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Abstract. The sustained development over the past decades of the offshore wind industry has seen older wind
farms beginning to reach their design lifetime. This has led to a greater interest in wind turbine fatigue, the
remaining useful lifetime and lifetime extensions. In an attempt to quantify the progression of fatigue life for
offshore wind turbines, also referred to as a fatigue assessment, structural health monitoring (SHM) appears
as a valuable contribution. Accurate information from a SHM system can enable informed decisions regarding
lifetime extensions. Unfortunately direct measurement of fatigue loads typically revolves around the use of
strain gauges, and the installation of strain gauges on all turbines of a given farm is generally not considered
economically feasible. However, when we consider that great numbers of data, such as supervisory control and
data acquisition (SCADA) and accelerometer data (of cheaper installation than strain gauges), are already being
captured, these data might be used to circumvent the lack of direct measurements.

It is then highly relevant to know what is the minimal sensor instrumentation required for a proper fatigue
assessment. In order to determine this minimal instrumentation, a data-driven methodology is developed for real-
world jacket-foundation offshore wind turbines (OWTs). In the current study the availability of high-frequency
SCADA (1 Hz) and acceleration data (> 1 Hz) as well as regular 10 min SCADA is taken as the starting point.
Along these measured values, the current work also investigates the inclusion of an estimate of the quasi-static
thrust load using the 1 s SCADA using an artificial neural network (ANN).

After data collection all data are transformed to features on a 10 min interval (feature generation). When
considering all possible variations a total of 430 features was obtained. To reduce the dimensionality of the
problem this work performs a comparative analysis of feature selection algorithms. The features selected by
each method are compared and related to the sensors to decide on the most cost-effective instrumentation of
the OWT.

The variables chosen by the best-performing feature selection algorithm then serve as the input for a second
ANN, which estimates the tower fore–aft (FA) bending moment damage equivalent loads (DELs), a valuable
metric closely related to fatigue. This approach can then be understood as a two-tier model: the first tier concerns
itself with engineering and processing 10 min features, which will serve as an input for the second tier that
estimates the DELs.

It is this two-tier methodology that is used to assess the performance of eight realistic instrumentation setups
(ranging from 10 min SCADA to 1 s SCADA, thrust load and dedicated tower SHM accelerometers). Amongst
other findings, it was seen that accelerations are essential for the model’s generalization. The best-performing
instrumentation setup is looked at in greater depth, with validation results of the tower FA DEL ANN model
showing an accuracy of around 1 % (MAE) for the training turbine and below 3 % for other turbines, with a
slight underprediction of fatigue rates. Finally, the ANN DEL estimation model – based on two intermediate
instrumentation setups (combinations of 1 s SCADA, thrust load, low quality accelerations) – is employed in a
farm-wide setting, and the probable causes for outlier behaviour are investigated.
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1 Introduction

1.1 Fatigue assessment

Topics such as the fatigue experienced by offshore wind tur-
bines, their remaining useful lifetime and foreseeable life-
time extensions have become increasingly crucial for the off-
shore wind energy sector, particularly as older wind farms
begin to reach the end of their design lifetime. Taking into
account the fatigue assessment of turbines is fundamen-
tal if operators are to make informed decisions regarding
wind turbine’s lifetime extension. Collecting data required
for such fatigue assessments is generally considered a part of
structural health monitoring (SHM). Martinez-Luengo and
Shafiee (2019) have shown how, although initially increas-
ing the capital expenditures as some additional hardware is
required, SHM induces a reduction in operational expendi-
ture which far exceeds the initial increase in capital expendi-
tures. Thus, SHM is highly attractive in the current industry
climate, as it allows us to reduce overall costs, which can
then be translated into a further reduction of the cost of en-
ergy (CoE), one of the main challenges of the industry at
large (van Kuik et al., 2016). Furthermore, offshore wind
turbine design is usually driven by fatigue, wherein improve-
ments in fatigue assessment of built wind turbines can induce
further optimization of future designs (Seidel et al., 2016).

Fatigue assessments are often based on measurements
of the turbine’s load history (Loraux and Brühwiler, 2016;
Schedat et al., 2016; Iliopoulos et al., 2017; Ziegler et al.,
2017). A direct measurement of fatigue loads is obtained
through the use of strain gauges. Strain gauges on the sub-
structure’s primary steel allow us to measure the strain his-
tories. These strain histories can then be readily translated
to stress histories and ultimately fatigue loads, e.g. through
the use of a rainflow-counting algorithm. Unfortunately, the
installation and operation of strain gauges is rather labour
and maintenance intensive, resulting in a rather limited in-
dustry adoption. At best, only a subset of turbines in a farm
are equipped with strain gauges to monitor the fatigue life
of the substructure. In contrast, operators do want to under-
stand the fatigue rates across the entire wind farm, and as
such alternatives to quantify fatigue loads are being searched.
In particular the use of supervisory control and data acquisi-
tion (SCADA) data is often considered. SCADA data are in-
teresting as they capture the key operational data (i.e. power
production, wind speed, blade pitch, etc.) of an offshore wind
turbine. SCADA is also available for every turbine and is
stored by most operators. When a method can be developed
that estimates fatigue rates from SCADA data, then farm-
wide fatigue rates can be obtained.

However, for offshore wind turbines the sole use of
SCADA data might be insufficient to fully explain fatigue
behaviour. While the turbine control and environmental con-
ditions cover a significant part of fatigue loads, the interac-

tion between dynamic loads and the structural dynamics of
the substructure also plays a key role (Vorpahl et al., 2013).
It is this interaction that is typically poorly represented by the
SCADA data1. In contrast, accelerometer data almost exclu-
sively cover those structural dynamics and are closely related
to the stress histories. We can see how closely related the ac-
celerometer data are to the strain measurements in Fig. 1.
Therefore the inclusion of accelerometer data is considered
to complement SCADA data.

In this contribution, we investigate a solution to esti-
mate the fatigue rates (expressed as damage equivalent
loads, DEL) for an offshore wind farm on jacket foundations.
At this farm high-frequency 1 s SCADA and (low-quality)
nacelle-installed accelerometers are available for all loca-
tions. At two locations a dedicated SHM system is installed
comprising tower accelerometers and strain gauges.

The aim is to predict the 10 min fatigue rates (DEL) of
the entire farm. This is achieved by training an artificial neu-
ral network (ANN) using the data from one of the two SHM
locations to predict the DEL solely using 10 min statistics de-
rived from the 1 s SCADA and accelerometer data. All data
are brought back to 10 min intervals as this is the lowest com-
mon denominator of most sensors’ measurement intervals.
For various parameters, including DEL, only values at 10 min
intervals are available. Moreover working with 10 min inter-
vals, over 1 s intervals, dramatically reduces the number of
data required to represent long periods of time (e.g. several
years) and avoids issues with time synchronization between
various systems that can easily accumulate to a difference of
several seconds.

In this contribution we had access to the 1 s SCADA, al-
lowing us to assess the added value of various statistics at a
10 min interval. Continuing on previous work of the authors
Noppe et al. (2018b), the current investigation also incorpo-
rates a second ANN that translates 1 s SCADA into an esti-
mate of the thrust load at 1 Hz. This offers a direct look into
the loads of the turbine even in absence of strain gauges. This
thrust load estimate is then, much like all other 1 s SCADA
parameters, translated into 10 min interval metrics using var-
ious statistics.

This contribution aims to assess the feasibility of this strat-
egy, study the added value of various sensors and statistics,
and provide insight into how the most suitable parameters
can be selected.

1.2 Use of machine learning in (offshore) wind

The increasing adoption of data acquisition systems in mod-
ern wind turbines and the large number of data they produce,

1In this contribution, for clarity, we do not consider any ac-
celerometer data to be part of the SCADA data of the wind turbine
and will refer to it separately, even though for some operators ac-
celerations are collected as part of the SCADA.
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Figure 1. (a) Fore–aft bending moment (Mtn, Nm) signal, measured by the strain gauges during a standstill occurrence of 600 s. (b) Top
tower SHM accelerometer fore–aft displacement signal (m) for the same period as in panel (a).

combined with the advent of widespread use of artificial in-
telligence (AI), has led to an increased use of ANNs within
the specific context of wind energy, exhaustively documented
by Marugán et al. (2018), Wilkinson et al. (2014) and Stetco
et al. (2019), with the latter having a clear focus on condi-
tion monitoring (Helsen et al., 2015). Thus, data-driven ap-
proaches present themselves as increasingly alluring alterna-
tives to physics-based models, assuming themselves as the
next step in operational fatigue lifetime estimation (Veld-
kamp, 2008).

