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Abstract. Wind farm power production is known to be significantly affected by turbine wakes. When mesoscale
numerical models are used to predict power production, the turbine wakes cannot be resolved directly because
they are sub-grid features, and therefore their effects need to be parameterized. Here we propose a new wind
farm parameterization that is based on the Jensen model, a well-known analytical wake model that predicts the
expansion and wind speed of an ideal wake. The Jensen parameterization is implemented and inserted into two
commonly used atmospheric numerical models: the Weather Research and Forecasting (WRF) model (herein
referred to as just “WRF”) and the Model for Prediction Across Scales (MPAS). In addition, the internal vari-
ability in wind speed and direction within a wind farm, the wind direction uncertainty, and the superposition of
multiple wakes are taken into account with an innovative approach. The proposed approach and parameterization
are tested against observational data at two offshore wind farms: Lillgrund (small in size and tightly spaced) and
Anholt (large and widely spaced). Results indicate that power production is predicted more accurately with the
Jensen wind farm parameterization than with the Fitch wind farm parameterization, which is the only one avail-
able in WRF. Power predictions with the Jensen parameterization are similar in WRF and MPAS. The sensitivity
to grid resolution is small, and the bias is generally low and negative. In conclusion, we recommend that the
Jensen wind farm parameterization be used in WRF and MPAS, especially for coarse resolution, high turbine
density, and wind directions aligned with the turbine columns.

1 Introduction

As modern wind farms increase in quantity and size and as
wind turbine rotors expand in diameter, understanding their
aerodynamic wakes becomes more critical. When a wind tur-
bine wake hits a downstream turbine, it can cause a signif-
icant reduction in its power production; these wake losses
negatively impact wind farm power production (Archer et al.,
2018). Barthelmie et al. (2009) report that, in large offshore
wind farms, wake losses are 10 % to 20 % of the total power
output. These power losses are even more significant for
wind farms with tightly spaced turbines (Dahlberg, 2009).
Therefore, despite the progress made in understanding wakes
and wake losses (Fleming et al., 2019; Archer and Vasel-
Be-Hagh, 2019; Simley et al., 2020; Stevens and Meneveau,
2020; Johlas et al., 2020; Zong and Porté-Agel, 2020; Nouri
et al., 2020; Wu and Archer, 2021), an improved understand-

ing of wakes and a more accurate modeling of their impacts
are still of significant practical interest for predicting wind
farm power production, developing optimal layouts and con-
trol strategies, and quantifying the potential unintended im-
pacts of wind farms on the surrounding environment.

Due to the increase in computational power in recent
years, it has been possible to study turbine wakes with
numerical simulations. Mainly two numerical approaches
are employed: computational fluid dynamics (CFD) and
mesoscale modeling. Examples of CFD are Reynolds-
averaged Navier–Stokes (RANS) models with various lev-
els of sophistication, from 3D with actuator disks (van der
Laan et al., 2015) to parabolic (Iungo et al., 2018), linearized,
unsteady, or 2D (see Göçmen et al., 2016, for a review),
and large-eddy simulation (LES) with actuator disks or lines.
High-resolution LES is the most accurate because it solves
the fine-scale details of the wakes around the turbines at a
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grid resolution of 10 m or less (Lu and Porté-Agel, 2011;
Archer et al., 2013; Xie and Archer, 2015; Wu and Porté-
Agel, 2015; Xie and Archer, 2017). However, LES is highly
computationally expensive and is conducted in an idealized
environment by prescribing the inflow characteristics, which
prohibit its applications to non-idealized, real-world simula-
tions that span over multiple days or over large wind farms.

Mesoscale modeling, on the other hand, is much less com-
putationally demanding than CFD and is often applied to
real-world cases where the two-way interaction between the
atmospheric boundary layer (ABL) and the wind farms is
taken into account. It therefore has more practical applica-
tions, such as estimation of the annual energy production of
a wind farm or prediction of temperature changes caused by
the wakes. In mesoscale numerical simulations, usually with
horizontal resolution of the order of kilometers and vertical
resolution of the order of tens of meters within the ABL, a
wind turbine is often parameterized as an elevated momen-
tum sink (Volker et al., 2015) or as an elevated momentum
sink and a source of turbulence within the vertical levels of
the turbine rotor disk (Fitch et al., 2012; Abkar and Porté-
Agel, 2015; Pan and Archer, 2018).

One of the most widely used wind farm parameteriza-
tions is the Fitch scheme (Fitch et al., 2012) in the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2008), hereafter referred to as “Fitch-WRF”, which has been
used widely to investigate the wakes of wind farms and their
impacts (Fitch et al., 2013a, b; Byrkjedal et al., 2014; Fitch,
2015; Jiménez et al., 2015; Eriksson et al., 2015; Volker
et al., 2017; Eriksson et al., 2017; Pryor et al., 2018; Pan
et al., 2018; Lundquist et al., 2019). In two recent studies,
Pryor et al. (2019) and Shepherd et al. (2020) conducted
high-resolution mesoscale simulations to analyze the per-
formance of Fitch-WRF in modeling the downstream wake
effects and impact of wind turbine arrays on near-surface
conditions. Xia et al. (2019) used Fitch-WRF to understand
the underlying mechanisms of wind-farm-induced changes
in near-surface temperature over west central Texas. Lee and
Lundquist (2017) evaluated the performance of the Fitch-
WRF in various atmospheric conditions for a wind farm of
200 wind turbines of 1.5 MW in central Iowa. They reported
that meteorological conditions and vertical grid resolution
significantly affect the performance of the model. We note
that a recent paper by Archer et al. (2020) identified two is-
sues with Fitch-WRF (a code bug in the way the Fitch param-
eterization is inserted in the WRF model and the excessive
value of a coefficient used to calculate the turbine-added tur-
bulence) that likely affected past studies that used WRF v3.6
to v4.2.

Despite its wide adoption and use, Fitch-WRF has been
found to generally underestimate wake losses and overpre-
dict the power output of wind farms, especially when the
wind is aligned with the turbine columns (Jiménez et al.,
2012; Pan and Archer, 2018). As discussed extensively in
Pan and Archer (2018), the underlying issue with Fitch-WRF

is that, just like most other wind farm parameterizations that
have been proposed in the literature, it treats all the turbines
that are positioned in the same grid cell in the same way. The
individual turbine coordinates are just used to assign each
turbine to the center of a grid cell, effectively neglecting the
turbine layout within each grid cell. Hence, all turbines in a
grid cell are subject to the same inflow wind speed (i.e., spa-
tially averaged and ensemble-averaged velocity in the grid
cell), regardless of their position, and their wakes, which are
sub-grid features, are neglected. Eriksson et al. (2015) sug-
gested increasing the horizontal grid resolution to 333 m or
finer to improve the wake results with Fitch-WRF, which is
unfeasible for large-scale or long-term simulations (Rai et al.,
2019). Abkar and Porté-Agel (2015) attempted to account
for the wind farm layout by introducing a correction parame-
ter ξ . This parameter ξ , however, is sensitive to the wind farm
density and wind farm layout (e.g., aligned vs. staggered) and
has to be obtained from ad hoc LES results.

To explicitly take into account the layout of the wind
farm, here we propose to incorporate an analytical wake loss
model into the wind farm parameterization. Analytical wake
loss models are simplified representations of the wakes that
are based on analytical equations for the wind speed deficit
(Archer et al., 2018). The only prior study that incorporated
an explicit expression for the wake deficit of each wind tur-
bine was Pan and Archer’s (2018) hybrid parameterization,
which was based on the geometric model by Ghaisas and
Archer (2016). Although the hybrid parameterization per-
formed very well when coupled with the WRF model (herein
referred to as just “WRF”), the applicability of the geometric
model to any wind farm and any wind turbine is questionable,
as it was calibrated based on one specific wind farm (Lill-
grund in Sweden) and one wind turbine (Siemens 2.3 MW).

In this study we develop and apply a new wind farm pa-
rameterization, based on the Jensen model (Jensen, 1983;
Katic et al., 1986), also known as Park model (Peña et al.,
2014), to two mesoscale models: WRF and the Model for
Prediction Across Scales (MPAS; Skamarock et al., 2012).
The Jensen wake model was selected for this parameteri-
zation because it is possibly the most widely used analyti-
cal wake loss model (Katic et al., 1986; Kirchner-Bossi and
Porté-Agel, 2018; Staid et al., 2018; Rivas et al., 2009; Vasel-
Be-Hagh and Archer, 2017) and because it performs reason-
ably well regardless of the wind turbine layout or wind di-
rection (Gaumond et al., 2014; Keane et al., 2016; Tian et al.,
2017; Ritter et al., 2017; Archer et al., 2018; Ge et al., 2019).
In particular, Archer et al. (2018) evaluated the performance
of six popular analytical wake loss models – namely Jensen,
Larsen (Larsen, 1988), Frandsen (Frandsen et al., 2006), two
Gaussian models (Xie and Archer, 2015; Bastankhah and
Porté-Agel, 2014), and the geometric model (Ghaisas and
Archer, 2016) – using field data collected at three utility-
scale wind farms: Lillgrund in Sweden, which is a mid-sized,
closely spaced, offshore wind farm with a regular layout;
Nørrekær in Denmark, which is a small, moderately spaced,
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inland wind farm with a regular layout; and Anholt in Den-
mark, which is a large, widely spaced, offshore wind farm
with an irregular layout. Every analytical wake loss model’s
performance varied from farm to farm and even wind direc-
tion to wind direction. While the Jensen model was not the
best model all the time, it stood out for its consistently strong
performance and for rarely ranking last for all directions and
all farms. The Jensen model assumes a top-hat distribution
of the velocity deficit in every turbine wake and then applies
superposition methods to account for the interaction among
multiple wakes.

