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Abstract. Numerical simulation tools such as large eddy simulations (LESs) have been extensively used in
recent years to simulate and analyze turbine–wake interactions within large wind farms. However, to ensure the
reliability of the performance and accuracy of such numerical solvers, validation against field measurements
is essential. To this end, a measurement campaign is carried out at the Lillgrund offshore wind farm to gather
data for the validation of an in-house LES solver. Flow field data are collected from the farm using three long-
range WindScanners, along with turbine performance and load measurements from individual turbines. Turbulent
inflow conditions are reconstructed from an existing precursor database using a scaling-and-shifting approach in
an optimization framework, proposed so that the generated inflow statistics match the measurements. Thus, five
different simulation cases are setup, corresponding to five different inflow conditions at the Lillgrund wind farm.
Operation of the 48 Siemens 2.3 MW turbines from the Lillgrund wind farm is parameterized in the flow domain
using an aeroelastic actuator sector model (AASM). Time-series turbine performance metrics from the simulated
cases are compared against field measurements to evaluate the accuracy of the optimization framework, turbine
model, and flow solver. In general, results from the numerical solver exhibited a good comparison in terms of
the trends in power production, turbine loading, and wake recovery. For four out of the five simulated cases,
the total wind farm power error was found to be below 5 %. However, when comparing individual turbine power
production, statistical significant errors were observed for 16 % to 84 % of the turbines across the simulated cases,
with larger errors being associated with wind directions resulting in configurations with aligned turbines. While
the compared flapwise loads in general show a reasonable agreement, errors greater than 100 % were also present
in some cases. Larger errors in the wake recovery in the far wake region behind the lidar installed turbines were
also observed. An analysis of the observed errors reveals the need for an improved controller implementation,
improvement in representing meso-scale effects, and possibly a finer simulation grid for capturing the smaller
scales of wake turbulence.

1 Introduction

Recent years have seen the emergence of wind farm simu-
lation tools that cover the whole chain from flow-coupled
aeroelastic models to power-grid models. The complexity
of these models ranges from analytical tools, which sim-
plify wake expansion and merging, to complex computa-
tional fluid dynamics (CFD) solvers, which represent the

turbines and their influence on the surrounding flow field.
Amongst all of these numerical tools, large eddy simula-
tions (LESs) have been extensively used in recent years to
resolve detailed representation of the turbulent flow in and
around large wind farms (Calaf et al., 2010; Lu and Porté-
Agel, 2011; Archer et al., 2013; Martínez-Tossas et al., 2015;
Ghaisas and Archer, 2016; Munters and Meyers, 2018; Lin
and Porté-Agel, 2019). This increased detail in simulating the
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physics governing wind farm flows has facilitated the study
of wind farm aerodynamics and enabled the analysis of phe-
nomena like turbine–wake interactions, gusts, atmospheric
stratification, and the effect of wind farms on local wind cli-
mate. A comprehensive review of LES for wind farm simu-
lations addressing the aforementioned effects can be found
in the references (Mehta et al., 2014; Porté-agel et al., 2020).
Additionally, LES has also been used to investigate and de-
velop coordinated wind farm control strategies, which could
provide the benefits of power maximization, asset life exten-
sion, and grid frequency regulation, thus improving the per-
formance and capabilities of wind farms (Goit and Meyers,
2015; Yılmaz and Meyers, 2018; Bossanyi, 2018; Boersma
et al., 2019; Frederik et al., 2020). However, to give credibil-
ity to these studies it is essential to validate numerical solvers
against reliable measurement data. While wind-tunnel exper-
iments provide a useful avenue for testing, their accuracy in
representing full-scale wind farms is limited due to the size
and measurement constraints of wind tunnels (Bastankhah
and Porté-Agel, 2017). Therefore, proper validation of wind
farm numerical models requires accurate reference data in
the form of detailed flow field and performance measure-
ments from existing wind farms. To this end, a measurement
campaign was carried out at the Lillgrund wind farm, located
10 km off the coast of southern Sweden, as part of the Hori-
zon 2020 TotalControl project. The measurement campaign
made use of three long-range lidars, which measure the in-
flow conditions for the farm while also resolving the flow
field in a part of the Lillgrund wind farm for wake measure-
ments. The flow field data were supplemented by simultane-
ous power and structural-load measurements from individual
wind turbines. The combination of lidar inflow field data, tur-
bine performance data, wake data, and loading data provide a
unique data set for the validation of coupled flow and aeroe-
lastic solvers.

In this work, SP-Wind, an in-house aeroelastic LES solver,
which has previously been used extensively for wind farm
modeling and control optimization, is used to simulate the
operation of the Lillgrund wind farm during the measure-
ment campaign. While previous wind farm validation stud-
ies have been carried out using LES (Wu and Porté-Agel,
2011, 2013; Nilsson et al., 2014; Wu and Porté-Agel, 2015;
Draper et al., 2016; Simisiroglou et al., 2018), this work dif-
fers on three fronts. First, the atmospheric conditions at the
Lillgrund site are recreated in the numerical domain by an-
alyzing inflow lidar measurements. Second, instead of ini-
tializing the flow field from scratch, as is the convention for
LES precursor simulations (Stevens et al., 2014), the current
work proposes a framework for reusing a previously gener-
ated precursor flow database for matching the conditions dur-
ing the measurement campaign, substantially reducing the
associated computational costs and time for LES wind farm
validation studies. Third, the current study utilizes a novel
aeroelastic actuator sector model (AASM) for parameteriz-
ing the turbine forces in the numerical domain (Vitsas and

Meyers, 2016). Compared to other actuator models such as
the actuator disk model (ADM) and the actuator line model
(ALM), the AASM has the advantage of accurately repre-
senting rotating turbine blades while allowing for coarser
time steps through spatial and temporal filtering and decou-
pling of the LES time step and the time step of the flexible
multibody model that is a part of the AASM. The present ar-
ticle is organized as follows: Sect. 2 details the specifics of
the measurement campaign and available data sets. Section 3
presents the specifications of the numerical solver used in
this study, while Sect. 4 outlines the optimization framework
developed to recreate the atmospheric conditions at Lillgrund
using a previously generated precursor data set. A compari-
son of individual turbine performance results from the nu-
merical solver against field measurements and a wake deficit
analysis are presented in Sect. 5. Finally, Sect. 6 outlines a
summary of the validation and the challenges associated with
LES validation studies of wind farms.

2 Lillgrund offshore measurement campaign

2.1 Lillgrund offshore wind farm

The Lillgrund offshore wind farm is located approximately
10 km off the coast of southern Sweden, just south of the
Öresund Bridge, where average wind speeds are overall close
to 8.5 ms−1 (Sebastiani et al., 2021). The wind farm contains
48 wind turbines (Siemens SWT-2.3-93) with a total capacity
of 110 megawatts (MW). The farm’s turbines have a rotor
diameter of 93 m, hub height of 65 m, and a tip height of
115 m. The farm is known to suffer from performance losses,
as the turbines originally intended for the farm were replaced
by larger models leading to a tighter layout when normalized
by turbine diameter (Simisiroglou et al., 2018).

2.2 Lidar measurements

During the measurement campaign from September 2019 to
February 2020, three long-range WindScanners, i.e., pulsed
scanning Doppler wind lidars (Vasiljević et al., 2016), were
installed on the Lillgrund wind turbine transition pieces and
used to measure the flow field both upstream and within the
farm, in the layout shown in Fig. 1.