Data-driven approaches appear then to be especially suit-
able to predict tower fore–aft (FA) bending moment damage
equivalent loads (DELs). Previous research has often shown
the high sensitivity of neural networks to input variables’
quality (Novak et al., 2018), which renders proper selec-
tion of input variables paramount to the model’s performance
(Leray and Gallinari, 1999), consisting in a good practice to
uphold (Vera-Tudela and Kühn, 2014). To this point, an in-
put feature engineering and selection methodology was de-
veloped based on 10 min metrics of several input parameters
from SCADA, accelerations and thrust load data. The results
of the input feature selection are thoroughly analysed, and
their validity and applicability are discussed in the present
contribution.

Previous relevant research from Smolka and Cheng (2013)
has successfully investigated the possibility of establishing a
reliable data-driven fatigue estimator serving the entirety of
the turbine’s operational life and what amount and type of
sample data are required, provided an accurate portrayal of
the diversity of loading situations and rigorous sample selec-
tion are present.

Likewise, the work of Vera-Tudela and Kühn (2014); Vera-
Tudela and Kühn (2017), albeit dealing with the blade flap-
and edgewise bending moment fatigue load estimation, has
put forth a robust methodology to evaluate the accuracy of
different feature selection methods and used 1 year of mea-
surements at two wind turbines to evaluate the prediction
quality of their SCADA-based neural network model in dif-
ferent flow conditions with acceptable results.

Similarly, Avendaño-Valencia et al. (2021) has used Gaus-
sian process regression time series modelling to evaluate the
influence so-called EOPs (environmental and operational pa-
rameters) have on the features of the vibration response of the
wind turbine blades. Also applied to estimate the blade root
flapwise damage equivalent loads (DELs), Schröder’s (2020)
work has emphatically demonstrated how a surrogate model
based on ANNs outperforms other surrogate models, such as
polynomial chaos expansion and quadratic response surface,
in computational time, model accuracy and robustness, fur-
ther applying it to connect wind farm loads to turbine failures
(Schröder, 2020). As for Mylonas et al. (2020), it used con-
ditional variational auto-encoder neural networks to estimate
the probability distribution of the accumulated fatigue on the
root cross-section of a simulated wind turbine blade, mak-
ing long-term probabilistic deterioration predictions based
on historic SCADA data (Mylonas et al., 2020, 2021).

Finally, Movsessian et al. (2021) has used 1-year SCADA
data from onshore wind turbines to perform a comparative
analysis of feature selection techniques, in particular as-
sessing the strengths of neighbourhood component analy-
sis (NCA) (Goldberger et al., 2004) when compared to other
feature selection algorithms, such as Pearson’s correlation,
principal component analysis (PCA) (Wold et al., 1987) and
stepwise regression (Draper and Smith, 1998), to estimate
the tower fore–aft bending moment.

2 Sensors, data and methodology

2.1 Sensors and data

The current contribution is part of a long-standing effort
where OWI-Lab aims to develop structural health monitor-
ing procedures based on load and vibration measurements,
which enable more accurate lifetime predictions in offshore
wind turbines (OWT). It is in this context that data are ac-
quired from two real-world instrumented OWTs on jacket
foundations within an offshore wind farm. These turbines
have a rated power of 6 MW and a maximum of 12 rpm. An
overview on the placement and data collected by the differ-
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Figure 2. Overview of different sensors installed in wind turbine.
Sensors locations are not accurate representations.

ent sensors of the fully instrumented turbines can be seen in
the schematic presented in Fig. 2.

For this particular farm, SCADA data at a 1 Hz sam-
ple frequency were available for every turbine. The 1 s
SCADA data contained, among others, wind speed (m s−1),
wind direction (◦), pitch angle (◦), yaw angle (◦), rotational
speed (cps, cycles per second), power (kW) and ambient tem-
perature (◦C). This wind farm also collected acceleration data
from a built-in biaxial accelerometer in the nacelle on every
turbine. However, this sensor was like the SCADA data sam-
pled at a frequency of 1 Hz, and only the absolute value of
the acceleration is stored.

In addition, data from two turbines with a full SHM setup
were available. The SHM setup comprises three dedicated
tower biaxial accelerometers with a sampling frequency of
12.5 Hz located at the tower bottom level, mid-level and top
level. Apart from the accelerations in the two sensor direc-
tions, X and Y (with X in the dominant wind direction, often
aligning with the fore–aft and Y 90◦ from it), also the acceler-
ations in the nacelle’s frame of reference – i.e. fore–aft (FA)
and side to side (SS) – are calculated through the use of the
known yaw angle of the wind turbine. In addition, the col-
lected SHM accelerations can also be transformed into dis-
placements, through double integration in the frequency do-
main. To avoid excessive drifts in this transformation a lower
frequency bound of 0.1 Hz is used (Maes et al., 2016).

These accelerometers outperform the accelerometers in
the nacelle in three key properties. Firstly, the higher sam-
pling frequency offers a wider frequency range. Secondly,
they offered a much better signal-to-noise ratio than those
installed in the nacelle. A third disadvantage of the nacelle
accelerometer was that only the absolute values of this sen-
sor were stored. A time series of the nacelle accelerometer is
shown on top of one from the SHM system in Fig. 3.

Alongside the accelerometers, the SHM setup also con-
tains four axial strain gauges installed along the transition
piece (TP) inner circumference at the TP–tower interface
level. This setup of four strain gauges allows us to calculate

Figure 3. Time series comparing the top-level FA SHM accelerom-
eter signal and the nacelle-installed FA signal.

the bending moments in both the FA (Mtn) and SS (Mt l) di-
rection, when the yaw angle is known (Link and Weiland,
2014). For fatigue assessment the setup also cycle counts
all strain and bending moment histories and calculates dam-
age equivalent loads (DELs). After obtaining the bending
moments, one can then employ a rainflow-counting algo-
rithm (Dirlik, 1985) (reliant on a subset of the Python im-
plementation of the WAFO toolbox; Brodtkorb et al., 2000),
a well-known method widely discussed in literature (Marsh
et al., 2016), which combines the number of cycles with their
stress range. Finally, through the employment of a S–N curve
(Ziegler and Muskulus, 2016) and Palmgren–Miner’s rule
(Kauzlarich, 1989), the damage equivalent loads are calcu-
lated. A more detailed discussion of this procedure can be
found in Hübler et al. (2018).

Damage equivalent loads are usually presented under
two forms: damage equivalent moments (DEMs) or dam-
age equivalent stress ranges (DESs). These do not present
two different quantities but rather two ways of presenting the
same information – respectively as bending moments (Nm)
or as stress MPa – easily translatable between one another us-
ing the moment of inertia. We can then understand the DEL
as an umbrella term for both DEM and DES. The DEM is
based on Eq. (1) as defined by Hendriks and Bulder (1995)
(here presented for the stress ranges), wherein m is the slope
of the S–N curve, ni is the number of cycles of a given stress
range (σi), ro is the tower outer radius, ri is the tower inner
radius and Neq = 107 is a predefined number of cycles. Fol-
lowing the discussion in Seidel et al. (2016), the compromise
value of 4 was selected for m.

DEM=


∑
i

ni ·

(
1σi ·

π
2 ·
(
r4
o−r

4
i
)

ri

)m
Neq


1/m

(1)

As the DEL is a direct quantification of fatigue loads it can be
considered as the primary input for any future fatigue assess-
ment. But naturally these DEL values are only available for
the two instrumented turbines. This paper aims to determine
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a methodology to estimate these DEL values for all turbines
in the farm. In practice, this means that we can only rely on
the SCADA data and the data from the nacelle accelerom-
eter. In the current contribution we focus primarily on the
DEL estimation in the FA direction, as measurements reveal
it to be the most relevant for the current jacket foundations.
However, the methodology equally applies for SS direction.