Like all other analytical wake loss models, the Jensen
model was developed based on one implicit common as-
sumption: that the upstream undisturbed wind speed and di-
rection are the same for all turbines within the wind farm.
With an increase in the size of modern wind farms, how-
ever, significant variability in the distribution of wind speed
and direction within a wind farm is expected, due to sur-
face heterogeneity and mesoscale weather systems (van der
Laan et al., 2017; Peña et al., 2018). Neglecting horizontal
variability within large wind farms could introduce inaccu-
racies into the annual energy production and power density
predictions. This study addresses this issue and accounts for
the variability of wind speed and direction using an innova-
tive approach. Additionally, four wake superposition meth-
ods, including one proposed here for the first time, are exam-
ined in combination with the new Jensen wind farm parame-
terization.

The impacts of turbines on the flow are still parameterized
as an elevated momentum sink and a turbulence source, like
those in Fitch-WRF. This study validates the Jensen parame-
terization’s performance against observational data collected
at two offshore commercial wind farms: Lillgrund (small
in size and tightly spaced) and Anholt (large and widely
spaced).

2 Framework of the wind farm parameterization in
WRF and MPAS

2.1 The Fitch wind farm parameterization

In the Fitch parameterization, wind turbines are represented
as elevated drag elements that reduce the wind speed and pro-
duce turbulent kinetic energy (TKE) at each vertical level k
that intersects the rotor. The momentum sink and TKE source
terms induced by the turbines in a grid cell are proportional
to the fractional rotor area contained in that level (Ak) and to
the grid-cell horizontal wind speed at that level (Uk):
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2
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The power P generated by the turbines in a grid cell is esti-
mated as

P =
1
2
NtρACPU

3
h . (4)

In these equations, uk and vk are the horizontal wind com-
ponents, zk is the height of vertical level k, Nt is the num-
ber of turbines in the grid cell, Acell is the horizontal cross-
sectional area of the grid cell (note that Acell is calculated
differently in WRF and MPAS with different grid shapes),
ρ is the air density (set to a constant, 1.23 kg m−3), A is
the turbine rotor area (equal to π

4D
2, where D is the rotor

diameter), Uh is the hub-height wind speed that is interpo-
lated from the horizontal wind speed at the vertical levels
surrounding the hub height, CP and CT are the power and
thrust coefficients (prescribed functions of Uh and dependent
on the turbine model), and CTKE = CT−CP is the so-called
TKE coefficient. We note that CTKE as defined in the Fitch
parameterization results in an overestimate of TKE (Abkar
and Porté-Agel, 2015; Pan and Archer, 2018); Archer et al.
(2020) proposed that CTKE should be revised to one-quarter
of the original value. This revised CTKE has been added in
WRF v4.2.1 and is used in this study.

The turbine-induced TKE term from Eq. (3) is di-
rectly added to the Mellor–Yamada–Nakanishi–Niino
level 2.5 (MYNN) planetary boundary layer (PBL) scheme
(Nakanishi and Niino, 2009) in WRF, as Fitch-WRF only
works in combination with this particular PBL scheme. The
Fitch wind farm parameterization has not been implemented
in MPAS v7.0 (the latest version). We inserted it in MPAS
in this study. It should be noted that the added TKE is
improperly advected in WRF with the original Fitch param-
eterization, due to a code bug in versions v3.6 to v4.2, but
it is fixed in v4.2.1 (Archer et al., 2020). We use the latest
version of the models, WRF v4.2.1 and MPAS v7.0 (with a
modification in the added TKE advection), in this study.

2.2 The Jensen wind farm parameterization

The Jensen wind farm parameterization consists of two steps:
the estimation of the wind speed deficit of a single turbine
wake (via the Jensen wake model) and the wake superposi-
tion method to account for the interaction and overlapping of
multiple wakes.

2.2.1 The Jensen wake model

The normalized wind speed deficit δ is defined as

δ(x)=
1U (x)
U∞

=
U∞−U (x)

U∞
, (5)
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where 1U is the wind speed deficit, U∞ is the undisturbed
hub-height wind speed, and U is the (reduced) wind speed
in the wake that is a function of the downwind distance x
from the turbine. The Jensen wake model assumes a top-hat
distribution of the wind speed deficit in the wake, meaning
that the (reduced) wind speed in the wake is assumed to be
uniform along y and along z within the edges of the wake
itself for each downstream distance x (i.e., the wake is three-
dimensional but axisymmetric). The hub-height wind speed
at turbine i caused by the wake of turbine j is expressed as

Uij = U∞
(
1− δij

)
= U∞

[
1−

2a(
1+ 2kw

xij
D

)2
]
, (6)

where xij is the along-wind distance between turbines i
and j ; kw is the rate of wake expansion (equal to 0.075
and 0.04 for onshore and offshore wind farms, respectively,
Archer et al., 2018); and, after applying momentum theory,
the induction factor a can be related to the thrust coeffi-
cient CT by

a =
1−
√

1−Ct
2

. (7)

If turbine i with rotor area Ai is not perfectly aligned with
the upstream turbine j along the wind direction, the Jensen
model needs a modification to account for the fact that only
a portion of its rotor (A0,ij ) is affected by the wake of tur-
bine j , while the rest of the rotor (Ai −A0,ij ) experiences
the undisturbed wind speed U∞ (Archer et al., 2018):

Uij = U∞
Ai −A0,ij

Ai
+U∞

(
1− δij

) A0,ij

Ai

= U∞− δijU∞
A0,ij

Ai
. (8)

The wind speed provided by Eq. (8) is effectively a rotor-
average wind speed (also known as rotor-equivalent or rotor-
layer wind speed), which is a better representation of the
wind speed experienced by the entire rotor than the wind
speed at the exact location of the hub, and ultimately pro-
vides a better estimate of the power production of the turbine
(Choukulkar et al., 2016; St. Pé et al., 2018).

Lastly, the wake predicted by the Jensen model is coni-
cal and three-dimensional, but, in its original formulation,
the only directions that matter are x, along which the wind
speed decreases linearly in the wake, and y, along which the
wind speed deficit is constant within the lateral wake edges
and zero outside of them. This two-dimensional horizontal
slice of the wake is then repeated at all vertical levels within
the wake cone. In addition to being axisymmetric, the Jensen
model was originally formulated for a shearless wind flow, in
which the undisturbed wind speed did not vary with height
but was equal to U∞ at all levels. However, a shearless flow
hardly ever occurs in reality. To properly account for vertical
wind shear, the wake can no longer be treated as axisymmet-
ric. Here the wind speed deficit as a function of z is obtained

as follows. The undisturbed hub-height wind speed U∞ is
used to calculate the hub-height (reduced) wind speed in the
wake Ui , and then the ratio Ui/U∞ is used to multiply the
wind speed at each vertical level k within the cone cross sec-
tion. By doing so, the proposed Jensen model is effectively
three-dimensional and accounts for vertical wind shear; thus,
it can be perfectly integrated in WRF.

2.2.2 The wake superposition methods

When multiple wakes from multiple turbines j (j = 1 . . . N )
overlap at turbine i, the incoming flow speed for turbine i is
calculated by a wake superposition method. A review of dif-
ferent methods is given in Porté-Agel et al. (2020). The two
most common superposition methods of wind speed deficits
are a linear superposition (Lissaman, 1979), hereafter re-
ferred to as “M1”,

M1 : Ui = U∞−
N∑
j=1

[
δijU∞

A0,ij

Ai

]
, (9)

and a squared superposition (Katic et al., 1986), hereafter re-
ferred to as “M2”,

M2 : Ui = U∞−

√√√√ N∑
j=1

[
δ2
ijU

2
∞

(
A0,ij

Ai

)2
]
. (10)

At the upwind turbine j , the incoming flow speedUj is not
necessarily equal to the undisturbed wind speed U∞, since
turbine j itself may also be affected by wakes. As such, an
alternative method (Voutsinas et al., 1990), hereafter referred
to as “M3”, can be used to estimate Ui based on a slight
modification of Eq. (10):

M3 : Ui = U∞−

√√√√ N∑
j=1

[
δ2
ijU

2
j

(
A0,ij

Ai

)2
]
. (11)

We propose a new wake overlap method, hereafter referred
to as “M4”, based not on the superposition of the wind speed
deficits but the resulting wind speeds as follows:

