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Abstract. The magnitude of wake interactions between individual wind turbines depends on the atmospheric
stability. We investigate strategies for wake loss mitigation through the use of closed-loop wake steering using
large eddy simulations of the diurnal cycle, in which variations in the surface heat flux in time modify the
atmospheric stability, wind speed and direction, shear, turbulence, and other atmospheric boundary layer (ABL)
flow features. The closed-loop wake steering control methodology developed in Part 1 (Howland et al., 2020c,
https://doi.org/10.5194/wes-5-1315-2020) is implemented in an example eight turbine wind farm in large eddy
simulations of the diurnal cycle. The optimal yaw misalignment set points depend on the wind direction, which
varies in time during the diurnal cycle. To improve the application of wake steering control in transient ABL
conditions with an evolving mean flow state, we develop a regression-based wind direction forecast method.
We compare the closed-loop wake steering control methodology to baseline yaw-aligned control and open-
loop lookup table control for various selections of the yaw misalignment set-point update frequency, which
dictates the balance between wind direction tracking and yaw activity. In our diurnal cycle simulations of a
representative wind farm geometry, closed-loop wake steering with set-point optimization under uncertainty
results in higher collective energy production than both baseline yaw-aligned control and open-loop lookup
table control. The increase in energy production for the simulated wind farm design for closed- and open-loop
wake steering control, compared to baseline yaw-aligned control, is 4.0 %–4.1 % and 3.4 %–3.8 %, respectively,
with the range indicating variations in the energy increase results depending on the set-point update frequency.
The primary energy increases through wake steering occur during stable ABL conditions in our present diurnal
cycle simulations. Open-loop lookup table control decreases energy production in the example wind farm in
the convective ABL conditions simulated, compared to baseline yaw-aligned control, while closed-loop control
increases energy production in the convective conditions simulated.
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1 Introduction

Collective wind farm power maximization through wake
steering control has demonstrated potential in large eddy
simulations (LESs) of idealized atmospheric boundary layer
(ABL) conditions (Gebraad et al., 2016), wind tunnel exper-
iments (Campagnolo et al., 2020), and in initial field exper-
iments (Fleming et al., 2019; Howland et al., 2019; Doeke-
meijer et al., 2021). The primary approach of wake steer-
ing control has been open-loop, in which a lookup table of
model-optimal yaw misalignment set points is constructed
as a function of the incident wind direction, wind speed, and
turbulence intensity (Fleming et al., 2019). The set points are
optimized using a steady-state, physics-based wake model
and applied at the wind farm in time based on an estimate
of the incident wind conditions at the farm. However, several
challenges arise in open-loop wake steering control, includ-
ing time-varying ABL flow conditions with measurement un-
certainty (Quick et al., 2017; Annoni et al., 2019) and wake
model parameter uncertainty (Schreiber et al., 2020; How-
land, 2021b), which may lead to a discrepancy between the
optimal yaw misalignment set points in the steady-state wake
model and the true optimal yaw misalignment values which
vary in time.

Recent studies have developed closed-loop control
methodologies (Ciri et al., 2017; Campagnolo et al., 2020;
Doekemeijer et al., 2020; Howland et al., 2020c) which im-
prove wake steering performance in flow with evolving mean
states by incorporating wind farm measurements to modify
wind condition (Doekemeijer et al., 2020) and wake model
parameter (Howland et al., 2020c) estimates. The reader is
directed to Part 1 of this study (Howland et al., 2020c) for fur-
ther motivation of closed-loop wake steering control. Doeke-
meijer et al. (2020) investigated the performance of a pro-
posed closed-loop control methodology in LESs of the ide-
alized neutral ABL with a prescribed time-varying wind di-
rection. Howland et al. (2020c) evaluated the performance of
closed-loop wake steering control in the conventionally neu-
tral ABL, which is characterized by neutral stratification in
the boundary layer capped by a stable free atmosphere (e.g.,
Allaerts and Meyers, 2015) with fixed boundary conditions.
The occurrence of the conventionally neutral ABL is rare in
practice since the flow in the boundary layer is generally af-
fected by non-neutral atmospheric stability. While numerical
investigations often isolate atmospheric stability to charac-
terize its effects (Abkar and Porté-Agel, 2015), the transi-
tion between states of stability influences the ABL structure
(Basu et al., 2008b; Fitch et al., 2013) and affects wind farm
performance (Abkar et al., 2016). In this study, we investi-
gate the performance of the closed-loop wake steering con-
trol methodology developed in Part 1 (Howland et al., 2020c)
in the stratified ABL with time-varying wind direction and
atmospheric stability.

Wind conditions evolve over the diurnal cycle through
modifications to the surface heat flux (Stull, 2012). The day-

time ABL is characterized by surface heating and convection,
giving rise to enhanced mixing and turbulent kinetic energy.
Convective rolls with elongated streamwise length scales are
observed for the weakly convective ABL (Deardorff, 1972;
Atkinson and Wu Zhang, 1996; Salesky et al., 2017). Con-
versely, the stratification in the nocturnal ABL suppresses
vertical velocity fluctuations and limits the flow length scales
(Sullivan et al., 2003). The stable ABL is characterized by
enhanced wind speed and direction shear (Wyngaard, 2010)
and subgeostrophic (or low-level) jets (Thorpe and Guymer,
1977). Stable ABL low-level jets are generated, in part, by
Coriolis-induced wind veer (van der Laan et al., 2021) and
by inertial oscillations induced by Coriolis forces (Van de
Wiel et al., 2010). Through modifications of the structure
of the ABL, stratification influences wind farm performance
(Wharton and Lundquist, 2012b).

In some instances, wind farm efficiency is diminished in
stable conditions, compared to convective (Barthelmie and
Jensen, 2010). Other studies have identified increases in
power during stable ABL operation (Wharton and Lundquist,
2012a). Differences in reported wind farm performance in
stable ABL conditions may relate to site- and time-specific
wind direction shear (Sanchez Gomez and Lundquist, 2020;
Howland et al., 2020d) or low-level jets (Gadde and Stevens,
2021). Wind turbines generally operate in time-varying yaw
misalignment due to slowly reacting yaw control systems and
control error (Fleming et al., 2014). The power production
of a wind turbine in yaw misalignment depends on the inci-
dent velocity field (Howland et al., 2020d; Liew et al., 2020).
Since the wind speed and direction variations over the ro-
tor area depend on the atmospheric stability, the power–yaw
relationship for a given wind turbine depends on the stabil-
ity (Howland et al., 2020d), in addition to the control sys-
tem in use. While the overall wind turbine performance de-
pends on the interaction between these effects, the influence
of stability on wake recovery is more clear. Wakes recover
faster in convective ABL conditions compared to stable or
neutral conditions (Iungo and Porté-Agel, 2014), and relat-
edly, the wake meandering is enhanced (Abkar and Porté-
Agel, 2015). Provided slower wake recovery as a function of
streamwise distance downwind of a wind turbine in stable
ABL conditions, wake interactions are generally increased
(Abkar et al., 2016). Overall, the potential for wake steering
control to increase wind farm power production is anticipated
to be higher in stable conditions, and initial empirical results
confirm this trend (Fleming et al., 2019).

Wake models parameterize the effects of ABL turbulence
on the wake recovery through a prescribed wake spreading
rate (Jensen, 1983). Since the wake recovery depends on
the atmospheric stability (Abkar and Porté-Agel, 2015), the
wake spreading coefficient should depend on the wind con-
ditions. Niayifar and Porté-Agel (2016) proposed a model
for the wake spreading rate as a function of the turbulence
intensity, but the formulation considers only neutral sta-
bility. Instead, we leverage closed-loop control (Howland
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et al., 2020c) to estimate the wake spreading rate using time-
dependent wind farm measurements. Through closed-loop
control, the yaw misalignment set-point optimization adapts
to the estimated wake model parameters, which vary with at-
mospheric stability. We anticipate that the primary benefits of
the proposed closed-loop control approach result from adapt-
ing the model used for set-point optimization to time-varying
wind conditions.