2.2 Methodology

The main methodology of the present contribution can be un-
derstood as a two-tier neural network model. The first tier
concerns itself with the generation and processing of rele-
vant 10 min features, which will serve as inputs for the sec-
ond tier. In the first tier, an ANN model is utilized to estimate
the thrust load on a 1 s basis. This model has to be trained,
validated and cross-validated before being considered fit for
employment (upper white-background section of Fig. 4). Af-
ter this, the 1 s thrust load, along with SCADA and acceler-
ations from the SHM accelerometer, is processed into a va-
riety of 10 min metrics (see grey section of Fig. 4). Between
the 10 min feature generation tier (grey section of Fig. 4) and
the DEL prediction tier (pale yellow section of Fig. 4), the
10 min metrics undergo a dimensionality reduction proce-
dure based on a feature selection algorithm, which allows us
to train, validate and cross-validate a 10 min ANN FA DEL
estimation model for a fewer number of relevant input fea-
tures. The motivation behind a 10 min approach lies with the
common framework for data processing (also 10 min), the
aim of including environmental effects and vibration levels,
but also the issues inherent to working with different sam-
pling frequencies (1 Hz SCADA, 12.5 Hz accelerometer) and
possible time delays. After training, validating and cross-
validating the DEL ANN model (middle white-background
section of Fig. 4), we can observe this second tier in pale yel-
low in Fig. 4. Albeit the current contribution’s methodology
can be seen globally in Fig. 4, the sections which are un-
der a white background consist of training, validation, cross-
validation and determining which features ought to be used.
Thus, these tasks will only be performed once. When a final
model is achieved, only the sections with the grey and pale
yellow background are required to produce estimations – this
will be picked up again by Sect. 3.4.

2.2.1 Tier 1: 10 min feature generation

We can understand the first tier as globally contributing to
generate and engineer relevant inputs (processed into 10 min
metrics) for the model employed in the second tier. A par-
ticular element of the current implementation of this first tier
is the prior training, validation and cross-validation, followed
by the employment of a thrust load estimation neural network
model based on high-frequency 1 s SCADA. The thrust load
can be obtained from measurements by low-pass filtering the

bending moment time series (with an upper frequency bound
of 0.2 Hz; Noppe, 2019).

Historical research carried on the OWI-Lab by Noppe
et al. (2018a, b) has shown the relevance the quasi-static
thrust load assumes in the fatigue consumption in OWTs –
albeit not being the sole contributor. It offers a direct insight
into among others the role the controller can play in turbine
fatigue life. Furthermore, the estimated load could poten-
tially resolve the need for strain gauges through the use of
thrust load estimation and acceleration measurements (Co-
sack, 2010; Baudisch, 2012).

The estimation of the thrust load is, in this contribu-
tion, performed through the use of an artificial neural
network. This ANN was implemented using the tensor-
manipulating framework TensorFlow, in particular its high-
level API machine-learning library, Keras (Chollet, 2017),
implemented on the programming language Python. The ar-
chitecture selected for this ANN was a deep feed-forward
neural network (Bishop, 2006). Research carried out by
Schröder et al. (2018) into blade root flapwise damage equiv-
alent load estimation has shown the greater performance of
deep feed-forward ANNs when compared to other surrogate
models, such as polynomial chaos expansion (PCE). This rel-
ative better performance should also be translated into tower
bending moment DEL estimation.

In this contribution, feed-forward neural networks (Hastie
et al., 2009) are employed using rectified linear activation
functions, commonly referred to as ReLU (Glorot et al.,
2011; Jarrett et al., 2009), a standard non-linear activation
function for regression-focused feed-forward ANNs. The
loss (the model’s error) was calculated by a mean squared
error loss function and is represented in Eqs. (2) and (3) for
the DEL (D) and thrust load (F ), respectively. Here, for a
vector of n predictions, we have Di or F i , the vector of ob-
served values, and D̂i or F̂ i , the vector of predicted values.

MSE=
1
n

n∑
i=1

(
Di − D̂i

)2
(2)

MSE=
1
n

n∑
i=1

(
F i − F̂ i

)2
(3)

In order to minimize the loss function, an optimizer is
required during the ANNs training. A common, well-
performing choice is the adaptive moment estimation al-
gorithm, also known as Adam, or, in this particular case,
Adamax, an extension of Adam based on the infinity norm
(Kingma and Ba, 2014). This particular optimizer was se-
lected through hyperparameter tuning by comparison with
other available optimizers, such as stochastic gradient de-
scent (SGD), root mean squared propagation (RMSProp) and
Adadelta (Zeiler, 2012), an extension of the adaptive gradient
algorithm, Adagrad.

As mentioned, the ANNs’ training will proceed until a
given number of epochs is reached. A threshold of 100
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Figure 4. Flowchart representing the methodology’s steps. Yellow highlights the sensors (and data by them captured), red the target, blue
the final model and green the final results. Note that for ease of writing, as well as to differentiate from the ANN’s thrust load predictions,
the thrust load deduced from the strain gauges is mentioned as the measured thrust load.

was defined, as initial sensitivity analyses showed the model
converging to a solution well before 100 epochs. This per-
formance was monitored through the mean absolute error
and root mean square error of the training and validation
datasets (i.e. an independent dataset not used during train-
ing). In order to prevent the model overfitting for the training
dataset, an early stop callback mechanism with a patience of
10 epochs was implemented (Prechelt, 1998; Caruana et al.,
2001).

The final thrust load estimation ANN topology had four
hidden dense layers – i.e. four intermediary layers between
the input and output layers where every neuron is connected
to every other neuron in the next layer – with a varying num-
ber of neurons (from 64 to 300), achieved through hyperpa-
rameter tuning.

The thrust load, along with the SCADA and accelera-
tion data, is then processed into 10 min metrics. These in-
clude widely known statistics as mean, minimum, maxi-
mum, median, mode (most common repeated value), stan-
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dard deviation, range and root mean square (rms) computed
from 10 min intervals of the time series. In addition also
more atypical statistics such as spectral moments (first to
fourth, Miller and Rochwarger, 1970; Grimmett and Stirza-
ker, 2020), skewness and kurtosis are calculated from the
time series. The selection of which engineering input fea-
tures should be calculated can be traced to Vera-Tudela and
Kühn (2014). The formulae for these metrics can be found
in Table A1. Apart from these statistical metrics, metrics that
are rooted in fatigue assessment are also included. In partic-
ular, the damage equivalent moment (DEM) of the estimated
thrust load is calculated, in a way representing the fatigue
contribution of only the thrust load. In addition the damage
equivalent acceleration is calculated by first cycle counting
the SHM accelerations – both the original signals and the
signal “transformed” into displacement. We can see them in
Eq. (4), where a(t) stands for the acceleration signal. The
damage equivalent accelerations (DEAs) do not have any im-
mediate physical meaning in terms of fatigue but could be
interpreted as a fatigue-weighed mean amplitude of the ac-
celeration.

DEA=


∑
i

ni ·1a(t)m

Neq

1/m

(4)

The transformation of the original acceleration signals into
displacements is performed through double integration in the
frequency domain, as shown by Eq. (5). Here, L stands for
the Laplace transformation, a(t) stands for the acceleration
signal, s stands for the circular frequency (2π × f ) and x(t)
stands for the transformed displacement signal. This trans-
formation is discussed in depth in Maes et al. (2018).

x(t)= L−1
{

1
s2L{a(t)}

}
(5)

After the processing of all high-frequency signals (35) into
10 min metrics, a total of 430 metrics is available for each
10 min interval. Given the large number of variables, some
dimensionality reduction prior to the second tier of the algo-
rithm is desirable.

2.2.2 Feature selection

Feature selection encompasses a number of methods focused
in reducing the number of input variables of predictive mod-
els into the variables believed to be the most useful to the
models (Leray and Gallinari, 1999). The reduction of input
variables is frequently desirable as, by removing redundant
variables, computational, memory and time costs are reduced
(Guyon and Elisseeff, 2003). Moreover, it has been shown
that dimensionality reduction may improve the overall per-
formance of neural network models, as non-informative vari-
ables can add uncertainty to the predictions and reduce the
overall effectiveness of the model (Kuhn and Johnson, 2013).

ANN models’ performance is thus highly dependent on the
input data’s quality, with certain inputs being vastly more
relevant than others for the model’s performance (Schröder
et al., 2020).