M4 : Ui =

√√√√√ N∑
j=1

U2
ij

N
, (12)

where Uij is given by Eq. (8).
Note that these four methods are not derived from fun-

damental principles, and therefore none of them conserves
mass, energy, or momentum. Methods that are based on the
linear or squared superposition of the wind speed deficits,
like M1–M3, may, at least in principle, cause negative wind
speeds because each additional wake further reduces the re-
sulting wind speed. The advantages of method M4 are that
it will never cause negative wind speeds and that it is well
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Figure 1. Example of how wake overlapping is accounted for with method M4. The four turbines T1–T4 are in different grid cells; T4 is
affected by three wakes, each affecting a different portion of its rotor (the thick black line is the affected portion of the rotor, and the thick
green line is the undisturbed portion) and causing a different wind speed; the resulting wind speed is proportional to the summation of the
wind speeds caused by each upstream turbine i, i.e., V4,i , using Eq. (12).

suited for overlapping wakes that come from different grid
cells with different upstream wind speeds and wind direc-
tions. Looking at Fig. 1 as an example, turbine 4 is affected
by three wakes, each of which causes its own wind speed
(e.g., V4,1 is caused by turbine 1 and is a partial wake case,
with some of the rotor affected by the wake and the rest un-
affected, thus experiencing V4,0). The resulting wind speed
at turbine 4 is the result of the mixing of the three individ-
ual wind speeds. With M4 (Eq. 12), the resulting wind speed
is basically the average of the (partially recovered and there-
fore relatively high) wind speed from the farthest turbine and
that (fresh and relatively low) of the nearest turbine, plus all
the others in between. In a sense, M4 can be thought of as
a way to indirectly account for partial wake recovery due to
the added turbulence from multiple wakes and entrainment.

On the other hand, method M4 may underestimate the
deficit in the case of perfectly aligned turbines because it
tends to dilute the wakes of the nearest turbines with the par-
tially recovered wakes of those further upstream. Even in the
aligned case, however, M4 is effective because it avoids the
unrealistic continuous drop in wind speed as more and more
turbines are aligned, which other wake superposition meth-
ods suffer from. While every wake superposition strategy in-
troduces some level of underestimation or overestimation,
comparison with observational data, discussed in the next
sections, indicates that M4 is generally the most accurate.

In the Fitch parameterization, there is no wake overlapping
because each turbine in a grid cell is treated the same, i.e., as

a front-row turbine with the same incoming flow speed U∞,
and because there are no wakes at all inside the grid cell.
Thus, in Eqs. (1) through (4), the tendency and power at a
wind turbine are simply multiplied by the number of turbines
in the grid cell Nt to give the overall contributions of the
turbines. But in the Jensen parameterization, a slight modifi-
cation is needed because each wind turbine in a grid cell is
affected by the upstream wakes differently. Specifically, the
wind speed at each vertical level that intersects the rotor (Uk)
is not the same at all turbines; thus, Uk in Eqs. (1) to (3) is
replaced by Ui/Uh×Uk ,

∂uk

∂t
=−

1
2

Nt∑
i=1

1
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AkCT

(
Ui
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)
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(zk+1− zk)
, (13)

∂vk

∂t
=−

1
2

Nt∑
i=1

1
Acell

AkCT

(
Ui
Uh
Uk

)
vk
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Nt∑
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1
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(
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Uh
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)3

(zk+1− zk)
, (15)

and Uh in Eq. (4) is replaced by the rotor-equivalent wind
speed Ui ,

P =
1
2

Nt∑
i=1

ρACPU
3
i . (16)
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Note that the thrust and power coefficients are evaluated
using the local Ui and that the grid-cell hub-height wind
speed Uh coincides with U∞,i . Alternative choices could be
made forU∞,i , such as the wind speed at a grid cell located at
some distance upstream of the wind farm along one wind di-
rection (among the varying wind directions simulated inside
the farm) or the wind speed from offline simulations with-
out the wind farm. However, any alternative would be even
more arbitrary and would potentially introduce more errors
than using simply the local grid cell Uh. Another advantage
is that Uh is straightforward to implement in the codes and
fast to execute.

Note that, if the wind turbines in a grid cell are not af-
fected by any upstream turbine wakes, the Jensen wind farm
parameterization predicts exactly the same result as the Fitch
parameterization.

2.2.3 Treatment of wind speed variability

In their original formulations, methods M1 to M4 are all
based on the assumption that the undisturbed wind speed is
uniform for all turbines in the entire wind farm, and thus the
equations for M1–M4 (Eqs. 9–12) contain only one value
of U∞. When they are implemented in a mesoscale numer-
ical model, such as WRF and MPAS, the grid-cell horizon-
tal wind speed is used as the undisturbed speed U∞. If the
wind farm of interest is so large that it cannot be entirely con-
tained in a single grid cell of the numerical domain or if the
grid resolution is fine, the undisturbed speed U∞ is replaced
with U∞,i in the first term and with U∞,j in the second term
of Eqs. (9)–(12), which are the grid-cell wind speed at the
grid cell of turbine i and j at the beginning of the time step.
Thus, the multi-cell versions of M1 to M4 are expressed as

M1 : Ui = U∞,i −
N∑
j=1

[
δijU∞,j

A0,ij

Ai

]
, (17)

M2 : Ui = U∞,i −

√√√√ N∑
j=1

[
δ2
ijU

2
∞,j

(
A0,ij

Ai

)2
]
, (18)

M3 : Ui = U∞,i −

√√√√ N∑
j=1

[
δ2
ijU

2
j

(
A0,ij

Ai

)2
]
, (19)

M4 : Ui =

√√√√√ N∑
j=1

[
U∞,i

Ai−A0,ij
Ai

+U∞,j
(
1− δij

) A0,ij
Ai

]2

N
. (20)

As discussed later, all wake superposition methods, M1–
M4, are inserted in WRF and MPAS, and their performance
is compared. Note that the multi-cell wake superposition
methods also address the issue of wind speed variability
within the wind farm because they directly use the wind
speed at each grid cell. Also, Eqs. (13)–(16) do not need any
modifications in single cell cases.

Figure 2. Example of how the wind direction variability within the
farm is treated in the Jensen wind farm parameterization. The wind
turbines are black circles, and the turbine of interest is red. The
black arrows are the wind vectors at the grid cells; the red arrow is
the wind vector at the grid cell of interest, replicated at the relevant
upstream grid cells; and the green arrows are the average of the wind
direction at the grid cells and that at the grid cell of interest.

2.2.4 Treatment of wind direction variability and
uncertainty

When turbines in a wind farm are located in multiple grid
cells, the variability in wind direction within the wind farm
needs to be taken into account (note that the variability in
wind speed was addressed in the previous section with the
multi-cell wake superposition methods). Here we propose an
innovative approach that considers each individual turbine
and all the relevant upstream turbines that might affect it.
As displayed in Fig. 2, each grid cell within the wind farm
contains one or more wind turbines and is affected by an up-
stream wind that may come from a different direction than
that in the grid cell itself. To enhance computational speed,
only the subset of turbines contained within an angle of±30◦

around the wind direction at the turbine of interest (red cir-
cle) and within a distance< 20D are considered (the tur-
bines within the dashed red sector). The wind speed deficit
caused by these upstream turbines is calculated along the di-
rection that is the average (green arrow) between the wind
vector at the upstream cell (black arrow) and that at the cell
of the turbine of interest (red arrow). The calculations are
conducted starting from the most upstream turbine and go-
ing downstream using the grid-cell hub-height wind compo-
nents.
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The wind direction defines the path of a turbine wake,
which determines the wake conditions (e.g., full vs. partial
wake) at the downwind turbines. However, wind direction
uncertainty exists in both measurements and numerical mod-
els (Gaumond et al., 2014). Wind vanes and sonic anemome-
ters have a wind direction accuracy that is typically ±3 and
±2◦, respectively (Archer et al., 2016). This means that an
observation of wind direction α is as likely to be from any
direction between α− 3◦ and α+ 3◦ if a vane was used. For
a mesoscale simulation, the time step is roughly 10 s, and
the wind speed and direction are fixed during this time step.
The wind at a time step is essentially regarded as spatially
averaged and ensemble averaged within a grid cell. In real-
ity, many factors affect the flow, causing uncertainty in the
wind direction in this time step (e.g., turbulent fluctuations,
turbine wake meandering, sub-grid phenomena, and uncer-
tainty in the numerical model).

To address the wind direction uncertainty, following Gau-
mond et al. (2014) and Göçmen et al. (2016), a Gaussian
wind direction averaging method is used with a standard de-
viation of 2◦. We choose seven angles around the flow di-
rection, ±2.5, ±1.5, ±0.5, and 0◦, to apply the Gaussian
weighted averaging, implying that the Jensen wind farm pa-
rameterization is called seven times in a time step – once
for each of these seven wind directions. As such, the simula-
tion results are effectively averaged over a window of wind
directions that is ±2.5◦ around the intended wind direction.
The output power, momentum sink, and added TKE are all
averaged using Gaussian weighted averages. This Gaussian
wind direction averaging is not added in the Fitch parame-
terization because it is insensitive to wind direction. We note
that Volker et al. (2015) used nine wind directions in a much
wider range (±11.25◦) and ran nine cases with these wind
directions separately. The observations in this study are aver-
aged over a ±2.5◦ window too but with no Gaussian averag-
ing.