The optimal wake steering strategy depends on the wind
farm design and the wind conditions, including the wind
speed, wind direction, and atmospheric stability. With the
effects of turbulent diffusion parameterized with the wake
spreading rate, the wind farm flow is estimated using a
steady-state wake model with prescribed wind conditions
(e.g., Gebraad et al., 2016). Recent studies have extended
yaw misalignment set-point optimization to consider wind
condition variability and uncertainty about the mean state of
yaw misalignment (Quick et al., 2017), wind direction (Rott
et al., 2018), and joint yaw misalignment and wind direc-
tion (Simley et al., 2020). Howland (2021b) extended meth-
ods for set-point optimization under uncertainty to consider
wake model parameter uncertainty, and empirical improve-
ments for open-loop and closed-loop control were demon-
strated. Quick et al. (2020) estimated the expected value of
wind farm power under wind condition uncertainty using
polynomial chaos expansion and demonstrated that wind di-
rection uncertainty was the primary uncertainty in determin-
ing model-optimal yaw set points.

Beyond wind condition variations about a known mean
state, the low-frequency mean state of the atmosphere
evolves in time due to mesoscale meteorological processes
(e.g., Sanz Rodrigo et al., 2017a) and the diurnal cycle (Ku-
mar et al., 2006; Fitch et al., 2013) and is challenging to fore-
cast. Existing wind farm control reacts to low-pass-filtered
wind condition measurements (e.g., Fleming et al., 2019).
Since the optimal wind farm control strategy inherently de-
pends on the transient atmospheric conditions, wake steering
control based on a forecast of future wind conditions over
a finite time horizon is anticipated to improve performance
rather than reacting to past data. Recently, Simley et al.
(2021) demonstrated in idealized wake model numerical ex-
periments that perfect wind direction preview information
slightly improves wake steering control. In this study, we de-
velop a regression-based statistical methodology to forecast
future wind direction over a prediction horizon of minutes.
We focus on a horizon of minutes based on the timescales of
turbine yaw motors. In our approach, the yaw set points are
optimized using the wake model and the wind direction pre-
diction rather than the low-pass-filtered historical wind direc-
tion data. The performance of wake steering control in tran-
sient ABL conditions also depends on the yaw misalignment
update frequency (Kanev, 2020), which represents a balance
between yaw duty (frequency of yaw motor motions) and re-
acting to flow features of certain lengths and timescales. In
this study, we compare the performance of closed-loop con-

trol to open-loop lookup table control for several yaw mis-
alignment update frequency selections.

The set of findings presented here demonstrate the utility
of closed-loop wake steering control in more realistic ABL
conditions, with time-varying wind direction, wind speed,
and atmospheric stability. The potential for wake steering
control to increase wind farm power production inherently
depends on the atmospheric conditions and the wind farm
geometry. To test the closed-loop control methodology, we
select a representative, idealized wind farm design and di-
urnal cycle simulation setup. The effect of wake steering on
wind farm energy production will depend on the wind farm
and atmospheric conditions of interest. To assess the different
control strategies, we focus on controlled numerical experi-
ments in which we modify the wind farm control between
cases which have the same wind farm design and incident
atmospheric conditions.

This paper represents Part 2 of the closed-loop wake steer-
ing control study presented in Part 1 (Howland et al., 2020c).
The technical details associated with the model-based wake
steering control are detailed in Part 1. Given recent advances
in the literature, some methods are updated in this study, and
the updates are described in Sect. 2. The diurnal cycle ABL
case is described in Sect. 3, and the results are presented in
Sect. 4. There are several appendices to provide supporting
technical information. The wind direction forecast algorithm
is in Appendix A. The diurnal cycle setup is described in Ap-
pendix B. The diurnal cycle code validation is presented in
Appendix C. Appendix D discusses the initialization of the
LES cases for reproducible numerical experiments of wind
farm control. Finally, the lookup table construction, for open-
loop control, is discussed in Appendix E.

2 Model-based closed-loop wake steering control
methodology updates

The model-based closed-loop wake steering control method-
ology used in this study is presented in Sect. 2 of Howland
et al. (2020c). Since the publication of Part 1, there have been
several additional studies in the literature with improvements
to wake steering control methodologies. The updates to the
wake steering methodology proposed in Part 1 are introduced
in this section.

Several studies have investigated the superposition of in-
dividual wind turbine wakes in engineering wake mod-
els. Zong and Porté-Agel (2020) propose a momentum-
conserving superposition methodology under assumptions of
uniform, steady inflow and negligible turbulent transport.
Various wake superposition methodologies are investigated
for the application of closed-loop control with parameter es-
timation by Howland and Dabiri (2021), which demonstrated
that momentum-conserving and modified linear superposi-
tion (Niayifar and Porté-Agel, 2016) perform similarly, while
linear superposition (Lissaman, 1979) has degraded predic-
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tive accuracy. However, since the momentum-conserving su-
perposition (Zong and Porté-Agel, 2020) requires iterations,
it is more computationally expensive than modified linear su-
perposition. Therefore, modified linear superposition (Niay-
ifar and Porté-Agel, 2016) is used in this study (more details
are provided in Howland and Dabiri, 2021). The secondary
steering model proposed by Howland and Dabiri (2021) is
also used.

The power production of a yaw-misaligned turbine de-
pends on the incident flow field (Liew et al., 2020; Howland
et al., 2020d). Howland et al. (2020d) developed a blade-
element model which predicts the power production of a
wind turbine in yaw misalignment given an incident ABL
flow and validated the model with utility-scale turbine data
operating under various wind speed and direction shear pro-
files and yaw misalignments. Since the present LES uses
non-rotational actuator disk modeling (ADM), the blade el-
ement approach is not a representative model. Instead, we
use the cosine model, P̂ (γs)= P̂ (γ = 0) · cosPp (γs), where
Pp is a tuned empirical parameter. The Pp exponent depends
on the time-varying inflow. Additional inaccuracies arise in
the cosine model since the power production as a function
of the yaw misalignment is not generally symmetric in non-
uniform flow (Howland et al., 2020d; Doekemeijer et al.,
2021). Numerical experiments in Part 1 (Howland et al.,
2020c) demonstrated that underestimating Pp leads to poor
wake steering performance. We select Pp = 2.5 for the par-
ticular ADM used in this study based on empirical tuning
to LESs of the conventionally neutral ABL (Howland and
Dabiri, 2021). Since the main purpose of the present study
is to characterize the performance of open- and closed-loop
methodologies with a shared wake model, we do not dynam-
ically adapt Pp in the closed-loop method in this study. Fu-
ture work should either use a blade element model to predict
the power–yaw relationship for a rotating wind turbine model
(Howland et al., 2020d) or adapt Pp depending on the inci-
dent flow conditions for a non-rotational model.

Part 1 (Howland et al., 2020c) utilized deterministic pro-
gramming to optimize the yaw misalignment set points for
fixed incident wind speed and direction. In this study, the
yaw misalignment set points are optimized using stochas-
tic programming under wind condition (Quick et al., 2017)
and model parameter uncertainty (Howland, 2021b). The de-
terministic and stochastic (optimization under uncertainty,
OUU) programming approaches to yaw set-point optimiza-
tion will be compared. Since the ADM used in this study has
fixed CT and Cp as a function of the wind speed, the wind
direction is the primary factor influencing the yaw set points
(Quick et al., 2020). We therefore consider variations in wind
direction α only. The yaw set points are optimized at each
control update step with period T . At current time t , the goal
of the set-point optimization is to find the optimal yaw mis-
alignment angles for time window t through t + T . The yaw

set-point optimization is given by

γ ∗s (α,ψ)= argmax
γ s

E
[
G(α,ψ,γ s)

]
, (1)

where G(α,ψ,γ s) is the modeled wind farm power produc-
tion as a function of the wind direction α, yaw misalign-
ment set-points γ s, and wake model parameters ψ . In this
study, the wake model parameters to be estimated are the
wake spreading rate kw and the Gaussian wake proportional-
ity constant σ0 for each turbine in the wind farm (see Part 1,
Howland et al., 2020c). The optimal yaw misalignment set
point is γ ∗s . The expected value of the power production is

E
[
G(α,ψ,γ s)

]
=

∫
. . .

