotor are

vG,R = q̇ t̂x+ νyzNRq̇n̂x− νyxNRq̇n̂z,

ωR = ψ̇ êrx + νyq̇ t̂y, (E7)

aG,R = q̈ t̂x+ (−ν2
yxNRq̇

2
+ νyzNRq̈)n̂x

+ (−ν2
yzNRq̇

2
− νyxNRq̈)n̂z. (E8)

The corresponding Jacobians with respect to q (“1”) and
ψ (“2”) are

J v,1R = t̂x+ νyzNRn̂x− νyxNRn̂z, Jω,1R = νy t̂y,

Jω,2R = r̂x.

The inertial force and torque on the rotor are

f ∗R =MRq̈ t̂x+MR

(
−ν2

yxNRq̇
2
+ νyzNRq̈

)
n̂x

+MR

(
−ν2

yzNRq̇
2
− νyxNRq̈

)
n̂z, (E9)

τ ∗R = Jx,Rψ̈ r̂x (E10)
+ (J⊕,Rνy sin(ψ)ψ̇q̇ + J⊕,R

(
−νy sin(ψ)ψ̇q̇

+νy cos(ψ)q̈
)
− Jx,Rνy sin(ψ)ψ̇q̇)r̂y (E11)

+ (J⊕,Rνy cos(ψ)ψ̇q̇ + J⊕,R
(
−νy sin(ψ)q̈

−νy cos(ψ)ψ̇q̇
)
− Jx,Rνy cos(ψ)ψ̇q̇)r̂z. (E12)

E2 Three-degrees-of-freedom model of a land-based or
fixed-bottom wind turbine

The equations of motion for the model presented in Sect. 4.5,
with q = (q1,q2,ψ), are given in this section. The elements
of the mass matrix are

M11 = [Me11+MN+MR] (E13)

+

[
Jy,N+ J⊕,R+MN

(
x2

NG− 2xNGq1+ z
2
NG

)
+MR

(
x2

NR− 2xNRq1+ z
2
NR

)]
ν2

y (E14)

+ 2[MNzNG+MRzNR]νy, (E15)
M13 = Jx,Rθtνxνyq2, (E16)
M22 = [Me22+MN+MR] (E17)

+

[
Jx,N+ Jx,R+MNz

2
NG+MRz

2
NR

]
ν2

x (E18)

− 2[MNzNG+MRzNR]νx, (E19)
M23 = Jx,Rνx, (E20)
M33 = Jx,R. (E21)
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The elements of the forcing vector are

f1 = fe1−Ke11q1−De11q̇1− Jx,Rθtνxνyψ̇q̇2

+ [MNxNG+MRxNR]ν2
y q̇

2
1 (E22)

+ g
[
MN

(
ν2

yzNGq1+ νyxNG

)
+MR

(
ν2

yzNRq1+ νyxNR

)]
+ fa

[
θtνyxNR− θtνyq1+ νyzNR+ 1

]
, (E23)

f2 = fe2−Ke22q2−De22q̇2+ Jx,Rθtνxνyψ̇q̇1 (E24)

+ g [MNzNG+MRzNR]ν2
xq2+ faθtνxq2, (E25)

f3 = − Jx,Rθtνxνyq̇1q̇2+ τa. (E26)

E3 Three-degrees-of-freedom model of a floating wind
turbine

The equations of motion for the model presented in Sect. 4.6,
with q = (x,φ,qT), are given in this section. The elements of
the mass matrix are

M11 =MF+MT+MN, (E27)
M12 =MFzFG−MdT z+MN [LT+ zNG

−νyxNGqT

−φy(xNG+ qT+ νyzNGqT)
]
, (E28)

M13 = CtT 1x +MN

[
1+ νyzNG− ν

2
yxNGqT

−φy(ν2
yzNGqT+ νyxNG)

]
, (E29)

M22 = Jy,F +MFz
2
FG+ JT,y + Jy,N

+MN

[
(L2

T+ zNG)2
+ (qT+ xNG)2

+2νyqT(zNGqT−LTxNG)
]
, (E30)

M23 = CrT 1y +
[
Jy,N+MN(x2

NG+ z
2
NG

+LTzNG+ νyqT(zNGqT−LTxNG)
]
νy

+MN [LT+ zNG] , (E31)

M33 =Me+MN+
[
Jy,N+MN

(
x2

NG− 2xNGqT

+z2
NG

)]
ν2

y + 2MNνyzNG. (E32)

The elements of the forcing vector are

f1 = fH+
[
MFzFG−Mdz+MN(LT

+zNG− νyxNGqT)
]
φyφ̇

2
y

+MN
[
qT+ xNG+ νyzNGqT

]
φ̇2

y (E33)

+

[
2Ctx+MN(1+ νyzNG− ν

2
yxNGqT)

]
×φyφ̇yq̇T+MNνy

[
xNG+ νyzNGqT

]
φ̇yq̇T (E34)

+MNν
2
y
[
xNG+ zNGφy

]
q̇2

T (E35)

+ fa
[
1− θtνyqT− νyφyqT

]
, (E36)

f2 = τH+MN

[
ν2

y (LTxNG− zNGqT)
]
q̇2

T (E37)

− 2MN
[
qT+ xNG+ νy(2zNGqT−LTxNG)

−ν2
yqT(LTzNG+ xNGqT)

]
φ̇yq̇T (E38)

+ g
[
MFzFGφy−Mdzφy+MN {(LT+ zNG

−νyxNGqT)φy+ qT+ xNG+ νyzNGqT
}]

(E39)

+ fa

[
LT+ zNR+ θtxNR+ θtqT+ νyq

2
T

−LTθtνyqT
]
, (E40)

f3 = fe−Deq̇T−KeqT (E41)
+MN

[
qT+ xNG+ νy(2zNGqT−LTxNG)

−ν2
yqT(LTzNG+ xNGqT)

]
φ̇2

y (E42)

+MNν
2
yxNGq̇

2
T (E43)

+ g
[
CtT 1xφy+MN

(
νyxNG+ ν

2
yzNGqT

−ν2
yxNGφyqT+ νyzNGφy+φy

)]
(E44)

+ fa
[
1+ θtνyxNR− θtνyqT+ νyzNR

]
. (E45)

Code availability. The latest source code of YAMS is available on
GitHub as a subpackage of the Wind Energy Library, WELIB (http:
//github.com/ebranlard/welib/, Branlard, 2022a). A static version
is available on Zenodo (https://doi.org/10.5281/zenodo.7306075,
Branlard, 2022b). The examples given in this articles are found in
the folder welib/yams/papers of the repository.
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