3 Methods and data

3.1 Wind power observations at two operational wind
farms

The Jensen and Fitch parameterizations are evaluated against
data collected at two offshore wind farms: Lillgrund, small
in size and tightly spaced with a regular layout (Fig. 3a),
and Anholt, large and widely spaced with an irregular lay-
out (Fig. 3b). The Lillgrund wind farm is located in a nar-
row straight between Denmark and Sweden and consists
of 48 Siemens 2.3 MW wind turbines with rotor diameter
D = 93 m and hub height H = 65 m, for a total installed ca-
pacity of approximately 110 MW. The Anholt wind farm is
located between Djursland and the island of Anholt in Den-
mark and consists of 111 Siemens 3.6 MW wind turbines
with D = 120 m and H = 82 m, for a total installed capac-
ity of approximately 400 MW. The measurements at Lill-

grund were from approximately 16 months at a frequency of
1 min or less, and those at Anholt were from January 2013 to
June 2015 at a frequency of 10 min. No atmospheric stabil-
ity information was available from the measurements at ei-
ther wind farm. The observational datasets used here are the
same as those in Archer et al. (2018); thus, the readers are
referred to that article for a detailed description of the data-
cleaning procedure, including the yaw bias corrections. As
a result of the data-cleaning process, observations are only
available for selected columns along and around several di-
rections of alignment at both farms, displayed in Fig. 3. We
also analyzed data for a few directions of non-alignment for
each farm, shown in red in Fig. 3, selected because they were
relatively close to directions of alignment (i.e., within±20◦).

3.2 Simulation setup in WRF and MPAS

In the simulations, we use the latest version of the models:
WRF v4.2.1 and MPAS v7.0. To focus on the wind farm
parameterization, we perform a series of idealized simula-
tions under neutral stability conditions. Although we rec-
ognize that atmospheric stability may impact the evolution,
shape, length, and duration of the wakes (Ghaisas et al.,
2017; Xie and Archer, 2017), neither the Lillgrund nor the
Anholt dataset included any measurements of atmospheric
stability, and therefore in this study we performed all the
simulations under neutral conditions. For the physical op-
tions (note that MPAS uses the same physics packages from
WRF), only the surface layer scheme and the PBL scheme
are turned on. The surface layer scheme sf_sfclay_physics
is set to 5, which provides the momentum drag over a sea
surface, with the roughness length given by the Charnock
relation (Charnock, 1955). The PBL scheme is the MYNN
level 2.5 model (bl_pbl_physics = 5; Nakanishi and Niino,
2009), which is the only available option with the Fitch wind
farm parameterization.

The simulations are carried out in a rectangular domain
of 144 km× 144 km× 10 km in the x, y, and z directions,
respectively. The vertical resolution is 4.4 m near the surface
and stretched to a 211 m grid spacing at the domain top, with
a total of 62 vertical levels (of which four levels are below
the rotor and nine levels intersect the rotor). To investigate
the sensitivity to the horizontal resolution, we set up three
horizontal resolutions of 1x = 4 km (for Lillgrund; 24 km
for Anholt, as explained later), 1x = 2 km, and 1x = 1 km
but keep the domain size (i.e., the length and width of the
domain) the same. The bottom surface is set as water, with
surface roughness calculated in the surface layer scheme. A
rigid boundary is used at the top of the domain by setting
the vertical velocity to zero. A Rayleigh damping layer is
applied on the vertical velocity within the top 2000 m of the
domain to prevent reflection of gravity waves. Open radiative
lateral boundary conditions are used in WRF, and periodic
lateral boundary conditions are used in MPAS since the open
boundary conditions are not available. Based on our tests,
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Figure 3. Wind turbine layout at Lillgrund (a) and Anholt (b). The Lillgrund wind farm is also plotted in panel (b) with red dots using
the same scale as that for the Anholt wind farm. The dashed black lines indicate the wind directions (black arrows) aligned with wind
turbine columns. The red arrows indicate the directions of non-alignment. The dashed red lines are the columns analyzed in this study for
the non-alignment directions.

as the wind farm wake extends less than 50 km downwind,
the horizontal domain of 144 km× 144 km in MPAS is large
enough to minimize the effect of the reentering of the wind
farm wake.

The flow in the domain is driven by a pressure gradi-
ent that is balanced by a constant and uniform geostrophic
wind, with the Coriolis parameter set to 1.11× 10−4 s−1 at
a latitude of 50◦ N. With the imposed geostrophic wind (i.e.,
ug = 7.6 m s−1, vg = 5.88 m s−1), the steady-state flow has a
wind speed of about 8.5 m s−1 at 70 m (i.e., about the hub
height) from the wind direction of 225◦. The flow in the
whole domain is initialized with a constant potential temper-
ature profile of 300 K from the surface to a height of 900 m,
and then it is linearly increased with height at a constant rate
of 3 K km−1. The horizontal wind components are set equal
to the geostrophic wind at all levels. The humidity is set to
zero. All runs are integrated first for 96 h without the turbines
to reach a steady state. Then, the simulation is continued for
another 4 h with the wind farm placed at the southwest cor-
ner of the domain (i.e., wind farm center at one-third of the
domain from the south and the west boundaries).

To ensure a proper comparison of the Jensen vs. Fitch pa-
rameterizations in WRF and MPAS, the physical schemes
and the domain configurations are set equal in the two models
to the extent possible. Because MPAS uses hexagonal grids,
here we define the horizontal grid resolution as the distance
between the center of two adjacent grids. Due to the different
grid shapes in WRF and MPAS (rectangle vs. hexagon), tur-
bines may be partitioned into different grid cells even with
the same grid resolution. We also note that the turbine den-
sity (Nt/Acell) in WRF and MPAS is different because of the
difference in the grid shape (the area of a hexagonal grid is
about 15 % smaller than that of a rectangular grid with the
same grid resolution). Thus, even with the same configura-
tions and the same wind farm parameterization, the predicted
power generation at the same wind farm is expected to be
slightly different between the two models.

When the flow in the domain reaches a steady state after
96 h, the wind farm is activated. Based on the wind farm lay-
outs, we choose six wind directions for Lillgrund (i.e., 180,
222, 255, 270, 300, and 315◦) and eight wind directions for
Anholt (i.e., 168, 179, 183, 210, 228, 240, 339, and 341◦)
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to run the simulations. Here we rotate the wind farm lay-
out and use the same steady flow with a direction of 225◦

for all runs rather than performing the simulations initialized
with different geostrophic winds to obtain the steady flow
with the desired wind directions. The simulations are catego-
rized into two groups based on the grid resolution: single-cell
and multi-cell cases. For the single-cell cases, the entire wind
farm is contained in a single grid cell, while for the multi-cell
cases, the turbines of the wind farm are located in multiple
grid cells. For the single-cell cases, we use different grid res-
olutions at Lillgrund and Anholt, 4 and 24 km, respectively,
because of the different wind farm sizes. For the multi-cell
cases, we use two grid resolutions, 2 and 1 km, at both farms.
As mentioned in Sect. 2.2.4, to account for the wind direction
uncertainty, the simulations with the Jensen parameterization
and the observations are averaged over a wind direction sec-
tor of ±2.5, or 5◦ wide.

4 Results and discussion

4.1 Wake superposition methods

Since one key factor in the Jensen parameterization is the su-
perposition of multiple wakes, we first examine the four wake
superposition methods, M1–M4, for the single-cell cases at
Lillgrund and Anholt, and then we choose the best two meth-
ods to apply in WRF and MPAS for multi-cell cases. For the
single-cell cases, only the results from WRF are displayed
because the Jensen parameterization in WRF and MPAS pro-
duces identical results due to the same undisturbed wind
speed and direction used for all the turbines. For both the
single-cell and multi-cell cases, power output from the Fitch
parameterization is also shown for comparison.

Relative power is used for the comparative analysis, which
is defined as the ratio of the power of each turbine in a col-
umn over that of the front-row turbine in the same column.
The performance statistics used are bias error and root-mean-
square error (RMSE), defined as follows:

Bias=

N∑
i=1

(
Xi −Xi,obs

)
N

, (21)

RMSE=

√√√√√ N∑
i=1

(
Xi −Xi,obs

)2
N

, (22)

where “obs” represents an observation, Xi is the variable
(i.e., relative power) of interest for turbine i, and N is the
sample size. These statistics are expressed as a percent in
this study.

At Lillgrund, we simulate the power output along eight
columns for five directions of alignment (i.e., wind directions
under full-wake conditions), 180, 222, 225, 270, and 300◦,
and along one column for one direction of non-alignment
(partial wake condition), 315◦ (Fig. 3a). Since Lillgrund is

tightly spaced and regular, there is no direction that is truly of
non-alignment; even 315◦ for the column led by turbine T46
is partially affected by wakes. For the wind directions of 180,
222, and 225◦, two columns are selected because they repre-
sent two distinct situations in which one column includes a
gap and the other does not.