Apart from enabling a dimensionality reduction, feature
selection can also help identify the most important input pa-
rameters. Knowing which features are relevant can be valu-
able information in assessing the added value of certain sen-
sors, here in particular the accelerometers, required signals
from SCADA and the metrics that are worth calculating. As
such, the outcome of the feature selection may offer the pos-
sibility to optimize setups and reduce the number of SCADA
data that have to be made available by the operator and pro-
cessed.

Feature selection methods can be classified and grouped
into various categories. Firstly, one can distinguish between
supervised and unsupervised methods: if the outcome is not
ignored (i.e. we have a target variable), then the technique is
supervised. This is precisely the case of the present contri-
bution, wherein the target variable is the DEL of the tower
FA bending moment. Thus this contribution will solely focus
on these methods. Supervised feature selection algorithms
can be further subdivided into intrinsic, wrapper and filter
methods.

Starting with the filter-based feature selection methods,
these employ statistical techniques to evaluate the relation-
ship between each input variable and the target variable, as-
signing a score for the relevance of the input variable. The
scores obtained for the relationship between the variable and
the target are then used to choose (filter) the inputs that will
be used in the model. Filter-based feature selection meth-
ods include Pearson’s r , dominance analysis, Spearman’s ρ,
Kendall’s τ and K-best. These were computed using the
Python packages scipy.stats, dominance_analysis and scikit-
learn.

Differently, wrapper feature selection methods generate
several machine-learning models evaluating different subsets
of input variables, wherein the selected features are the ones
that are present in the model that performs better, accord-
ing to a performance metric, such as the mean squared er-
ror (MSE), used in this paper. These methods’ models use
processes that add/remove predictors until an optimal com-
bination that maximizes model performance is found. Un-
like filter approaches, wrapper methods are able to detect
the possible interactions between variables. There are, how-
ever, disadvantages, such as an increasing overfitting risk (for
small samples) and a very significant computation time if the
number of variables is large. Wrapper feature selection meth-
ods include recursive feature elimination (RFE), in which a
machine-learning algorithm present in the core of the model
is fitted, the features ranked by importance, the least relevant
features iteratively discarded and the model then re-fitted,
with the processes being repeated until the required num-
ber of features is achieved. In this contribution, the machine-
learning algorithms used in the core of the RFE, also known
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as estimators, were a random forest (RF) regressor and a de-
cision tree classifier (DTC).

Finally, intrinsic methods represent feature selection mod-
els which possess built-in feature selection. This means that
the model only includes features that maximize the accu-
racy, thus performing automatically a feature selection dur-
ing training. These include penalized regression models and
decision trees, such as random forest algorithms which are
an ensemble of decision tree algorithms that generate several
decision trees during training and output the mean/average
prediction of the individual trees. A deeper look into these
methods can be seen in d N Santos et al. (2020b).

One final word should also be added regarding the pop-
ular methods principal component analysis (PCA, Jolliffe
and Cadima, 2016) and neighbourhood component analy-
sis (NCA, Goldberger et al., 2004) and their non-inclusion
in the present contribution. Although certainly powerful di-
mensionality reduction tools, both PCA and NCA are unable
to provide insights into the original variables, as they trans-
form the variable space (into principal components). It was
deemed interesting to just work with the pre-existing vari-
ables, as they are related to the installed sensors, and one can
then learn more about their relative importance. This knowl-
edge would not be possible if PCA or NCA were to be em-
ployed.

2.2.3 Tier 2: estimation of DEL using an artificial neural
network

The second tier of the current contribution’s model uses the
features engineered in the first tier that were picked up during
the feature selection process as input. The measured tower
bending moment DEL, attained from the strain gauges, is
used as the label, or intended output, during the training stage
of the ANN model, prior to its employment in the second tier
(see middle white-background section of Fig. 4).

Much like with the ANN used to estimate the thrust load,
the tower bending moment DEL feed-forward ANN model
is implemented on Python through the machine-learning li-
brary Keras – based on the tensor-manipulation framework
TensorFlow. The activation functions between each neuron
were, once again, rectified linear transfer functions and the
loss function MSE. The use of MSE as a loss function is par-
ticularly important in this application as MSE is more sen-
sitive to outliers than other loss functions, which is relevant
as the DEL is very sensitive to higher loads (Liano, 1996).
For this particular application, it was found, through hyper-
parameter tuning and monitoring of the MSE, that the Adam
optimizer was the best-performing optimization algorithm.
The final topology of the tower bending moment DEL ANN
presented six dense hidden layers with 18–500 neurons.

After training, this model was validated on the same year
as the training year (excluding the training period) and a dif-
ferent year, as well as cross-validated on the other fully in-

strumented turbine for a whole year before being employed
(pale yellow section of Fig. 4).

3 Results and discussion

3.1 Thrust load model

Following the methodology prescribed in the previous sec-
tion, one must first exhibit the results for the training, val-
idating and cross-validating of the artificial neural network
that estimates the thrust load. The full results and discussion
can be found in d N Santos et al. (2020a). The high-frequency
SCADA data used to train consisted in wind speed (m s−1),
rotor speed (cps), mean pitch (◦), nacelle orientation (◦) and
actual active power (kW) from 12 d, carefully selected as
to be statistically representative of all operating conditions,
namely parked, run-up and full load. Strain measurements
from the same time period undergo a temperature compensa-
tion before calculating the resulting bending moments and
filtering this last signal with a low pass filter with an up-
per frequency bound of 0.2 Hz. The filtered FA bending mo-
ment Mtn signal is subsequently translated into thrust load,
which must further be corrected for the air density (Baudisch,
2012; Noppe et al., 2018b).

The model training, monitored through the mean abso-
lute error (MAE) and root mean square error (RMSE), was
deemed satisfactory, as convergence was achieved with both
MAE and RMSE below 1 %. We can observe the model’s
output when plotting a discrete time series of interest,
e.g. when the turbine is operating at rated power (see Fig. 5),
and we compare the predictions with the measured values of
the thrust load. In this figure, we can observe how close the
predictions accompany the measured thrust load, capturing
almost fully the base quasi-static loading behaviour.

The model was then validated for 3 months of data outside
of the training period on the same turbine as for training. The
model was also applied to a different (non-training) wind tur-
bine with a similar SHM setup, the cross-validation stage.
The results for predicted thrust load were compared with
the measured values attained from the strain gauges at this
location. This cross-validation served to assess whether the
model is transferable to other turbines in the farm. In Fig. 6
we can observe the model’s performance (through the mean
absolute error expressed as a percentage of the maximal
thrust load value) for both the validation and cross-validation
datasets plotted against the wind speed (MAE binned accord-
ing to the wind speed with a step of 2 m s−1).

For both cases (validation and cross-validation) we can ob-
serve that both curves are rather similar, with one and the
other presenting a slight increase in the MAE as the wind
speed increases and most values staying below 2 %. The in-
crease in MAE with the wind speed is expected, as higher
loads are attained for higher wind speeds (and the MAE re-
lates to the absolute value of the loads). The two curves differ
in the fact that, for the cross-validation, the MAE box plots
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Figure 5. Measured (orange) and predicted (blue) thrust values for a 10 min time instance at rated power.

Figure 6. Box plot of MAE of thrust load estimations, expressed
as a percentage of the maximal training thrust load value (binned)
for the validation and cross-validation turbines plotted against wind
speed.

present slightly larger whiskers. A small number (3) of over-
shoots prior to a rotor stop, not present in the training dataset,
and whose cause remains undetermined were also identified
for the cross-validation. We can understand the higher max-
imal value for the cross-validation (attained for 4 m s−1) as
being related to these overshoots prior to a rotor stop.

Regardless of the presence of these overshoots, they do
not overly influence the final results, as both the original and
cross-validation turbines’ MAE box plots remain highly sim-
ilar. This similitude allows us to affirm the transferable nature
of the ANN model to other offshore wind turbines.

3.2 Parameter and sensor significance

A key concern of the current contribution is to understand
the added value each sensor brings to the predictive model,
in particular, the contribution of the dedicated tower SHM
accelerometer. Apart from enabling us to reduce the input
variable space’s dimensionality, the performance of a feature

selection routine also allows us to identify the most impor-
tant parameters engineered in the first tier (see Sect. 2.2.1
and 2.2.2) and linking them with the original sensor, which in
turn allows us to assess whether a particular sensor is worth
adding to the setup.