∫
f (α)f (ψ)G(α,ψ,γ s)dαdψ . (2)

The probability distributions are indicated by f (·). The wake
model used in Eqs. (1) and (2) is steady state, which inher-
ently assumes statistically steady-state flow over the time
horizon t through t + T . We neglect the wake and rotor
dynamics associated with the yaw maneuver (Macrí et al.,
2021) and the advection time of the modification to the wake.
We account for variations in the wind direction through f (α).
The probability distributions are estimated using the wind
farm data collected over the window t − T through t , with
current time t . The mean wind direction estimate for the next
period (t through t + T ) is indicated by α̂. The wind direc-
tion is assumed to be uniformly distributed between α̂− σα
and α̂+ σα , where σα is the standard deviation in time of
the wind direction measured over the interval T with a sam-
pling rate of 1t , the computational time step in LESs. Pre-
vious studies have used Gaussian (Rott et al., 2018; Simley
et al., 2020) and Laplacian (Quick et al., 2020) distributions
to represent turbulent wind direction variations about a mean
state. The diurnal cycle has a non-stationary mean wind di-
rection. With a time-varying flow state, a Gaussian distribu-
tion may underpredict the frequency of variations about the
mean state. We anticipate that the most appropriate choice
of f (α) depends on time-averaging length T , and we rec-
ommend that other wind direction probability distributions
be considered in future work. Methods for estimating α̂ are
discussed in Sect. 2.1. The model parameter probability dis-
tributions are estimated using the methodology proposed in
Howland (2021b), although it is noted that f (ψ) can be es-
timated using Bayesian uncertainty quantification in future
work. Equation (2) is approximated using numerical quadra-
ture with the midpoint rule. The yaw set points are opti-
mized using Eq. (1), solved with gradient-based optimiza-
tion (Howland et al., 2019). While gradient-based optimiza-
tion of Eq. (1) may be affected by local extrema, the analytic
gradient-based optimization enables real-time set-point opti-
mization on the order of seconds for the eight turbine case
considered here. Future work may consider the combination
of gradient-free search algorithms and gradient-based opti-
mization. In this study, closed-loop control cases with de-
terministic yaw set-point optimization are also performed.
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The deterministic yaw set-point optimization is the method
presented in Part 1, with deterministic wind directions and
a single set of wake model parameters estimated using the
ensemble Kalman filter (EnKF) (Evensen, 2003).

2.1 Statistical wind direction forecast

Existing wake steering control methodologies, including in
Part 1, implement yaw misalignment angles based on the
low-pass-filtered measurements of the wind direction (see,
e.g., Fleming et al., 2019; Howland et al., 2020c). However,
due to turbulent and large-scale wind variations, the wind di-
rection varies in time. Methods which react to previous low-
pass-filtered wind direction measurements may implement a
suboptimal yaw misalignment strategy, depending on the fu-
ture wind direction trajectory. A recent study using idealized
wake model numerical experiments by Simley et al. (2021)
demonstrated that using perfect preview wind direction mea-
surements improves wake steering, but using a preview based
on a empirically fit cross-spectrum, between the wind di-
rection measurements of two neighboring turbines, did not
increase power over the standard method. The empirically
fit cross-spectrum model-based wind direction prediction re-
quires measurements of the wind direction by a wind turbine,
MET mast, or lidar at an upwind location.

The goal of the optimization (Eq. 1) in closed-loop con-
trol is to estimate the optimal yaw set-point angles γ s for
the time window of t to t + T , during which the yaw an-
gles will be applied. In this study, we use a steady-state
wake model for yaw set-point optimization which estimates
the time-averaged power production based on time-averaged
wind conditions. With perfect wind direction information,
the yaw set-point optimization is performed at time t with

α =
1
T

t+T∫
t

α(t ′)dt ′. (3)

We therefore focus on methods to forecast α. In this study,
two methods are used to estimate α, with the estimate given
by α̂. The standard approach (termed the filtered method)
is α̂ = 1

T

∫ t
t−T

α(t ′)dt ′, which assumes that the moving av-
eraged wind direction is not changing. The moving average
is a low-pass filter. We note that some previous approaches
used other low-pass filters, such as a first-order low-pass fil-
ter (e.g., Simley et al., 2020), rather than a moving average,
but we do not anticipate the results of the present study to be
substantially different based on the particular wind direction
filter used.

Here, we develop an alternative approach to estimate the
future mean wind direction α based on regression (termed
predictive method). The wind direction forecast first uses
wind direction data from t − 2T to t to identify if the low-
frequency wind direction is stationary or varying. A linear
regression model is fit to wind direction data from t − 2T
to t − T . The regression model is then used to predict the

Table 1. Diurnal cycle large eddy simulation setup.

Variable Value

Domain size (km) 12× 4× 2
Grid points 480× 320× 320
Geostrophic wind vector [8 m s−1, 0, 0]
Latitude φ = 36◦

Coriolis term Traditional approximation
Rotor diameter D = 126 m
Hub height zh = 100 m
CT 0.75

wind direction from t − T to t . If the coefficient of determi-
nation (R2) of the regression is above a set threshold value of
Rmin = 0.2 and the regression model has lower mean square
error (MSE) than predicting the wind direction from t−T to t
as 1

T

∫ t−T
t−2T α(t ′)dt ′, then the wind direction is considered to be

varying; otherwise it is considered stationary. With the low-
frequency wind direction determined to be varying, a second
regression model is fit to wind direction data from t−T to t .
The future wind direction α̂ is then predicted using the sec-
ond regression model at time t+T/2. If the wind direction is
considered stationary, it is estimated as α̂ = 1

T

∫ t
t−T

α(t ′)dt ′,
the default filtered method. The full algorithm is presented in
Appendix A in Fig. A1 and Algorithm 1. While this method
does not require external upwind wind direction measure-
ments, it could be improved with additional upwind sen-
sors. Closed-loop wake steering cases are performed in LES
with both the filtered and predictive wind direction estimates.
We selected a linear regression approach for simplicity. We
recommend future investigation of methodologies for short-
term wind direction forecasting in future work.

3 Setup of large eddy simulations of the diurnal
cycle

Large eddy simulations are performed using the open-source
pseudo-spectral code PadéOps (Ghate and Lele, 2017; Ghate
et al., 2018). The solver is introduced in detail in Part 1
(Howland et al., 2020c). The LES code has been previously
used for simulations of the stable ABL (Ghate, 2018; How-
land et al., 2020b). The code is validated for the simulation
of the diurnal cycle through a comparison to the LES data
of Kumar et al. (2006) in Appendix C. The equation for the
transport of the filtered nondimensional potential tempera-
ture θ is given by

∂θ

∂t
+ uj

∂θ

∂xj
=

∂

∂xj

(
νT

Pr
∂θ

∂xj

)
, (4)

with velocity u, subgrid-scale heat flux with eddy viscos-
ity νT , and turbulent Prandtl number Pr. The wall model is
constructed using the SURFFLUX1 algorithm (Basu et al.,
2008a) to estimate friction velocity based on a prescribed sur-
face heat flux. The simulation details are provided in Table 1.
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We use the concurrent precursor methodology to simulate a
finite wind farm (see, e.g., Munters et al., 2016; Howland
et al., 2020a) with fringe regions (Nordström et al., 1999) in
the last 25 % of the domain in the x and y horizontal direc-
tions.

A representative diurnal cycle ABL is designed based on
the study of (Kumar et al., 2006). The geostrophic wind
speed is fixed at G= 8 m s−1 and is in the positive x di-
rection. We consider a barotropic ABL with no geostrophic
wind shear (baroclinicity). The wind speed is initialized with
u=G and v = w = 0 throughout the domain. The surface
heat flux is prescribed following the time-varying profile
shown in Fig. B1a in Appendix B. Further diurnal cycle setup
details are provided in Appendix B. The full 24 h diurnal cy-
cle is not simulated since the 12 h period captures the sta-
bility transition of interest and for computational limitations.
The surface heat flux is initialized at w′θ ′s = 0.05 K m s−1,
with positive and negative heat flux corresponding to surface
heating and cooling, respectively. The convective ABL is run
for 1 h to remove startup transience before the wind farm
control is initiated. A note on LES initialization for repro-
ducible wind farm control numerical experiments is given in
Appendix D.

A nine turbine wind farm is located in the computational
domain. The wind turbines are modeled using the ADM. The
wind farm geometry is shown in Fig. 1. The turbines are
spaced uniformly with distances Sx = 6D and Sy = 3D in
the x and y directions, respectively. Eight wind turbines are
considered for wake steering control with one turbine used
for reference. Given the initialization in the convective ABL,
the wind direction in the ABL will initially be oriented in
the positive x direction (Fig. 2a). As the surface heat flux
becomes negative, the convective ABL will transition to a
stable boundary layer. During the transition, the reduced ver-
tical mixing and inertial oscillations will result in an Ekman
spiral, which is characterized by counter-clockwise turning
of the wind from the geostrophic wind direction (parallel to
isobars) to the surface wind direction (cross-isobaric). As
a result, the mean wind direction at the wind turbine hub
height will become positive (with the angle measured be-
tween the wind direction and the x axis), as shown in Fig. 2a.
A zoomed-in wind direction profile between hours 2 and
3 is shown in Fig. 2b to show the turbulent variations. In
summary, in the convective ABL, the flow will be approx-
imately in the positive x direction, resulting in wake inter-
actions along the columns of turbines. During the transition
and stable regimes, the flow will be oriented with a positive
angle, measured from the x axis, and wake interactions will
be along the farm diagonals (e.g., turbine 4 in the wake of
turbine 1).