At Anholt, we simulate the power output for six directions
of alignment, 168, 179, 183, 228, 339, and 341◦, and two
directions of non-alignment (no-wake condition), 210 and
240◦ (Fig. 3b). Because of the irregular wind farm layout,
we choose the wind directions of alignment with as many tur-
bines as possible aligned along them to run the simulations,
following Archer et al. (2018).

We note that the power measurements at any wind farm
are the result of local wind speeds at the turbines, often
in strongly non-homogeneous conditions. By contrast, the
model results by design are very diffusive in the horizontal
direction, with a true resolution that is coarser than the grid
size. As such, a direct comparison of the WRF and MPAS
results against the observations reported in the next section
should be interpreted with this limitation in mind.

4.1.1 Single-cell cases

Figure 4 shows the relative power from superposition meth-
ods M1–M4 in the Jensen parameterization at Lillgrund. The
relative power from the Fitch parameterization is also shown
for comparison, although it is always equal to 1 since the
sub-grid turbine wakes are not considered.

For alignment and non-alignment directions, meth-
ods M1–M4 predict an identical and sudden drop in relative
power at the second turbine. The identical relative power can
be derived from Eqs. (9) to (12), which give the same expres-
sion when N is equal to 1 for the single-cell version of the
equations. However, this power drop at the second turbine is
overestimated in all the columns compared with the obser-
vations, regardless of the distance between the first and the
second turbine. A similar trend was also found in previous
studies using the Jensen analytical wake loss model with a
narrow wind averaging sector of ±2.5◦ (Simisiroglou et al.,
2019). We note that, for the non-alignment wind direction of
315◦ (Fig. 4i), methods M1–M4 predict an identical relative
power at all turbines (except for the last one), because all but
the last one experience only one upstream partial wake.

After the second turbine, the four methods differ signif-
icantly. For most columns in Fig. 4, an increase in relative
power at the third turbine, a phenomenon caused by the en-
hanced turbulence mixing after the first turbine that makes
the second turbine wake recover faster, is reproduced well
by M3 and M4, while M1 and M2 do not capture this feature.
Not only at the third turbine but generally, M1 and M2 (M1 in
particular) substantially underpredict the power output at all
the downwind turbines compared with the observations.

As shown in Table 1, M1 produces the largest overall bias
(−18.5 %) and the largest overall RMSE (22.5 %), followed
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Figure 4. Lillgrund (single cell): relative power from observations and from the Jensen wind farm parameterization with the four wake
superposition methods, M1–M4, along the directions of alignment (a–h) and the direction of non-alignment (i). The black circles represent
the mean observed relative power, and the bars are 1 standard deviation. The simulation results from the Jensen parameterization, and the
observations are averaged over ±2.5◦; the bin size for the observations is 0.5◦. The wind direction averaging was not applied to the results
from the Fitch parameterization because it is insensitive to wind direction.

by M2 with a bias of −13.2 % and RMSE of 16.1 %. The
reason why M1 and M2 perform worse is that they use the
undisturbed wind speed in calculating the velocity deficit (the
second term in Eqs. 9 and 10).

For the two better-performing methods, M3 and M4, the
performance of M3 is consistent at all the downwind turbines
at Lillgrund, with most of its predictions lower than the ob-
servations, in agreement with Archer et al. (2018), but still
within the error bars, whereas the performance of M4 is less
consistent. As shown in Fig. 4, M4 tends to underpredict the
power output at the near-front turbines (i.e., the second and
third turbines) and overpredict the power output at the inner
turbines (i.e., fourth, fifth, and following turbines). Addition-
ally, M4 predicts the power increase caused by the gap well,
while M3 still underpredicts the power there (Fig. 4b and d).
The resulting overall bias for M4 is 2.5 %, while that for M3
is −5.7 % (Table 1). In terms of RMSE, the two superposi-
tion methods have close values, with a slightly larger overall

RMSE for M4 (9.0 % vs. 10.1 % for M3 vs. M4). In general,
M3 and M4 perform similarly at Lillgrund for the single-
cell cases, with M4 giving a slightly higher power prediction
(slightly positive bias).

Figure 5 presents comparisons of the relative power out-
put from M1–M4 at Anholt. Although the turbine spacing
and the turbine properties are different between the two wind
farms, M1–M4 perform similarly as they did at Lillgrund.
Again, M1 and M2 substantially underpredict the power
at all the downwind turbines and perform worse than M3
and M4, with large overall RMSEs (23.0 % and 15.5 %
for M1 and M2, respectively, Table 2). M3 tends to under-
predict the relative power, while M4 slightly overpredicts it.
Both M3 and M4 reproduce well the feature of power out-
put remaining unchanged after the fourth turbine in an align-
ment column (Fig. 5), due to the balance between the mo-
mentum extracted by the turbines and that replenished from
the boundary layer. The performance of M4, in particular the
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Table 1. Bias and root-mean-square error (RMSE) in power prediction by the Fitch parameterization and by the Jensen parameterization
with the wake overlap methods, M1, M2, M3, and M4, at Lillgrund for single-cell cases (in percent). The wind turbine columns are shown
in Fig. 4a–h, and the leading turbine of each column is indicated in parentheses where there is ambiguity. “N.A.” in parentheses represents
the non-alignment wind direction. The results are from WRF.

180◦ (T23) 180◦ (T15) 222◦ (T23) 222◦ (T30) 255◦ (T36)

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Fitch 51.2 56.1 47.9 53.0 56.5 60.5 51.4 56.0 44.2 49.5
M1 −21.3 25.5 −23.1 26.6 −21.6 24.7 −21.9 25.4 −21.9 26.3
M2 −16.7 18.8 −15.4 17.2 −18.1 19.7 −17.7 19.6 −15.3 17.2
M3 −7.0 7.8 −7.0 8.0 −6.4 7.4 −7.7 9.1 −7.7 9.9
M4 2.6 8.9 1.5 9.1 4.7 10.5 0.6 8.7 −0.7 10.1

255◦ (T4) 270◦ 300◦ 315◦ (N.A.) All ◦

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Fitch 42.8 49.3 38.7 45.7 54.9 58.8 10.7 12.9 44.3 49.1
M1 −19.6 22.8 −13.5 15.9 −26.4 29.6 2.6 6.1 −18.5 22.5
M2 −10.5 11.8 −6.3 10.4 −22.3 24.6 3.1 5.6 −13.2 16.1
M3 −4.0 7.1 −1.6 11.4 −13.4 14.5 3.2 5.6 −5.7 9.0
M4 2.5 10.2 7.0 19.7 −0.6 7.4 4.8 6.1 2.5 10.1

overprediction at inner turbines, seems to be improved with
larger turbine spacing at Anholt.

For the non-alignment directions 210 and 240◦, the Jensen
and the Fitch parameterizations predict the same relative
power (all equal to 1 except for the third turbine in the col-
umn for 240◦). It is expected since the two parameteriza-
tions are essentially the same for the turbines that are not
blocked by any upstream turbine wakes, as we pointed out in
Sect. 2.2.

In general, M4 slightly outperforms M3 at Anholt, with a
smaller overall RMSE and bias. As at Lillgrund, M4 tends to
predict higher relative power than M3 also at Anholt but still
lower than the observed.

4.1.2 Multi-cell cases

The two better-performing methods, M3 and M4 (multi-cell
versions, Eqs. 17 to 20), in the Jensen parameterization are
further examined for multi-cell cases at Lillgrund and An-
holt. For the multi-cell cases, the turbines in a wind farm are
partitioned into different grid cells, implying that the undis-
turbed wind speed might be different for each turbine (re-
member that we use the grid-cell hub-height wind speed as
undisturbed wind speed for any turbine). Thus, differences in
power output are expected due to the difference in grid res-
olutions and grid shapes (i.e., rectangle in WRF vs. hexagon
in MPAS).

Figures 6 and 7 show relative power from M3 and M4 at
Lillgrund with grid resolutions of 2 and 1 km, respectively.
The results from the Fitch parameterization are also shown
to provide a comparison. Comparing the power output by the
Jensen parameterization in WRF and MPAS, it appears that

the predicted power output from the two numerical models is
fairly close, showing similar overall bias and RMSE at Lill-
grund (Table 3). No general trend of underprediction or over-
prediction by one model over the other was found. Small dif-
ferences can be found between the two models because the
wind turbines may be partitioned into different grid cells, de-
pending on the grid resolution, grid shape, and wind direction
(remember that we rotate the wind farm layout to represent
different wind directions).

The turbine partitioning affects the undisturbed wind
speed in the grid cells, regardless of which wind farm pa-
rameterization is used, in two ways. First, the more the tur-
bines partitioned into a specific grid cell, the larger the drag
force exerted on the flow in that grid cell, resulting in a lower
grid-cell wind speed at the end of each time step (which is the
undisturbed wind speed for the turbines in that grid cell at the
beginning of the next time step), and vice versa. Second, tur-
bine partitioning affects the undisturbed wind speed via the
numerical advection of lower wind speeds into downstream
grid cells. As discussed later in Sect. 4.2, the combination
of the decrease in wind speed due to the turbine drag and the
numerical advection of this reduced wind speed is also called
the “resolved wake” effect.