Finally, in order to assess the gains the current instrumen-
tation layout presents relative to less-instrumented turbine se-
tups, a comparative analysis based on ANNs is carried out for
eight different instrumentation scenarios.

3.2.1 Feature selection

As mentioned above, in order to understand which engi-
neered features are relevant to determine the tower bending
moment DEL (and thus, which sensors are important), sev-
eral feature selection algorithms are studied and the groups
of features they select registered. Before performing any fea-
ture selection routine, one must first engineer the necessary
10 min features.

The thrust load, accurately estimated as detailed in
Sect. 3.1, can then be, along with the acceleration and
SCADA signals (in a total of 35 high-frequency parameters),
processed into 10 min metrics, as seen in Sect. 2.2.1. The dif-
ferent permutations between signals and metrics generate a
total of 430 features available at 10 min intervals.

This large number of features further elicits the need to
perform a feature selection study, in order to lead to a reduc-
tion in the number of the input variables. Several methods
were compared, including filter-based methods (Pearson’s r ,
dominance analysis, Spearman’s ρ, Kendall’s τ , K-best),
wrapper-based methods (recursive feature elimination (RFE)
with either a decision tree classifier or a random forest esti-
mator – feature ranking algorithm) and an intrinsic method
(random forest), described in Sect. 2.2.2. In Table 1 we can
observe each feature selection method, along with the num-
ber of features (also expressed as a percentage of total num-
ber of features) selected by each method and the class. The
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Table 1. Feature selection methods, classes and number of features
selected.

Method Number of Method class
features
selected

Dominance analysis 50 (11.63 %)

Filter-based
Pearson’s r 134 (31.16 %)
K-best 145 (33.72 %)
Spearman’s 191 (44.42 %)
Kendall’s 196 (45.58 %)

RFE RF 20 (4.65 %)
Wrapper-based

RFE DTC 22 (5.12 %)

Random forest 18 (4.19 %) Intrinsic

full results of the feature selection are shown in Appendix B
in Table B2. Table B1 provides a quick explanation of the
nomenclature employed. A more in-depth discussion can be
found in d N Santos et al. (2020b).

Table 1 shows a clear distinction between filter-based and
other methods, wherein the former selects 100+ features.
This might be because filter-based methods are not non-
linear, which might increase the difficulty in discerning the
most important features and effectively withholding non-
relevant ones. Nevertheless, to properly assess the perfor-
mance of each feature selection method, the features selected
by each feature selection method were fed into a generic
feed-forward artificial neural network. The ANN presents
two hidden layers with 50 and 100 neurons, respectively, us-
ing a rectified linear activation function between each layer.
The number of neurons in the input layer is equal to the num-
ber of features selected by the feature selection method. The
ANN also applies an Adamax optimizer and a mean squared
error loss function with the target being the tower FA bending
moment DEL, as well as a limit of 100 epochs. The training–
testing split was performed through k-fold cross-validation
with 10 folds and a batch size of five, which allows us to as-
sess the generalization of each model (Anguita et al., 2012).
The results for each method are presented in Fig. 7. The
spread in results for each method is due to the 10-fold cross-
validation, and methods’ classes are distinguishable through
a colour scheme: green (intrinsic), orange (wrapper) and blue
(filter).

In Fig. 7, we can observe that all methods present simi-
lar values (between 1.5 % and 1 %), apart from dominance
analysis. Upon first glance, one would be tempted to as-
sume that Kendall’s τ is the best model, as it presents a
marginally lower mean MAE than other methods. However,
it is also crucial to look at the number of features selected by
each model (see Table 1). The intrinsic and wrapper methods
selected around 20 features, whereas filter-based methods
(apart from dominance analysis, which selects 50 features)
all selected above 100 features. For the latter, the higher the

Figure 7. Mean absolute error of every feature selection method’s
ANNs as a percentage of the maximal DEL value. RFE stands for
recursive feature elimination, RF for random forest, DTC for deci-
sion tree classifier and DA for dominance analysis.

Figure 8. Comparison of mean absolute error between model
trained with features selected by Pearson’s r and just the first 50 fea-
tures selected.

number of features, the better the model’s performance. This
evidenced by Fig. 8.

In Fig. 8 we can see that, for Pearson’s r , if, instead of 134
(31.16 % of the total number of features) features selected,
there are only 50 (11.63 %) features selected, the MAE in-
creases by over 1 % (attaining a similar value to dominance
analysis).

Given the results shown in Fig. 7, we are then in the pres-
ence of a trade-off scenario: either we have a small number
of highly relevant features selected by recursive feature elim-
ination, and thus, a high computational cost in feature selec-
tion but smaller cost in neural network model training and
input variable processing, or we have a high number of fea-
tures selected by filter-based methods, which entails a small
computational cost for feature selection and a bigger cost for
neural network model training.

Naturally, as the objectives of Sect. 3.2 are to reduce the
dimensionality of the input variable space and gain insights
into the most important features (and therefore the most im-
portant sensors), filter-based feature selection methods ought
to be discarded in favour of intrinsic or wrapper methods.
These latter, for a low number of features (around 20),
present models which perform as well as models involving
higher numbers of features.

If we now focus on wrapper methods (see Table B2),
we notice that these select solely FA and X accelera-
tion/displacement signals, whilst also selecting rpm, thrust
and wind direction. These methods pick up metrics such as
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kurtosis and skewness but also DEA, DEM, rms, range, SD,
maximum, minimum, mean, and the second and fourth spec-
tral moments. As for intrinsic methods, they only selected
metrics for bottom level, mid-level and upper-level FA dis-
placements (DEA, maximum, minimum, range, and second
and fourth spectral moments) and for thrust (DEM, maxi-
mum, SD, and second and fourth spectral moments).

Globally, we can say that some metrics are selected more
often by all methods – DEA, rms, range, minimum, maxi-
mum and SD – and that some features are selected by all
methods – DEA of FA displacement for bottom level, mid-
level and upper level, range of FA bottom-level displace-
ment, minimum of FA upper-level displacement, and DEM
of thrust.

The fact that all methods select DEA FA displacement
metrics and the DEM of thrust is understandable, as this was
the initial assumption behind the cycle counting of these sig-
nals – that they would more closely relate with the target,
the tower FA bending moment cycle-counted DEL. Likewise,
the more often selected statistics (rms, range, SD, minimum,
maximum) relate to variations within the signal, which is the
most relevant in the cycle-counting process.

When focusing on SCADA-related features, we can ob-
serve that wrapper (RFE) and intrinsic methods select
SCADA-related metrics which were not picked up by fil-
ter methods – mean, maximum, range, SD, and second and
fourth spectral moments of thrust but also SD and rms of rpm
and minimum wind direction. The higher number of thrust-
related metrics selected might be due to its initially linear re-
lationship to the tower FA bending moment DEM (see Fig. 9,
where especially for lower wind speeds there’s a linear cor-
relation). SCADA parameters such as the wind direction are
only picked up by the wrapper methods. These, along with
the intrinsic method, also signal the spectral moments more.
Again, this is to be expected, as filter-based methods, even
nonlinear ones such as Spearman (dependent on monotonic
functions) and Kendall, cannot pick up the more complex in-
teractions between the SCADA data and the target variable.
Only two parameters were not chosen by any feature selec-
tion algorithm – the temperature and pitch. Nevertheless, if
we discard filter-based methods, SS and Y SHM accelera-
tions appear to be unnecessary for this site, along with the
low-quality nacelle-installed absolute accelerations, power
and wind speed. Likewise, only three metrics were not se-
lect by any method – median, mode and the third spectral
moment; in future uses of this methodology, these need not
be considered.

In sum, the more trustworthy wrapper and intrinsic meth-
ods give us then more meaningful features; this has lead to
the selection of RFE (DTC) for further use (in Sects. 3.2.2
and 3.3), instead of RF or RFE RF, as it presented a better,
albeit marginally so, performance. We can also clearly affirm
that one ought to engineer a varied set of features (including
spectral moments, kurtosis, skewness, rms and cycle count-
ing the signal) stemming from the SHM accelerometers (for

Figure 9. Thrust DEM vs. tower fore–aft bending moment DEM.