2.2.1 Inflow lidar

The inflow measuring system on turbine B08, “Vara”, per-
formed repeating plan position indicator (PPI) sector scans
with a constant elevation angle of 8◦ and azimuth sweep of
60◦. The center line of the arc scan was intended to lie paral-
lel with the B-row of turbines; however no hard targets were
visible from its install location to allow for a precise align-
ment. Instead, the system was coarsely aligned during instal-
lation and, subsequently, the static misalignment was deter-
mined and later corrected for using the turbine’s calibrated
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Figure 1. Top-down view of the Lillgrund site and scan areas for
inflow and wake measuring lidars installed on turbines B08 “Vara”,
A07 “Levante”, and C07 “Sterenn”. Coordinates are relative to the
turbine B08 position, spaced in multiples of five rotor diameters.
Vara performs PPI sector scans which are reconstructed into wind
vectors along the magenta inflow centerline. Sterenn and Levante
perform coordinated dual-Doppler complex trajectory scans which
provide time and space synchronized measurements at three heights
along the wake transect indicated with black crosses. The overlap-
ping area between the areas scanned in red by Levante and blue
by Sterenn are shaded in green. The positions within the green
area which lie off the synchronized wake transect line are resolved
through time averaging and applying dual-Doppler retrieval to the
10 min averaged wind field.

nacelle direction signal. The wake-scan positions (red and
blue areas) were determined through an optimization where
the lidar positions and points along the wake transect were
first defined, and a trajectory for each lidar was generated
which matched the position and timing of both lidars, along
with kinematic controls to control the scan speed, motor ac-
celeration, etc. The scanned areas are mostly symmetric but
not exactly due to the actual installed positions and wake
transect point locations chosen.

The inflow lidar data were processed firstly by remov-
ing periods of low-signal-quality, i.e periods with carrier-to-
noise ratio (CNR) below −26 dB. Partial scans with a low
proportion (< 80 %) of valid radial speed values were also
filtered out. The remaining valid data were reconstructed
into two-component horizontal wind vectors using the in-
tegrating velocity–azimuth process (iVAP) method (Liang,

2007). Lastly, the direction misalignment due to imperfect
installation of the system was corrected by determining the
static offset between the nacelle direction measurements
from turbine B08 and lidar reconstructed wind direction. The
static direction misalignment was found to be −20.47◦. This
method does not account for the fact that the turbine yaw con-
troller has a delay in wind direction tracking due to actuator
limits. Taken on average over the entire campaign however,
it provides the best estimation possible when a hard target
alignment is not feasible to perform. Note that this correc-
tion has no effect on the wind speed result from the lidar
measurements, only the resolved wind direction.

A time series of processed wind speed and direction in-
flow measurements corresponding to the turbines’ hub height
(65 m) is shown in Fig. 2, with the equivalent wind rose
shown in Fig. 3. This location corresponds to the lidar range
gate at a distance of 430 m, given the lidar’s inclined beam
and origin at 5 m above mean-sea-level. Range gates between
70 and 1490 m were sampled in steps of 20 m.

2.2.2 Wake scanning lidars

Two additional scanning lidars identical to the inflow mea-
suring system were installed within the wind farm to mea-
sure wake effects and intra-farm flows. The two wake scan-
ning lidars designated as “Levante” on A07 and “Sterenn”
on C07 performed coordinated dual-Doppler complex tra-
jectory scans within the green overlapping area shown in
Fig. 1. The points placed along the wake transect path in-
dicated with black crosses were repeated at three heights (6,
70, 130 m a.s.l.) and were time and space synchronized us-
ing the DTU WindScanner software. Overlapping scan areas
which lie away from the wake transect path are not time–
space synchronized but have been averaged over a 10 min
period to produce a 3D wind field. From this, a horizontal
slice has been taken to obtain the 2D wind field at constant
hub height. The dual-Doppler wind retrieval method used in
this study follows the process outlined in Simon and Court-
ney (2016).

2.3 SCADA data

Data from the wind farm monitoring system were provided
by Vattenfall. This included the following channels from all
48 turbines in the wind farm: active power, blade pitch angles
(A/B/C), nacelle direction, rotor speed, and wind speed. The
raw streaming data format did not maintain a specific time
resolution, where deviations in the sampling rate existed be-
tween channels and over time. The data set was processed
into a constant sampling rate of 0.5 Hz time steps across all
channels. This period was chosen as it was the highest time
resolution present in the raw data files. The periods and chan-
nels with lower time resolutions were upsampled (interpo-
lated) to match. The raw nacelle direction signals were found
to have differing offsets and were then calibrated on a per-
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Figure 2. Wind-speed (a) and direction (b) measurements at hub height of 65 m processed from the inflow lidar mounted on turbine B08.
Missing data correspond to equipment downtime and filtering of low signal quality periods.

Figure 3. Wind rose depicting hub height wind speed and direction
from the inflow measuring lidar.

turbine basis and corrected in the final data set. Given the fact
that met mast data were not available, the calibration was per-
formed using sets of turbines each consisting of a front tur-
bine and the corresponding closest downstream turbine. The
inflow direction generating the largest wake loss at the down-
stream turbine location corresponds to the direction from the
front turbine to the downstream turbine, whereby the offset
of the measured nacelle direction at the front turbine follows
directly. To cover the complete wind rose, four direction sec-
tors of 90◦ were defined, and within each of these the na-
celle direction calibration was performed using 2–3 sets of
turbines.

2.4 Load data

Six wind turbines (designations B06, B07, B08, C08, D07,
and D08) have been outfitted in the past with load mea-
suring equipment and could be used during the TotalCon-
trol measurement campaign. These data are available starting
November 2019 at 10 Hz sampling frequency. Strain gauge
measurements are available both at the blade root (installed
1.5 m from blade root) and tower base (installed 8.52 m from
tower base). The tower base position includes two sensors
oriented 90◦ apart. The sensors were installed and calibrated
by Siemens Gamesa.
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3 Numerical solver

3.1 Fluid solver

SP-Wind is a wind farm large eddy simulation code built on
a high-order flow solver developed over the last 15 years
at KU Leuven (Calaf et al., 2010; Allaerts and Meyers,
2015; Munters and Meyers, 2018). The three-dimensional,
unsteady, and spatially filtered Navier–Stokes momentum
and temperature equations

∂ũ
∂t
+ (ũ · ∇)ũ=−

∇(p̃+p∞)
ρ

−∇ · τ s + 2ω× ũ

+ g
(θ̃ − θ0)
θ0

+Ftot, (1)

∂θ̃

∂t
+ (ũ · ∇)θ̃ =−∇ ·qs (2)

are solved. In these equations, ũ= [ũ1, ũ2, ũ3] is the filtered
velocity field. Further, θ̃ is the filtered potential temperature
field, and θ0 is the background adiabatic base state. The pres-
sure gradient is split into a mean background pressure gradi-
ent ∇p∞ driving the mean flow and a fluctuating component
∇p̃. The very high Reynolds numbers in the atmospheric
boundary-layer flow combined with typical spatial resolu-
tions in LES justify the omission of resolved effects of vis-
cous momentum transfer and diffusive heat transfer. Instead,
these are represented by modeling the subgrid-scale stress
tensor τ s and the subgrid-scale heat flux qs originating from
spatially filtering the original governing equations (Allaerts
and Meyers, 2015). Coriolis effects are included through the
angular velocity vector ω =�sinφ, where � is the earth’s
rotation and φ is the latitude of the wind farm. Thermal buoy-
ancy is represented by g(θ̃ − θ0)/θ0, with g the gravitational
acceleration, θ̃ the filtered potential temperature, and θ0 a ref-
erence temperature. The effect of surface friction is included
using a standard wall-stress model, corresponding to a loga-
rithmic velocity profile with a roughness length z0 (Bou-Zeid
et al., 2005) to represent marine boundary layers, without the
need to resolve wave effects on the mesh. Finally, Ftot repre-
sents body forces added to the flow and consists of F and FR,
which represent forces exerted by the wind turbines on the
flow and a fringe-region approach to introduce inflow bound-
ary conditions in the domain respectively.

Spatial discretization is performed in the horizontal and
span-wise directions by using pseudo-spectral schemes,
while vertical fourth-order energy-conservative finite differ-
ences are used in the vertical direction. The equations are
marched in time using an explicit fourth-order Runge–Kutta
scheme, and grid partitioning is achieved through a scalable
pencil decomposition approach. Subgrid-scale stresses are
modeled with a standard Smagorinsky model with Mason
and Thomson wall damping (Allaerts and Meyers, 2015).