With respect to the performance of M3 and M4 in
the Jensen parameterization at Lillgrund, we observe that
M4 performs more consistently than M3 in the two numer-
ical models (Figs. 6 and 7), suggesting that M4 is less sen-
sitive to the turbine partitioning compared to M3. For exam-
ple, at the second turbine in each column, the relative power
predicted by Jensen with M4 from WRF and from MPAS
is nearly the same (although not identical), but the predic-
tions by M3 differ markedly. When compared to the obser-
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Figure 5. Same as Fig. 4 but for Anholt (single cell) with the directions of alignment (a–f) and the directions of non-alignment (g, h).

Table 2. As in Table 1 but at Anholt for single-cell cases (in percent). The results are from WRF.

168◦ 179◦ 183◦ 228◦ 339◦

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Fitch 31.5 35.2 35.5 39.7 44.9 50.2 38.2 40.0 43.7 49.4
M1 −23.5 27.1 −17.2 21.1 −20.5 26.1 −34.2 36.0 −20.0 25.2
M2 −15.4 17.4 −9.6 12.6 −14.5 16.8 −22.0 23.0 −13.9 16.5
M3 −9.9 11.3 −4.2 9.0 −6.5 7.6 −12.4 13.0 −6.0 7.1
M4 −5.7 7.9 −0.4 8.7 0.1 6.4 −6.4 7.9 −0.0 5.8

341◦ 210◦ (N.A.) 240◦ (N.A.) All [◦]

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Fitch 49.1 53.8 5.3 5.7 14.8 15.8 32.9 36.2
M1 −23.3 27.7 5.3 5.7 12.5 15.1 −15.1 23.0
M2 −15.0 17.2 5.3 5.7 12.5 15.1 −9.1 15.5
M3 −5.8 6.4 5.3 5.7 12.5 15.1 −3.4 9.4
M4 4.2 8.9 5.3 5.7 12.8 15.0 1.2 8.3

vations, in line with the single-cell cases, M4 always outper-
forms M3, particularly at finer grid resolutions. For the di-
rections of non-alignment (Figs. 6i and 7i), more differences
between the two numerical models and between the simu-
lated and the observed values are found, especially at the last
few turbines, due to the partitioning of the turbines into dif-
ferent grid cells. The reduction in relative power with grid

resolution is attributable to the resolved wake effect, which
will be discussed in the next section.

Figures 8 and 9 show relative power at Anholt with grid
resolutions of 2 and 1 km, respectively. Besides the gen-
eral trend discussed above (i.e., WRF and MPAS give very
similar predictions, and M4 predicts slightly higher relative
power, which is closer to the observations, than M3), the fig-
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Figure 6. Same as Fig. 4 but for Lillgrund multi-cell cases with 1x = 2 km.

ures indicate little sensitivity of the relative power to grid
resolution along directions of alignment at Anholt.

In summary, the Jensen wind farm parameterization with
M4 still outperforms the others at Anholt, as indicated by the
smallest overall bias and RMSE (Table 4). Also, increasing
the resolution from 2 to 1 km does not improve the power
predictions at Anholt, as the bias and RMSE are about the
same or slightly worse.

4.2 Sensitivity to grid resolution

The combination of the wind speed reduction due to the ex-
traction of momentum from the flow caused by each addi-
tional turbine in a grid cell (i.e., wind turbine drag) and the
numerical advection of this reduced wind speed from up-
stream into downstream grid cells can be considered as the
resolved wind farm wake (Jiménez et al., 2015; Eriksson
et al., 2015). When the Fitch parameterization is used, this
is the only wake effect that is accounted for; when the Jensen
parameterization is used, this effect is still present, but it is
added on to that of the sub-grid wakes. This causes a poten-

tial double-counting issue of the wake effects, which will be
explored next by comparing results at various grid resolu-
tions.

To examine the sensitivity of the resolved wakes to grid
resolution, we first analyze the results from the Fitch param-
eterization, where the situation is less complicated without
considering sub-grid wakes. In general, the power predic-
tions with the Fitch parameterization decrease as the grid
resolution increases. This sensitivity can be observed in both
relative power and total power, each of which will be dis-
cussed next.

The progressive decrease in relative power from the Fitch
parameterization along long columns of turbines can be
appreciated, for example, for the 222◦ case at Lillgrund
(Fig. 7c) or the 228◦ at Anholt (Fig. 9d), none of which is
manifest in the observations. Long columns of turbines are
more likely to be partitioned over multiple grid cells; thus,
the resolved wake effect is further amplified. Comparing rel-
ative power from the Fitch parameterization at 2 km vs. 1 km,
either at Lillgrund (Figs. 6 and 7) or Anholt (Figs. 8 and 9),
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Figure 7. Same as Fig. 4 but for Lillgrund multi-cell cases with 1x = 1 km.

the values are generally lower at the finer resolution, for
both alignment and non-alignment directions. For example,
at 300◦ at Lillgrund, the relative power at the last turbine is
∼ 0.6 at 2 km but ∼ 0.4 at 1 km for WRF and MPAS; at An-
holt, at 228◦ the relative power at the last turbine is > 0.7 at
2 km but ∼ 0.6 at 1 km for WRF and MPAS. Again, this ef-
fect is more pronounced at long columns because of the re-
peated resolved wake effect (i.e., numerical advection and
momentum extraction).

The power production of the entire wind farm (Fig. 10)
also decreases as the grid resolution gets finer when the Fitch
parameterization is used. Note that in Fig. 10 the undisturbed
hub-height wind speed is the same for all wind directions
and for all methods. Since the results from MPAS are simi-
lar to those from WRF, only the WRF results are shown, but
the conclusions drawn are still valid for MPAS. The observa-
tional data are not displayed in this figure since they are not
available for the entire wind farm, as mentioned in Sect. 3.1.
However, the power predictions for the selected columns for

which data were available, shown in Fig. 11, will also be dis-
cussed later.

For all the wind directions at Lillgrund and Anholt, the
power output in the single-cell cases is the largest with Fitch.
This is consistent with the single-cell results from the pre-
vious sections, where the relative power was (incorrectly)
always 100 %. When further increasing the grid resolution
to 2 or 1 km, notable differences are observed between the
single-cell and multi-cell cases with Fitch, with power pro-
duction being more than 15 % lower at the finest resolution
(multi-cell 1 km). This is because the resolved wake effect
causes an incremental reduction of wind speed deep within
the wind farm as the grid resolution increases. As shown in
Fig. 10b, this trend (i.e., power output decreases with increas-
ing grid resolution) is also evident at Anholt, although the
magnitude of the decrease going from 2 to 1 km is smaller
than at Lillgrund for two reasons. First, the turbine density
(Nt/Acell) is much lower at Anholt than at Lillgrund, and,
second, the turbine density at Anholt is about the same at
2 and 1 km due to the wide spacing.
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Table 3. As in Table 1 but at Lillgrund for multi-cell cases (in percent). The results are from WRF and MPAS.

180◦ (T23) 180◦ (T15) 222◦(T23) 222◦ (T30) 255◦ (T36)

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1x = 2 km

Fitch-WRF 42.4 47.9 35.4 41.1 43.0 48.3 34.8 39.9 26.9 32.9
M3-WRF −9.7 11.3 −11.1 12.4 −10.2 11.2 −12.6 13.7 −13.8 15.9
M4-WRF 2.3 8.3 0.8 8.3 3.7 8.9 −1.4 7.7 −1.8 8.8

1x = 1 km

Fitch-WRF 24.0 31.0 20.0 30.0 21.4 25.7 6.9 13.1 10.0 17.6
M3-WRF −15.2 17.2 −16.4 18.5 −15.5 16.7 −20.8 22.7 −19.8 22.3
M4-WRF −0.9 5.1 −2.8 6.5 −2.7 5.3 −9.8 11.3 −5.6 8.6

1x = 2 km

Fitch-MPAS 33.7 40.1 30.4 38.4 51.8 55.6 16.4 18.7 43.6 48.8
M3-MPAS −11.8 13.7 −12.5 14.7 −7.7 8.4 −17.7 19.3 −7.4 9.5
M4-MPAS 2.0 6.8 0.3 6.8 4.6 9.7 −7.8 9.2 0.3 10.2

1x = 1 km

Fitch-MPAS 13.2 17.6 5.6 15.9 24.2 30.4 23.3 33.8 8.1 10.3
M3-MPAS −17.2 19.3 −20.7 23.2 −15.4 16.7 −16.4 18.4 −20.0 22.8
M4-MPAS −5.1 6.6 −8.0 9.1 −2.3 5.2 −3.8 8.4 −8.0 10.1

255◦ (T4) 270◦ 300◦ 315◦ (N.A.) All ◦

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1x = 2 km

Fitch-WRF 16.4 18.6 19.7 24.0 40.1 43.9 4.4 8.1 29.2 33.9
M3-WRF −13.8 16.0 −10.9 13.8 −16.4 17.9 −2.1 5.7 −11.2 13.1
M4-WRF −2.9 7.3 1.8 13.6 −3.0 6.6 −1.1 4.9 −0.2 8.3