FA and X direction signals, which should also be translated
into displacement) and the thrust load estimation (with a de-
sirable inclusion of certain SCADA-related features, such as
wind direction and rpm). It ought to be reinforced that the
conversion of SHM accelerations to displacements appears to
be crucial. Metrics such as median, mode and the third spec-
tral moment seem to bear no fruits, as do the Y and SS SHM
accelerations, low-quality nacelle-installed absolute acceler-
ations, temperature and pitch. The SHM acceleration param-
eter with most metrics selected was the FA bottom-level dis-
placement signal, which might mean that this is the most im-
portant placement for the accelerations – a surprising result
as it was expected that the top side accelerometer would be a
better placement. Nevertheless, in order to identify the most
important placement of the SHM accelerometer (if at bottom
level, mid-level or upper level), it would be desirable to per-
form a dedicated study with three scenarios – with only one
SHM accelerometer at a level per scenario. This has to, for
the time being, be left for future research tasks (especially
for monopile foundations).

In this section, several feature selection methods were
compared, with a clear preference for wrapper or intrinsic
methods, and the relevant metrics and sensors (and signals)
identified, with it being then apparent that, when faced with
an instrumentation scenario as described in Sect. 2.1, nacelle-
installed low-quality accelerometers should be disregarded
in favour of SHM accelerometers, the calculation of FA and
(to a lesser extent) X displacement metrics should be prior-
itized over SS and Y , and that the estimation of thrust load
is paramount. The authors would like to point out that the
conclusions related to which features are to be selected are
connected with the site at question and that it is a good prac-
tice to redo feature selection for a different site.

3.2.2 Minimal instrumentation study

In the previous section we have seen how the most valuable
sensors are the dedicated tower SHM accelerometers, along
with the estimation of the thrust load based on 1 s SCADA,
and which metrics are more relevant. However, in order to
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Table 2. Scenarios investigated. Different scenarios imply that different data sources are considered to be available, in line with real-world
experience. For example, scenario A considers that only 10 min statistics of SCADA are available, while scenario H covers a near-ideal
situation only possible on the two SHM turbines. Scenarios D and F are possible at all turbines of the particular farm in this contribution.
Note that the access to 1 s SCADA inherently implies access to 10 min SCADA. Some scenarios exclude the calculation of the 1 s thrust load
estimation to assess the added value of calculating this type of parameter.

Scenario

Model 10 min 1 s Thrust estimation Nacelle SHM
SCADA SCADA (1 s SCADA) low-quality accelerometer

accelerometer

A X
B X X
C X
D X X
E X X
F X X X
G X X
H (final model) X X X

Figure 10. Comparison of the ANN model’s performance in validation and cross-validation for eight different sensor data quality scenarios.
Error expressed as a percentage of the absolute maximal training DEL value.

fully answer what is gained with the addition of each sen-
sor and by their increased quality, an additional analysis is
required. This is particularly relevant, as the instrumentation
setup described in Sect. 2.1 is not always present or even the
most commonly present in wind farms.

To this point, eight different plausible scenarios are de-
fined. Each scenario only considers a subset of all parameters
to be available, in line with scenarios OWI-Lab has experi-
enced in past projects (scenarios involving 10 min SCADA
and low-quality nacelle absolute accelerations are typical for
older wind turbines, whereas the inclusion of 1 s SCADA
and/or SHM accelerometers is sometimes seen in newer tur-
bines). These scenarios are identified in Table 2. For each
scenario a model is trained and is tested for a validation
and a cross-validation dataset, both comprising in total of 1
year worth of data. The validation dataset is comprised of
the dataset of the year of the ANN training, and the cross-
validation is comprised of a dataset of 1 year of another non-
training turbine. Both results are presented together, in which

the cross-validation results allow us to assess to what level
the results can be transferred from one turbine to another.

Scenario H, the final model, follows the methodology pre-
scribed in Fig. 4 and, as presented in Sect. 3.2.1, uses the data
selected using the RFE DTC feature selection algorithm (the
only scenario where feature selection was performed), in-
cluding components from 1 s SCADA, dedicated tower SHM
accelerometers and the thrust load. The RFE DTC was the
chosen method, as explained in the previous section. Sce-
narios D and F – 1 s SCADA, low-quality nacelle absolute
accelerations and thrust load in the case of F – are the pre-
vailing instrumentation scenarios throughout the farm in this
contribution, except for the two aforementioned fully instru-
mented turbines (scenario H), and will be further discussed
in Sect. 3.4.

In Fig. 10, we can see the absolute error box plots, ex-
pressed as a percentage of the maximal training dataset DEL,
with the MAE also indicated. Here, the absolute error relates
to the absolute values, and not the modulus, and is given by
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the difference between real and predicted values, Xi − X̂i
(presented as a percentage of the maximal DEL).

Some general remarks can be drawn by analysing this fig-
ure. Firstly, when comparing the first four scenarios (A–D),
we can see that the inclusion of 1 s SCADA induces a bet-
ter model, with a lower MAE (specifically if we consider
the cross-validation). Both for 10 min SCADA and for 1 s
SCADA the inclusion of nacelle-installed low-quality ac-
celerometers (B and D) does not necessarily enhance the
performance of the model itself (validation MAE, in blue,
does not improve that much, especially for 1 s SCADA), but
it does improve the model’s generalization to other turbines
(cross-validation MAE, in orange, almost decreasing by 2 %
for both cases). We can try to understand this as implying
that, albeit for a single turbine SCADA data alone might pro-
vide a decent enough model, if we want to apply a model
to different turbines, then the inclusion of accelerations is
paramount.

Focusing on 1 s SCADA, we can see that the inclusion
of the thrust load (E and F) further improved the model it-
self (validation) but is not able to generalize as well for the
cross-validation turbine, actually slightly degrading the re-
sults when compared to 1 s SCADA and nacelle-installed ac-
celerations (D), suggesting that the thrust load model was
overfitted to the training turbine. Such an issue could be po-
tentially resolved when considering multiple turbines for the
training of the thrust load model. However, with only two in-
strumented turbines, in which the second turbine serves as a
cross-validation, it was opted to only consider data from the
single training turbine.

Pivoting back to 10 min SCADA, if we include dedicated
tower SHM accelerometers (G), again we see accelerations
improving the generalization but this time also vastly im-
proving the model performance (MAE close to 2 %, error
well between the minus and plus 10 % bounds). This might
be due to the fact that, with more accurate accelerometers,
with greater quality, a fuller picture of the structural dynam-
ics can be drawn for both the validation (training) and cross-
validation turbines. Scenario G – 10 min SCADA and SHM
accelerations – should also be highlighted, as it performs
rather well (both MAEs around 2 %). This is especially rel-
evant for older wind farms, where usually 1 s SCADA is not
available. Finally, the results for the model based on the RFE
DTC selected features are the best for the turbine (H), as they
have the lowest MAE and smallest inter-quartile range for the
validation turbine.

We can then say that the best models include data from
SHM accelerometers and are able to present MAEs of around
2 %. The 1 s SCADA models can have their performance en-
hanced by estimating the thrust load (however, concerns re-
garding the adaptability to other turbines should not be ig-
nored) or by including nacelle accelerations. These models
had MAEs of around 4 % for cross-validation, with most er-
rors falling within ±10 %. For just 1 s SCADA or 10 min
SCADA models (A, B, C), MAEs are above 5 % and most

cases will fall within ±20 %. It is up to the operator, then, to
determine which bounds are considered acceptable.

The present contribution provides a detailed overview of
how the ANN-based methodology might perform for differ-
ent instrumentation scenarios on jacket-foundation offshore
wind turbines. It is expected that, for monopile-foundation
OWTs, where the importance of wave-related dynamics is
much greater, other conclusions will be drawn as to the min-
imal instrumentation setup performance.

3.3 Fatigue rate (DEL) estimation

Following the discussion held in the preceding section
(Sect. 3.2), a deeper look into the best-performing model –
scenario H – is performed.

For this, several ANN topologies were tested employing
the Adam optimizer and a mean squared error loss function,
a limit of 100 epochs, k-fold cross-validation with 10 folds,
a batch size of five, and monitoring of MSE and RMSE.
Of the different tested topologies, the best-performing one
presented five hidden layers with 100, 200, 300, 200 and
100 neurons, respectively. The data selected for training con-
sisted in a randomized sample of 8000 non-consecutive data
points within a given year (the training dataset represented
35.7 % of the available data for that one year, with a ran-
dom 80 %–20 % train–test split). The deep neural network
was then trained on this dataset, its performance was tested
on the testing dataset, and it was then validated on a different
period in the same year outside the training period, a differ-
ent year, and cross-validated for an entirely different turbine.
The training turbine is located at the northwestern edge of the
farm, and the cross-validation turbine is located in the middle
of the farm (see Sect. 3.4, OWT 7 and OWT 35 of Fig. 16).
In Fig. 11 we can see plots of the time series for normalized
DEL (both for the validation and cross-validation datasets)
for a period of 7 d. We can see how, for both cases, the pre-
dictions closely accompany the measured behaviour.