3.2 Structural solver

Deformation of the turbine blade and tower is employed by a
finite-element floating frame of reference formulation (Sha-
bana, 2013). Each element is described by reference coor-
dinates which specify its position and orientation and elas-
tic coordinates that define its deformation with respect to
the body coordinate system. Bryant angles are used to de-
scribe the orientation of the rotor’s body reference frame;
however, only the rotation of the turbine rotor is assumed to
contribute to its dynamic behavior. Deformations along the
tilting, yawing, and pre-coned axis are taken into account
quasi-statically. The governing equation for the system can
be written as (Shabana, 2013)

M(q)q̈ +Cq̇ +K(q)q +8Tq λ=Qa+Qg+Qv (3)

8(q)= 0, (4)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively, computed using the structural speci-
fications of the Siemens SWT-2.3-93 turbines. The vector q
represents the generalized coordinates, while q̇ and q̈ repre-
sent their first and second time derivatives. 8q and λ are the
constrain Jacobian matrix and Lagrange multipliers, respec-
tively, and Qg represents the gravitational loads acting on the
rotor and tower elements. The vectorQa =

[
F rtr
A F twr

A

]
con-

tains the aerodynamic loads evaluated at the rotor and tower
nodes, as described in Sect. 3.3. Finally, Qv is composed of
the Coriolis and gyroscopic loads (Shabana, 2013). Further
details regarding the coordinate system used and the deriva-
tion of the equations of motion is given in Appendix A.

To solve the equations of motion, first an eigenvalue prob-
lem is solved without damping and external loading to ex-
tract the mode shapes and natural frequencies of the struc-
ture. Then, the order of the system is reduced by a common
modal transformation technique. Hence, the rotor blades are
represented by six modes (two flap wise, two edgewise, one
torsional, and one axial) and the tower is represented by four
modes (two side to side, two fore–aft). Finally, the reduced
order system is integrated in time by using the generalized-α
method, with a time step of 0.01 s and spectral radius of 0.9
for low numerical damping (Arnold et al., 2007).

3.3 Turbine model

As it is computationally prohibitive to fully resolve a wind
turbine structure and its forces, actuator methods have been
extensively used in research to parameterize wind turbine
forces onto the flow grid. The most widely used amongst
these models is the actuator disk model (ADM) and the actu-
ator line model (ALM) (Churchfield et al., 2017). The ADM
is a simple representation of a wind turbine in the flow do-
main, in which a disk is used to parameterize the turbine
forces on the flow. Though simple, the ADM does not ac-
curately represent wind turbine operation due to a lack of
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discrete rotating turbine blades, and hence often requires ad-
ditional tuning to improve performance. Comparatively, the
ALM provides a more accurate parametrization by represent-
ing the turbine blades as actuator lines, with each point ex-
erting a force on the flow based on its local inflow velocity
and airfoil distribution. However, the ALM suffers from a
limitation that the movement of the actuator line tip over a
time step is limited to the size of a cell, thus requiring very
fine time steps and hence high computational costs. To over-
come this limitation, an actuator sector model (ASM) was
developed, which swept the rotor forces across a sector area
and hence allowed for coarser time steps. The ASM there-
fore represents an intermediary between the ALM and ADM,
with the ability to resolve structures in the near wake with
greater detail than the ADM due to the presence of rotating
actuator lines while avoiding the high computational cost as-
sociated with the fine time steps of the ALM (Storey et al.,
2015). The ASM was later extended to an aeroelastic actu-
ator sector model (AASM) by incorporating two-way fluid
structure interaction (FSI) coupling to account for structural
deformations (Vitsas and Meyers, 2016).

In this work, the Siemens 2.3 MW turbines are modeled
by using the AASM coupled with the nonlinear flexible
multibody dynamics model described in the previous section.
Since the LES computations are more intensive than inte-
grating the structural equations, a sub-cycling process is em-
ployed, for which the aeroelastic coupling scheme is shown
in Fig. 4. The relative velocity Vrel is evaluated at each airfoil
element along the blade based on the induced velocity field
ûx at the airfoil’s deflected position and on the blade’s out-
of-plane and in-plane motion represented by q̇OoP and q̇iP, re-
spectively. The relative velocity Vrel also includes the effect
of rotor angles (yaw, tilt, and precone) by using rotation ma-
trices to transform the incoming flow field. The flow angle φ
is then determined from the involved velocity triangle, which
comprises the pitch angle β, the torsional deflection τ , and
the angle of attack α. The lift L, drag D, and pitching mo-
ment M at each airfoil section is then determined using 2D
airfoil look-up tables and used to evaluate the aerodynamic
forces FmA comprising of the normal, tangential, and span-
wise forces FmN , FmT , and FmS . This is done at every sub-cycle
m and serves as an input to the equations of motion given by
Eq. (3), which are subsequently solved at each sub-step. The
forces are then spatially and temporally filtered to obtain the
body forces F, which serve as an input to the flow solver in
Eqs. (1). Further details of the coupling of the turbine model,
flow solver, and filtering are given in Appendix B.

The pitch and rotational speed of all the turbines are con-
trolled using an implementation of the DTU wind energy
controller (Hansen and Henriksen, 2013). A comparison of
the simulated power output and thrust in SP-Wind using
AASM under the influence of a range of uniform velocities
against reference data for the Siemens 2.3 MW turbines is
shown in Fig. 5. Slight differences can be seen in both the
simulated power and thrust, which can be attributed to the

coarse grid resolution across the turbine blades in SP-Wind,
which was restricted due to the resolution of the precursor
simulations used as they were originally developed for a big-
ger 10 MW turbine and a larger wind farm. Using the same
grid resolution for the smaller 2.3 MW turbines at Lillgrund
leads to differences in induction at the rotor plane.

4 Recreating the inflow conditions at Lillgrund

4.1 Precursor database

The turbulent inflow conditions for wind farm inflow are ob-
tained from the publicly available precursor data from the To-
talControl Flow database (Munters et al., 2019a, b, c, d). The
precursor data contain unsteady three-dimensional flow data
of an unperturbed atmospheric boundary layer (i.e., with-
out the influence of turbines). The database comprises two
pressure-driven boundary layers (PDBLs) and three conven-
tionally neutral boundary layers (CNBLs), spanning different
surface roughness lengths and boundary layer heights. The
TotalControl flow fields are initialized using mean velocity
profiles upon which random divergence-free perturbations
are added. These initial conditions are then advanced in time
for 20 physical hours, so that the influence of the unphysi-
cal perturbations has disappeared and the flow has reached
a fully turbulent and statistically stationary state. The PDBL
is a simple representation of a neutral atmospheric bound-
ary layer which ignores the effects of rotation and thermal
stratification, while the CNBL provides a more realistic rep-
resentation by including these effects. Both these boundary
layer types have been extensively used in wind farm LES.
Specifications of the five different boundary layers are given
in Table 1, while their flow profiles are shown in Figs. 6 and
7. The database has previously been used in a study to deter-
mine the effect of CNBL height on wind farm performance
(Sood et al., 2020b). All the boundary layers have been ini-
tialized using a friction velocity of 0.28 ms−1, which is a typ-
ical value for marine boundary layers (Brost et al., 1982).
For the PDBL, this requires a driving pressure gradient of
∇p∞/ρ =−5.2267× 10−5 ms−2 according to the equation

u∗ =
(
−
H
ρ
∇p∞

)1/2
. Further information regarding the ini-

tialization of the boundary layers and the precursor database
is available in the provided references (Anderson et al., 2020;
Allaerts and Meyers, 2015). A stream-wise slab of the veloc-
ity and temperature field was stored to disk when running the
precursor, and is later introduced in the wind farm domain by
means of body forces in a so-called fringe region (Stevens
et al., 2014; Munters et al., 2016). To match the inflow con-
ditions measured by the lidar measurement campaign, the
data from the precursor data set can be transformed to differ-
ent flow conditions by re-scaling and shifting the flow vari-
ables. Using friction velocity u∗ for velocity scaling, differ-
ent wind speeds can be attained by re-scaling the entire flow
field by a different target friction velocity ut

∗. This is possi-
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Figure 4. The AASM comprises the following steps: (a) evaluation of the angle of attack from the airfoil’s cross-section velocity triangle and
blade’s motion, (b) the local cross-section forces are computed from 2D airfoil data, (c) the blades sweep a sector area using a sub-cycling
scheme, and (d) the sector area forces are time-filtered. Panel (d) denotes that more weight is given to the forces in the end position. Figure
taken from Vitsas and Meyers (2016).