The streamwise hub-height turbulence intensity in the in-
flow to the wind farm, computed from the concurrent precur-
sor, is shown in Fig. 2c. The convective ABL is character-
ized by approximately 10 % streamwise turbulence intensity.
The turbulence intensity decreases below 5 % during stable

Figure 1. The wind farm layout considered in this study within the
domain of interest (excluding the sections influenced by the fringe
region). The reference turbine (shown in red) is used for power nor-
malization and uses yaw alignment control for each case.

conditions. The incident wind speed profiles over the diur-
nal cycle are shown in Fig. 3a. The unstable wind speed has
low shear above the near-wall region. As the flow transitions
to nocturnal conditions, the shear across the rotor area is en-
hanced and a subgeostrophic jet emerges. Given the setup
of the representative ABL used in this study, the maximum
wind speed is above the rotor area. The wind direction as a
function of height α(z)−α(zh) is shown in Fig. 3b. The wind
direction change over the rotor area is minimal during the
convective conditions and is enhanced during stable condi-
tions. The peak veer across the rotor area is approximately
15◦. The stable boundary layer wind direction variation as a
function of height z is consistent with Ekman turning (see,
e.g., Wyngaard, 2010).

As the boundary layer transitions during the diurnal cy-
cle, the structure of the turbulence will be modified, in ad-
dition to the mean wind profile changes. An instantaneous
hub-height wind speed snapshot during convective condi-
tions is shown in Fig. 4a for wind turbines operating in base-
line yaw-aligned control. A zoomed-in image focusing on
the wind farm region is shown in Fig. B2. There are large-
scale structures of high and low wind speed. The wake me-
andering is qualitatively seen in the variations in the y po-
sition of the wake velocity deficits as a function of x. The
mean wind direction at hub height is in the positive x di-
rection during convective conditions. An instantaneous snap-
shot during stable conditions is shown in Fig. 4b. Compared
to the convective conditions (Fig. 4a), the stable flow field
has diminished length scales, and the wake meandering is re-
duced. The wind direction has also shifted, to approximately
20–30◦, with respect to the x axis (see Fig. 2a). A 10 min
moving average of the instantaneous flow fields, sampled at
a rate of approximately 15 s, is taken for the convective and
stable conditions, shown in Fig. 4c and d, respectively. The
same time step as the instantaneous snapshots is shown. The
10 min moving average does not eliminate the heterogeneity
from the convective ABL flow field. Longer time averages
reduce flow field heterogeneity but also average over mean
state transitions. Flow field heterogeneity can be physically
modeled in future work (e.g., Starke et al., 2021; Martínez-
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Figure 2. Diurnal cycle flow (a) hub-height wind direction, (b) hub-height wind direction zoomed in to show variations between hours 2
and 3, and (c) hub-height turbulence intensity.

Figure 3. Diurnal cycle flow (a) wind speed and (b) wind direc-
tion, α(z)−α(zh), as a function of height z, where zh is the wind
turbine hub height. The profiles are 30 min averages at hourly inter-
vals throughout the 12 h simulation, with lighter colors near the ini-
tialization (unstable ABL) and darker colors corresponding to later
times of the simulation (stable ABL). The simulation is initialized
at time t = 0 corresponding to 18:00. The horizontal dashed line
corresponds to hub height, and the horizontal dashed dotted lines
are the rotor extents.

Tossas et al., 2021). Conversely, the 10 min moving average
used for the stable conditions removed nearly all inflow het-
erogeneity. The time-averaged wake regions trailing the in-
dividual turbines are qualitatively different in the two atmo-
spheric stability regimes. The effective wake diameters in the
time-averaged convective ABL are significantly larger than
in stable conditions.

4 Wake steering results

In this section, wake steering control cases are run in the rep-
resentative diurnal cycle simulation environment discussed
in Sect. 3. The wake steering and yaw-aligned control cases
are run with a prescribed, fixed yaw update period of T . The
wind farm control cases performed in this study are described
in Table 2. A baseline, yaw-aligned control case (Case A) is
run for reference. As in Part 1, a basic yaw controller is used
such that the nacelle position of each turbine is updated to
orient towards the mean wind direction measured at each lo-
cal turbine, averaged over time T . We compare four wake
steering control strategies. We consider one open-loop wake
steering case and three closed-loop control cases, which dif-
fer only through their yaw set-point optimization methods.

Case D (D for deterministic) is closed-loop wake steer-
ing with deterministic yaw set-point optimization. The yaw

set points are optimized with estimated wake model parame-
ters using the EnKF and mean wind conditions prescribed
as the average conditions observed over previous time T .
Case D–F (D for deterministic, F for wind direction fore-
casting) is closed-loop wake steering with deterministic yaw
set-point optimization which uses the wind direction fore-
cast methodology. Comparing Cases D and D–F, differences
will arise only from the wind direction used in the yaw set-
point optimization. Case D uses the mean wind direction
measured over the previous time T , while Case D–F uses
DirectionEstimation (Algorithm 1) to forecast the wind di-
rection over future time T . Case OUU-F uses optimization
under uncertainty (OUU; see Sect. 2) and the wind direc-
tion forecast methodology. For brevity, we do not include a
case with OUU without the wind direction forecast. Case L
uses open-loop lookup table control. The lookup table syn-
thesis is described in Appendix E. In Sect. 4.1, the power–
yaw relationship for the freestream turbines is presented. The
performance of the various control strategies are compared
in Sect. 4.2. The wake model predictions are compared for
closed- and open-loop control methodologies. The influence
of the yaw update period is considered in Sect. 4.4.

For the purpose of parsing the diurnal cycle results by at-
mospheric stability, we define the stable regime as 0< L<
200 (Van Wijk et al., 1990), where L is the Obukhov length:

L=−
u∗3θ0

κgθ ′w′s
, (5)

with friction velocity u∗, reference potential temperature θ0,
von Karman constant κ , and gravitational acceleration g. For
L < 0, the flow is unstable or near neutral, while for L > 200
the flow is near neutral. Conditions of L < 0 and L > 200
are combined into unstable and stability transition periods.
This stability characterization is qualitative and is used for
the interpretation of the results in the following sections.

4.1 Power–yaw relationship

The power productions of the leading two wind turbines in
the array, turbines 1 and 2 (see layout in Fig, 1), as a function
of their yaw misalignment with respect to the turbine-specific
hub-height wind direction, are shown in Fig. 5. The results
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Figure 4. Hub-height streamwise velocity during (a, c) unstable and (b, d) stable ABL conditions for the baseline yaw-aligned control case.
Instantaneous snapshots are shown in (a) and (b), and 10 min moving averaged flow fields are shown in (c) and (d). The streamwise velocity
zoomed in to focus on the wind farm area is shown in Fig. B2.

Table 2. The diurnal cycle atmospheric boundary layer wake steering cases. Cases with α forecast checked use the DirectionEstimation
(Algorithm 1) to forecast the wind direction over future time T . Cases with optimization under uncertainty (OUU) use the OUU methodology
described in Sect. 2. Each case represents a separate LES simulation.

Case label Description Wake steering Closed-loop α forecast OUU

A Aligned – – – –
L Lookup X – – –
D Deterministic X X – –
D–F Deterministic, α forecast X X X –
OUU-F OUU, α forecast X X X X

are shown for a yaw update period of T = 30 min, and there-
fore, each data sample shown is a 30 min average. Since the
wind direction changes as a function of time, the magnitude
and sign of the model-optimal yaw misalignment set points
will also change. Given the incident wind direction and wind
farm geometry, turbine 2 will initially misalign the yaw to
benefit turbine 4. With the wind direction shifting away from
0◦ with respect to the x axis, there are no turbines down-
wind of turbine 2 (see Fig. 4b) and its yaw misalignment set
point will become zero. Turbine 1 will continue to misalign
the yaw to benefit either turbine 3 or turbine 4. The power
ratios for the convective ABL are shown with open markers.
Given the highly turbulent convective ABL, the finite-time-
averaged inflow wind to a given turbine may differ from the
winds incident to the reference turbine (see Fig. 4). This ef-
fect is not accounted for in the cosine models and is the pri-
mary cause for the significant spread in the power ratios in
convective conditions.