In Fig. 12, the absolute error of the tower FA bending mo-
ment DEL predictions, estimated as for Fig. 10, expressed as
a percentage of maximal value of DEL (for training) is plot-
ted for the training year, a different year (but still in the train-
ing turbine) and a different turbine. Additionally, the MAE
for each case (also expressed as a percentage of the maximal
training DEL), is superimposed on the plot.

Here we can see that the model performs rather well for
the training year – the MAE is kept around 1 %. Likewise,
for a different year, the model performs rather well, with a
MAE of 1.7 %, although a slight underprediction is notice-
able (a positive error means that the real value is superior to
the prediction, also existent for the training year) and there is
a marginally bigger spread. Nevertheless, differences for the
performance between the training year and different year are
almost negligible. The model then seems to properly adapt
and generalize. We can thus conclude that the model per-
forms appropriately, presenting sufficient generalization to
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Figure 11. (a) Time series of DEL for 7 d of the validation dataset (real – blue; predicted – orange). (b) As in panel (a) but for the cross-
validation dataset (different turbine from training).

Figure 12. DEL prediction error for validation (training year and
different year) and cross-validation, expressed as a percentage of
the maximal DEL. Error expressed as a percentage of the absolute
maximal training DEL value.

successfully predict for datasets which do not correspond to
its training period, with a MAE around 1 %, which is within
the bounds defined established Sect. 3.2.1.

Things, however, change for a different turbine: the MAE
increases about 2-fold to 2.9 %, the spread for the error is
much more noticeable and there is an accentuated under-
prediction (positive error). There may exist several, non-
exclusive, reasons behind this degradation of the model’s per-
formance for a different turbine – located in the turbines’
wake – than that of training. Firstly, one cannot ignore the
inherent site dependency of the trained model: the ANN was
trained on a given turbine, so it is expected that, even though
it is able to capture the overall behaviour of other turbines
of the same farm, it will have a greater difficulty to adapt to
different turbines as well as for the training turbine. Addi-
tionally, as seen in Sect. 3.2, the inclusion of thrust-related
metrics might further enhance site dependency. Furthermore,
this site dependency can be increased by the feature selection
process – the features that are selected are for the training tur-
bine; these might possibly differ for the cross-validation tur-
bine. One possible way to circumvent this would be to have
a population-based model (Antoniadou et al., 2015; Worden
et al., 2020) which would use the data of both turbines during
training. However, for our current study, this would impede
the cross-validation as only two turbines are available. Nev-

ertheless, we can still affirm that, albeit the relatively worse
results for cross-validation (different turbine), the model still
performs within the realms of acceptability, giving us a cer-
tain degree of trustworthiness.

In Fig. 13, we can take a deeper look at the model’s per-
formance, wherein in Fig. 13a the absolute error of the tower
FA bending moment DEL predictions is binned according
to the wind speed with a step of 2 m s−1 for the valida-
tion dataset (year of training) and the cross-validation dataset
(different turbine).

Here, we can verify the better performance of the model
for the validation dataset, as evidenced by Fig. 12, and
that the model is underpredicting for the different turbine
(cross-validation). More interestingly, we can observe how
the model performs worse for a different turbine for mid-
range speeds (8–18 m s−1) rather than for higher speeds. This
is possibly related to the worse performance of the model un-
der wake. Avendaño-Valencia et al. (2021) worked in this di-
rection, concluding that the fatigue life of OWTs under free-
stream inflow can be quite distinct from OWTs under wake
(Avendaño-Valencia et al., 2021). This can be further veri-
fied by inspecting Fig. 13b, where the turbulence intensity is
plotted against the wind speed, as turbulence intensity (TI) is
given by TI(%)= (σ (u)/u)×100, where σ (u) represents the
standard deviation of wind speed and u the mean wind speed.
The values of turbulence intensity for lower wind speeds
are rather unstable and thus disregarded in this analysis. In
this figure we can see how, for wind speeds between 5 and
18 m s−1, the turbulence intensity of the cross-validation tur-
bine is noticeably higher than for the validation (and train-
ing) turbine. We can then reasonably assume that, precisely
because the cross-validation turbine faces higher turbulence
(being located under more severe wake) than the training tur-
bine, the prediction error for the cross-validation turbine will
be highest in the regions where the gap between turbulence
intensities is greater.

Additionally, in Fig. 14 we can observe how, even for the
training turbine (OWT 7; see Sect. 3.4), a similarly higher
error appears for the training turbine when operating under
wake. Even though the number of data is noticeably lower
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Figure 13. (a) Box plot of error expressed as a percentage of the absolute maximal training DEL value (binned) for the validation and
cross-validation turbines plotted against wind speed. (b) Turbulence intensity (%) vs. wind speed (m s−1) for validation and cross-validation
turbines.

Figure 14. Box plot of error expressed as a percentage of the ab-
solute maximal training DEL value (binned) of DEL for the vali-
dation/training turbines plotted against wind speed under wake and
under free-flow conditions.

(thus, there are only box plots up to 18 m s−1), we can also
see the higher errors above 10 m s−1.

This worse performance for the cross-validation might be
possibly due to a lack of under-wake data and could be en-
hanced through wake transfer models or a population-based
approach. Nevertheless, we can say that, overall, the tower
bending moment FA DEL ANN model performs well and
presents itself as a viable solution for DEL estimation under
a fleet-leader concept.

3.4 Farm-wide

In this final section the proposed methodology is used in
a real-world farm-wide setting with 48 assets. Figure 15
schematizes the pipeline for the farm-wide model, consist-
ing in the parts of Fig. 4 which are kept for producing DEL
estimations – the 10 min feature generation and DEL predic-
tions tiers, in grey and pale yellow, respectively.

As mentioned in Sect. 3.2, most turbines present in the
wind farm do not possess fully instrumented setups (sce-
nario H; see Table 2) but rather 1 s SCADA (which allows
us to obtain the thrust load) and low-quality nacelle-installed

Figure 15. Schematic of tower FA DEL estimation ANN method-
ology.

accelerometers. According to Fig. 10 the best-performing
model in this scenario is model F. However, as Fig. 10 also
revealed concerns to the transferability of the thrust load
model, also model D, without thrust load and a better score
on cross-validation, is included for comparison.

It ought to be mentioned that the ANN model was trained
in OWT 7 and cross-validated in OWT 31. We can then es-
timate the DEL for each turbine for 4 months in the sum-
mer of 2020 and plot farm-wide based on 10 min averages,
as seen in Fig. 16:

Firstly, it must be mentioned that the apparent big value
difference between both plots is due to the narrowness of
the color map scale, as the objective is to identify outlier be-
haviour. On average, Fig. 16a is 6 % lower than Fig. 16a,
which is in line with the results of Fig. 10. Here, we can
observe that, for both figures, the DEL increases from east
to west, which is in accordance with the dominant south-
west (SW) wind direction in the Belgian North Sea. This is
related to the effect wake has on DEL, as turbines under free-
flow conditions present lower DELs than their counterparts
under wake.

There are, however, some noticeable exceptions. Several
turbines have a lower-than-expected DEL (such as OWT 1 or
OWT 30, in blue in Fig. 16). Although there are many under-
lying phenomena that might contribute to this behaviour, we
can start by analysing the power production farm-wide for
the same period (Fig. 17, scenario F):
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Figure 16. Mean DEL (ratio of the arithmetic mean of all 10 min DELs and the maximum training DEL) farm-wide plot, normalized in
relation to the highest training DEL value for (a) scenario F and (b) scenario D.

Figure 17. DEL (scenario F) vs. power plotted for the mean values
of every turbine of the farm. The lowest DEL turbine – OWT 1 – is
shown.