Figure 5. Comparison of simulated power and thrust coefficient
in SP-Wind using the AASM against reference data (Göçmen and
Giebel, 2016).

ble for offshore wind farms, as the solution is scale invari-
ant at high Reynolds numbers. Additionally, in line with the
classical outer layer similarity hypothesis (Townsend, 1976),
for offshore atmospheric boundary layers at high Reynolds
numbers the roughness elements are much smaller than the
boundary-layer height, and hence the roughness acts merely
to increase surface stress without any structural changes in
the flow (Castro, 2007; Jiménez, 2004). The effect of a dif-
ferent target roughness lengths zt

0 can thus be imposed by ap-
plying an offset on the mean flow in line with the difference
in surface roughness. Hence, denoting the imposed reference
friction velocity and roughness length in the current cases by
ur
∗ and zr

0 respectively, the flow can be re-scaled and shifted
as

ut(x, t)= ut
∗

[
ur(x, t)
ur
∗

+
1
κ

ln
zr

0
zt

0
e1

]
, (5)

where κ is the Von Karman constant and e1 is a unit vector
in the positive x direction, symbolizing that the flow shift-

Table 1. Specifications of the TotalControl flow database (Ander-
son et al., 2020; Munters et al., 2019a, b, c, d).

Case Boundary-layer Surface Capping inversion
height roughness strength

PDk 1500m 2× 10−4 m –
PDkhi 1500m 2× 10−3 m –
CNk2 500m 2× 10−3 m 2K
CNk4 250m 2× 10−3 m 4K
CNk8 125m 2× 10−3 m 8K

ing is applied to the velocity ũ1 in the stream-wise direction.
The reference velocity field which is transformed, ur(x, t),
consists of the stream-wise and span-wise velocities at time
instant t . The same friction velocity and surface roughness
is used for both the velocity components. Scaling the veloc-
ity also leads to scaling of the timescales, according to the
following equation:

1t t =
1t

ut
∗

ur
∗. (6)

For the CNBL data sets, a similarity parameter h∗ =

|fc|h/u∗ relates the height of the atmospheric boundary
layer with the Rossby–Montgomery scale u∗/|fc| (Arya,
1975, 1978). Furthermore, an empirical relation for the
height of the boundary layer with the strength of the capping
inversion is given as

h= A
θ0

g1θ
u2
∗, (7)

where A is an empirical parameter with the value 500 and
1θ is the strength of the capping inversion (Csanady, 1974).
Based on the above relations, re-scaling via a new u∗ implies
a change in latitude and θ0/1θ , if h is to remain constant.
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Figure 6. Flow profiles for PDBL cases. (a) Mean velocity. Dashed lines indicate log-law profiles. (b) Resolved Reynolds shear stress and
turbulent kinetic energy. Markers are plotted every 10 data points for clarity.

Figure 7. Flow profiles for CNBL cases. Top left: horizontal velocity. Top right: total (resolved+ subgrid) shear stress. Bottom left: wind
veer. Bottom right: potential temperature. Markers are plotted every 10 data points for clarity. Figure taken from Sood et al. (2020a).

4.2 Optimization framework

While SP-Wind does support changing wind directions dur-
ing a simulation run (Munters et al., 2016), each simulation
is restricted to a single wind direction θ and a time frame
of 75 min to limit computational costs. Thus, the available
inflow data from the measurement campaign were divided
into numerous 75 min overlapping time windows. We define
P as one of the LES data sets from the five available precur-
sor cases listed in Table 1 and Q as a data set consisting of a
75 min time block extracted from the available lidar database,
with both P and Q containing only the stream-wise and span-
wise velocity time series as the lidar measurements did not

include vertical velocity measurements. Additionally, the ve-
locities in the LES data sets are extracted from the dimen-
sional TotalControl inflow database domain at the equivalent
range gate locations as the lidar field measurements. Rows
in the two data sets represent range gate locations from the
measurement campaign, while columns represent time-series
data. While various methods exist to compare the similarity
between multi-dimensional time-series data (Salarpour and
Khotanlou, 2018), we limit our analysis to two simple dis-
tance metrics to determine the differences between the lidar
measurements and the available LES precursors. These met-
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rics are defined as

d1(P,Q)= P−Q2
w. (8)

d2(P,Q)= cov(P)− cov(Q)2
w. (9)

The first metric d1 is a Euclidean norm which provides a
measure of the differences between the time-averaged pro-
files at range gate locations with the over bar denoting 75 min
time averages. The second metric d2, a Frobenius norm, is a
measure of the differences between the co-variances of the
two data sets, accounting for spatial correlations and also
providing a measure for the differences in turbulence intensi-
ties across the rotor area. Without the inclusion of the covari-
ance distance, it was observed that while the mean velocity
profiles in obtained solutions matched well, they had large
differences in the turbulence intensities. The metrics are also
assigned weights according to a vectorw as shown in Fig. 8a,
giving highest preference to the range gates spanning the ro-
tor area 20 % around the hub height, followed by the remain-
ing rotor area and finally the rest of the vertical domain. As
discussed in Sect. 4.1, the available LES data sets can be
modified for each case P by using the scaling-and-shifting
parameters u∗t/u∗r and z0

t/z0
r, henceforth collectively re-

ferred to as the transformation vector ζ = [u∗t,z0
t
], to obtain

a new LES realization denoted by Pζ . Therefore, the distance
metrics d1(Pζ ,Q) and d2(Pζ ,Q) can be determined over the
entire 6 month measurement campaign between each LES
data set P and a lidar data set Q, for different combinations
of the transformation parameters ζ . The sum of both the met-
rics can be used as a measure of similarity between the LES
and lidar data, with lower values indicating greater similarity.
Thus for each data set P, a minimization problem can be de-
fined to determine the transformation vector ζ and the time
window Q from the measurement campaign which returns
the least distance between the LES data and lidar measure-
ments, indicating highest similarity. The cost function of the
optimization problem can be defined as

min
ζ ,Q

d1(P,Q,ζ )+ d2(P,Q,ζ ) (10)

and is solved using the SLSQP solver from the SciPy
Python package (Virtanen et al., 2020). As the distances are
calculated for both the stream-wise and span-wise velocity
components, the wind direction error is implicitly accounted
for and minimized. In its current form, both the distance met-
rics are given equal weights in the minimization problem,
however future work could explore a Pareto front for deter-
mining optimal weights for the two metrics. After sweeping
through the entire measurement campaign, five unique time
windows of 75 min length each, corresponding to five differ-
ent LES flow realizations which best matched the lidar data
are obtained. The first three matches are obtained by trans-
forming the PDk TotalControl LES data set, while the fourth
and fifth matches are obtained from the CNk4 and CNk8 data

set, respectively, without any transformations. While addi-
tional matches were identified, which also contained flow re-
alizations obtained from the PDkhi and CNk2 LES data sets,
we restrict further analysis to the best five cases with high-
est similarity due to computational limitations. A compari-
son of the mean vertical profiles at range gate location for
these cases are shown in Fig. 9 and their specifications are
outlined in Table 2. A comparison of the average turbulence
intensity across the range gates spanning the rotor area is also
presented in Table 3.