While there are a limited number of data samples for
γ > 0◦, the power ratio shown in Fig. 5 appears asymmet-
ric around γ = 0◦ during stable conditions (filled markers).

Given the nocturnal wind speed and direction profiles shown
in Fig. 3, the power production for the yawed wind turbines
will be asymmetric as a function of the sign of the yaw mis-
alignment angle (Howland et al., 2020d). Considering a non-
rotational actuator disk model representation of a wind tur-
bine, the power production is P ∝ (u · n̂)3, where u is the
incident wind velocity vector and n̂ is the unit vector normal
to the rotor area. Given the Ekman spiral, negative yaw mis-
alignment, a clockwise rotation of the wind turbine viewed
from above, will locally align the turbine above hub height
where the wind speed is larger than the hub-height speed
(Fig. 3a). Conversely, positive yaw misalignment will locally
align the turbine below hub height where the wind speed is
lower than hub-height speed.

The power ratio of turbine 1 for negative yaw misalign-
ment is near the cos1.5(γ ) curve. Conversely, the data sam-
ples for positive yaw are generally between cos1.5(γ ) and
cos3(γ ). In this study, the Pp parameter for the simplified
cosine power ratio model Pr = cosPp (γ ) was set to Pp = 2.5
based on previous tuning in conventionally neutral ABL con-
ditions (see Sect. 2). Since the simplified cosine model is

Wind Energ. Sci., 7, 345–365, 2022 https://doi.org/10.5194/wes-7-345-2022



M. F. Howland et al.: Closed-loop wake steering: Diurnal cycle ABL 353

Figure 5. Power ratio Pr = Pi/Pref for turbines 1 and 2 (see lay-
out in Fig. 1) for (a) Case L open-loop lookup table control and
(b) Case D closed-loop control shown as a function of the real-
ized yaw misalignment with respect to the hub-height wind direc-
tion. Power ratios for stable atmospheric stability (Obukhov length
0 < L < 200) are shown with filled markers, and hollow markers
are unstable and stability transition periods. The power ratio is av-
eraged for 30 min for each sample.

not the focus of the present study, and since the most ac-
curate Pp factor depends on the incident wind profiles and
on the sign of γ , the value is not further tuned and is fixed at
Pp = 2.5 for closed- and open-loop control cases. The results
of Part 1 (Howland et al., 2020c) indicate that overestimating
the power degradation as a function of the yaw misalignment
angle is preferred for wake steering, compared to underesti-
mation.

The power–yaw relationship is often considered for an iso-
lated wind turbine (Howland et al., 2020b), although wake
effects have also been considered by (Liew et al., 2020). In
this discussion, we have considered the leading turbines in
the farm to behave approximately as isolated wind turbines.
The leading turbines in the array may be affected by the pres-
ence of the downwind turbines, which may alter the power–
yaw relationship. This effect may be considered in future
work.

4.2 Comparison of control strategies

In this section, the various control strategies introduced in
Sect. 4 are implemented in the diurnal cycle ABL flow with
a fixed control update period of T = 30 min. We first inves-
tigate the influence of the wind direction estimation method-
ologies. The statistical wind direction forecast (Sect. 2.1) is
compared to a wind direction estimate using a moving aver-
age filter with timescale T . The instantaneous α and mean
αT wind direction as a function of time, as measured by
the reference wind turbine, is shown in Fig. 6. The mean
wind direction estimates using a moving average and using
the wind direction forecast methodology are shown, termed
filtered αT and predictive αT , respectively. The mean wind
direction prediction methods have access to α(0 : t), where
t is the current time, and predict αT (t + T/2). In the limit-
ing cases of high wind direction variability around a mean
value (hours 0–3) or low mean wind direction changes in
time (hours 6–10), the predictive methodology defaults to

Figure 6. Comparison of the mean wind direction estimation meth-
ods to the measured instantaneous (α) and mean (αT ) wind direc-
tion data. A standard approach is shown where the low-pass-filtered
wind direction αT is estimated through a moving average. The pre-
dictive method is shown in which αT is estimated using the pro-
posed DirectionEstimation algorithm, described in Fig. A1 and Al-
gorithm 1. The horizontal black line corresponds to the wind direc-
tion of alignment between turbines 1 and 4.

the same estimate as the filtered value. However, for periods
of transitioning mean wind directions (hours 3–6), the pre-
dictive wind direction forecast more accurately estimates the
mean wind direction for the future time horizon of length T .
The mean absolute error (MAE) for the filtered and predic-
tive methods for estimating αT are 1.9 and 1.3◦, respectively.
The mean square error (MSE) for the filtered and predictive
methods for estimating αT are 6.0 and 3.7 (degrees squared),
respectively.

Closed-loop wake steering control is implemented in the
diurnal cycle ABL with deterministic yaw set-point opti-
mization with the filtered (Case D) and predictive forecast
(Case D–F) methodologies for the estimation of αT . Two
separate LES cases are run with the only difference being
the estimated mean wind direction (αT ) provided to the yaw
set-point optimizer. The yaw set points for turbine 1 are
shown in Fig. 7a for the two cases. The realized yaw mis-
alignment angles are shown in Fig. 7b. Since the initial con-
ditions are fixed (the processor topology is also fixed; see
Appendix D), during the initial four control update steps in
which the filtered and predictive mean wind directions are the
same (see Fig. 6), the yaw misalignment values are identical.
For step five and beyond, the estimates for the mean wind
direction differ, resulting in a divergence of the yaw con-
trol approaches. The primary differences between the cases
arise between hours 3.5 and 6, during which the mean wind
direction transitions over the inflow angle of alignment be-
tween turbines 1 and 4. At this inflection point, the optimal
yaw set-point angle will transition from positive to negative
yaw. The predictive methodology estimates that the wind di-
rection will transition to an angle greater than the inflection
point, resulting in a negative yaw set point, while the filtered
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Figure 7. Yaw misalignment for turbine 1 (a) applied and (b) re-
alized for the deterministic optimization methodology with filtered
(Case D) and predictive forecast (Case D–F) wind-direction-based
yaw optimization.

methodology results in a positive yaw set point. The positive
yaw set point, given the resulting trajectory of α, results in
wrong-way steering that increases the wake losses at turbine
4.

The performance of each case is characterized using an
energy ratio,

Er =

∫ t2
t1

∑Nt
i=1Pi(t)dt∫ t2

t1

∑Nt
i=1P

γ0
i (t)dt

, (6)

which quantifies the wind farm performance compared to
baseline yaw-aligned control, indicated with γ0, over time
interval t1 to t2. The percent gain in energy through wake
steering is G= 100 · (Er− 1). We first focus on the time
periods in which the filtered and predictive wind direction
methodologies differ (control update periods 6 through 9, ap-
proximately hours 3.5 to 6). The gain for this time period is
−0.1 % and 1.1 % for the filtered (Case D) and predictive
(Case D–F) cases, respectively. As a result of the transition-
ing mean wind direction, reacting to the filtered history of
wind direction results in the incorrect yaw misalignment di-
rection, and therefore reduced energy production, compared
to baseline yaw-aligned control. Conversely, the predictive
wind direction methodology results in the appropriate yaw
misalignment set-point direction and increases power com-
pared to baseline control. The energy gain G for Cases D
and D–F for the full simulation is shown in Table 3. Overall,
the wind direction forecast method increases the energy pro-
duction using wake steering control in both atmospheric sta-
bility regimes, with the predominant energy improvements
occurring during the time periods of hours 3.5 to 6, described
above.

The energy gain resulting from the use of a wind direction
forecast methodology in wake steering control is case spe-
cific and depends on several factors. First, the performance
gain depends on the fidelity of the predictive methodology.
In this study, we have proposed a linear-regression-based
wind direction forecast which demonstrates empirical suc-
cess in this application (Fig. 6). For different ABL forcing,
site-specific characteristics, or different update periods T ,
linear regression may not be sufficient, and other data-driven

Figure 8. Power production results from the closed-loop control
Case D and baseline yaw-aligned control cases. The LES power
data are given by P , and the wake model estimates are given by P̂ .
The subscripts on the power denote the turbine number. The yaw-
misaligned and yaw-aligned cases are denoted by γ and γ0, respec-
tively.

prediction approaches can be implemented in the framework
outlined here (see Appendix A). Future work should consider
nonlinear regression or more complex machine learning time
series prediction methods. Further, the improvements herein
predominantly stem from the occurrence of wind direction
changes across the turbine alignment inflow angle. The de-
gree to which a wind direction forecast methodology im-
proves overall wake steering performance will depend on the
frequency of such occasions.