1x = 1 km

Fitch-WRF 7.3 8.5 14.9 20.9 22.2 30.5 −16.4 22.8 12.3 22.2
M3-WRF −17.4 19.9 −13.2 16.5 −20.3 22.4 −21.0 25.5 −17.7 20.2
M4-WRF −5.5 8.5 −0.3 11.9 −5.8 6.9 −19.1 24.4 −5.8 9.8

1x = 2 km

Fitch-MPAS 32.4 36.6 27.6 32.0 29.9 37.5 −9.4 19.0 28.5 36.3
M3-MPAS −7.6 9.2 −6.9 11.0 −18.6 20.7 −15.7 22.3 −11.8 14.3
M4-MPAS 1.1 7.8 3.0 14.4 −3.2 5.5 −13.4 19.4 −1.5 10.0

1x = 1 km

Fitch-MPAS −1.8 3.7 −0.3 0.7 13.9 19.1 −23.1 25.2 7.0 17.4
M3-MPAS −21.5 24.5 −20.4 24.7 −21.3 23.0 −27.2 29.6 −20.0 22.5
M4-MPAS −7.7 10.2 −5.2 10.3 −8.3 9.4 −25.6 27.8 −8.2 10.8

Despite the resolved wakes, the Fitch parameterization
substantially overpredicts power along directions of align-
ment, particularly for the coarse-resolution cases (Fig. 11),
suggesting that considering only the resolved wakes might
not be adequate. Increasing the grid resolution is definitely
beneficial with the Fitch parameterization, especially for di-
rections of alignment, because the reduction in wind speed
and power caused by the resolved wakes is amplified with

finer resolution. By contrast, for directions of non-alignment
(e.g., 315◦ at Lillgrund and 210 and 240◦ at Anholt in
Fig. 11), the power predictions with the Fitch parameteriza-
tion are slightly underestimated, consistent with the literature
(Jiménez et al., 2015; Pan and Archer, 2018). The underesti-
mate for directions of non-alignment occurs because the re-
solved wakes incorrectly reduce the value of the hub-height
wind speed used to calculate power downstream (“incor-
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Figure 8. Same as Fig. 4 but for Anholt multi-cell cases with 1x = 2 km.

rectly” because there are no wake losses for non-alignment
directions).

The Jensen parameterization includes the sub-grid wake
effects, which are less sensitive to grid resolution and tend to
decrease the total power output when compared to Fitch’s
predictions. In particular at Lillgrund, where the sub-grid
wake effects are strong, the wind farm power predicted by
the Jensen parameterization with M3 and M4 is much smaller
than that by Fitch (Fig. 10). Both M3 and M4 predict power
outputs that are much less sensitive to grid resolution than
Fitch, especially when the turbine density is high, like at Lill-
grund. M4 always predicts a higher power output than M3,
which is closer to the observations (Fig. 11); this trend is
more pronounced at Lillgrund with strong sub-grid wakes.

Note that, for directions of non-alignment, both Fitch and
Jensen perform well at both farms (Fig. 11), and the predic-
tions do not improve with finer grid resolution – not even for
Fitch.

Unlike in the Fitch parameterization, the resolved wake ef-
fect is small in the Jensen parameterization, due to the much
larger effect of the sub-grid wakes. Relative power decreases
slightly as the grid resolution increases at Lillgrund (e.g.,
compare Figs. 6 and 7), due to the resolved wake effect. At
Anholt, a small decrease in power output can be detected for
all directions when the resolution changes from 2 to 1 km

(Figs. 10b and 11b). This is the small signature of the re-
solved wake effect in Jensen’s results.

At Lillgrund, because of the regular layout, the trends in
total power as a function of grid resolution (Fig. 10a) are very
similar to those from the selected columns for which obser-
vational data are available (Fig. 11a). At Anholt, however,
since the wind farm layout is irregular, only a small fraction
of the turbines are truly aligned with any given wind direc-
tion, and therefore the displayed wind farm power output in
Fig. 10b includes multiple wake conditions (i.e., full, partial,
and no wakes; actually, most turbines are under partial or
no wake conditions), resulting in a much higher wind farm
efficiency. As such, some of the trends of wind farm out-
put differ slightly from those along the columns with data.
For example, for the non-alignment direction of 210◦, the
power in Fig. 11b is basically equal at 2 and 1 km and be-
tween M3, M4, and Fitch, whereas it exhibits minor differ-
ences in Fig. 10b. Despite these minor inconsistencies, the
grid sensitivity of the entire wind farm power is generally
the same as that at the selected columns with observations at
Anholt too.

We conclude that the Jensen parameterization, especially
with M4, performs best at both farms. The Jensen parame-
terization tends to underestimate the power, regardless of the
alignment or non-alignment conditions and regardless of the
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Figure 9. Same as Fig. 4 but for Anholt multi-cell cases with 1x = 1 km.

grid resolution. The consistent sign of the bias (negative) in
column power output and the minimal sensitivity to grid res-
olution or wind direction are all desirable properties. By con-
trast, the Fitch parameterization is sensitive to the grid reso-
lution and to the alignment or non-alignment of the turbine
columns with the wind directions. For directions of align-
ment, the Fitch parameterization largely overestimates the
power for single-cell and multi-cell cases at both farms. At
Lillgrund, however, at 1 km, the power output predicted by
the Fitch parameterization is close to the observed for wind
directions of 255 and 270◦ (those with the largest spacing,
6 and 8.5D, respectively), but it is still generally overesti-
mated for the other wind directions. For directions of non-
alignment, the Fitch parameterization tends to slightly under-
estimate the power – more so at fine resolution and at Anholt
(i.e., widely spaced farm).

With respect to the wake overlapping methods with the
Jensen parameterization, we recommend method M4, al-
though M3 also performs satisfactorily for single-cell cases.
We note that M4 consistently predicts higher power output
than M3.

4.3 Wind speed and TKE distributions

To obtain a better understanding of how the two wind farm
parameterizations affect the power production of a wind

farm, we compare the simulated wind speed and TKE at Lill-
grund and Anholt. Since the two parameterizations perform
similarly in WRF and MPAS, we only show the results from
WRF here. The wake superposition method in the Jensen pa-
rameterization is M4.

Figure 12 shows the vertical profiles of wind speed and
TKE from the Fitch and the Jensen parameterizations from
a single-cell case at the grid cell containing the wind farm
(Lillgrund or Anholt). The wind direction for the selected
case at Lillgrund is 222◦, and that at Anholt is 168◦. For these
wind directions, the wake effects are neither strongest nor
weakest, which allows for a representative comparison. Note
that the grid resolution for the single-cell case at Lillgrund
is 4 km, while that at Anholt is 24 km, resulting in a sig-
nificant difference in the turbine density between two wind
farms (i.e., 3.0 km−2 vs. 0.2 km−2).

Comparing the wind speed profiles from the two wind
farm parameterizations, we find a much larger wind speed
reduction from the Fitch parameterization at Lillgrund, but,
surprisingly, the difference between the two parameteriza-
tions is almost indistinguishable at Anholt. This different be-
havior at Lillgrund and Anholt is attributed to the turbine
density and the wind farm layout. At Lillgrund, the turbine
spacing is small and the wind farm layout is regular, leading
to a large grid-cell turbine drag force on the flow. At Anholt,
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Table 4. As in Table 1 but at Anholt for multi-cell cases (in percent). The results are from WRF and MPAS.

168◦ 179◦ 183◦ 228◦ 339◦

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1x = 2 km

Fitch-WRF 25.1 28.9 19.9 22.6 35.0 39.4 13.5 16.5 31.1 36.0
M3-WRF −13.5 15.3 −12.7 14.8 −10.1 11.4 −23.0 24.3 −11.0 12.6
M4-WRF −6.8 8.7 −5.7 7.7 −1.8 5.1 −16.6 18.4 −2.7 5.8

1x = 1 km

Fitch-WRF 21.5 24.3 21.9 24.7 34.2 38.8 10.0 15.0 30.5 35.8
M3-WRF −14.6 16.3 −10.4 13.4 −10.1 11.4 −24.1 25.7 −11.3 12.9
M4-WRF −8.2 9.9 −4.2 7.5 −1.1 5.5 −17.4 19.5 −2.4 5.7

1x = 2 km

Fitch-MPAS 18.3 21.7 19.3 22.2 36.2 41.1 20.0 22.4 36.0 41.8
M3-MPAS −16.8 18.9 −13.0 14.9 −9.9 11.4 −19.8 21.0 −9.3 10.9
M4-MPAS −8.9 10.5 −5.5 7.6 −1.3 5.1 −13.5 15.1 −1.4 5.4

1x = 1 km

Fitch-MPAS 16.5 18.9 23.7 26.6 30.9 34.8 7.0 10.5 29.1 34.8
M3-MPAS −16.7 18.7 −9.6 12.3 −11.2 12.6 −25.5 26.8 −11.8 13.6
M4-MPAS −9.6 11.1 −3.8 7.4 −2.4 5.3 −19.0 20.9 −2.6 5.9

341◦ 210◦ (N.A.) 240◦ (N.A.) All ◦

Model Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1x = 2 km
Fitch-WRF 41.7 46.3 −9.6 12.2 −12.2 14.7 18.1 27.1
M3-WRF −8.4 9.5 −9.6 12.2 −14.0 15.3 −12.8 14.4
M4-WRF 3.4 7.5 −9.6 12.3 −14.0 15.2 −6.7 10.1