From Fig. 9, it can be seen that majority of the selected
LES cases match the lidar measurements within error lim-
its across the rotor area. As the sample size of comparison is
limited, bootstrapping is used to determine the measure of ac-
curacy of the computed means. Since a traditional bootstrap
approach of randomly re-sampling the original time-series
data is inappropriate for time series with intrinsic correla-
tion, the moving block bootstrap method is utilized (Kunsch,
1989). The length of individual blocks in the moving boot-
strap method was set to 10 min as a compromise between
having enough bootstrap blocks from the measured time-
series data and keeping the block lengths large enough to en-
sure that individual blocks can be assumed to be independent
from each other. Through a sensitivity study, it was deter-
mined that 1000 bootstrap iterations were sufficient to obtain
converged uncertainty estimates for the mean. Larger devi-
ations in total mean wind speed can be observed at heights
above the rotor tip, which can be attributed to the preference
given to the hub height and rotor disk area through weights
in the optimization problem. The PDBL simulations have the
largest error when comparing the mean veer between the LES
and lidar measurements as, by definition, the PDBL simula-
tions have zero veer and are hence incapable of represent-
ing a veered flow. While the CNBL simulations do include
veer, the TotalControl precursor database was not designed to
cover large veer conditions, thus still leading to errors when
compared to the veer in measurement data. Nevertheless, the
absolute error never exceeds more than 7◦ over the rotor area
for any of the cases at a given range gate. Good comparison
is also seen between the measured and simulated turbulence
intensity, with the maximum error never exceeding 1 %.

4.3 Sources of error

The developed optimization framework is therefore able to
successfully recreate the inflow conditions at the Lillgrund
wind farm for the chosen time periods without significant
errors in the mean inflow velocity across the rotor area, as
evident by Fig. 9. However, a few shortcomings of the opti-
mization framework must be addressed. Atmospheric stabil-
ity and stratification can play a significant role in the perfor-
mance of a wind farm by affecting wake recovery and am-
bient turbulent intensity (Magnusson and Smedman, 1994).
Additionally, due to the close land proximity of the Lillgrund
wind farm, the atmospheric conditions at the farm can be sig-
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Figure 8. (a) Height varying weights used for the distance metrics in the minimization problem. (b) Locations of 72 range gates, with range
gate 1 being the lowest and closest to the turbine B08 and 72 being the highest and furthest away.

Figure 9. Comparison of vertical mean total velocity profile (a) and wind veer (b) between the selected LES and corresponding lidar data.
Shaded area represents 95 % confidence intervals on the mean evaluated using the block bootstrap method.

nificantly affected by a land–sea system as a combination of
marine and land boundary layers. The current methodology
does not take the meso-scale effects at the Lillgrund site into
account, instead relying on a database comprising of marine
pressure driven and neutral boundary layers to match the in-
flow conditions. This is due to the lack of atmospheric stabil-
ity and temperature measurements at the Lillgrund site dur-
ing the measurement campaign. If the data were available,
the inflow database used could have been modified before
the transformation procedure to consist of precursor bound-
ary layers which best represent the stability conditions at the
wind farm site. In its current form, the considered cases may
be biased as they are chosen simply based on minimum er-

ror in the distance metrics and do not account for stability or
land–sea effects. Additionally, without the inclusion of ap-
propriate weights or additional distance metrics to penalize
wind veer error, the current procedure may have been biased
to overemphasize mean speed error as compared to wind veer
error. The error in the lidar and LES velocity profiles above
the rotor area could also affect the vertical transport into the
wind turbine array atmospheric boundary layer (WTABL),
which may affect the overall wind farm performance (Calaf
et al., 2010).
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Table 2. Specifications of selected validation cases.

Case Measurement campaign Friction velocity Surface roughness Hub height wind Hub height velocity
time (yyyy/mm/dd) (u∗) (z0) direction (θ ) (S)

PDk1 2019-12-23, T01:14:44 0.267ms−1 2.17× 10−4 m 119◦ 8.2ms−1

PDk2 2019-12-18, T18:48:04 0.275ms−1 2.00× 10−4 m 243◦ 8.5ms−1

PDk3 2019-09-24, T18:01:46 0.168ms−1 5.60× 10−4 m 110◦ 4.8ms−1

CNk41 2020-01-29, T05:40:36 0.280ms−1 2.00e× 10−4 m 251◦ 10.8ms−1

CNk81 2020-01-07, T17:46:26 0.280ms−1 2.00e× 10−4 m 222◦ 10.2ms−1

Table 3. Turbulence intensity (TI) comparison of validation cases,
averaged over the rotor area. Error estimates represent 95 % confi-
dence interval and are calculated using the block bootstrap method
with block length of 600 and 1000 bootstrap iterations.

Case Lidar TI [%] LES TI [%]

PDk1 5.52± 0.09 6.31± 0.17
PDk2 5.99± 0.09 6.27± 0.14
PDk3 6.64± 0.11 6.83± 0.12
CNk41 5.12± 0.17 5.59± 0.15
CNk81 5.86± 0.16 5.73± 0.21

5 Large eddy simulations of the Lillgrund wind farm

5.1 Numerical setup

The simulation domain in SP-Wind has a size of 16× 16×
1.5 km3 in the stream-wise, span-wise, and vertical direc-
tions, respectively. The grid resolution is 13.33× 13.33×
6.66 m3, resulting in a computational grid of 1200× 1200×
225= 324× 106 grid points. The choice of domain size is
restricted by the one used for the precursor data sets, which
was initially designed for simulations with the much larger
TotalControl reference wind farm to avoid blockage effects
(Sood et al., 2020b). Wind farm simulations in SP-Wind are
performed in a sequence of steps via the concurrent precur-
sor framework (Munters et al., 2016). First, the inflows from
the previously generated TotalControl precursor database are
made to advance in time in a domain without wind tur-
bines, called the precursor domain. Concurrently, the flow is
transformed using the identified transformation parameters
through the optimization framework to obtain the five cases
identified in Table 2 and fed into a second domain which
contains wind turbines as body forces FR through a fringe
region. For each of the five cases, the Lillgrund wind farm
is rotated to simulate different wind directions. The flow is
allowed to pass through the wind farm for 1800 time steps
to account for start-up transients, after which data are col-
lected for evaluating the performance of the farm for 9000
time steps. While the original precursor inflow database have
a LES time step1tLES = 0.5s, the time step of the wind farm
simulations is altered due to the scaling of the velocity field,
as per Eq. (6). The multibody aeroelastic computations are

Figure 10. Time-averaged stream-wise hub height velocity for all
selected cases. Different wind directions are realized by rotating the
entire wind farm in the simulation domain and feeding the inflow
velocity in the horizontal-x direction.

performed with a smaller time step of 1tMB for a finer reso-
lution of the structural loading. The general domain and time
parameters of the simulations are summarized in Table 4.

5.2 Time-averaged flow fields

Time-averaged hub height flow fields for all the selected val-
idation cases are shown in Fig. 10. It can be seen that out of
all the cases CNk41 has the highest inflow velocity and PDk3
has the lowest, in accordance with results shown in Fig. 9.
The different wind directions spanning the five cases lead to
different operation states of the same turbines within the Lill-
grund wind farm, due to changes in available hub height wind
speed but also due to individual turbines operating in a waked
or un-waked condition as per the orientation of the upstream
turbines. For instance, the cases PDk1 and CNk81 with wind
directions 119 and 222◦, respectively, have a larger number
of turbines operating under fully waked conditions compared
to the other three cases. This leads to a data set which allows
us to evaluate the performance of Lillgrund turbines when
subjected to varying operating conditions.
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Table 4. Summary of the general domain parameters.