In the closed-loop wake steering control approach pro-
posed in Part 1 (Howland et al., 2020c), the wake model pa-
rameters ψ are estimated at each control update step with
time increment T . The LES power production P, γ as a
function of the control update step for Case D is shown in
Fig. 8. In addition, the wake model power estimates P̂ , γ
for wake steering control and the LES power production for
yaw-aligned control P, γ0 are shown. The power productions
for the pair of turbines 1 and 4 are shown in Fig. 8a and for
turbines 5 and 8 in Fig. 8b. The wake model estimates for
the power production of turbines 4 and 8 exhibit low error,
as anticipated because the wake model is calibrated using
these data with the EnKF. We test the effect of the EnKF
parameter estimation of wake model predictions for out-of-
sample data in Sect. 4.3. Larger error arises in the prediction
of upwind, freestream power production for turbines 1 and 5,
given the simple cosine model (see discussion in Sect. 4.1).
The power increase for the downwind turbines is more sub-
stantial in the stable regime (control update 9 and after). The
estimated wake model parameters are shown in Fig. 9. The
parameters are averaged over the upwind turbines 1, 3, and
5. Both the wake spreading rate and the proportionality con-
stant are reduced in stable atmospheric stability, compared
to unstable conditions, as anticipated from the time-averaged
velocity fields (Fig. 4).

Closed-loop wake steering control is implemented with
optimization under uncertainty (see Sect. 2) and the wind di-
rection forecast methodology in Case OUU-F. The energy
gain results for Case OUU-F are shown in Table 3. Gener-
ally, set-point OUU will reduce the magnitude of the peak
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Table 3. Wind farm energy production increase compared to baseline yaw-aligned control; G= 100 · (Er− 1) with Er in Eq. (6). Cases
with α forecast use the DirectionEstimation algorithm. Case OUU-F uses stochastic programming for yaw set-point optimization under
uncertainty (OUU). The case with the highest overall wind farm energy production for a given time period is shown in bold. The stable
periods correspond to 0< L< 200 with unstable and transition times otherwise. We note that the hub-height wind direction and wind speed
also vary with stability. We denote the approximate mean wind direction at the wind turbine hub height during each stability period with
α(zh) (see Figs. 4 and 6).

Case Prevailing α(zh) Deterministic Deterministic, α forecast OUU, α forecast Lookup table (open-loop)
label Case D Case D–F Case OUU-F Case L

Unstable and transition Westerly −0.18 % 0.08 % 1.00 % −0.74 %
Stable Southwesterly 4.61 % 4.87 % 4.80 % 4.70 %
Full simulation – 3.50 % 3.86 % 4.00 % 3.43 %

Figure 9. Estimated wake model parameters averaged over turbines
1, 3, and 5 as a function of the control update step. (a) Wake spread-
ing coefficient kw. (b) Gaussian wake proportionality constant σ0.

yaw misalignment angles, especially near the inflow angle of
alignment (see, e.g., Quick et al., 2020). Given the high tur-
bulence in the convective ABL, the wind direction standard
deviations are large (see Fig. 6), and the yaw set points will
be reduced, compared to deterministic optimization. Case
OUU-F has improved performance compared to Case D–F.
The OUU (Case OUU-F) has improved performance as a re-
sult of increases in energy production during unstable and
transition regimes. The energy production is slightly less for
OUU in the stable regime. The energy ratio between times t1
and t2 for a given turbine is

Er,i =

∫ t2
t1
Pi(t)dt∫ t2

t1
P ref(t)dt

, (7)

with the power production of the reference turbine given by
P ref (see Fig. 1 for the layout). The reference turbine is used
for normalization rather than P γ0

i to maintain information in
the turbine energy ratio metric Er,i about wake losses. The
turbine energy ratios for Case OUU-F are shown in Fig. 10.
Small reductions in Er,i for yaw-misaligned turbines (1, 3,
and 5) result in large increases in energy ratios for the waked
turbines (4, 6, and 8). Turbine 7 is not yaw misaligned during
the simulation and slightly outperforms the reference turbine
likely due to mean flow effects such as induction and block-
age in the stable ABL (Segalini and Dahlberg, 2020).

Open-loop wake steering is implemented in the diurnal cy-
cle ABL LES (Case L). The open-loop yaw misalignment

Figure 10. Diurnal cycle flow turbine-specific energy ratio Er,i
(Eq. 7) for (a) the odd and (b) even rows. The odd row consists
of turbines 1, 3, 5, and 7. The even row consists of turbines 2, 4, 6,
and 8. The turbine layout is provided in Fig. 1. Wake steering results
from Case OUU-F are shown.

lookup table synthesis is described in Appendix E. The yaw
misalignment set points and realized yaw values for tur-
bines 1, 2, and 3 for closed-loop Case OUU-F and open-
loop Case L are shown in Fig. 11. The yaw misalignment set
points are qualitatively similar in their approach but quanti-
tatively differ. The differences between the closed- and open-
loop yaw set points are larger in the unstable and transition
regimes of the simulation than the stable regime. Compar-
ing the yaw misalignment applied in the open- and closed-
loop control cases, there are differences in the yaw duty,
with the closed-loop control introducing some small ampli-
tude (O(1◦)) higher-frequency variations in the applied yaw.
Modifying yaw duty can affect loads on the yaw bearing and
other wind turbine components (see, e.g., Hure et al., 2015;
Campagnolo and Bottasso, 2021). For open-loop wake steer-
ing, the yaw duty depends both on the objective function used
to generate the lookup table and on how the lookup table is
applied. The objective function used in the optimization step
of the closed-loop control considers only farm power pro-
duction. Future work should incorporate yaw duty penalties
in the optimization objective function.

The energy gains for the open-loop wake steering case
are shown in Table 3. The lookup table control performance
is similar to closed-loop control with deterministic set-point
optimization but without the wind direction forecast method
(Case D). Lookup table control has less energy production
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Figure 11. Comparison of the yaw misalignment set-point values as a function of time from the OUU closed-loop control (Case OUU-F)
and from open-loop lookup table control (Case L) for turbines (a) 1, (b) 2, and (c) 3. (d–f) Same as (a–c) with realized yaw.

Figure 12. Comparison of LES row-averaged power data and wake
model predictions for the closed-loop (Case OUU-F) and lookup
table (Case L) wind farm control methodologies for the stable strat-
ification regime. (a) Lookup table control data and predictions.
(b) Closed-loop control data and predictions. Baseline yaw-aligned
control results are indicated with γ0, and wake steering results are
indicated with γ . The upwind row is an average of turbines 1, 3, and
5. The downwind row is an average of turbines 4, 6, and 8.

than baseline yaw-aligned control for unstable and transition
regimes, with a 0.74 % energy loss. For stable conditions, the
open-loop lookup table control has a 4.70 % energy increase
over baseline control. Overall, the open-loop control case has
diminished performance compared to all closed-loop control
cases.

4.3 Wake model predictions

The predictive performances of the open- and closed-loop
control methodologies are assessed by comparing the power
production predictions from the wake model to the LES
power for stable atmospheric conditions. The row-averaged
power production is shown for upwind turbines, averaged
over turbines 1, 3, and 5, and for downwind turbines, aver-
aged over turbines 4, 6, and 8. The wake model power pre-
dictions from open-loop control, using the predefined wake
model parameters depending on turbulence intensity in the

inflow, are shown in Fig. 12a. The LES power production
from the open-loop wake steering case (denoted with γ ) is
shown, in addition to the baseline yaw-aligned control case
(denoted with γ0). The predefined wake model parameters
result in significant predictive bias for the downwind waked
turbines for both yaw-aligned and wake steering control. The
absolute errors are 0.146 and 0.165 for the yaw-misaligned
and yaw-aligned wake model estimates, respectively. The
LES power production is compared to the closed-loop wake
model estimates, in which the wake model parameters are
estimated using the ensemble Kalman filter, in Fig. 12b.
The ensemble Kalman filter adapts the wake model parame-
ters to accurately estimate the wake steering power produc-
tion. Since the closed-loop control LES power is used in the
Kalman filter, this result is a wake model estimate (training
data). Conversely, the wake model estimates for the power
production in baseline yaw-aligned control (γ0) are predic-
tions since the Kalman filter does not use the power pro-
duction from the separate yaw-aligned LES case to estimate
wake model parameters. The absolute errors are 0.0004 and
0.039 for the yaw-misaligned and yaw-aligned wake model
estimates, respectively.