1x = 1 km

Fitch-WRF 41.4 46.0 −6.9 9.5 −16.7 19.0 17.0 26.6
M3-WRF −8.5 9.6 −6.8 9.5 −18.5 20.0 −13.0 14.8
M4-WRF 3.5 8.0 −6.9 9.5 −17.8 19.3 −6.8 10.6

1x = 2 km

Fitch-MPAS 42.2 46.9 −18.3 19.3 −6.1 10.0 18.4 28.2
M3-MPAS −8.1 9.3 −18.2 19.2 −8.0 11.5 −12.9 14.6
M4-MPAS 3.7 8.1 −18.2 19.2 −7.2 10.2 −6.5 10.2

1x = 1 km

Fitch-MPAS 29.9 33.4 −14.5 15.6 −15.6 17.9 13.4 24.1
M3-MPAS −12.1 13.3 −14.4 15.5 −17.3 18.8 −14.8 16.4
M4-MPAS 0.3 4.6 −14.4 15.5 −16.7 18.2 −8.5 11.1

the turbine spacing is large and the wind farm layout is irreg-
ular, such that most of the turbines are not (or partially) influ-
enced by sub-grid turbine wakes; thus, the Jensen parameter-
ization behaves similarly to the Fitch parameterization. As a
result, when the turbine-induced drag forces are applied over
a large grid cell of 24 km× 24 km at Anholt, the difference in
the speed reduction between the two parameterizations is al-

most indistinguishable with respect to the background wind
speed.

For the predicted TKE from the two parameterizations,
however, differences are observed at both wind farms, with a
larger TKE value from the Fitch parameterization. At Anholt,
although the wind speeds from the two wind farm parameter-
izations are nearly the same (Fig. 12c), the TKE profiles are
more notably different (Fig. 12d). For example, the turbine-
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Figure 10. Total power (MW) at Lillgrund (a) and Anholt (b) from the Jensen wind farm parameterization in WRF with two wake superpo-
sition methods, M3 (red) and M4 (blue), and from the Fitch parameterization (grey) from all the turbines in the farm for the selected wind
directions. For each method, single-cell cases (SC) and multi-cell cases with grid resolutions of 2 and 1 km are shown. The figures with
“N.A.” in the title are the results for the non-alignment wind directions (315◦ at Lillgrund; 210 and 240◦ at Anholt).

added TKE at hub height at Anholt is about 0.087 m2 s−2 for
the Jensen parameterization and 0.098 m2 s−2 for the Fitch
parameterization. Compared to the TKE background value
of 0.48–0.51 m2 s−2, the value of the turbine-induced TKE
source is much larger than the value of the turbine-induced
momentum sink, about 20 % vs. 1 %, for both parameteriza-
tions.

We note that the TKE profile at Lillgrund is different from
that in Fig. 8a of Pan and Archer (2018) with the same
grid resolution and hub-height wind speed. Our result from
the Fitch parameterization is much lower (e.g., 0.9 m2 s−2

vs. 1.55 m2 s−2 for the maximum TKE from the two), and
the maximum TKE occurs near hub height, while their maxi-
mum value is located slightly above hub height. These differ-
ences are attributable to the fixed bug in the TKE advection
in the WRF code (Archer et al., 2020). Along with the bug
fix, we also followed Archer et al.’s (2020) suggestion to re-

duce the TKE coefficient CTKE to one-quarter of the original
value.

At both Lillgrund and Anholt (Figs. 13 and 14), the wind
speed at the grid cell of the wind farm is slightly lower and
the TKE is larger in the Fitch than in the Jensen parame-
terization, in line with the vertical profiles from the single-
cell case. The differences between the two parameterizations
are more pronounced at Lillgrund, where the wake losses are
more significant due to the tighter spacing than at Anholt.

In general, even though a difference in the wind speed be-
tween the two wind farm parameterizations is observed, this
difference is small (e.g., ∼ 0.1 m s−1 at hub height for the
single-cell case at Lillgrund). Thus, the large difference in
the predicted power output between the two parameteriza-
tions is mainly determined by the consideration of sub-grid
wakes. Our results indicate that the Jensen parameterization,
which accounts for the sub-grid wakes, may tend to under-
predict the power output in multi-cell cases.

https://doi.org/10.5194/wes-7-2407-2022 Wind Energ. Sci., 7, 2407–2431, 2022



2426 Y. Ma et al.: The Jensen wind farm parameterization

Figure 11. Same as Fig. 10 but for selected directions at Lillgrund and Anholt for which observations were available.

5 Conclusions, limitations, and future work

We describe and implement a new wind farm parameteriza-
tion in the WRF and MPAS mesoscale models, based on the
classical Jensen model, which takes into account the sub-grid
wind turbine wakes, the wind speed and direction variabil-
ity within a wind farm, and the wind direction uncertainty.
Four turbine wake superposition methods are examined in
the Jensen parameterization, including an innovative method
(i.e., M4) that is based on the superposition of the resulting
wind speeds in the wake, as opposed to the resulting deficits.
The observational data at two offshore wind farms, Lillgrund
and Anholt, are used to evaluate the wind farm parameteri-
zation. Due to the lack of atmospheric stability information
from the measurements, all the simulations were conducted
under idealized neutral conditions.

We conclude that the Jensen wind farm parameterization
performs well in WRF and MPAS, as the results of the sim-
ulations match the observations, particularly with the new
proposed wake superposition method, M4. By contrast, the

Fitch wind farm parameterization tends to overpredict the
power, especially at coarse grid resolution and for direc-
tions of alignment. The simulation results at the two wind
farms with totally different grid spacing and layout show
similar overall bias and RMSE, suggesting the robustness
of the Jensen parameterization. Grid sensitivity tests show
that, while the Fitch parameterization tends to predict de-
creasing relative power at downwind turbines and decreas-
ing total power output with increased grid resolution, due to
the resolved wakes, this effect is minimal in the Jensen re-
sults. The proposed Jensen wind farm parameterization pre-
dicts the power generation at each wind turbine, without in-
creasing too much the computational cost (about 2 %), which
makes it a valuable tool for practical applications, such as es-
timation of the annual energy production and optimization of
wind farm layout.

There are several limitations to our study. First, we only
considered wind speeds that are below the rated wind speed,
thus with a high thrust coefficient; when the wind speed is
above the rated wind speed, the thrust coefficient decreases.
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Figure 12. Vertical profiles of wind speed (a, c) and TKE (b, d) by the Fitch and Jensen parameterizations from WRF single-cell cases, 222◦

at Lillgrund (a, b) and 168◦ at Anholt (c, d).

Since the performance of a superposition method depends
on the thrust coefficient (Machefaux et al., 2015), our results
might be different in such cases. In addition, we did not test
the sensitivity of our results to the value of the standard de-
viation used for Gaussian averaging.

Another limitation is that we focused only on wind power
production for validation. Wind farm parameterizations have
been extensively used to study in-farm and farm-to-farm
wakes. These wake effects on variables like temperature, hu-
midity, turbulence, or heat fluxes are much harder to evalu-
ate in a parameterization because multiple data sources are
needed at and downstream of multiple wind farms, including
strategically located tall masts and lidar measurements. Im-
proving the power production alone, as we did in this study,
does not automatically improve the characterization of the
wind farm wakes.

Lastly, when the wind farm is partitioned over multi-
ple grid cells (i.e., in the multi-cell cases) and the Jensen
parametrization is used, there is the possibility of both re-
solved and sub-grid wakes being present simultaneously in
the same grid cell, thus potentially double counting some of

the wake effects. By contrast, when Fitch-WRF is used, the
resolved wake is the only wake effect that is accounted for,
but it is generally too weak. When the Jensen parameteri-
zation is used, however, the resolved wake is still present,
but it is in addition to the sub-grid wakes, which are gener-
ally stronger. Overall, we find that accounting for the (strong)
sub-grid wakes with the Jensen parameterization, even in the
presence of the inevitable (but small) resolved wake, gives
more accurate results than relying on just the resolved wake.
However, this issue needs to be investigated further, as dis-
cussed by Ma et al. (2022).

Future implementations may consider a more sophisti-
cated formulation of the wake expansion coefficient kw, us-
ing for example turbulence intensity and/or atmospheric sta-
bility (Stevens et al., 2016); a more advanced wake loss
model, such as one based on the Gaussian model (Bas-
tankhah and Porté-Agel, 2014; Xie and Archer, 2015); and
a separate model for the TKE in the wake (one that would
not rely on advection alone to inject the correct amount of
TKE in the wake of the wind farm), to improve the wind
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Figure 13. Horizontal cross sections of (a, b) hub-height wind
speed (m s−1), (c, d) hub-height TKE (m2 s−2), and (e, f) power
production (MW) at Lillgrund from the Jensen (a, c, e) and
Fitch (b, d, f) parameterizations. The results are from WRF with
a grid resolution of 1 km and wind direction of 222◦.

farm power and flow prediction in mesoscale numerical sim-
ulations.
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