We can see here that there’s generally a positive correla-
tion between the turbines which face a lower DEL and the
ones that produce less. If we focus on OWT 1 (in orange),
which presented the lowest DEL and is on the lower end
of the power axis in Fig. 17, we observe that the reason it
does not produce so much is due to it being in standstill
for a sizeable amount of time during the period investigated.
This more frequent standstill, along with OWT 1 usually fac-
ing free-flowing wind due to the dominant wind direction,
produces the lowest mean DEL of the farm for the period
under study. Figure 17 further highlights two distinct sets
which present a lower mean DEL: firstly, turbines that were
in standstill/curtailed, in green, of which OWT 30 is an exam-
ple, wherein the lower power output (and thus lower amount
of time functioning) is correlated with lower DELs; secondly,
turbines that were located in the first string (row of turbines)
facing the dominant wind and thus faced mostly free-flow
conditions, which enabled both a higher production (higher
mean power) and lower DELs, as wake-induced load varia-
tions were not present.

Apart from the turbines facing a lower DEL, there are
three notable exceptions with a higher-than-expected DEL
OWT 34 for Fig. 16a, OWT 32 for Fig. 16b and OWT 17 for
both. In Fig. 18 the DEL for each turbine is plotted against
the mean fore–aft accelerations (a, scenario D) and against

the standard deviation of the fore–aft accelerations (b, sce-
nario F). We can see, for both figures, that OWT 17 is shown
to possess an outlier behaviour, presenting both a higher-
than-average mean fore–aft acceleration value and standard
deviation, where DEL and both of these parameters are pos-
itively correlated. The higher variability in the measured ac-
celerations is related to higher DELs (larger cycles). It has
been checked whether OWT 17 faces a higher-than-average
number of starts/stops, which naturally induce greater loads
and DEL.

The main difference between Fig. 16a and b concerns
OWT 32 and OWT 34, where the model from scenario D
highlights the former and the model from scenario F the lat-
ter.

Regarding OWT 32, as Fig. 16b plots the farm-wide DEL
for scenario D – a model which includes 1 s SCADA and na-
celle accelerations but no thrust load, it can reasonably be
assumed that, when including no thrust load, the model will
give an added importance to accelerations (referring back to
Fig. 1). We can see in Fig. 18a that the mean FA accelera-
tion of OWT 32 far surpasses the average value, where the
average fore–aft acceleration value positively correlates with
the DEL. If we look back at Fig. 3, this means that the mean
value of the FA low-quality absolute accelerations (in green)
will have a higher value (offset). This translates, for the top-
level SHM FA accelerations, into a greater amplitude (and
thus a higher root mean square), which implies that the sen-
sor is seeing more vibrations.

Regarding OWT 34, no apparent unique answer for
the higher DEL could be unveiled in the SCADA- or
acceleration-based features. However, as seen in Fig. 18b,
the standard deviation of accelerations appears to highlight a
bit more clearly OWT 34. The answer might indeed lie there
– the underlying causal phenomenon might not be picked up
solely by SCADA but also by including accelerations and
how the model weights their relative importance. It is inter-
esting to note that this turbine in particular presented an un-
balanced rotor for this period. The link between acceleration
measurements and a higher DEL might lie there. Nonethe-
less, the 10 min ANN tower FA DEL model is composed by
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Figure 18. (a) DEL (for scenario D) vs. mean fore–aft low-quality absolute accelerations for every turbine of the farm. OWT 1 is parked,
and OWT 17 and OWT 32 are outliers. (b) DEL (for scenario F) vs. the standard deviation of fore–aft accelerations for every turbine of the
farm. OWT 1 is parked, and OWT 17 and OWT 34 are outliers.

numerous input variables, wherein discerning a single cul-
prit might be difficult, as some behaviours might be the fruit
of complex interactions between several parameters, such as
thrust load and accelerations.

4 Conclusions

In the current contribution, a methodology to determine
jacket-foundation OWT tower bending moment DEL based
on artificial neural networks has been successfully imple-
mented. This value can serve wind farm operators in taking
informed lifetime-related decisions. The model was validated
on two distinct years of data for the training turbine and pre-
sented a MAE of around 1 %. Its cross-validation on a dif-
ferent turbine, albeit performing slightly worse (MAE close
to 3 %), has proven the applicability of this model to other
turbines.

The model uses a reduced set of input data determined by
the employment of the recursive feature elimination (using a
decision tree classifier estimator) feature selection algorithm.
These data are provided by 1 s SCADA (along with the es-
timation of the thrust load) and SHM accelerometer sensors.
A comparative study of feature selection techniques and an-
other of different sensor setups, based on the use of neural
networks, have allowed us to identify the sensors and en-
gineered features of greatest importance, as well as which
sorts of errors might be related to each instrumentation setup.
From this study, it appears that the installation of dedicated
tower SHM accelerometers is advisable, as, if a fleet-leader
model is to be applied, acceleration data are essential to a
good farm-wide generalization. On the other hand, the in-
clusion of a thrust load model improves overall validation
scores, but this does not translate into better cross-validation
scores. Further research, in farms with more instrumented
turbines, is needed to come to a decision on the added value
of quasi-static thrust load.

Finally, this methodology is employed on a farm-wide set-
ting, allowing us to identify turbines with outlier DEL val-
ues. By looking at the SCADA and acceleration input data,
tentative answers for outlier behaviour can be drawn, provid-
ing farm operators with important insights related to mainte-
nance.

5 Future work

Throughout this contribution, the development of this
methodology has seen some questions arise, which deserve
a deeper look. These questions can be see as future steps in
research. Some future research directions include the follow-
ing:

– application of the current methodology to monopiles;

– employment of other machine-learning algorithms
(e.g. SVM, decision trees, kriging, Gaussian process
regression, variational auto-encoders) and comparative
performance study;

– understanding of the impact of sensor quality (10 min,
1 s, etc.) in a monopile-foundation OWT;

– development of a population-based strategy with train-
ing not dependent on only one turbine but on data from
possibly several turbines – in particular this seems rele-
vant for the thrust load model that, while improving val-
idation, has resulted in lower cross-validation results;

– utilization of the DEL ANN model to research spe-
cific phenomena, such as wind–wave misalignment and
wake effect on monopile-foundation OWTs;

– evaluation of which SHM accelerometer placement
(bottom level, mid-level or upper level) is the most valu-
able.
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Appendix A

Table A1. Statistical metrics formulae applied to parameter x in which N is the number of individual samples xi in a 10 min interval.

Metric Formula/definition

Minimum Smallest value of the set
Maximum Biggest value of the set
Mode Most frequently observed value of the set
Mean (µ)

∑ xi
N

Median
(
N+1

2

)th
number of the set

Standard deviation (σ )

√
1
N

N∑
i=1

(xi −µ)2

Range Difference between the lowest and highest value

Root mean square (rms)

√√√√ N∑
i=1

x2
i

N

Spectral moment i (mi ) 1
N

N∑
k=1

(xi −µ)i

Skewness (g1) m3/m
3/2
2

Kurtosis (g2) m4/σ
4
− 3=m4/m

2
2− 3

Appendix B

Table B1. Variable abbreviation explanation.

Abbreviation/symbol Meaning

ACC Acceleration sensor
BL Bottom level
ML Mid-level
UL Upper level
FA Fore–aft
SS Side to side
X X direction
Y Y direction
disp Displacement
DEA Damage equivalent acceleration
DEM Damage equivalent moment (for thrust)
g2 Kurtosis
g1 Skewness
mi ith spectral moment
SD Standard deviation
Temp Temperature
◦ Pearson’s correlation coefficient, r
4 Spearman’s correlation coefficient, ρ
� Kendall’s correlation coefficient, τ
∗ Dominance analysis
† K-best selector (F regression)
? Recursive feature elimination (cross-validation) using a random forest estimator
� Recursive feature elimination (cross-validation) using a decision tree classifier
× Random forest estimator
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Table B2. Comparative table for different feature selection methods, wherein the differences between the selected parameters/metrics are
illustrated. The rows in grey are SCADA-dependent parameters. Note the features ACC FA and ACC SS are the fore–aft and side-to-side
accelerations captured by the nacelle’s low-quality accelerometer.

DEA DEM g2 max mean median min mode range rms g1 m2 m3 m4 SD
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BL X
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Table B2. Continued.

DEA DEM g2 max mean median min mode range rms g1 m2 m3 m4 SD
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