4.4 Comparison of yaw update periods

In this section, the sensitivity of the wind farm energy pro-
duction for the various control cases to the yaw set-point
update period T is investigated. Baseline yaw-aligned con-
trol and three wake steering cases previously described are
implemented in LES of the diurnal cycle of the ABL with
control update periods of T = 30 and T = 15 min. Case D
is not repeated with T = 15 min in this section for brevity.
Each case with a specified control update period represents
an independent LES simulation. Again, all simulations are
initialized from the same initial conditions. The energy gain,
G= 100 ·(Er−1) with Er in Eq. (6), with respect to baseline
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yaw-aligned control Case A for T = 30 min is shown in Ta-
ble 4. For yaw-aligned control, decreasing T will increase the
frequency of updates, wherein the nacelle position is updated
according to the measured wind direction. It is therefore an-
ticipated that reducing T will increase the energy production
in yaw-aligned control (see, e.g., Fleming et al., 2014), at the
compromise of increased yaw duty (we do not account for
the yaw motor energy consumption in this study). Table 4
demonstrates a 0.43 % increase in energy production for the
baseline yaw-aligned control with T = 15 min, compared to
T = 30 min.

The wake steering control cases are implemented with
T = 15 min. The yaw misalignment set points and realized
yaw for T = 30 and 15 min for open-loop lookup table con-
trol (Case L), closed-loop control with deterministic opti-
mization (Case D–F), and closed-loop control with OUU
(Case OUU-F) are shown in Fig. 13. A lower control update
period increases the variability in the yaw set-point values as
the yaw control reacts to higher-frequency timescales. No-
tably, the T = 30 min closed-loop control cases transition to
negative yaw misalignment in the stable regime (around 5 h)
sooner than the faster update frequency cases (T = 15 min).
For T = 15 min, the wind direction forecast method defaults
to the moving average filter for most time steps. For T =
30 min, the wind direction forecast results in negative yaw
misalignment angles as the flow is transitioning across the
inflow angle of turbine alignment (proactive) rather than af-
ter the transition has occurred (reactive).

The energy gain for each case with respect to the energy
production in baseline yaw-aligned control with T = 30 min
is shown in Table 4. The highest energy production among
all cases considered is optimization under uncertainty (Case
OUU-F) with the wind direction forecast methodology and
T = 15 min. The reduced yaw update period increases the
energy production of closed-loop wake steering performed
with OUU (Case OUU-F), while it slightly decreases the
energy production of closed-loop wake steering with deter-
ministic set-point optimization (Case D–F). There are sev-
eral factors which contribute to this result. The closed-loop
control method estimates wake model parameters based on
the average power measurements. For the closed-loop control
methodology used here, the moving average for wind turbine
power production uses the same timescale T used by the con-
trol updates. Therefore, reductions in T also reduce the time
averaging length of the power production, which is used for
parameter estimation. The reduction in T increases the vari-
ability in the mean power data by the central limit theorem.
Reductions in T may therefore lead to higher variability in
the estimated wake model parameters. However, the averag-
ing and control update timescale T must be sufficiently small
to adapt the wind farm control to the time-varying mean wind
conditions. The selection of T is a trade-off between these
competing effects and may be site and ABL condition spe-
cific. While the optimal selection of T is not the focus of
this study, T = 15 min empirically demonstrates the highest

overall energy production in these LES cases. The optimal
update period should be investigated jointly with wind con-
dition forecast methodologies. Future work should consider
decoupling the parameter estimate and control updates.

Contrary to deterministic set-point optimization, Case
OUU-F, which utilizes set-point optimization under model
parameter uncertainty, has improved performance with de-
creasing update periods T . This empirical result is also re-
produced for unstable ABL conditions in Howland (2021b).
Optimizing yaw misalignment set points under a distribu-
tion of model parameters reduces the sensitivity to noise in
the wind farm power production data. The effect of reduc-
ing the yaw update period for open-loop control is antici-
pated to be similar to baseline yaw-aligned control since the
yaw set points have been pre-defined in the lookup table.
The energy production from open-loop control is increased
by 0.4 % by reducing T to 15 min. For T = 15 min, open-
loop lookup table control (case L) has a similar performance
to closed-loop control with deterministic optimization (Case
D–F). Closed-loop control with yaw set-point OUU (Case
OUU-F) has the highest energy production for both yaw up-
date periods, and the highest overall energy production oc-
curs with T = 15 min.

5 Conclusions

The closed-loop wake steering control methodology, devel-
oped in Part 1 (Howland et al., 2020c) is extended here. We
compared closed-loop wake steering to baseline yaw-aligned
control and open-loop lookup table control in idealized large
eddy simulations of the diurnal cycle for yaw set-point up-
date periods of T = 15 and 30 min. The effect of wake steer-
ing on energy production depends on the wind farm geometry
and the atmospheric conditions. For the idealized wind farm
and ABL setup considered here, wake steering has a larger
increase in energy production for stable ABL conditions than
for convective. Importantly, other details of the flow, such as
hub-height wind direction and speed, change along with sta-
bility in the diurnal cycle simulations presented in this study.
Therefore, the present diurnal cycle simulations do not rep-
resent controlled experiments to isolate the effects of the sta-
bility on wake steering control. Such controlled experiments
are suggested for future work.

Open-loop lookup table control and closed-loop wake
steering control with deterministic set-point optimization
have reduced energy production in convective conditions
compared to baseline yaw-aligned control in the considered
cases. Closed-loop wake steering with set-point optimiza-
tion under uncertainty increases energy in convective condi-
tions, compared to baseline control. The highest overall en-
ergy production is achieved with closed-loop wake steering
with yaw misalignment set-point optimization under wind di-
rection and model parameter uncertainty for T = 15 min. Re-
ducing the yaw set-point update period increases the energy
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Figure 13. Comparison of the yaw misalignment set-point values as a function of time for turbine 1 from the (a) lookup table (Case L),
(b) deterministic optimization (Case D–F), and (c) closed-loop control with optimization under uncertainty (Case OUU-F). (d–f) Same as
(a–c) with realized yaw.

Table 4. Wind farm energy production increase compared to baseline yaw-aligned control with T = 30 min; G= 100 · (Er− 1) with Er
in Eq. (6). Cases with α forecast use the DirectionEstimation algorithm. The case with the highest overall wind farm energy production is
shown in bold. The full simulation period is considered, with stable, unstable, and transition regimes.

Case Baseline, γ0 Deterministic, α forecast OUU, α forecast Lookup table (open-loop)
label Case A Case D–F Case OUU-F Case L

T = 30 min − 3.86 % 4.00 % 3.43 %
T = 15 min 0.43 % 3.82 % 4.14 % 3.83 %

production for all cases except for closed-loop wake steering
control with deterministic set-point optimization, in which
the yaw set points are influenced by data measurement noise.
The influence of the data measurement noise is alleviated
with set-point optimization under uncertainty.

The optimal yaw misalignment set points depend on the
incident wind direction. Rather than assuming that the future
wind direction will be equal to the low-pass-filtered recorded
wind direction data, in this study, we develop a regression-
based wind direction forecast. The wind direction forecast
uses two previous time windows to identify if the wind di-
rection is stationary or varying in time. If the wind direction
is stationary, the standard filtered wind direction is used. If
the wind direction is identified to be varying in time, a linear
regression is used to forecast the future wind direction. The
proposed framework can be used with arbitrary wind direc-
tion time series estimation methods. Future work should con-
sider nonlinear regression or more complex time series ma-
chine learning methodologies, such as recurrent neural net-
works.

The results of Part 1 and 2 of this study suggest sev-
eral directions of future work. Future work should investi-
gate the optimal yaw set-point update period in tandem with
wind condition prediction methodologies. Since the closed-
loop control method impacts yaw duty, realistic utility-scale

turbine yaw duty penalties, based on yaw motor energy us-
age and increased maintenance costs, should also be consid-
ered in the set-point optimization. Improved estimates for the
wake model parameter probability distributions with phys-
ical constraints should be considered. Additionally, future
work should consider model form uncertainty and model-
ing error in connection with model parameter estimation.
Future studies should compare various model-based closed-
loop wake steering approaches which use steady-state and
dynamic wind farm models to model-free closed-loop wake
steering control.