Domain size Lx ×Ly ×Lz 16× 16× 1.5 km3

Grid Nx ×Ny ×Nz 1200× 1200× 225
Resolution 1x ×1y ×1z 13.33× 13.33× 6.66 m3

Wind farm spin-up time Tspin 1800×1tLES
Simulation time T 9000×1tLES
Structural time step 1tMB 0.02×1tLES

Table 5. Comparison of percentage of turbines with statistically
significant errors based on 95 % confidence intervals between LES
simulations and field measurements.

Case Turbines with
significant
errors [%]

PDk1 58.3
PDk2 16.6
PDk3 83.3
CNk41 25.0
CNk81 35.4

5.3 Performance comparison

Comparison of the mean wind farm power output obtained
from SP-Wind against the field measurements from Lillgrund
is presented in Fig. 11. From Fig. 11b, it can be seen that the
total farm power production in LES for three out of five cases
are in good agreement with the measurement data, with the
errors within 95 % confidence intervals of each other. While
significant errors can be seen for the cases PDk3 and CNk41,
the relative power error for the CNBL case is about 4.2 %,
which is still quite low. The distribution of individual turbine
power production for the case PDk1 is shown in Fig. 12, in-
cluding uncertainty estimates again determined by the mov-
ing bootstrap method. From Figs. 11a and 12 it can be seen
that individual turbine power trends across the farm are cap-
tured well, where similar trends are observed for power pro-
duction peaks and valleys for un-waked and waked turbines,
indicating that on average the wind direction in the LES cases
captures the real world field conditions during the time win-
dows. However, when comparing individual power produc-
tion on a turbine level, statistically significant errors are ev-
ident for 58 % of the turbines for the PDk1 where error bars
for the 95 % confidence intervals do not overlap when com-
paring LES predictions and field measurements. The same
analysis is performed for all the simulated cases, and the pro-
portion of turbines with statistically significant errors are pre-
sented in Table 5. In general, it was observed that the turbines
at the front of the farm did not have statistically significant
errors; however, turbines operating within the wakes of an
upstream turbine had higher errors which were significant for
wind directions resulting in an aligned configuration.

Figure 11. Comparison of LES time-averaged power output of in-
dividual turbines (a) and total wind farm power output (b) against
field SCADA measurements. Error bars represent 95 percent con-
fidence intervals on the mean and are computed using the block–
bootstrap method and time windows of 600 s and 1000 bootstrap
samples.

Figure 12. Bar plot of turbine power production for the case PDk1.
Error bars represent 95 % confidence intervals on the mean and are
computed using the block–bootstrap method and time windows of
600 s and 1000 bootstrap samples.
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Figure 13. Effect of wind direction on relative power error between
LES calculations and field SCADA measurements for the five sim-
ulated cases.

The effect of the wind direction on the individual turbine
power errors is presented in Fig. 13. It can be observed that
for all the cases, the relative power error is generally low for
all the turbines at the front of the farm facing the incoming
flow field, further indicating that the replicated flow fields
match the inflow conditions at the Lillgrund site. However,
turbines within the farm and operating in strong wakes ex-
hibit significantly higher errors, which gradually appear to
reduce towards to back of the farm. This behavior is not visi-
ble in the case PDk2 and CNk4, with most of the turbines op-
erating in an un-waked state due to the wind direction. This
effect can also be witnessed when observing the proportion
of turbines with significant errors, as presented in Table 5.
The highest errors can be seen for the PDk3 case for almost
all the turbines operating inside the farm, with some of the
power errors exceeding 100 %. It was observed that while
in SP-Wind all the turbines for this case were operational
and producing power, most of the turbines in the field were
either shut or producing negligible power. To further inves-
tigate the discrepancies in individual turbine power output
across the five cases, we investigate the performance of the
implemented controller in the wind farm. Figure 14 shows a
comparison between the rotor speed and pitch actuation in
SP-Wind against field measurements for all the turbines. It
can be seen that while the performance of the pitch actuation
and rotor speed controller show a good comparison in general
across the five cases, larger errors can be seen for a few tur-
bines in terms of both pitch and rotational speed. In particu-
lar, pitch measurements from the wind farm exhibit non-zero
pitch angles for the majority of the turbines, even though they
are operating in below-rated conditions and should tradition-
ally have zero pitch, as is the case for the turbines operating
in the LES simulations. The highest pitch errors are exhibited
by the case PDk3, indicating that instead of operating in the
Region 2 control regime as expected, the turbines within the
farm are operating in a start-up region with significant pitch-

ing action at low wind speeds. This demonstrates the differ-
ences between the actual field turbine controller and the one
implemented in SP-Wind, as detailed information about the
controller and all of its modes of operation was not avail-
able. Larger pitch angles would lead to reduced power pro-
duction for the turbines, which can be observed for the PDk3
case with the maximum amount of turbines with non-zero
pitch, leading to the larger errors in power production as ob-
served in Figs. 11 and 13. Additional controller tuning was
attempted by adjusting the gains of the standard torque pro-
portional controller based on the power and rotor speed mea-
surements from the SCADA data. While a reduction in over-
all farm power error was observed, it was below 1 %, which
is not significant. Another source of error worth investigating
is the yaw misalignment between the simulated cases and the
field measurements, which is presented in Fig. 15. While all
the turbines in the simulation domain of SP-Wind are stati-
cally aligned with the mean wind direction without the use
of a local yaw angle controller, it can be observed that this
was not the case for the field turbines, which dynamically
change their orientation in accordance with local wind direc-
tion changes within the farm. In fact, the local flow angle
for the turbines operating in the LES cases were found to be
negligible, indicating that even if a yaw angle controller was
incorporated in SP-Wind, its effect would not have been sig-
nificant. An analysis of turbine orientation error across the
wind farm layout is shown in Fig. 16 for cases PDk1 and
PDk3, as they exhibited the highest relative error of the five
cases. It can be observed that for both the cases, which also
have a similar mean wind direction, there is a gradient in the
turbine orientation error which increases towards the bottom
of the farm. This indicates a gradient in the wind direction
across the farm potentially due to meso-scale effects, which
the turbine yaw controllers are reacting to. As this gradient
is not represented in the LES, we end up with higher turbine
orientation errors for a sub-set of the wind turbines.

From the previous analysis, it can be concluded that mul-
tiple factors contribute to the errors in performance. It was
observed that turbines operating in a strongly waked state ex-
hibit the highest power errors across all the cases. This indi-
cates that the wakes in the LES environment do not recover at
the same rate as they do in the field and is further confirmed
by a wake analysis in the following section. As previously
remarked in Sect. 4.3, this could be due to the fact that the
optimization framework used to match the inflow conditions
at the Lillgrund site did not account for atmospheric stability
and meso-scale effects. The larger errors in the mean veloc-
ity profile above the rotor area could also be affecting the
wake recovery due to vertical transport, and the grid reso-
lution may also be a contributing factor. An analysis of the
turbine orientation error across the farm indicated gradients
in wind direction in the field which were not recreated in
the simulation environment, which could lead to differences
in turbine–wake overlaps and hence power production errors
across the farm. Finally, differences in controller operation in
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Figure 14. Errors between LES time-averaged collective pitch (a)
and rotational speed (b) of individual turbines and field SCADA
measurements. Missing data points correspond to missing data.

Figure 15. Errors between LES time-averaged wind direction at
individual turbines and field SCADA measurements. All turbines in
the LES domain face the wind and have zero yaw misalignment.
Missing data points correspond to missing data.

different regimes due to a lack of detailed information about
the field controllers, in particular excessive pitching at low
wind speeds, can have a significant effect on the observed
errors.