We note that the simulations presented in this study are
an idealization of the diurnal ABL with fixed geostrophic
wind speed and direction (Beare et al., 2006; Svensson et al.,
2011; Fitch et al., 2013). While observations occasionally
demonstrate approximately steady geostrophic winds over
timescales up to a day (Bosveld et al., 2014), variations
in the large-scale forcings in the atmosphere influence the
ABL (Muñoz-Esparza et al., 2017) and wind farm flows
(Sanz Rodrigo et al., 2017a, b). Methodologies to investigate
wake steering control in more realistic ABL wind conditions
through meso-microscale coupling should be considered in
future work. Finally, future work should consider wake steer-
ing in complex terrain.
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Appendix A: Statistical wind direction forecast
algorithm

The regression-based statistical wind direction forecast dis-
cussed in Sect. 2.1 is described in this section. A schematic
of the algorithm is shown in Fig. A1. The algorithm is pre-
sented in Algorithm 1. The inputs are the measurement time
series t, the measured wind direction time series α, the cur-
rent time ts, the yaw set-point update period T , and the mini-
mum coefficient of determination value Rmin. The algorithm
Regression() is provided time and wind direction vectors and
uses linear regression to estimate the wind direction over the
next time period of length T (αF ). Averaging is denoted by
〈·〉, and standard deviation is denoted by SD.

Figure A1. Wind direction estimation algorithm DirectionEstimation. Dashed lines are wind direction predictions using regression, and
dotted lines are predictions using the mean values.
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Appendix B: Idealized diurnal cycle setup

The surface heat flux boundary condition used in the ideal-
ized diurnal cycle simulation is shown in Fig. B1a. The ini-
tial potential temperature profile is shown in Fig. B1b. The
streamwise velocity at the wind turbine hub height, zoomed
in to the wind farm region, is shown in Fig. B2.

Figure B1. (a) Time-varying surface heat flux w′θ ′s. The simu-
lation is initialized at time t = 0 corresponding to 18:00. Positive
heat flux corresponds to surface heating, and negative flux is cool-
ing. (b) Initial potential temperature θ profile.

Figure B2. Zoomed-in hub-height streamwise velocity during (a, c) unstable and (b, d) stable ABL conditions for the baseline yaw-aligned
control case. Instantaneous snapshots are shown in (a) and (b), and 10 min moving averaged flow fields are shown in (c) and (d). The
streamwise velocity in the full domain is shown in Fig. 4.

Appendix C: Diurnal cycle validation

The diurnal cycle implementation in PadéOps (Ghate, 2018)
is validated in this section. The diurnal cycle LES case of Ku-
mar et al. (2006) is used as a reference. The boundary con-
ditions constructed in Kumar et al. (2006) correspond to the
HATS field campaign (Horst et al., 2004). The full details of
the diurnal cycle initialization are provided in (Kumar et al.,
2006). The free atmosphere is in geostrophic balance. Only
the vertical component of Earth’s rotation is included (tra-
ditional approximation is enforced; Howland et al., 2020b).
The prescribed geostrophic wind speed and surface heat flux
are shown in Fig. C1.
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Figure C1. Diurnal cycle validation case (Kumar et al., 2006).
(a) Diurnal cycle geostrophic wind speed. (b) Diurnal cycle surface
heat flux w′θ ′s.

Figure C2. Diurnal cycle validation case (Kumar et al., 2006).
(a) Diurnal cycle friction velocity u∗. (b) Diurnal cycle boundary
layer height normalized by the Obukhov length zi/L. Details for
boundary layer height estimation provided in Kumar et al. (2006).

The validation focuses on two integrated quantities in the
ABL. The friction velocity is shown in Fig. C2a. There is
sufficient agreement between the present LES and the ref-
erence case. The boundary layer height zi , normalized by
the Obukhov length, is shown in Fig. C2b. There is quali-
tative agreement between the cases with some quantitative
discrepancy in the stability transition regions of the profile.
The quantitative discrepancies in the normalized boundary
layer height are primarily the result of the differing numerics
and subgrid-scale models used in the two simulations. Pri-
mary discrepancies arise in the stable ABL since the Ozmi-
dov scale is of the same order as the grid spacing (Sullivan
et al., 2016). The present LES uses a sixth-order compact
finite difference scheme (Lele, 1992) in the vertical direc-
tion, whereas Kumar et al. (2006) implemented a second-
order finite difference scheme. Overall, the results suggest
that the diurnal cycle boundary condition implementation is
sufficient for the simulation of a representative diurnal cycle
of the ABL.

Appendix D: Note on wake steering LES initialization

Since turbulent flows exhibit a chaotic dependence on ini-
tial conditions (e.g., Pope, 2001), the initial conditions for
all LES cases presented in this study are executed from the
same initial conditions. Further, differences in parallel pro-
cessor topology can result in round-off errors which will ex-
ponentially grow to O(1) differences in the instantaneous
flow fields. In this section, we highlight the differences that

Figure D1. (a) Reference turbine wind direction for open-loop
wake steering control cases for two differing parallel processor
topologies. The simulations are executed from identical initial con-
ditions. (b) The yaw misalignment set points implemented in the
two open-loop lookup table control cases.

arise in the comparison of separate wind farm control LES
cases due to the chaotic nature of turbulence. Two simula-
tions of open-loop lookup table control are implemented in
the diurnal cycle simulations described in Sect. 3. The lookup
table methodology is described in Appendix E. The simu-
lations are started from identical initial conditions but with
different parallel processor topology, which will result in an
initial round-off error difference (10−8) between the cases.
The reference turbine wind directions are shown in Fig. D1a,
and the applied yaw misalignments are shown in Fig. D1b.
While the differences between the cases appear minor visu-
ally, they differ in their energy ratio results. The energy gains
for the two cases with respect to baseline yaw-aligned control
are 3.43 % and 3.17 % for cases 1 and 2, respectively. The
primary differences arise in convective ABL conditions, in
which the energy gains are−0.74 % and−1.69 % for cases 1
and 2, respectively. Conversely, the differences in stable con-
ditions are minor, with gains of 4.70 % and 4.72 % for cases
1 and 2, respectively. Overall, the results suggest that the ini-
tialization and parallel processor topology round-off must be
identical to machine precision to ensure accurate compar-
isons between LES control cases. Primary differences arise
in ABL conditions with high turbulence.

Appendix E: Lookup table synthesis

The yaw misalignment lookup table synthesis is described
in this section. The wake model presented in Part 1 (How-
land et al., 2020c) is used for yaw set-point optimization
for the eight wind turbines of interest (Fig. 1) for the wind
directions encountered in the LES case, between −10◦ <
α < 30◦ (Fig. 2a). The wake spreading rate is prescribed
using the empirical fit of Niayifar and Porté-Agel (2016),
k∗ = 0.3837 ·TI+0.003678, where TI is the streamwise tur-
bulence intensity. The proportionality constant of the pre-
sumed Gaussian wake is set to σ0 = 0.25 (Shapiro et al.,
2019; Howland et al., 2020c). The parameter k∗ in the empir-
ical fit of Niayifar and Porté-Agel (2016) is not identical to
the parameter kw used in the lifting line wake model (Shapiro
et al., 2018). An empirical calibration for kw is not available
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Figure E1. Yaw misalignment set-point lookup table for open-loop
control for turbines 1, 2, and 3 as a function of the incident wind
direction.

in the literature. Instead, the wake spreading rate kw is found
by equating the Gaussian wake model form used by Niayifar
and Porté-Agel (2016) with the form used in this study. The
resulting empirical kw is

kw =

k∗x+ 0.2
√

1+
√

1−CT
2
√

1−CT
− 1

σ0 log(1+ exp(2(x− 1)))
, (E1)

where x is the streamwise distance between the turbines nor-
malized by the rotor diameter, CT is the coefficient of thrust,
and k∗ is defined in the relationship above.

The yaw set-point lookup table is constructed with a wind
direction discretization of 1α = 2.5◦. The turbulence inten-
sity is extracted from the baseline yaw-aligned control sim-
ulation as a function of time. The mean turbulence intensity
in each wind direction bin (see Fig. 2c) is used to estimate
the wake spreading rate k∗, which is then used to compute
kw in Eq. (E1). The yaw set points are then optimized in each
wind direction bin for the prescribed kw and σ0. The resulting
yaw set points for turbines 1, 2, and 3 are shown in Fig. E1.
The other yaw misalignments are not shown for brevity but
are provided in the dataset accompanying this study. The
yaw misalignments are applied to the wind farm by selecting
the closest wind direction bin to the moving average filtered
wind direction estimate (see Fig. 11).
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