Comparison of the mean flap-wise blade root bending mo-
ments for 5 of the 48 turbines from the Lillgrund wind farm
for which loading data were available is shown in Figs. 17
and 18 for the PDBL and CNBL simulations, respectively.
To determine the effect of fatigue, we use the damage equiv-
alent loads (DELs) to compare the load histories of the same
turbines across the LES and field measurement data. DEL
is computed using the Palmgren–Miner rule and the Wöhler
equation to account for accumulating fatigue damage caused

Figure 16. Effect of wind direction on relative turbine orientation
error between LES calculations and field SCADA measurements
for the cases PDk1 and PDk3. Missing data points correspond to
missing SCADA data.

to the wind turbine components by the fluctuating structural
loads (Sutherland, 1999). The loads time series are counted
and binned into individual cycles using the rainflow count-
ing algorithm (Socie and Downing, 1982), and for the wind
turbine blades the components follow the Wöhler’s curve
with a slope coefficient equal to 10 (Freebury and Musial,
2000). The moving block bootstrap methodology is again
utilized for evaluating the mean flap-wise moment and the
corresponding DEL, with block lengths of 10 min and 1000
bootstrap iterations. Fatigue analysis was not conducted for
the CNBL simulations as the data were not logged consis-
tently for the turbines in the time periods of these simula-
tions, making the data unfit for rainflow analysis. Both the
average blade root flap-wise moments and the corresponding
DELs exhibit a good comparison in the trends of the PDBL
simulations in Fig. 17. For the PDk2 case, while the moments
of the un-waked upstream turbines B08, C08, and D08 show
lower errors, significant errors are observed for the turbine
B06 which is operating in a fully waked state behind tur-
bine C08. For turbine B07, which is operating in a partially
waked state within the farm, while the differences in the flap-
wise moments is not significant, large errors are visible when
comparing the flapwise DEL. A similar observation can be
made for the CNBL simulations in Fig. 18. Turbines B08,
C08, and D08 are operating in free-stream conditions for
both the CNBL simulations, hence exhibiting better compar-
ison against field measurements when compared to turbines
B06 and B07 which are operating in fully waked conditions.
A possible explanation for the larger errors observed in the
loads of the waked turbines could be the relatively coarse grid
resolution utilized in SP-Wind when looking at the number of
cells across the rotor diameter, such that not all relevant tur-
bulent structures upstream of turbine wakes that contribute to
loads are captured. In the current work, the use of a finer grid
for the simulations was not feasible, as the computational
cost at the current grid resolutions for the wind farm simu-
lations is already quite high. Additionally, the larger power
error for the waked turbines as observed in Fig. 13 would
result in differences in blade loading.
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Figure 17. Comparison of LES time-averaged blade root flap-wise moments (a) and DEL (b) against field measurements. Error bars represent
95 % confidence intervals on the mean. Results are normalized by maximum SCADA data for each case.

Figure 18. Comparison of LES time-averaged blade root flap-wise moments for (a) CNk41 (b) CNk81 against field measurements. Error
bars represent 95 % confidence intervals on the mean. Results are normalized by maximum SCADA data for each case.

5.4 Wake analysis

Due to equipment failure, data from the wake measuring li-
dars were unfortunately available for only two cases, PDk3
and CNk41, from the five selected validation time periods
from the measurement campaign. Comparing wake recovery
for the B06 turbine in the CNk41 case in Fig. 19, we see good
agreement in wake location and recovery downstream from
the turbines. It can be observed that while SP-Wind provides
an accurate representation of the near-wake region behind
turbine B06, the far-wake region characterized by a down-
stream distance greater than four rotor diameters exhibits
higher errors. This can further be observed from the stronger
wakes in SP-Wind in the far-wake region for turbine C06 in
Fig. 20, leading to a lower inflow velocity at turbine C05 and
hence the underestimation of power production for turbine
C05 as observed in Fig. 11. Observing the wakes from the
B05 turbine from PDk3 in Fig. 21, the effect of incorrectly
representing the turbine orientation can be seen. While par-
tial waked conditions are observed in SP-Wind for turbines
A05, B05, and C05, the lidar measurements exhibit a higher
wake overlap. This is observable through the wake deficit
analysis shown in Fig. 21, where while at first for the LES
case the wake behind the turbine B05 appears to be aligned

with field measurements, larger deviations are visible further
downstream from the turbine where the wake shifts to the left
when observed from an upstream point of view. This leads to
a larger inflow velocity across the downstream rotor at tur-
bine C05 in LES as compared to lidar measurements and
hence the greater reported power production in simulations
as compared to SCADA data.

6 Discussion, conclusions and future work

In this work, a validation study was conducted to com-
pare SP-Wind, a high-fidelity large eddy simulation solver,
against field measurements obtained from the Lillgrund off-
shore wind farm near the coast of Sweden. To recreate the at-
mospheric conditions at the Lillgrund site, a framework was
developed to create the inflow conditions for the wind farm
in the numerical domain by reusing a precursor database
through scaling and shifting of the velocity. Thus, the cost in-
tensive step of developing multiple precursor simulations for
different atmospheric conditions spanning the duration of the
measurement campaign was eliminated. Five time periods
from the measurement campaign were selected for simula-
tions in the LES environment. Upon comparison against field
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Figure 19. Comparison of LES time-averaged velocity (b) against
lidar wake measurements (a) for case CNk41 and turbine B06.
(c) Comparison of velocity wake deficit at downstream locations
from turbine B06. Line at y/D = 0 is perpendicular to the turbine
orientation from SCADA data. Shaded area represents 95 % confi-
dence interval on the mean.

Figure 20. Comparison of far-wake velocity wake deficit at down-
stream locations from turbine C06 for the case CNk41. Line at
y/D = 0 is perpendicular to the turbine orientation from SCADA
data. Shaded area represents 95 % confidence interval on the mean.

measurements, results from SP-Wind show good comparison
in terms of the recreated inflow velocity field, power pro-
duced by individual turbines as well as the entire wind farm,
mean and fatigue blade-root loading, and individual turbine
wakes and recovery. However, limitations of the flow solver
were exhibited in certain instances. Higher errors were ob-
served in the performance of turbines operating in a strongly
waked state. These errors were evident in both the turbine
power and flapwise load measurements.The discrepancy in
the performance of waked turbines could be attributed to the
differences in atmospheric stability between the used precur-
sor boundary layers and the atmospheric boundary layers at

Figure 21. Comparison of LES time-averaged velocity (b) against
lidar wake measurements (a) for case PDk3 and turbine B05.
(c) Comparison of velocity wake deficit at downstream locations
from turbine B05. Lidar data at x/D = 4.0 were not available. Line
at y/D = 0 is perpendicular to the turbine orientation from SCADA
data. Shaded area represents 95 % confidence interval on the mean.

the Lillgrund site, or larger errors in the simulated profiles
above the rotor area which could affect vertical transport and
wake recovery behind turbines. Another source of error could
be that the grid resolution in the numerical domain may not
be fine enough to capture enough of the relevant smaller tur-
bulent structures in turbine wakes. In the present study, the
grid resolution was limited by the precursor database and
computational costs. Additionally, controller mismatch due
to lack of information of the field controllers also lead to
discrepancies in the produced power. Particularly, higher er-
rors were evident in a case which was operating closer to
the cut-in wind speed of the turbines located at the Lillgrund
site. Nevertheless, the results from the validation study are
promising, proving the capability of a high-fidelity numeri-
cal solver to represent on-field conditions and performance
output of a large wind farm.

The analysis in this work thus highlights certain areas in
wind farm LES which still require further research to make
accurate performance predictions for offshore wind farms. In
particular, the lack of prior knowledge of meso-scale effects,
field turbine control logic, and insufficiently fine grid resolu-
tion are highlighted as significant factors which can lead to
errors in predictions. Therefore, future work should focus on
improving on these effects, in particular for situations with
aligned wind turbines. Further investigation into the role of
atmospheric stability and meso-scale effects at the Lillgrund
site should also be investigated to determine its role in wake
recovery. This can be achieved by expanding the precursor
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database with finer resolution data sets, and data sets cover-
ing more atmospheric conditions. A closer co-operation with
the turbine manufacturers to obtain a detailed controller de-
scription for the low wind speed zones and local yaw control
dynamics would also be beneficial to improve modeling per-
formance. Having exhibited the capability of the numerical
solver in representing normal wind farm operation, valida-
tion studies could also be conducted to evaluate the effect
of coordinated wind farm control strategies, such as wake
steering and induction control, to improve wind farm perfor-
mance.

Appendix A: Multibody model

A1 Coordinate system

The rotor of the wind turbine is considered as one single body
with each blade modeled using a number of interconnected
beam elements, as can be seen in Fig. A1. The origin of the
body referenceXi1X

i
2X

i
3 is located at the center of the turbine

rotor and coincides with the root nodes of the finite element
beam representations of the respective blades. The Xi1 axis is
directed along the length of the first blade, while the axis Xi3
is directed along the axis of rotation of the rotor in the up-
wind sense. The location of the origin of the body reference
with respect to the global coordinate system X1X2X3 (not
shown in Fig. 1) is denoted by the vector of Cartesian coor-
dinates Ri , while the orientation of the body reference w.r.t.
the global coordinate system is denoted by the vector of rota-
tional coordinates θ i . Only rotation along the turbine’s main
axis is assumed to contribute dynamically to the behavior of
the turbine, while tilting and yawing motions are taken into
account quasi-statically. Finally, the elastic deformations of
the rotor are described by the vector of elastic coordinates qif ,
which describe the displacements of the finite element nodes
and the local derivatives thereof. Summarizing, the configu-
ration of the turbine rotor can be described by the following
vector of generalized coordinates:

qi=
[
Ri

T
θ i
T
qif

T
]T
. (A1)

The global position of an arbitrary point on the j th beam
element of the ith body of the multibody system can be writ-
ten as

r ij =Ri +Aiuij , (A2)

where uij is the displacement vector of the ij th element and
Ai is the transformation matrix of body i, which defines the
orientation of the body reference with respect to the global
reference. The yaw (φ), tilt (ψ), rotation (θ ), and precone
angles (γ ) are used as rotational coordinates about their re-
spective axes, and the resulting transformation matrix cased
by these rotations is given by

Ai = R−1
y R−1

t R−1
r R−1

p , (A3)

Figure A1. Finite element beam representation of the wind turbine
blades.

where Ry,Rt,Rr, and Rp are the 3-D yaw, tilt, roll, and pre-
cone rotation matrices.

A2 Energy of the turbine rotor

The global velocity of a selected point can be determined by
differentiating r ij with respect to time to obtain

ṙij = Ṙi + Ȧiuij +Ai u̇ij , (A4)

which can be simplified by taking into account the as-
sumption of quasi-static variation of yaw, tilt, and precone
(φ̇, ψ̇, γ̇ = 0). Thus, the kinetic energy T ij of element ij in
the finite element representation of the rotor can be obtained
by the following formula:

T ij =
1
2

∫
V ij

ρij
˙rij T ṙijdV ij , (A5)

where V ij and ρij are the mass density and volume of the
ij th element, respectively. The total kinetic energy of the tur-
bine rotor can be determined by summing up the kinetic ener-
gies of all the elements. Using the floating frame of reference
approach (Shabana, 2013), the expression for the elastic po-
tential energy takes a very simple form, since only the elastic
(i.e., not the rigid body) displacement of the body contributes
to the elastic potential energy. Consequently, the potential en-
ergy of the ij th element is given by

5ij =
1
2

qif
TKff

ijqif , (A6)

where Kij

ff is the element stiffness matrix expressed with re-
spect to the body reference frame.
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A3 Equations of motion

The equations of motion of the turbine rotor are developed
from Lagrange’s equations for constrained systems. These
equations can be written in the following form:

d
dt

(
∂T i

∂q̇i

)T
−

(
∂T i

∂qi

)T
+

(
∂5i

∂qi

)T
+CT

qiλ
=Qi, (A7)

where T i and 5i are the kinetic and potential energy of the
ith body, qi is the vector of generalized coordinates of the
ith body, and Qi is the vector of generalized forces associ-
ated with the coordinates of the ith body. Furthermore, λ is
the vector of Lagrange multipliers and is the Ciq constraint
Jacobian matrix, defined as

Ci
q =

∂C

∂qi
=



∂C1
∂qi1

∂C1
∂qi2

. . . ∂C1
∂qin

∂C2
∂qi1

∂C2
∂qi2

. . . ∂C2
∂qin

...
...

. . . . . .
∂Cnc
∂qi1

∂Cnc
∂qi2

. . .
∂Cnc
∂qin

,

 (A8)

where C = C(q, t)= (C1C2. . .Cnc )T is the vector of linearly
independent constraint functions that satisfy the holonomic
constraint equations of the multibody system

C(q, t)= 0. (A9)

After evaluating and expanding the partial derivatives in
equation A7 in terms of the mass and stiffness elements of
the rotor structure, we can obtain the equation of motion of
the multibody structure as

Mi ¨qi +Kiqi +CTq λ=Q
i
e+Q

i
v, (A10)

where Qi
e is the vector of generalized external forces con-

taining the aerodynamic and gravity forces at each body el-
ement and Qi

v is the quadratic velocity vector of body i, as
defined by

Qi
v =

1
2

[
∂

∂qi
(

q̇iTMi q̇i
)]T
− Ṁi q̇i . (A11)

Appendix B: Coupling of turbine model with flow
solver

During each LES time step, the blades sweep a sector area
where the loads and their dynamic response are evaluated in a
two-way fluid–structure interaction (FSI) manner. Loads act-
ing on the turbine and tower structure lead to deformations,
which are evaluated using Eq. (3), and the subsequent loads
are then computed on the structure’s deformed positions, be-
fore being added to the flow Eq. (1) as body force terms F.
Before being added to the flow equations, the body forces of
are processed by spatial and time filtering, as detailed in the
following subsections.

B1 Spatial filter of rotor-swept forces

First, the unsteady forces F(û,q) are smeared out in the sur-
rounding LES mesh nodes by taking their convolution with a
Gaussian kernel Gn, resulting in the spatially filtered forces
F̂ (x):

F̂ (x)=
Nt∑
n=1

Nb=3∑
j=1

R∫
0

F (û,q,r)Gn(‖ x− rej ‖)dr, (B1)

whereNt is the number of turbines,Nb the number of blades,
and ||x− rej || is the Euclidean distance between the LES
grid point and the deflected actuator line point, accounting
for structural deformations.

B2 Time filter of rotor-swept forces

The body forces F of the Navier–Stokes equations are then
calculated by time-filtering the Gaussian-filtered forces F̂
through a first-order low-pass filter, which gives more weight
to the last sub-iterations (see Fig. 4d). The time-filter is given
as follows:

dF
i

dt
=

1
τf

[
F̂ −F

i
]
, (B2)

where F
i

is the time-filtered force at Runge–Kutta stage i,
F̂ are the spatially filtered forces through the sub-cycles,
and τf is the time filter constant. The filter constant τf de-
fines the effective sector angle, which is chosen to be equal
to the LES time step. Equation (B2) is integrated during the
sub-iterations of the multibody solver using an implicit Euler
scheme. The choice of using a first-order filter is justified by
its simplicity; however, future work could focus on studying
the influence of higher order filters.

Code and data availability. The SP-Wind flow solver is a pro-
prietary software of KU Leuven. The TotalControl inflow
database used in this work to recreate the inflow conditions
at the Lillgrund wind farm is publicly available on Zenodo
(https://doi.org/10.5281/zenodo.2650100, Munters et al., 2019a;
https://doi.org/10.5281/zenodo.2650102, Munters et al., 2019b;
https://doi.org/10.5281/zenodo.2650096, Munters et al., 2019c;
https://doi.org/10.5281/zenodo.2650098, Munters et al., 2019d).
Time-averaged LES inflow, SCADA and inflow lidar measurements
are available online at https://doi.org/10.5281/zenodo.7358841
(Sood, 2022). The rest of the raw data of the simulation results can
be obtained by contacting the corresponding author.
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